xref: /linux/drivers/dma/at_hdmac.c (revision 1f2367a39f17bd553a75e179a747f9b257bc9478)
1 /*
2  * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
3  *
4  * Copyright (C) 2008 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  *
12  * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
13  * The only Atmel DMA Controller that is not covered by this driver is the one
14  * found on AT91SAM9263.
15  */
16 
17 #include <dt-bindings/dma/at91.h>
18 #include <linux/clk.h>
19 #include <linux/dmaengine.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dmapool.h>
22 #include <linux/interrupt.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_dma.h>
29 
30 #include "at_hdmac_regs.h"
31 #include "dmaengine.h"
32 
33 /*
34  * Glossary
35  * --------
36  *
37  * at_hdmac		: Name of the ATmel AHB DMA Controller
38  * at_dma_ / atdma	: ATmel DMA controller entity related
39  * atc_	/ atchan	: ATmel DMA Channel entity related
40  */
41 
42 #define	ATC_DEFAULT_CFG		(ATC_FIFOCFG_HALFFIFO)
43 #define	ATC_DEFAULT_CTRLB	(ATC_SIF(AT_DMA_MEM_IF) \
44 				|ATC_DIF(AT_DMA_MEM_IF))
45 #define ATC_DMA_BUSWIDTHS\
46 	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
47 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
48 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
49 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
50 
51 #define ATC_MAX_DSCR_TRIALS	10
52 
53 /*
54  * Initial number of descriptors to allocate for each channel. This could
55  * be increased during dma usage.
56  */
57 static unsigned int init_nr_desc_per_channel = 64;
58 module_param(init_nr_desc_per_channel, uint, 0644);
59 MODULE_PARM_DESC(init_nr_desc_per_channel,
60 		 "initial descriptors per channel (default: 64)");
61 
62 
63 /* prototypes */
64 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
65 static void atc_issue_pending(struct dma_chan *chan);
66 
67 
68 /*----------------------------------------------------------------------*/
69 
70 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
71 						size_t len)
72 {
73 	unsigned int width;
74 
75 	if (!((src | dst  | len) & 3))
76 		width = 2;
77 	else if (!((src | dst | len) & 1))
78 		width = 1;
79 	else
80 		width = 0;
81 
82 	return width;
83 }
84 
85 static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
86 {
87 	return list_first_entry(&atchan->active_list,
88 				struct at_desc, desc_node);
89 }
90 
91 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
92 {
93 	return list_first_entry(&atchan->queue,
94 				struct at_desc, desc_node);
95 }
96 
97 /**
98  * atc_alloc_descriptor - allocate and return an initialized descriptor
99  * @chan: the channel to allocate descriptors for
100  * @gfp_flags: GFP allocation flags
101  *
102  * Note: The ack-bit is positioned in the descriptor flag at creation time
103  *       to make initial allocation more convenient. This bit will be cleared
104  *       and control will be given to client at usage time (during
105  *       preparation functions).
106  */
107 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
108 					    gfp_t gfp_flags)
109 {
110 	struct at_desc	*desc = NULL;
111 	struct at_dma	*atdma = to_at_dma(chan->device);
112 	dma_addr_t phys;
113 
114 	desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys);
115 	if (desc) {
116 		INIT_LIST_HEAD(&desc->tx_list);
117 		dma_async_tx_descriptor_init(&desc->txd, chan);
118 		/* txd.flags will be overwritten in prep functions */
119 		desc->txd.flags = DMA_CTRL_ACK;
120 		desc->txd.tx_submit = atc_tx_submit;
121 		desc->txd.phys = phys;
122 	}
123 
124 	return desc;
125 }
126 
127 /**
128  * atc_desc_get - get an unused descriptor from free_list
129  * @atchan: channel we want a new descriptor for
130  */
131 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
132 {
133 	struct at_desc *desc, *_desc;
134 	struct at_desc *ret = NULL;
135 	unsigned long flags;
136 	unsigned int i = 0;
137 
138 	spin_lock_irqsave(&atchan->lock, flags);
139 	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
140 		i++;
141 		if (async_tx_test_ack(&desc->txd)) {
142 			list_del(&desc->desc_node);
143 			ret = desc;
144 			break;
145 		}
146 		dev_dbg(chan2dev(&atchan->chan_common),
147 				"desc %p not ACKed\n", desc);
148 	}
149 	spin_unlock_irqrestore(&atchan->lock, flags);
150 	dev_vdbg(chan2dev(&atchan->chan_common),
151 		"scanned %u descriptors on freelist\n", i);
152 
153 	/* no more descriptor available in initial pool: create one more */
154 	if (!ret) {
155 		ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC);
156 		if (ret) {
157 			spin_lock_irqsave(&atchan->lock, flags);
158 			atchan->descs_allocated++;
159 			spin_unlock_irqrestore(&atchan->lock, flags);
160 		} else {
161 			dev_err(chan2dev(&atchan->chan_common),
162 					"not enough descriptors available\n");
163 		}
164 	}
165 
166 	return ret;
167 }
168 
169 /**
170  * atc_desc_put - move a descriptor, including any children, to the free list
171  * @atchan: channel we work on
172  * @desc: descriptor, at the head of a chain, to move to free list
173  */
174 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
175 {
176 	if (desc) {
177 		struct at_desc *child;
178 		unsigned long flags;
179 
180 		spin_lock_irqsave(&atchan->lock, flags);
181 		list_for_each_entry(child, &desc->tx_list, desc_node)
182 			dev_vdbg(chan2dev(&atchan->chan_common),
183 					"moving child desc %p to freelist\n",
184 					child);
185 		list_splice_init(&desc->tx_list, &atchan->free_list);
186 		dev_vdbg(chan2dev(&atchan->chan_common),
187 			 "moving desc %p to freelist\n", desc);
188 		list_add(&desc->desc_node, &atchan->free_list);
189 		spin_unlock_irqrestore(&atchan->lock, flags);
190 	}
191 }
192 
193 /**
194  * atc_desc_chain - build chain adding a descriptor
195  * @first: address of first descriptor of the chain
196  * @prev: address of previous descriptor of the chain
197  * @desc: descriptor to queue
198  *
199  * Called from prep_* functions
200  */
201 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
202 			   struct at_desc *desc)
203 {
204 	if (!(*first)) {
205 		*first = desc;
206 	} else {
207 		/* inform the HW lli about chaining */
208 		(*prev)->lli.dscr = desc->txd.phys;
209 		/* insert the link descriptor to the LD ring */
210 		list_add_tail(&desc->desc_node,
211 				&(*first)->tx_list);
212 	}
213 	*prev = desc;
214 }
215 
216 /**
217  * atc_dostart - starts the DMA engine for real
218  * @atchan: the channel we want to start
219  * @first: first descriptor in the list we want to begin with
220  *
221  * Called with atchan->lock held and bh disabled
222  */
223 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
224 {
225 	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
226 
227 	/* ASSERT:  channel is idle */
228 	if (atc_chan_is_enabled(atchan)) {
229 		dev_err(chan2dev(&atchan->chan_common),
230 			"BUG: Attempted to start non-idle channel\n");
231 		dev_err(chan2dev(&atchan->chan_common),
232 			"  channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
233 			channel_readl(atchan, SADDR),
234 			channel_readl(atchan, DADDR),
235 			channel_readl(atchan, CTRLA),
236 			channel_readl(atchan, CTRLB),
237 			channel_readl(atchan, DSCR));
238 
239 		/* The tasklet will hopefully advance the queue... */
240 		return;
241 	}
242 
243 	vdbg_dump_regs(atchan);
244 
245 	channel_writel(atchan, SADDR, 0);
246 	channel_writel(atchan, DADDR, 0);
247 	channel_writel(atchan, CTRLA, 0);
248 	channel_writel(atchan, CTRLB, 0);
249 	channel_writel(atchan, DSCR, first->txd.phys);
250 	channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
251 		       ATC_SPIP_BOUNDARY(first->boundary));
252 	channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
253 		       ATC_DPIP_BOUNDARY(first->boundary));
254 	dma_writel(atdma, CHER, atchan->mask);
255 
256 	vdbg_dump_regs(atchan);
257 }
258 
259 /*
260  * atc_get_desc_by_cookie - get the descriptor of a cookie
261  * @atchan: the DMA channel
262  * @cookie: the cookie to get the descriptor for
263  */
264 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
265 						dma_cookie_t cookie)
266 {
267 	struct at_desc *desc, *_desc;
268 
269 	list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
270 		if (desc->txd.cookie == cookie)
271 			return desc;
272 	}
273 
274 	list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
275 		if (desc->txd.cookie == cookie)
276 			return desc;
277 	}
278 
279 	return NULL;
280 }
281 
282 /**
283  * atc_calc_bytes_left - calculates the number of bytes left according to the
284  * value read from CTRLA.
285  *
286  * @current_len: the number of bytes left before reading CTRLA
287  * @ctrla: the value of CTRLA
288  */
289 static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
290 {
291 	u32 btsize = (ctrla & ATC_BTSIZE_MAX);
292 	u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
293 
294 	/*
295 	 * According to the datasheet, when reading the Control A Register
296 	 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
297 	 * number of transfers completed on the Source Interface.
