xref: /linux/drivers/dma/at_hdmac.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
3  *
4  * Copyright (C) 2008 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  *
12  * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
13  * The only Atmel DMA Controller that is not covered by this driver is the one
14  * found on AT91SAM9263.
15  */
16 
17 #include <dt-bindings/dma/at91.h>
18 #include <linux/clk.h>
19 #include <linux/dmaengine.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dmapool.h>
22 #include <linux/interrupt.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_dma.h>
29 
30 #include "at_hdmac_regs.h"
31 #include "dmaengine.h"
32 
33 /*
34  * Glossary
35  * --------
36  *
37  * at_hdmac		: Name of the ATmel AHB DMA Controller
38  * at_dma_ / atdma	: ATmel DMA controller entity related
39  * atc_	/ atchan	: ATmel DMA Channel entity related
40  */
41 
42 #define	ATC_DEFAULT_CFG		(ATC_FIFOCFG_HALFFIFO)
43 #define	ATC_DEFAULT_CTRLB	(ATC_SIF(AT_DMA_MEM_IF) \
44 				|ATC_DIF(AT_DMA_MEM_IF))
45 #define ATC_DMA_BUSWIDTHS\
46 	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
47 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
48 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
49 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
50 
51 /*
52  * Initial number of descriptors to allocate for each channel. This could
53  * be increased during dma usage.
54  */
55 static unsigned int init_nr_desc_per_channel = 64;
56 module_param(init_nr_desc_per_channel, uint, 0644);
57 MODULE_PARM_DESC(init_nr_desc_per_channel,
58 		 "initial descriptors per channel (default: 64)");
59 
60 
61 /* prototypes */
62 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
63 static void atc_issue_pending(struct dma_chan *chan);
64 
65 
66 /*----------------------------------------------------------------------*/
67 
68 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
69 						size_t len)
70 {
71 	unsigned int width;
72 
73 	if (!((src | dst  | len) & 3))
74 		width = 2;
75 	else if (!((src | dst | len) & 1))
76 		width = 1;
77 	else
78 		width = 0;
79 
80 	return width;
81 }
82 
83 static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
84 {
85 	return list_first_entry(&atchan->active_list,
86 				struct at_desc, desc_node);
87 }
88 
89 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
90 {
91 	return list_first_entry(&atchan->queue,
92 				struct at_desc, desc_node);
93 }
94 
95 /**
96  * atc_alloc_descriptor - allocate and return an initialized descriptor
97  * @chan: the channel to allocate descriptors for
98  * @gfp_flags: GFP allocation flags
99  *
100  * Note: The ack-bit is positioned in the descriptor flag at creation time
101  *       to make initial allocation more convenient. This bit will be cleared
102  *       and control will be given to client at usage time (during
103  *       preparation functions).
104  */
105 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
106 					    gfp_t gfp_flags)
107 {
108 	struct at_desc	*desc = NULL;
109 	struct at_dma	*atdma = to_at_dma(chan->device);
110 	dma_addr_t phys;
111 
112 	desc = dma_pool_alloc(atdma->dma_desc_pool, gfp_flags, &phys);
113 	if (desc) {
114 		memset(desc, 0, sizeof(struct at_desc));
115 		INIT_LIST_HEAD(&desc->tx_list);
116 		dma_async_tx_descriptor_init(&desc->txd, chan);
117 		/* txd.flags will be overwritten in prep functions */
118 		desc->txd.flags = DMA_CTRL_ACK;
119 		desc->txd.tx_submit = atc_tx_submit;
120 		desc->txd.phys = phys;
121 	}
122 
123 	return desc;
124 }
125 
126 /**
127  * atc_desc_get - get an unused descriptor from free_list
128  * @atchan: channel we want a new descriptor for
129  */
130 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
131 {
132 	struct at_desc *desc, *_desc;
133 	struct at_desc *ret = NULL;
134 	unsigned long flags;
135 	unsigned int i = 0;
136 	LIST_HEAD(tmp_list);
137 
138 	spin_lock_irqsave(&atchan->lock, flags);
139 	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
140 		i++;
141 		if (async_tx_test_ack(&desc->txd)) {
142 			list_del(&desc->desc_node);
143 			ret = desc;
144 			break;
145 		}
146 		dev_dbg(chan2dev(&atchan->chan_common),
147 				"desc %p not ACKed\n", desc);
148 	}
149 	spin_unlock_irqrestore(&atchan->lock, flags);