298 	 * So btsize is always a number of source width transfers.
299 	 */
300 	return current_len - (btsize << src_width);
301 }
302 
303 /**
304  * atc_get_bytes_left - get the number of bytes residue for a cookie
305  * @chan: DMA channel
306  * @cookie: transaction identifier to check status of
307  */
308 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
309 {
310 	struct at_dma_chan      *atchan = to_at_dma_chan(chan);
311 	struct at_desc *desc_first = atc_first_active(atchan);
312 	struct at_desc *desc;
313 	int ret;
314 	u32 ctrla, dscr, trials;
315 
316 	/*
317 	 * If the cookie doesn't match to the currently running transfer then
318 	 * we can return the total length of the associated DMA transfer,
319 	 * because it is still queued.
320 	 */
321 	desc = atc_get_desc_by_cookie(atchan, cookie);
322 	if (desc == NULL)
323 		return -EINVAL;
324 	else if (desc != desc_first)
325 		return desc->total_len;
326 
327 	/* cookie matches to the currently running transfer */
328 	ret = desc_first->total_len;
329 
330 	if (desc_first->lli.dscr) {
331 		/* hardware linked list transfer */
332 
333 		/*
334 		 * Calculate the residue by removing the length of the child
335 		 * descriptors already transferred from the total length.
336 		 * To get the current child descriptor we can use the value of
337 		 * the channel's DSCR register and compare it against the value
338 		 * of the hardware linked list structure of each child
339 		 * descriptor.
340 		 *
341 		 * The CTRLA register provides us with the amount of data
342 		 * already read from the source for the current child
343 		 * descriptor. So we can compute a more accurate residue by also
344 		 * removing the number of bytes corresponding to this amount of
345 		 * data.
346 		 *
347 		 * However, the DSCR and CTRLA registers cannot be read both
348 		 * atomically. Hence a race condition may occur: the first read
349 		 * register may refer to one child descriptor whereas the second
350 		 * read may refer to a later child descriptor in the list
351 		 * because of the DMA transfer progression inbetween the two
352 		 * reads.
353 		 *
354 		 * One solution could have been to pause the DMA transfer, read
355 		 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
356 		 * this approach presents some drawbacks:
357 		 * - If the DMA transfer is paused, RX overruns or TX underruns
358 		 *   are more likey to occur depending on the system latency.
359 		 *   Taking the USART driver as an example, it uses a cyclic DMA
360 		 *   transfer to read data from the Receive Holding Register
361 		 *   (RHR) to avoid RX overruns since the RHR is not protected
362 		 *   by any FIFO on most Atmel SoCs. So pausing the DMA transfer
363 		 *   to compute the residue would break the USART driver design.
364 		 * - The atc_pause() function masks interrupts but we'd rather
365 		 *   avoid to do so for system latency purpose.
366 		 *
367 		 * Then we'd rather use another solution: the DSCR is read a
368 		 * first time, the CTRLA is read in turn, next the DSCR is read
369 		 * a second time. If the two consecutive read values of the DSCR
370 		 * are the same then we assume both refers to the very same
371 		 * child descriptor as well as the CTRLA value read inbetween
372 		 * does. For cyclic tranfers, the assumption is that a full loop
373 		 * is "not so fast".
374 		 * If the two DSCR values are different, we read again the CTRLA
375 		 * then the DSCR till two consecutive read values from DSCR are
376 		 * equal or till the maxium trials is reach.
377 		 * This algorithm is very unlikely not to find a stable value for
378 		 * DSCR.
379 		 */
380 
381 		dscr = channel_readl(atchan, DSCR);
382 		rmb(); /* ensure DSCR is read before CTRLA */
383 		ctrla = channel_readl(atchan, CTRLA);
384 		for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) {
385 			u32 new_dscr;
386 
387 			rmb(); /* ensure DSCR is read after CTRLA */
388 			new_dscr = channel_readl(atchan, DSCR);
389 
390 			/*
391 			 * If the DSCR register value has not changed inside the
392 			 * DMA controller since the previous read, we assume
393 			 * that both the dscr and ctrla values refers to the
394 			 * very same descriptor.
395 			 */
396 			if (likely(new_dscr == dscr))
397 				break;
398 
399 			/*
400 			 * DSCR has changed inside the DMA controller, so the
401 			 * previouly read value of CTRLA may refer to an already
402 			 * processed descriptor hence could be outdated.
403 			 * We need to update ctrla to match the current
404 			 * descriptor.
405 			 */
406 			dscr = new_dscr;
407 			rmb(); /* ensure DSCR is read before CTRLA */
408 			ctrla = channel_readl(atchan, CTRLA);
409 		}
410 		if (unlikely(trials >= ATC_MAX_DSCR_TRIALS))
411 			return -ETIMEDOUT;
412 
413 		/* for the first descriptor we can be more accurate */
414 		if (desc_first->lli.dscr == dscr)
415 			return atc_calc_bytes_left(ret, ctrla);
416 
417 		ret -= desc_first->len;
418 		list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
419 			if (desc->lli.dscr == dscr)
420 				break;
421 
422 			ret -= desc->len;
423 		}
424 
425 		/*
426 		 * For the current descriptor in the chain we can calculate
427 		 * the remaining bytes using the channel's register.
428 		 */
429 		ret = atc_calc_bytes_left(ret, ctrla);
430 	} else {
431 		/* single transfer */
432 		ctrla = channel_readl(atchan, CTRLA);
433 		ret = atc_calc_bytes_left(ret, ctrla);
434 	}
435 
436 	return ret;
437 }
438 
439 /**
440  * atc_chain_complete - finish work for one transaction chain
441  * @atchan: channel we work on
442  * @desc: descriptor at the head of the chain we want do complete
443  *
444  * Called with atchan->lock held and bh disabled */
445 static void
446 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
447 {
448 	struct dma_async_tx_descriptor	*txd = &desc->txd;
449 	struct at_dma			*atdma = to_at_dma(atchan->chan_common.device);
450 
451 	dev_vdbg(chan2dev(&atchan->chan_common),
452 		"descriptor %u complete\n", txd->cookie);
453 
454 	/* mark the descriptor as complete for non cyclic cases only */
455 	if (!atc_chan_is_cyclic(atchan))
456 		dma_cookie_complete(txd);
457 
458 	/* If the transfer was a memset, free our temporary buffer */
459 	if (desc->memset_buffer) {
460 		dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
461 			      desc->memset_paddr);
462 		desc->memset_buffer = false;
463 	}
464 
465 	/* move children to free_list */
466 	list_splice_init(&desc->tx_list, &atchan->free_list);
467 	/* move myself to free_list */
468 	list_move(&desc->desc_node, &atchan->free_list);
469 
470 	dma_descriptor_unmap(txd);
471 	/* for cyclic transfers,
472 	 * no need to replay callback function while stopping */
473 	if (!atc_chan_is_cyclic(atchan)) {
474 		/*
475 		 * The API requires that no submissions are done from a
476 		 * callback, so we don't need to drop the lock here
477 		 */
478 		dmaengine_desc_get_callback_invoke(txd, NULL);
479 	}
480 
481 	dma_run_dependencies(txd);
482 }
483 
484 /**
485  * atc_complete_all - finish work for all transactions
486  * @atchan: channel to complete transactions for
487  *
488  * Eventually submit queued descriptors if any
489  *
490  * Assume channel is idle while calling this function
491  * Called with atchan->lock held and bh disabled
492  */
493 static void atc_complete_all(struct at_dma_chan *atchan)
494 {
495 	struct at_desc *desc, *_desc;
496 	LIST_HEAD(list);
497 
498 	dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
499 
500 	/*
501 	 * Submit queued descriptors ASAP, i.e. before we go through
502 	 * the completed ones.
503 	 */
504 	if (!list_empty(&atchan->queue))
505 		atc_dostart(atchan, atc_first_queued(atchan));
506 	/* empty active_list now it is completed */
507 	list_splice_init(&atchan->active_list, &list);
508 	/* empty queue list by moving descriptors (if any) to active_list */
509 	list_splice_init(&atchan->queue, &atchan->active_list);
510 
511 	list_for_each_entry_safe(desc, _desc, &list, desc_node)
512 		atc_chain_complete(atchan, desc);
513 }
514 
515 /**
516  * atc_advance_work - at the end of a transaction, move forward
517  * @atchan: channel where the transaction ended
518  *
519  * Called with atchan->lock held and bh disabled
520  */
521 static void atc_advance_work(struct at_dma_chan *atchan)
522 {
523 	dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
524 
525 	if (atc_chan_is_enabled(atchan))
526 		return;
527 
528 	if (list_empty(&atchan->active_list) ||
529 	    list_is_singular(&atchan->active_list)) {
530 		atc_complete_all(atchan);
531 	} else {
532 		atc_chain_complete(atchan, atc_first_active(atchan));
533 		/* advance work */
534 		atc_dostart(atchan, atc_first_active(atchan));
535 	}
536 }
537 
538 
539 /**
540  * atc_handle_error - handle errors reported by DMA controller
541  * @atchan: channel where error occurs
542  *
543  * Called with atchan->lock held and bh disabled
544  */
545 static void atc_handle_error(struct at_dma_chan *atchan)
546 {
547 	struct at_desc *bad_desc;
548 	struct at_desc *child;
549 
550 	/*
551 	 * The descriptor currently at the head of the active list is
552 	 * broked. Since we don't have any way to report errors, we'll
553 	 * just have to scream loudly and try to carry on.
554 	 */
555 	bad_desc = atc_first_active(atchan);
556 	list_del_init(&bad_desc->desc_node);
557 
558 	/* As we are stopped, take advantage to push queued descriptors
559 	 * in active_list */
560 	list_splice_init(&atchan->queue, atchan->active_list.prev);
561 
562 	/* Try to restart the controller */
563 	if (!list_empty(&atchan->active_list))
564 		atc_dostart(atchan, atc_first_active(atchan));
565 
566 	/*
567 	 * KERN_CRITICAL may seem harsh, but since this only happens
568 	 * when someone submits a bad physical address in a
569 	 * descriptor, we should consider ourselves lucky that the
570 	 * controller flagged an error instead of scribbling over
571 	 * random memory locations.
572 	 */
573 	dev_crit(chan2dev(&atchan->chan_common),
574 			"Bad descriptor submitted for DMA!\n");
575 	dev_crit(chan2dev(&atchan->chan_common),
576 			"  cookie: %d\n", bad_desc->txd.cookie);
577 	atc_dump_lli(atchan, &bad_desc->lli);
578 	list_for_each_entry(child, &bad_desc->tx_list, desc_node)
579 		atc_dump_lli(atchan, &child->lli);
580 
581 	/* Pretend the descriptor completed successfully */
582 	atc_chain_complete(atchan, bad_desc);
583 }
584 
585 /**
586  * atc_handle_cyclic - at the end of a period, run callback function
587  * @atchan: channel used for cyclic operations
588  *
589  * Called with atchan->lock held and bh disabled
590  */
591 static void atc_handle_cyclic(struct at_dma_chan *atchan)
592 {
593 	struct at_desc			*first = atc_first_active(atchan);
594 	struct dma_async_tx_descriptor	*txd = &first->txd;
595 
596 	dev_vdbg(chan2dev(&atchan->chan_common),
597 			"new cyclic period llp 0x%08x\n",
598 			channel_readl(atchan, DSCR));
599 
600 	dmaengine_desc_get_callback_invoke(txd, NULL);
601 }
602 
603 /*--  IRQ & Tasklet  ---------------------------------------------------*/
604 
605 static void atc_tasklet(unsigned long data)
606 {
607 	struct at_dma_chan *atchan = (struct at_dma_chan *)data;
608 	unsigned long flags;
609 
610 	spin_lock_irqsave(&atchan->lock, flags);
611 	if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
612 		atc_handle_error(atchan);
613 	else if (atc_chan_is_cyclic(atchan))
614 		atc_handle_cyclic(atchan);
615 	else
616 		atc_advance_work(atchan);
617 
618 	spin_unlock_irqrestore(&atchan->lock, flags);
619 }
620 
621 static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
622 {
623 	struct at_dma		*atdma = (struct at_dma *)dev_id;
624 	struct at_dma_chan	*atchan;
625 	int			i;
626 	u32			status, pending, imr;
627 	int			ret = IRQ_NONE;
628 
629 	do {
630 		imr = dma_readl(atdma, EBCIMR);
631 		status = dma_readl(atdma, EBCISR);
632 		pending = status & imr;
633 
634 		if (!pending)
635 			break;
636 
637 		dev_vdbg(atdma->dma_common.dev,
638 			"interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
639 			 status, imr, pending);
640 
641 		for (i = 0; i < atdma->dma_common.chancnt; i++) {
642 			atchan = &atdma->chan[i];
643 			if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
644 				if (pending & AT_DMA_ERR(i)) {
645 					/* Disable channel on AHB error */
646 					dma_writel(atdma, CHDR,
647 						AT_DMA_RES(i) | atchan->mask);
648 					/* Give information to tasklet */
649 					set_bit(ATC_IS_ERROR, &atchan->status);
650 				}
651 				tasklet_schedule(&atchan->tasklet);
652 				ret = IRQ_HANDLED;
653 			}
654 		}
655 
656 	} while (pending);
657 
658 	return ret;
659 }
660 
661 
662 /*--  DMA Engine API  --------------------------------------------------*/
663 
664 /**
665  * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
666  * @desc: descriptor at the head of the transaction chain
667  *
668  * Queue chain if DMA engine is working already
669  *
670  * Cookie increment and adding to active_list or queue must be atomic
671  */
672 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
673 {
674 	struct at_desc		*desc = txd_to_at_desc(tx);
675 	struct at_dma_chan	*atchan = to_at_dma_chan(tx->chan);
676 	dma_cookie_t		cookie;
677 	unsigned long		flags;
678 
679 	spin_lock_irqsave(&atchan->lock, flags);
680 	cookie = dma_cookie_assign(tx);
681 
682 	if (list_empty(&atchan->active_list)) {
683 		dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
684 				desc->txd.cookie);
685 		atc_dostart(atchan, desc);
686 		list_add_tail(&desc->desc_node, &atchan->active_list);
687 	} else {
688 		dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
689 				desc->txd.cookie);
690 		list_add_tail(&desc->desc_node, &atchan->queue);
691 	}
692 
693 	spin_unlock_irqrestore(&atchan->lock, flags);
694 
695 	return cookie;
696 }
697 
698 /**
699  * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
700  * @chan: the channel to prepare operation on
701  * @xt: Interleaved transfer template
702  * @flags: tx descriptor status flags
703  */
704 static struct dma_async_tx_descriptor *
705 atc_prep_dma_interleaved(struct dma_chan *chan,
706 			 struct dma_interleaved_template *xt,
707 			 unsigned long flags)
708 {
709 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
710 	struct data_chunk	*first;
711 	struct at_desc		*desc = NULL;
712 	size_t			xfer_count;
713 	unsigned int		dwidth;
714 	u32			ctrla;
715 	u32			ctrlb;
716 	size_t			len = 0;
717 	int			i;
718 
719 	if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
720 		return NULL;
721 
722 	first = xt->sgl;
723 
724 	dev_info(chan2dev(chan),
725 		 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
726 		__func__, &xt->src_start, &xt->dst_start, xt->numf,
727 		xt->frame_size, flags);
728 
729 	/*
730 	 * The controller can only "skip" X bytes every Y bytes, so we
731 	 * need to make sure we are given a template that fit that
732 	 * description, ie a template with chunks that always have the
733 	 * same size, with the same ICGs.
734 	 */
735 	for (i = 0; i < xt->frame_size; i++) {
736 		struct data_chunk *chunk = xt->sgl + i;
737 
738 		if ((chunk->size != xt->sgl->size) ||
739 		    (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
740 		    (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
741 			dev_err(chan2dev(chan),
742 				"%s: the controller can transfer only identical chunks\n",
743 				__func__);
744 			return NULL;
745 		}
746 
747 		len += chunk->size;
748 	}
749 
750 	dwidth = atc_get_xfer_width(xt->src_start,
751 				    xt->dst_start, len);
752 
753 	xfer_count = len >> dwidth;
754 	if (xfer_count > ATC_BTSIZE_MAX) {
755 		dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
756 		return NULL;
757 	}
758 
759 	ctrla = ATC_SRC_WIDTH(dwidth) |
760 		ATC_DST_WIDTH(dwidth);
761 
762 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
763 		| ATC_SRC_ADDR_MODE_INCR
764 		| ATC_DST_ADDR_MODE_INCR
765 		| ATC_SRC_PIP
766 		| ATC_DST_PIP
767 		| ATC_FC_MEM2MEM;
768 
769 	/* create the transfer */
770 	desc = atc_desc_get(atchan);
771 	if (!desc) {
772 		dev_err(chan2dev(chan),
773 			"%s: couldn't allocate our descriptor\n", __func__);
774 		return NULL;
775 	}
776 
777 	desc->lli.saddr = xt->src_start;
778 	desc->lli.daddr = xt->dst_start;
779 	desc->lli.ctrla = ctrla | xfer_count;
780 	desc->lli.ctrlb = ctrlb;
781 
782 	desc->boundary = first->size >> dwidth;
783 	desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
784 	desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
785 
786 	desc->txd.cookie = -EBUSY;
787 	desc->total_len = desc->len = len;
788 
789 	/* set end-of-link to the last link descriptor of list*/
790 	set_desc_eol(desc);
791 
792 	desc->txd.flags = flags; /* client is in control of this ack */
793 
794 	return &desc->txd;
795 }
796 
797 /**
798  * atc_prep_dma_memcpy - prepare a memcpy operation
799  * @chan: the channel to prepare operation on
800  * @dest: operation virtual destination address
801  * @src: operation virtual source address
802  * @len: operation length
803  * @flags: tx descriptor status flags
804  */
805 static struct dma_async_tx_descriptor *
806 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
807 		size_t len, unsigned long flags)
808 {
809 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
810 	struct at_desc		*desc = NULL;
811 	struct at_desc		*first = NULL;
812 	struct at_desc		*prev = NULL;
813 	size_t			xfer_count;
814 	size_t			offset;
815 	unsigned int		src_width;
816 	unsigned int		dst_width;
817 	u32			ctrla;
818 	u32			ctrlb;
819 
820 	dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
821 			&dest, &src, len, flags);
822 
823 	if (unlikely(!len)) {
824 		dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
825 		return NULL;
826 	}
827 
828 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
829 		| ATC_SRC_ADDR_MODE_INCR
830 		| ATC_DST_ADDR_MODE_INCR
831 		| ATC_FC_MEM2MEM;
832 
833 	/*
834 	 * We can be a lot more clever here, but this should take care
835 	 * of the most common optimization.