150 	dev_vdbg(chan2dev(&atchan->chan_common),
151 		"scanned %u descriptors on freelist\n", i);
152 
153 	/* no more descriptor available in initial pool: create one more */
154 	if (!ret) {
155 		ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC);
156 		if (ret) {
157 			spin_lock_irqsave(&atchan->lock, flags);
158 			atchan->descs_allocated++;
159 			spin_unlock_irqrestore(&atchan->lock, flags);
160 		} else {
161 			dev_err(chan2dev(&atchan->chan_common),
162 					"not enough descriptors available\n");
163 		}
164 	}
165 
166 	return ret;
167 }
168 
169 /**
170  * atc_desc_put - move a descriptor, including any children, to the free list
171  * @atchan: channel we work on
172  * @desc: descriptor, at the head of a chain, to move to free list
173  */
174 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
175 {
176 	if (desc) {
177 		struct at_desc *child;
178 		unsigned long flags;
179 
180 		spin_lock_irqsave(&atchan->lock, flags);
181 		list_for_each_entry(child, &desc->tx_list, desc_node)
182 			dev_vdbg(chan2dev(&atchan->chan_common),
183 					"moving child desc %p to freelist\n",
184 					child);
185 		list_splice_init(&desc->tx_list, &atchan->free_list);
186 		dev_vdbg(chan2dev(&atchan->chan_common),
187 			 "moving desc %p to freelist\n", desc);
188 		list_add(&desc->desc_node, &atchan->free_list);
189 		spin_unlock_irqrestore(&atchan->lock, flags);
190 	}
191 }
192 
193 /**
194  * atc_desc_chain - build chain adding a descriptor
195  * @first: address of first descriptor of the chain
196  * @prev: address of previous descriptor of the chain
197  * @desc: descriptor to queue
198  *
199  * Called from prep_* functions
200  */
201 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
202 			   struct at_desc *desc)
203 {
204 	if (!(*first)) {
205 		*first = desc;
206 	} else {
207 		/* inform the HW lli about chaining */
208 		(*prev)->lli.dscr = desc->txd.phys;
209 		/* insert the link descriptor to the LD ring */
210 		list_add_tail(&desc->desc_node,
211 				&(*first)->tx_list);
212 	}
213 	*prev = desc;
214 }
215 
216 /**
217  * atc_dostart - starts the DMA engine for real
218  * @atchan: the channel we want to start
219  * @first: first descriptor in the list we want to begin with
220  *
221  * Called with atchan->lock held and bh disabled
222  */
223 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
224 {
225 	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
226 
227 	/* ASSERT:  channel is idle */
228 	if (atc_chan_is_enabled(atchan)) {
229 		dev_err(chan2dev(&atchan->chan_common),
230 			"BUG: Attempted to start non-idle channel\n");
231 		dev_err(chan2dev(&atchan->chan_common),
232 			"  channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
233 			channel_readl(atchan, SADDR),
234 			channel_readl(atchan, DADDR),
235 			channel_readl(atchan, CTRLA),
236 			channel_readl(atchan, CTRLB),
237 			channel_readl(atchan, DSCR));
238 
239 		/* The tasklet will hopefully advance the queue... */
240 		return;
241 	}
242 
243 	vdbg_dump_regs(atchan);
244 
245 	channel_writel(atchan, SADDR, 0);
246 	channel_writel(atchan, DADDR, 0);
247 	channel_writel(atchan, CTRLA, 0);
248 	channel_writel(atchan, CTRLB, 0);
249 	channel_writel(atchan, DSCR, first->txd.phys);
250 	channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
251 		       ATC_SPIP_BOUNDARY(first->boundary));
252 	channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
253 		       ATC_DPIP_BOUNDARY(first->boundary));
254 	dma_writel(atdma, CHER, atchan->mask);
255 
256 	vdbg_dump_regs(atchan);
257 }
258 
259 /*
260  * atc_get_desc_by_cookie - get the descriptor of a cookie
261  * @atchan: the DMA channel
262  * @cookie: the cookie to get the descriptor for
263  */
264 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
265 						dma_cookie_t cookie)
266 {
267 	struct at_desc *desc, *_desc;
268 
269 	list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
270 		if (desc->txd.cookie == cookie)
271 			return desc;
272 	}
273 
274 	list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
275 		if (desc->txd.cookie == cookie)
276 			return desc;
277 	}
278 
279 	return NULL;
280 }
281 
282 /**
283  * atc_calc_bytes_left - calculates the number of bytes left according to the
284  * value read from CTRLA.