836 	 */
837 	src_width = dst_width = atc_get_xfer_width(src, dest, len);
838 
839 	ctrla = ATC_SRC_WIDTH(src_width) |
840 		ATC_DST_WIDTH(dst_width);
841 
842 	for (offset = 0; offset < len; offset += xfer_count << src_width) {
843 		xfer_count = min_t(size_t, (len - offset) >> src_width,
844 				ATC_BTSIZE_MAX);
845 
846 		desc = atc_desc_get(atchan);
847 		if (!desc)
848 			goto err_desc_get;
849 
850 		desc->lli.saddr = src + offset;
851 		desc->lli.daddr = dest + offset;
852 		desc->lli.ctrla = ctrla | xfer_count;
853 		desc->lli.ctrlb = ctrlb;
854 
855 		desc->txd.cookie = 0;
856 		desc->len = xfer_count << src_width;
857 
858 		atc_desc_chain(&first, &prev, desc);
859 	}
860 
861 	/* First descriptor of the chain embedds additional information */
862 	first->txd.cookie = -EBUSY;
863 	first->total_len = len;
864 
865 	/* set end-of-link to the last link descriptor of list*/
866 	set_desc_eol(desc);
867 
868 	first->txd.flags = flags; /* client is in control of this ack */
869 
870 	return &first->txd;
871 
872 err_desc_get:
873 	atc_desc_put(atchan, first);
874 	return NULL;
875 }
876 
877 static struct at_desc *atc_create_memset_desc(struct dma_chan *chan,
878 					      dma_addr_t psrc,
879 					      dma_addr_t pdst,
880 					      size_t len)
881 {
882 	struct at_dma_chan *atchan = to_at_dma_chan(chan);
883 	struct at_desc *desc;
884 	size_t xfer_count;
885 
886 	u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2);
887 	u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
888 		ATC_SRC_ADDR_MODE_FIXED |
889 		ATC_DST_ADDR_MODE_INCR |
890 		ATC_FC_MEM2MEM;
891 
892 	xfer_count = len >> 2;
893 	if (xfer_count > ATC_BTSIZE_MAX) {
894 		dev_err(chan2dev(chan), "%s: buffer is too big\n",
895 			__func__);
896 		return NULL;
897 	}
898 
899 	desc = atc_desc_get(atchan);
900 	if (!desc) {
901 		dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
902 			__func__);
903 		return NULL;
904 	}
905 
906 	desc->lli.saddr = psrc;
907 	desc->lli.daddr = pdst;
908 	desc->lli.ctrla = ctrla | xfer_count;
909 	desc->lli.ctrlb = ctrlb;
910 
911 	desc->txd.cookie = 0;
912 	desc->len = len;
913 
914 	return desc;
915 }
916 
917 /**
918  * atc_prep_dma_memset - prepare a memcpy operation
919  * @chan: the channel to prepare operation on
920  * @dest: operation virtual destination address
921  * @value: value to set memory buffer to
922  * @len: operation length
923  * @flags: tx descriptor status flags
924  */
925 static struct dma_async_tx_descriptor *
926 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
927 		    size_t len, unsigned long flags)
928 {
929 	struct at_dma		*atdma = to_at_dma(chan->device);
930 	struct at_desc		*desc;
931 	void __iomem		*vaddr;
932 	dma_addr_t		paddr;
933 
934 	dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
935 		&dest, value, len, flags);
936 
937 	if (unlikely(!len)) {
938 		dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
939 		return NULL;
940 	}
941 
942 	if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
943 		dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
944 			__func__);
945 		return NULL;
946 	}
947 
948 	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
949 	if (!vaddr) {
950 		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
951 			__func__);
952 		return NULL;
953 	}
954 	*(u32*)vaddr = value;
955 
956 	desc = atc_create_memset_desc(chan, paddr, dest, len);
957 	if (!desc) {
958 		dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n",
959 			__func__);
960 		goto err_free_buffer;
961 	}
962 
963 	desc->memset_paddr = paddr;
964 	desc->memset_vaddr = vaddr;
965 	desc->memset_buffer = true;
966 
967 	desc->txd.cookie = -EBUSY;
968 	desc->total_len = len;
969 
970 	/* set end-of-link on the descriptor */
971 	set_desc_eol(desc);
972 
973 	desc->txd.flags = flags;
974 
975 	return &desc->txd;
976 
977 err_free_buffer:
978 	dma_pool_free(atdma->memset_pool, vaddr, paddr);
979 	return NULL;
980 }
981 
982 static struct dma_async_tx_descriptor *
983 atc_prep_dma_memset_sg(struct dma_chan *chan,
984 		       struct scatterlist *sgl,
985 		       unsigned int sg_len, int value,
986 		       unsigned long flags)
987 {
988 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
989 	struct at_dma		*atdma = to_at_dma(chan->device);
990 	struct at_desc		*desc = NULL, *first = NULL, *prev = NULL;
991 	struct scatterlist	*sg;
992 	void __iomem		*vaddr;
993 	dma_addr_t		paddr;
994 	size_t			total_len = 0;
995 	int			i;
996 
997 	dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
998 		 value, sg_len, flags);
999 
1000 	if (unlikely(!sgl || !sg_len)) {
1001 		dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
1002 			__func__);
1003 		return NULL;
1004 	}
1005 
1006 	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
1007 	if (!vaddr) {
1008 		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1009 			__func__);
1010 		return NULL;
1011 	}
1012 	*(u32*)vaddr = value;
1013 
1014 	for_each_sg(sgl, sg, sg_len, i) {
1015 		dma_addr_t dest = sg_dma_address(sg);
1016 		size_t len = sg_dma_len(sg);
1017 
1018 		dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1019 			 __func__, &dest, len);
1020 
1021 		if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1022 			dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1023 				__func__);
1024 			goto err_put_desc;
1025 		}
1026 
1027 		desc = atc_create_memset_desc(chan, paddr, dest, len);
1028 		if (!desc)
1029 			goto err_put_desc;
1030 
1031 		atc_desc_chain(&first, &prev, desc);
1032 
1033 		total_len += len;
1034 	}
1035 
1036 	/*
1037 	 * Only set the buffer pointers on the last descriptor to
1038 	 * avoid free'ing while we have our transfer still going
1039 	 */
1040 	desc->memset_paddr = paddr;
1041 	desc->memset_vaddr = vaddr;
1042 	desc->memset_buffer = true;
1043 
1044 	first->txd.cookie = -EBUSY;
1045 	first->total_len = total_len;
1046 
1047 	/* set end-of-link on the descriptor */
1048 	set_desc_eol(desc);
1049 
1050 	first->txd.flags = flags;
1051 
1052 	return &first->txd;
1053 
1054 err_put_desc:
1055 	atc_desc_put(atchan, first);
1056 	return NULL;
1057 }
1058 
1059 /**
1060  * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1061  * @chan: DMA channel
1062  * @sgl: scatterlist to transfer to/from
1063  * @sg_len: number of entries in @scatterlist
1064  * @direction: DMA direction
1065  * @flags: tx descriptor status flags
1066  * @context: transaction context (ignored)
1067  */
1068 static struct dma_async_tx_descriptor *
1069 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1070 		unsigned int sg_len, enum dma_transfer_direction direction,
1071 		unsigned long flags, void *context)
1072 {
1073 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1074 	struct at_dma_slave	*atslave = chan->private;
1075 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1076 	struct at_desc		*first = NULL;
1077 	struct at_desc		*prev = NULL;
1078 	u32			ctrla;
1079 	u32			ctrlb;
1080 	dma_addr_t		reg;
1081 	unsigned int		reg_width;
1082 	unsigned int		mem_width;
1083 	unsigned int		i;
1084 	struct scatterlist	*sg;
1085 	size_t			total_len = 0;
1086 
1087 	dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1088 			sg_len,
1089 			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1090 			flags);
1091 
1092 	if (unlikely(!atslave || !sg_len)) {
1093 		dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1094 		return NULL;
1095 	}
1096 
1097 	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1098 		| ATC_DCSIZE(sconfig->dst_maxburst);
1099 	ctrlb = ATC_IEN;
1100 
1101 	switch (direction) {
1102 	case DMA_MEM_TO_DEV:
1103 		reg_width = convert_buswidth(sconfig->dst_addr_width);
1104 		ctrla |=  ATC_DST_WIDTH(reg_width);
1105 		ctrlb |=  ATC_DST_ADDR_MODE_FIXED
1106 			| ATC_SRC_ADDR_MODE_INCR
1107 			| ATC_FC_MEM2PER
1108 			| ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
1109 		reg = sconfig->dst_addr;
1110 		for_each_sg(sgl, sg, sg_len, i) {
1111 			struct at_desc	*desc;
1112 			u32		len;
1113 			u32		mem;
1114 
1115 			desc = atc_desc_get(atchan);
1116 			if (!desc)
1117 				goto err_desc_get;
1118 
1119 			mem = sg_dma_address(sg);
1120 			len = sg_dma_len(sg);
1121 			if (unlikely(!len)) {
1122 				dev_dbg(chan2dev(chan),
1123 					"prep_slave_sg: sg(%d) data length is zero\n", i);
1124 				goto err;
1125 			}
1126 			mem_width = 2;
1127 			if (unlikely(mem & 3 || len & 3))
1128 				mem_width = 0;
1129 
1130 			desc->lli.saddr = mem;
1131 			desc->lli.daddr = reg;
1132 			desc->lli.ctrla = ctrla
1133 					| ATC_SRC_WIDTH(mem_width)
1134 					| len >> mem_width;
1135 			desc->lli.ctrlb = ctrlb;
1136 			desc->len = len;
1137 
1138 			atc_desc_chain(&first, &prev, desc);
1139 			total_len += len;
1140 		}
1141 		break;
1142 	case DMA_DEV_TO_MEM:
1143 		reg_width = convert_buswidth(sconfig->src_addr_width);
1144 		ctrla |=  ATC_SRC_WIDTH(reg_width);
1145 		ctrlb |=  ATC_DST_ADDR_MODE_INCR
1146 			| ATC_SRC_ADDR_MODE_FIXED
1147 			| ATC_FC_PER2MEM
1148 			| ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
1149 
1150 		reg = sconfig->src_addr;
1151 		for_each_sg(sgl, sg, sg_len, i) {
1152 			struct at_desc	*desc;
1153 			u32		len;
1154 			u32		mem;
1155 
1156 			desc = atc_desc_get(atchan);
1157 			if (!desc)
1158 				goto err_desc_get;
1159 
1160 			mem = sg_dma_address(sg);
1161 			len = sg_dma_len(sg);
1162 			if (unlikely(!len)) {
1163 				dev_dbg(chan2dev(chan),
1164 					"prep_slave_sg: sg(%d) data length is zero\n", i);
1165 				goto err;
1166 			}
1167 			mem_width = 2;
1168 			if (unlikely(mem & 3 || len & 3))
1169 				mem_width = 0;
1170 
1171 			desc->lli.saddr = reg;
1172 			desc->lli.daddr = mem;
1173 			desc->lli.ctrla = ctrla
1174 					| ATC_DST_WIDTH(mem_width)
1175 					| len >> reg_width;
1176 			desc->lli.ctrlb = ctrlb;
1177 			desc->len = len;
1178 
1179 			atc_desc_chain(&first, &prev, desc);
1180 			total_len += len;
1181 		}
1182 		break;
1183 	default:
1184 		return NULL;
1185 	}
1186 
1187 	/* set end-of-link to the last link descriptor of list*/
1188 	set_desc_eol(prev);
1189 
1190 	/* First descriptor of the chain embedds additional information */
1191 	first->txd.cookie = -EBUSY;
1192 	first->total_len = total_len;
1193 
1194 	/* first link descriptor of list is responsible of flags */
1195 	first->txd.flags = flags; /* client is in control of this ack */
1196 
1197 	return &first->txd;
1198 
1199 err_desc_get:
1200 	dev_err(chan2dev(chan), "not enough descriptors available\n");
1201 err:
1202 	atc_desc_put(atchan, first);
1203 	return NULL;
1204 }
1205 
1206 /**
1207  * atc_dma_cyclic_check_values
1208  * Check for too big/unaligned periods and unaligned DMA buffer
1209  */
1210 static int
1211 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1212 		size_t period_len)
1213 {
1214 	if (period_len > (ATC_BTSIZE_MAX << reg_width))
1215 		goto err_out;
1216 	if (unlikely(period_len & ((1 << reg_width) - 1)))
1217 		goto err_out;
1218 	if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1219 		goto err_out;
1220 
1221 	return 0;
1222 
1223 err_out:
1224 	return -EINVAL;
1225 }
1226 
1227 /**
1228  * atc_dma_cyclic_fill_desc - Fill one period descriptor
1229  */
1230 static int
1231 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1232 		unsigned int period_index, dma_addr_t buf_addr,
1233 		unsigned int reg_width, size_t period_len,
1234 		enum dma_transfer_direction direction)
1235 {
1236 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1237 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1238 	u32			ctrla;
1239 
1240 	/* prepare common CRTLA value */
1241 	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1242 		| ATC_DCSIZE(sconfig->dst_maxburst)
1243 		| ATC_DST_WIDTH(reg_width)
1244 		| ATC_SRC_WIDTH(reg_width)
1245 		| period_len >> reg_width;
1246 
1247 	switch (direction) {
1248 	case DMA_MEM_TO_DEV:
1249 		desc->lli.saddr = buf_addr + (period_len * period_index);
1250 		desc->lli.daddr = sconfig->dst_addr;
1251 		desc->lli.ctrla = ctrla;
1252 		desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1253 				| ATC_SRC_ADDR_MODE_INCR
1254 				| ATC_FC_MEM2PER
1255 				| ATC_SIF(atchan->mem_if)
1256 				| ATC_DIF(atchan->per_if);
1257 		desc->len = period_len;
1258 		break;
1259 
1260 	case DMA_DEV_TO_MEM:
1261 		desc->lli.saddr = sconfig->src_addr;
1262 		desc->lli.daddr = buf_addr + (period_len * period_index);
1263 		desc->lli.ctrla = ctrla;
1264 		desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1265 				| ATC_SRC_ADDR_MODE_FIXED
1266 				| ATC_FC_PER2MEM
1267 				| ATC_SIF(atchan->per_if)
1268 				| ATC_DIF(atchan->mem_if);
1269 		desc->len = period_len;
1270 		break;
1271 
1272 	default:
1273 		return -EINVAL;
1274 	}
1275 
1276 	return 0;
1277 }
1278 
1279 /**
1280  * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1281  * @chan: the DMA channel to prepare
1282  * @buf_addr: physical DMA address where the buffer starts
1283  * @buf_len: total number of bytes for the entire buffer
1284  * @period_len: number of bytes for each period
1285  * @direction: transfer direction, to or from device
1286  * @flags: tx descriptor status flags
1287  */
1288 static struct dma_async_tx_descriptor *
1289 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1290 		size_t period_len, enum dma_transfer_direction direction,
1291 		unsigned long flags)
1292 {
1293 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1294 	struct at_dma_slave	*atslave = chan->private;
1295 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1296 	struct at_desc		*first = NULL;
1297 	struct at_desc		*prev = NULL;
1298 	unsigned long		was_cyclic;
1299 	unsigned int		reg_width;
1300 	unsigned int		periods = buf_len / period_len;
1301 	unsigned int		i;
1302 
1303 	dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1304 			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1305 			&buf_addr,
1306 			periods, buf_len, period_len);
1307 
1308 	if (unlikely(!atslave || !buf_len || !period_len)) {
1309 		dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1310 		return NULL;
1311 	}
1312 
1313 	was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1314 	if (was_cyclic) {
1315 		dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1316 		return NULL;
1317 	}
1318 
1319 	if (unlikely(!is_slave_direction(direction)))
1320 		goto err_out;
1321 
1322 	if (direction == DMA_MEM_TO_DEV)
1323 		reg_width = convert_buswidth(sconfig->dst_addr_width);
1324 	else
1325 		reg_width = convert_buswidth(sconfig->src_addr_width);
1326 
1327 	/* Check for too big/unaligned periods and unaligned DMA buffer */
1328 	if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1329 		goto err_out;
1330 
1331 	/* build cyclic linked list */
1332 	for (i = 0; i < periods; i++) {
1333 		struct at_desc	*desc;
1334 
1335 		desc = atc_desc_get(atchan);
1336 		if (!desc)
1337 			goto err_desc_get;
1338 
1339 		if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1340 					     reg_width, period_len, direction))
1341 			goto err_desc_get;
1342 
1343 		atc_desc_chain(&first, &prev, desc);
1344 	}
1345 
1346 	/* lets make a cyclic list */
1347 	prev->lli.dscr = first->txd.phys;
1348 
1349 	/* First descriptor of the chain embedds additional information */
1350 	first->txd.cookie = -EBUSY;
1351 	first->total_len = buf_len;
1352 
1353 	return &first->txd;
1354 
1355 err_desc_get:
1356 	dev_err(chan2dev(chan), "not enough descriptors available\n");
1357 	atc_desc_put(atchan, first);
1358 err_out:
1359 	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1360 	return NULL;
1361 }
1362 
1363 static int atc_config(struct dma_chan *chan,
1364 		      struct dma_slave_config *sconfig)
1365 {
1366 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1367 
1368 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1369 
1370 	/* Check if it is chan is configured for slave transfers */
1371 	if (!chan->private)
1372 		return -EINVAL;
1373 
1374 	memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1375 
1376 	convert_burst(&atchan->dma_sconfig.src_maxburst);
1377 	convert_burst(&atchan->dma_sconfig.dst_maxburst);
1378 
1379 	return 0;
1380 }
1381 
1382 static int atc_pause(struct dma_chan *chan)
1383 {
1384 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1385 	struct at_dma		*atdma = to_at_dma(chan->device);
1386 	int			chan_id = atchan->chan_common.chan_id;
1387 	unsigned long		flags;
1388 
1389 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1390 
1391 	spin_lock_irqsave(&atchan->lock, flags);
1392 
1393 	dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1394 	set_bit(ATC_IS_PAUSED, &atchan->status);
1395 
1396 	spin_unlock_irqrestore(&atchan->lock, flags);
1397 
1398 	return 0;
1399 }
1400 
1401 static int atc_resume(struct dma_chan *chan)
1402 {
1403 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1404 	struct at_dma		*atdma = to_at_dma(chan->device);
1405 	int			chan_id = atchan->chan_common.chan_id;
1406 	unsigned long		flags;
1407 
1408 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1409 
1410 	if (!atc_chan_is_paused(atchan))
1411 		return 0;
1412 
1413 	spin_lock_irqsave(&atchan->lock, flags);
1414 
1415 	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1416 	clear_bit(ATC_IS_PAUSED, &atchan->status);
1417 
1418 	spin_unlock_irqrestore(&atchan->lock, flags);
1419 
1420 	return 0;
1421 }
1422 
1423 static int atc_terminate_all(struct dma_chan *chan)
1424 {
1425 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1426 	struct at_dma		*atdma = to_at_dma(chan->device);
1427 	int			chan_id = atchan->chan_common.chan_id;
1428 	struct at_desc		*desc, *_desc;
1429 	unsigned long		flags;
1430 
1431 	LIST_HEAD(list);
1432 
1433 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1434 
1435 	/*
1436 	 * This is only called when something went wrong elsewhere, so
1437 	 * we don't really care about the data. Just disable the
1438 	 * channel. We still have to poll the channel enable bit due
1439 	 * to AHB/HSB limitations.