285  *
286  * @current_len: the number of bytes left before reading CTRLA
287  * @ctrla: the value of CTRLA
288  * @desc: the descriptor containing the transfer width
289  */
290 static inline int atc_calc_bytes_left(int current_len, u32 ctrla,
291 					struct at_desc *desc)
292 {
293 	return current_len - ((ctrla & ATC_BTSIZE_MAX) << desc->tx_width);
294 }
295 
296 /**
297  * atc_calc_bytes_left_from_reg - calculates the number of bytes left according
298  * to the current value of CTRLA.
299  *
300  * @current_len: the number of bytes left before reading CTRLA
301  * @atchan: the channel to read CTRLA for
302  * @desc: the descriptor containing the transfer width
303  */
304 static inline int atc_calc_bytes_left_from_reg(int current_len,
305 			struct at_dma_chan *atchan, struct at_desc *desc)
306 {
307 	u32 ctrla = channel_readl(atchan, CTRLA);
308 
309 	return atc_calc_bytes_left(current_len, ctrla, desc);
310 }
311 
312 /**
313  * atc_get_bytes_left - get the number of bytes residue for a cookie
314  * @chan: DMA channel
315  * @cookie: transaction identifier to check status of
316  */
317 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
318 {
319 	struct at_dma_chan      *atchan = to_at_dma_chan(chan);
320 	struct at_desc *desc_first = atc_first_active(atchan);
321 	struct at_desc *desc;
322 	int ret;
323 	u32 ctrla, dscr;
324 
325 	/*
326 	 * If the cookie doesn't match to the currently running transfer then
327 	 * we can return the total length of the associated DMA transfer,
328 	 * because it is still queued.
329 	 */
330 	desc = atc_get_desc_by_cookie(atchan, cookie);
331 	if (desc == NULL)
332 		return -EINVAL;
333 	else if (desc != desc_first)
334 		return desc->total_len;
335 
336 	/* cookie matches to the currently running transfer */
337 	ret = desc_first->total_len;
338 
339 	if (desc_first->lli.dscr) {
340 		/* hardware linked list transfer */
341 
342 		/*
343 		 * Calculate the residue by removing the length of the child
344 		 * descriptors already transferred from the total length.
345 		 * To get the current child descriptor we can use the value of
346 		 * the channel's DSCR register and compare it against the value
347 		 * of the hardware linked list structure of each child
348 		 * descriptor.
349 		 */
350 
351 		ctrla = channel_readl(atchan, CTRLA);
352 		rmb(); /* ensure CTRLA is read before DSCR */
353 		dscr = channel_readl(atchan, DSCR);
354 
355 		/* for the first descriptor we can be more accurate */
356 		if (desc_first->lli.dscr == dscr)
357 			return atc_calc_bytes_left(ret, ctrla, desc_first);
358 
359 		ret -= desc_first->len;
360 		list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
361 			if (desc->lli.dscr == dscr)
362 				break;
363 
364 			ret -= desc->len;
365 		}
366 
367 		/*
368 		 * For the last descriptor in the chain we can calculate
369 		 * the remaining bytes using the channel's register.
370 		 * Note that the transfer width of the first and last
371 		 * descriptor may differ.