1440 	 */
1441 	spin_lock_irqsave(&atchan->lock, flags);
1442 
1443 	/* disabling channel: must also remove suspend state */
1444 	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1445 
1446 	/* confirm that this channel is disabled */
1447 	while (dma_readl(atdma, CHSR) & atchan->mask)
1448 		cpu_relax();
1449 
1450 	/* active_list entries will end up before queued entries */
1451 	list_splice_init(&atchan->queue, &list);
1452 	list_splice_init(&atchan->active_list, &list);
1453 
1454 	/* Flush all pending and queued descriptors */
1455 	list_for_each_entry_safe(desc, _desc, &list, desc_node)
1456 		atc_chain_complete(atchan, desc);
1457 
1458 	clear_bit(ATC_IS_PAUSED, &atchan->status);
1459 	/* if channel dedicated to cyclic operations, free it */
1460 	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1461 
1462 	spin_unlock_irqrestore(&atchan->lock, flags);
1463 
1464 	return 0;
1465 }
1466 
1467 /**
1468  * atc_tx_status - poll for transaction completion
1469  * @chan: DMA channel
1470  * @cookie: transaction identifier to check status of
1471  * @txstate: if not %NULL updated with transaction state
1472  *
1473  * If @txstate is passed in, upon return it reflect the driver
1474  * internal state and can be used with dma_async_is_complete() to check
1475  * the status of multiple cookies without re-checking hardware state.
1476  */
1477 static enum dma_status
1478 atc_tx_status(struct dma_chan *chan,
1479 		dma_cookie_t cookie,
1480 		struct dma_tx_state *txstate)
1481 {
1482 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1483 	unsigned long		flags;
1484 	enum dma_status		ret;
1485 	int bytes = 0;
1486 
1487 	ret = dma_cookie_status(chan, cookie, txstate);
1488 	if (ret == DMA_COMPLETE)
1489 		return ret;
1490 	/*
1491 	 * There's no point calculating the residue if there's
1492 	 * no txstate to store the value.
1493 	 */
1494 	if (!txstate)
1495 		return DMA_ERROR;
1496 
1497 	spin_lock_irqsave(&atchan->lock, flags);
1498 
1499 	/*  Get number of bytes left in the active transactions */
1500 	bytes = atc_get_bytes_left(chan, cookie);
1501 
1502 	spin_unlock_irqrestore(&atchan->lock, flags);
1503 
1504 	if (unlikely(bytes < 0)) {
1505 		dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1506 		return DMA_ERROR;
1507 	} else {
1508 		dma_set_residue(txstate, bytes);
1509 	}
1510 
1511 	dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1512 		 ret, cookie, bytes);
1513 
1514 	return ret;
1515 }
1516 
1517 /**
1518  * atc_issue_pending - try to finish work
1519  * @chan: target DMA channel
1520  */
1521 static void atc_issue_pending(struct dma_chan *chan)
1522 {
1523 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1524 	unsigned long		flags;
1525 
1526 	dev_vdbg(chan2dev(chan), "issue_pending\n");
1527 
1528 	/* Not needed for cyclic transfers */
1529 	if (atc_chan_is_cyclic(atchan))
1530 		return;
1531 
1532 	spin_lock_irqsave(&atchan->lock, flags);
1533 	atc_advance_work(atchan);
1534 	spin_unlock_irqrestore(&atchan->lock, flags);
1535 }
1536 
1537 /**
1538  * atc_alloc_chan_resources - allocate resources for DMA channel
1539  * @chan: allocate descriptor resources for this channel
1540  * @client: current client requesting the channel be ready for requests
1541  *
1542  * return - the number of allocated descriptors
1543  */
1544 static int atc_alloc_chan_resources(struct dma_chan *chan)
1545 {
1546 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1547 	struct at_dma		*atdma = to_at_dma(chan->device);
1548 	struct at_desc		*desc;
1549 	struct at_dma_slave	*atslave;
1550 	unsigned long		flags;
1551 	int			i;
1552 	u32			cfg;
1553 	LIST_HEAD(tmp_list);
1554 
1555 	dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1556 
1557 	/* ASSERT:  channel is idle */
1558 	if (atc_chan_is_enabled(atchan)) {
1559 		dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1560 		return -EIO;
1561 	}
1562 
1563 	cfg = ATC_DEFAULT_CFG;
1564 
1565 	atslave = chan->private;
1566 	if (atslave) {
1567 		/*
1568 		 * We need controller-specific data to set up slave
1569 		 * transfers.
1570 		 */
1571 		BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1572 
1573 		/* if cfg configuration specified take it instead of default */
1574 		if (atslave->cfg)
1575 			cfg = atslave->cfg;
1576 	}
1577 
1578 	/* have we already been set up?
1579 	 * reconfigure channel but no need to reallocate descriptors */
1580 	if (!list_empty(&atchan->free_list))
1581 		return atchan->descs_allocated;
1582 
1583 	/* Allocate initial pool of descriptors */
1584 	for (i = 0; i < init_nr_desc_per_channel; i++) {
1585 		desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1586 		if (!desc) {
1587 			dev_err(atdma->dma_common.dev,
1588 				"Only %d initial descriptors\n", i);
1589 			break;
1590 		}
1591 		list_add_tail(&desc->desc_node, &tmp_list);
1592 	}
1593 
1594 	spin_lock_irqsave(&atchan->lock, flags);
1595 	atchan->descs_allocated = i;
1596 	list_splice(&tmp_list, &atchan->free_list);
1597 	dma_cookie_init(chan);
1598 	spin_unlock_irqrestore(&atchan->lock, flags);
1599 
1600 	/* channel parameters */
1601 	channel_writel(atchan, CFG, cfg);
1602 
1603 	dev_dbg(chan2dev(chan),
1604 		"alloc_chan_resources: allocated %d descriptors\n",
1605 		atchan->descs_allocated);
1606 
1607 	return atchan->descs_allocated;
1608 }
1609 
1610 /**
1611  * atc_free_chan_resources - free all channel resources
1612  * @chan: DMA channel
1613  */
1614 static void atc_free_chan_resources(struct dma_chan *chan)
1615 {
1616 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1617 	struct at_dma		*atdma = to_at_dma(chan->device);
1618 	struct at_desc		*desc, *_desc;
1619 	LIST_HEAD(list);
1620 
1621 	dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n",
1622 		atchan->descs_allocated);
1623 
1624 	/* ASSERT:  channel is idle */
1625 	BUG_ON(!list_empty(&atchan->active_list));
1626 	BUG_ON(!list_empty(&atchan->queue));
1627 	BUG_ON(atc_chan_is_enabled(atchan));
1628 
1629 	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1630 		dev_vdbg(chan2dev(chan), "  freeing descriptor %p\n", desc);
1631 		list_del(&desc->desc_node);
1632 		/* free link descriptor */
1633 		dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1634 	}
1635 	list_splice_init(&atchan->free_list, &list);
1636 	atchan->descs_allocated = 0;
1637 	atchan->status = 0;
1638 
1639 	/*
1640 	 * Free atslave allocated in at_dma_xlate()
1641 	 */
1642 	kfree(chan->private);
1643 	chan->private = NULL;
1644 
1645 	dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1646 }
1647 
1648 #ifdef CONFIG_OF
1649 static bool at_dma_filter(struct dma_chan *chan, void *slave)
1650 {
1651 	struct at_dma_slave *atslave = slave;
1652 
1653 	if (atslave->dma_dev == chan->device->dev) {
1654 		chan->private = atslave;
1655 		return true;
1656 	} else {
1657 		return false;
1658 	}
1659 }
1660 
1661 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1662 				     struct of_dma *of_dma)
1663 {
1664 	struct dma_chan *chan;
1665 	struct at_dma_chan *atchan;
1666 	struct at_dma_slave *atslave;
1667 	dma_cap_mask_t mask;
1668 	unsigned int per_id;
1669 	struct platform_device *dmac_pdev;
1670 
1671 	if (dma_spec->args_count != 2)
1672 		return NULL;
1673 
1674 	dmac_pdev = of_find_device_by_node(dma_spec->np);
1675 
1676 	dma_cap_zero(mask);
1677 	dma_cap_set(DMA_SLAVE, mask);
1678 
1679 	atslave = kzalloc(sizeof(*atslave), GFP_KERNEL);
1680 	if (!atslave)
1681 		return NULL;
1682 
1683 	atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1684 	/*
1685 	 * We can fill both SRC_PER and DST_PER, one of these fields will be
1686 	 * ignored depending on DMA transfer direction.
1687 	 */
1688 	per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1689 	atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1690 		     | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1691 	/*
1692 	 * We have to translate the value we get from the device tree since
1693 	 * the half FIFO configuration value had to be 0 to keep backward
1694 	 * compatibility.
1695 	 */
1696 	switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1697 	case AT91_DMA_CFG_FIFOCFG_ALAP:
1698 		atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1699 		break;
1700 	case AT91_DMA_CFG_FIFOCFG_ASAP:
1701 		atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1702 		break;
1703 	case AT91_DMA_CFG_FIFOCFG_HALF:
1704 	default:
1705 		atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1706 	}
1707 	atslave->dma_dev = &dmac_pdev->dev;
1708 
1709 	chan = dma_request_channel(mask, at_dma_filter, atslave);
1710 	if (!chan)
1711 		return NULL;
1712 
1713 	atchan = to_at_dma_chan(chan);
1714 	atchan->per_if = dma_spec->args[0] & 0xff;
1715 	atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1716 
1717 	return chan;
1718 }
1719 #else
1720 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1721 				     struct of_dma *of_dma)
1722 {
1723 	return NULL;
1724 }
1725 #endif
1726 
1727 /*--  Module Management  -----------------------------------------------*/
1728 
1729 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1730 static struct at_dma_platform_data at91sam9rl_config = {
1731 	.nr_channels = 2,
1732 };
1733 static struct at_dma_platform_data at91sam9g45_config = {
1734 	.nr_channels = 8,
1735 };
1736 
1737 #if defined(CONFIG_OF)
1738 static const struct of_device_id atmel_dma_dt_ids[] = {
1739 	{
1740 		.compatible = "atmel,at91sam9rl-dma",
1741 		.data = &at91sam9rl_config,
1742 	}, {
1743 		.compatible = "atmel,at91sam9g45-dma",
1744 		.data = &at91sam9g45_config,
1745 	}, {
1746 		/* sentinel */
1747 	}
1748 };
1749 
1750 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1751 #endif
1752 
1753 static const struct platform_device_id atdma_devtypes[] = {
1754 	{
1755 		.name = "at91sam9rl_dma",
1756 		.driver_data = (unsigned long) &at91sam9rl_config,
1757 	}, {
1758 		.name = "at91sam9g45_dma",
1759 		.driver_data = (unsigned long) &at91sam9g45_config,
1760 	}, {
1761 		/* sentinel */
1762 	}
1763 };
1764 
1765 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1766 						struct platform_device *pdev)
1767 {
1768 	if (pdev->dev.of_node) {
1769 		const struct of_device_id *match;
1770 		match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1771 		if (match == NULL)
1772 			return NULL;
1773 		return match->data;
1774 	}
1775 	return (struct at_dma_platform_data *)
1776 			platform_get_device_id(pdev)->driver_data;
1777 }
1778 
1779 /**
1780  * at_dma_off - disable DMA controller
1781  * @atdma: the Atmel HDAMC device
1782  */
1783 static void at_dma_off(struct at_dma *atdma)
1784 {
1785 	dma_writel(atdma, EN, 0);
1786 
1787 	/* disable all interrupts */
1788 	dma_writel(atdma, EBCIDR, -1L);
1789 
1790 	/* confirm that all channels are disabled */
1791 	while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1792 		cpu_relax();
1793 }
1794 
1795 static int __init at_dma_probe(struct platform_device *pdev)
1796 {
1797 	struct resource		*io;
1798 	struct at_dma		*atdma;
1799 	size_t			size;
1800 	int			irq;
1801 	int			err;
1802 	int			i;
1803 	const struct at_dma_platform_data *plat_dat;
1804 
1805 	/* setup platform data for each SoC */
1806 	dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1807 	dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1808 	dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1809 	dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1810 	dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1811 	dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1812 	dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1813 
1814 	/* get DMA parameters from controller type */
1815 	plat_dat = at_dma_get_driver_data(pdev);
1816 	if (!plat_dat)
1817 		return -ENODEV;
1818 
1819 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1820 	if (!io)
1821 		return -EINVAL;
1822 
1823 	irq = platform_get_irq(pdev, 0);
1824 	if (irq < 0)
1825 		return irq;
1826 
1827 	size = sizeof(struct at_dma);
1828 	size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1829 	atdma = kzalloc(size, GFP_KERNEL);
1830 	if (!atdma)
1831 		return -ENOMEM;
1832 
1833 	/* discover transaction capabilities */
1834 	atdma->dma_common.cap_mask = plat_dat->cap_mask;
1835 	atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1836 
1837 	size = resource_size(io);
1838 	if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1839 		err = -EBUSY;
1840 		goto err_kfree;
1841 	}
1842 
1843 	atdma->regs = ioremap(io->start, size);
1844 	if (!atdma->regs) {
1845 		err = -ENOMEM;
1846 		goto err_release_r;
1847 	}
1848 
1849 	atdma->clk = clk_get(&pdev->dev, "dma_clk");
1850 	if (IS_ERR(atdma->clk)) {
1851 		err = PTR_ERR(atdma->clk);
1852 		goto err_clk;
1853 	}
1854 	err = clk_prepare_enable(atdma->clk);
1855 	if (err)
1856 		goto err_clk_prepare;
1857 
1858 	/* force dma off, just in case */
1859 	at_dma_off(atdma);
1860 
1861 	err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1862 	if (err)
1863 		goto err_irq;
1864 
1865 	platform_set_drvdata(pdev, atdma);
1866 
1867 	/* create a pool of consistent memory blocks for hardware descriptors */
1868 	atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
1869 			&pdev->dev, sizeof(struct at_desc),
1870 			4 /* word alignment */, 0);
1871 	if (!atdma->dma_desc_pool) {
1872 		dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
1873 		err = -ENOMEM;
1874 		goto err_desc_pool_create;
1875 	}
1876 
1877 	/* create a pool of consistent memory blocks for memset blocks */
1878 	atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
1879 					     &pdev->dev, sizeof(int), 4, 0);
1880 	if (!atdma->memset_pool) {
1881 		dev_err(&pdev->dev, "No memory for memset dma pool\n");
1882 		err = -ENOMEM;
1883 		goto err_memset_pool_create;
1884 	}
1885 
1886 	/* clear any pending interrupt */
1887 	while (dma_readl(atdma, EBCISR))
1888 		cpu_relax();
1889 
1890 	/* initialize channels related values */
1891 	INIT_LIST_HEAD(&atdma->dma_common.channels);
1892 	for (i = 0; i < plat_dat->nr_channels; i++) {
1893 		struct at_dma_chan	*atchan = &atdma->chan[i];
1894 
1895 		atchan->mem_if = AT_DMA_MEM_IF;
1896 		atchan->per_if = AT_DMA_PER_IF;
1897 		atchan->chan_common.device = &atdma->dma_common;
1898 		dma_cookie_init(&atchan->chan_common);
1899 		list_add_tail(&atchan->chan_common.device_node,
1900 				&atdma->dma_common.channels);
1901 
1902 		atchan->ch_regs = atdma->regs + ch_regs(i);
1903 		spin_lock_init(&atchan->lock);
1904 		atchan->mask = 1 << i;
1905 
1906 		INIT_LIST_HEAD(&atchan->active_list);
1907 		INIT_LIST_HEAD(&atchan->queue);
1908 		INIT_LIST_HEAD(&atchan->free_list);
1909 
1910 		tasklet_init(&atchan->tasklet, atc_tasklet,
1911 				(unsigned long)atchan);
1912 		atc_enable_chan_irq(atdma, i);
1913 	}
1914 
1915 	/* set base routines */
1916 	atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
1917 	atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
1918 	atdma->dma_common.device_tx_status = atc_tx_status;
1919 	atdma->dma_common.device_issue_pending = atc_issue_pending;
1920 	atdma->dma_common.dev = &pdev->dev;
1921 
1922 	/* set prep routines based on capability */
1923 	if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
1924 		atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
1925 
1926 	if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
1927 		atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
1928 
1929 	if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
1930 		atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
1931 		atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
1932 		atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
1933 	}
1934 
1935 	if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
1936 		atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
1937 		/* controller can do slave DMA: can trigger cyclic transfers */
1938 		dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
1939 		atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
1940 		atdma->dma_common.device_config = atc_config;
1941 		atdma->dma_common.device_pause = atc_pause;
1942 		atdma->dma_common.device_resume = atc_resume;
1943 		atdma->dma_common.device_terminate_all = atc_terminate_all;
1944 		atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
1945 		atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
1946 		atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1947 		atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1948 	}
1949 
1950 	dma_writel(atdma, EN, AT_DMA_ENABLE);
1951 
1952 	dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n",
1953 	  dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
1954 	  dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
1955 	  dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)  ? "slave " : "",
1956 	  plat_dat->nr_channels);
1957 
1958 	dma_async_device_register(&atdma->dma_common);
1959 
1960 	/*
1961 	 * Do not return an error if the dmac node is not present in order to
1962 	 * not break the existing way of requesting channel with
1963 	 * dma_request_channel().