372 		 */
373 		if (!desc->lli.dscr)
374 			ret = atc_calc_bytes_left_from_reg(ret, atchan, desc);
375 	} else {
376 		/* single transfer */
377 		ret = atc_calc_bytes_left_from_reg(ret, atchan, desc_first);
378 	}
379 
380 	return ret;
381 }
382 
383 /**
384  * atc_chain_complete - finish work for one transaction chain
385  * @atchan: channel we work on
386  * @desc: descriptor at the head of the chain we want do complete
387  *
388  * Called with atchan->lock held and bh disabled */
389 static void
390 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
391 {
392 	struct dma_async_tx_descriptor	*txd = &desc->txd;
393 
394 	dev_vdbg(chan2dev(&atchan->chan_common),
395 		"descriptor %u complete\n", txd->cookie);
396 
397 	/* mark the descriptor as complete for non cyclic cases only */
398 	if (!atc_chan_is_cyclic(atchan))
399 		dma_cookie_complete(txd);
400 
401 	/* move children to free_list */
402 	list_splice_init(&desc->tx_list, &atchan->free_list);
403 	/* move myself to free_list */
404 	list_move(&desc->desc_node, &atchan->free_list);
405 
406 	dma_descriptor_unmap(txd);
407 	/* for cyclic transfers,
408 	 * no need to replay callback function while stopping */
409 	if (!atc_chan_is_cyclic(atchan)) {
410 		dma_async_tx_callback	callback = txd->callback;
411 		void			*param = txd->callback_param;
412 
413 		/*
414 		 * The API requires that no submissions are done from a
415 		 * callback, so we don't need to drop the lock here
416 		 */
417 		if (callback)
418 			callback(param);
419 	}
420 
421 	dma_run_dependencies(txd);
422 }
423 
424 /**
425  * atc_complete_all - finish work for all transactions
426  * @atchan: channel to complete transactions for
427  *
428  * Eventually submit queued descriptors if any
429  *
430  * Assume channel is idle while calling this function
431  * Called with atchan->lock held and bh disabled
432  */
433 static void atc_complete_all(struct at_dma_chan *atchan)
434 {
435 	struct at_desc *desc, *_desc;
436 	LIST_HEAD(list);
437 
438 	dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
439 
440 	/*
441 	 * Submit queued descriptors ASAP, i.e. before we go through
442 	 * the completed ones.
443 	 */
444 	if (!list_empty(&atchan->queue))
445 		atc_dostart(atchan, atc_first_queued(atchan));
446 	/* empty active_list now it is completed */
447 	list_splice_init(&atchan->active_list, &list);
448 	/* empty queue list by moving descriptors (if any) to active_list */
449 	list_splice_init(&atchan->queue, &atchan->active_list);
450 
451 	list_for_each_entry_safe(desc, _desc, &list, desc_node)
452 		atc_chain_complete(atchan, desc);
453 }
454 
455 /**
456  * atc_advance_work - at the end of a transaction, move forward
457  * @atchan: channel where the transaction ended
458  *
459  * Called with atchan->lock held and bh disabled
460  */
461 static void atc_advance_work(struct at_dma_chan *atchan)
462 {
463 	dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
464 
465 	if (atc_chan_is_enabled(atchan))
466 		return;
467 
468 	if (list_empty(&atchan->active_list) ||
469 	    list_is_singular(&atchan->active_list)) {
470 		atc_complete_all(atchan);
471 	} else {
472 		atc_chain_complete(atchan, atc_first_active(atchan));
473 		/* advance work */
474 		atc_dostart(atchan, atc_first_active(atchan));
475 	}
476 }
477 
478 
479 /**
480  * atc_handle_error - handle errors reported by DMA controller
481  * @atchan: channel where error occurs
482  *
483  * Called with atchan->lock held and bh disabled
484  */
485 static void atc_handle_error(struct at_dma_chan *atchan)
486 {
487 	struct at_desc *bad_desc;
488 	struct at_desc *child;
489 
490 	/*
491 	 * The descriptor currently at the head of the active list is
492 	 * broked. Since we don't have any way to report errors, we'll
493 	 * just have to scream loudly and try to carry on.
494 	 */
495 	bad_desc = atc_first_active(atchan);
496 	list_del_init(&bad_desc->desc_node);
497 
498 	/* As we are stopped, take advantage to push queued descriptors
499 	 * in active_list */
500 	list_splice_init(&atchan->queue, atchan->active_list.prev);
501 
502 	/* Try to restart the controller */
503 	if (!list_empty(&atchan->active_list))
504 		atc_dostart(atchan, atc_first_active(atchan));
505 
506 	/*
507 	 * KERN_CRITICAL may seem harsh, but since this only happens
508 	 * when someone submits a bad physical address in a
509 	 * descriptor, we should consider ourselves lucky that the
510 	 * controller flagged an error instead of scribbling over
511 	 * random memory locations.