1964 	 */
1965 	if (pdev->dev.of_node) {
1966 		err = of_dma_controller_register(pdev->dev.of_node,
1967 						 at_dma_xlate, atdma);
1968 		if (err) {
1969 			dev_err(&pdev->dev, "could not register of_dma_controller\n");
1970 			goto err_of_dma_controller_register;
1971 		}
1972 	}
1973 
1974 	return 0;
1975 
1976 err_of_dma_controller_register:
1977 	dma_async_device_unregister(&atdma->dma_common);
1978 	dma_pool_destroy(atdma->memset_pool);
1979 err_memset_pool_create:
1980 	dma_pool_destroy(atdma->dma_desc_pool);
1981 err_desc_pool_create:
1982 	free_irq(platform_get_irq(pdev, 0), atdma);
1983 err_irq:
1984 	clk_disable_unprepare(atdma->clk);
1985 err_clk_prepare:
1986 	clk_put(atdma->clk);
1987 err_clk:
1988 	iounmap(atdma->regs);
1989 	atdma->regs = NULL;
1990 err_release_r:
1991 	release_mem_region(io->start, size);
1992 err_kfree:
1993 	kfree(atdma);
1994 	return err;
1995 }
1996 
1997 static int at_dma_remove(struct platform_device *pdev)
1998 {
1999 	struct at_dma		*atdma = platform_get_drvdata(pdev);
2000 	struct dma_chan		*chan, *_chan;
2001 	struct resource		*io;
2002 
2003 	at_dma_off(atdma);
2004 	if (pdev->dev.of_node)
2005 		of_dma_controller_free(pdev->dev.of_node);
2006 	dma_async_device_unregister(&atdma->dma_common);
2007 
2008 	dma_pool_destroy(atdma->memset_pool);
2009 	dma_pool_destroy(atdma->dma_desc_pool);
2010 	free_irq(platform_get_irq(pdev, 0), atdma);
2011 
2012 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2013 			device_node) {
2014 		struct at_dma_chan	*atchan = to_at_dma_chan(chan);
2015 
2016 		/* Disable interrupts */
2017 		atc_disable_chan_irq(atdma, chan->chan_id);
2018 
2019 		tasklet_kill(&atchan->tasklet);
2020 		list_del(&chan->device_node);
2021 	}
2022 
2023 	clk_disable_unprepare(atdma->clk);
2024 	clk_put(atdma->clk);
2025 
2026 	iounmap(atdma->regs);
2027 	atdma->regs = NULL;
2028 
2029 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2030 	release_mem_region(io->start, resource_size(io));
2031 
2032 	kfree(atdma);
2033 
2034 	return 0;
2035 }
2036 
2037 static void at_dma_shutdown(struct platform_device *pdev)
2038 {
2039 	struct at_dma	*atdma = platform_get_drvdata(pdev);
2040 
2041 	at_dma_off(platform_get_drvdata(pdev));
2042 	clk_disable_unprepare(atdma->clk);
2043 }
2044 
2045 static int at_dma_prepare(struct device *dev)
2046 {
2047 	struct at_dma *atdma = dev_get_drvdata(dev);
2048 	struct dma_chan *chan, *_chan;
2049 
2050 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2051 			device_node) {
2052 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2053 		/* wait for transaction completion (except in cyclic case) */
2054 		if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2055 			return -EAGAIN;
2056 	}
2057 	return 0;
2058 }
2059 
2060 static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2061 {
2062 	struct dma_chan	*chan = &atchan->chan_common;
2063 
2064 	/* Channel should be paused by user
2065 	 * do it anyway even if it is not done already */
2066 	if (!atc_chan_is_paused(atchan)) {
2067 		dev_warn(chan2dev(chan),
2068 		"cyclic channel not paused, should be done by channel user\n");
2069 		atc_pause(chan);
2070 	}
2071 
2072 	/* now preserve additional data for cyclic operations */
2073 	/* next descriptor address in the cyclic list */
2074 	atchan->save_dscr = channel_readl(atchan, DSCR);
2075 
2076 	vdbg_dump_regs(atchan);
2077 }
2078 
2079 static int at_dma_suspend_noirq(struct device *dev)
2080 {
2081 	struct at_dma *atdma = dev_get_drvdata(dev);
2082 	struct dma_chan *chan, *_chan;
2083 
2084 	/* preserve data */
2085 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2086 			device_node) {
2087 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2088 
2089 		if (atc_chan_is_cyclic(atchan))
2090 			atc_suspend_cyclic(atchan);
2091 		atchan->save_cfg = channel_readl(atchan, CFG);
2092 	}
2093 	atdma->save_imr = dma_readl(atdma, EBCIMR);
2094 
2095 	/* disable DMA controller */
2096 	at_dma_off(atdma);
2097 	clk_disable_unprepare(atdma->clk);
2098 	return 0;
2099 }
2100 
2101 static void atc_resume_cyclic(struct at_dma_chan *atchan)
2102 {
2103 	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
2104 
2105 	/* restore channel status for cyclic descriptors list:
2106 	 * next descriptor in the cyclic list at the time of suspend */
2107 	channel_writel(atchan, SADDR, 0);
2108 	channel_writel(atchan, DADDR, 0);
2109 	channel_writel(atchan, CTRLA, 0);
2110 	channel_writel(atchan, CTRLB, 0);
2111 	channel_writel(atchan, DSCR, atchan->save_dscr);
2112 	dma_writel(atdma, CHER, atchan->mask);
2113 
2114 	/* channel pause status should be removed by channel user
2115 	 * We cannot take the initiative to do it here */
2116 
2117 	vdbg_dump_regs(atchan);
2118 }
2119 
2120 static int at_dma_resume_noirq(struct device *dev)
2121 {
2122 	struct at_dma *atdma = dev_get_drvdata(dev);
2123 	struct dma_chan *chan, *_chan;
2124 
2125 	/* bring back DMA controller */
2126 	clk_prepare_enable(atdma->clk);
2127 	dma_writel(atdma, EN, AT_DMA_ENABLE);
2128 
2129 	/* clear any pending interrupt */
2130 	while (dma_readl(atdma, EBCISR))
2131 		cpu_relax();
2132 
2133 	/* restore saved data */
2134 	dma_writel(atdma, EBCIER, atdma->save_imr);
2135 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2136 			device_node) {
2137 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2138 
2139 		channel_writel(atchan, CFG, atchan->save_cfg);
2140 		if (atc_chan_is_cyclic(atchan))
2141 			atc_resume_cyclic(atchan);
2142 	}
2143 	return 0;
2144 }
2145 
2146 static const struct dev_pm_ops at_dma_dev_pm_ops = {
2147 	.prepare = at_dma_prepare,
2148 	.suspend_noirq = at_dma_suspend_noirq,
2149 	.resume_noirq = at_dma_resume_noirq,
2150 };
2151 
2152 static struct platform_driver at_dma_driver = {
2153 	.remove		= at_dma_remove,
2154 	.shutdown	= at_dma_shutdown,
2155 	.id_table	= atdma_devtypes,
2156 	.driver = {
2157 		.name	= "at_hdmac",
2158 		.pm	= &at_dma_dev_pm_ops,
2159 		.of_match_table	= of_match_ptr(atmel_dma_dt_ids),
2160 	},
2161 };
2162 
2163 static int __init at_dma_init(void)
2164 {
2165 	return platform_driver_probe(&at_dma_driver, at_dma_probe);
2166 }
2167 subsys_initcall(at_dma_init);
2168 
2169 static void __exit at_dma_exit(void)
2170 {
2171 	platform_driver_unregister(&at_dma_driver);
2172 }
2173 module_exit(at_dma_exit);
2174 
2175 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2176 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2177 MODULE_LICENSE("GPL");
2178 MODULE_ALIAS("platform:at_hdmac");
2179