512 	 */
513 	dev_crit(chan2dev(&atchan->chan_common),
514 			"Bad descriptor submitted for DMA!\n");
515 	dev_crit(chan2dev(&atchan->chan_common),
516 			"  cookie: %d\n", bad_desc->txd.cookie);
517 	atc_dump_lli(atchan, &bad_desc->lli);
518 	list_for_each_entry(child, &bad_desc->tx_list, desc_node)
519 		atc_dump_lli(atchan, &child->lli);
520 
521 	/* Pretend the descriptor completed successfully */
522 	atc_chain_complete(atchan, bad_desc);
523 }
524 
525 /**
526  * atc_handle_cyclic - at the end of a period, run callback function
527  * @atchan: channel used for cyclic operations
528  *
529  * Called with atchan->lock held and bh disabled
530  */
531 static void atc_handle_cyclic(struct at_dma_chan *atchan)
532 {
533 	struct at_desc			*first = atc_first_active(atchan);
534 	struct dma_async_tx_descriptor	*txd = &first->txd;
535 	dma_async_tx_callback		callback = txd->callback;
536 	void				*param = txd->callback_param;
537 
538 	dev_vdbg(chan2dev(&atchan->chan_common),
539 			"new cyclic period llp 0x%08x\n",
540 			channel_readl(atchan, DSCR));
541 
542 	if (callback)
543 		callback(param);
544 }
545 
546 /*--  IRQ & Tasklet  ---------------------------------------------------*/
547 
548 static void atc_tasklet(unsigned long data)
549 {
550 	struct at_dma_chan *atchan = (struct at_dma_chan *)data;
551 	unsigned long flags;
552 
553 	spin_lock_irqsave(&atchan->lock, flags);
554 	if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
555 		atc_handle_error(atchan);
556 	else if (atc_chan_is_cyclic(atchan))
557 		atc_handle_cyclic(atchan);
558 	else
559 		atc_advance_work(atchan);
560 
561 	spin_unlock_irqrestore(&atchan->lock, flags);
562 }
563 
564 static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
565 {
566 	struct at_dma		*atdma = (struct at_dma *)dev_id;
567 	struct at_dma_chan	*atchan;
568 	int			i;
569 	u32			status, pending, imr;
570 	int			ret = IRQ_NONE;
571 
572 	do {
573 		imr = dma_readl(atdma, EBCIMR);
574 		status = dma_readl(atdma, EBCISR);
575 		pending = status & imr;
576 
577 		if (!pending)
578 			break;
579 
580 		dev_vdbg(atdma->dma_common.dev,
581 			"interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
582 			 status, imr, pending);
583 
584 		for (i = 0; i < atdma->dma_common.chancnt; i++) {
585 			atchan = &atdma->chan[i];
586 			if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
587 				if (pending & AT_DMA_ERR(i)) {
588 					/* Disable channel on AHB error */
589 					dma_writel(atdma, CHDR,
590 						AT_DMA_RES(i) | atchan->mask);
591 					/* Give information to tasklet */
592 					set_bit(ATC_IS_ERROR, &atchan->status);
593 				}
594 				tasklet_schedule(&atchan->tasklet);
595 				ret = IRQ_HANDLED;
596 			}
597 		}
598 
599 	} while (pending);
600 
601 	return ret;
602 }
603 
604 
605 /*--  DMA Engine API  --------------------------------------------------*/
606 
607 /**
608  * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
609  * @desc: descriptor at the head of the transaction chain
610  *
611  * Queue chain if DMA engine is working already
612  *
613  * Cookie increment and adding to active_list or queue must be atomic
614  */
615 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
616 {
617 	struct at_desc		*desc = txd_to_at_desc(tx);
618 	struct at_dma_chan	*atchan = to_at_dma_chan(tx->chan);
619 	dma_cookie_t		cookie;
620 	unsigned long		flags;
621 
622 	spin_lock_irqsave(&atchan->lock, flags);
623 	cookie = dma_cookie_assign(tx);
624 
625 	if (list_empty(&atchan->active_list)) {
626 		dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
627 				desc->txd.cookie);
628 		atc_dostart(atchan, desc);
629 		list_add_tail(&desc->desc_node, &atchan->active_list);
630 	} else {
631 		dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
632 				desc->txd.cookie);
633 		list_add_tail(&desc->desc_node, &atchan->queue);
634 	}
635 
636 	spin_unlock_irqrestore(&atchan->lock, flags);
637 
638 	return cookie;
639 }
640 
641 /**
642  * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
643  * @chan: the channel to prepare operation on
644  * @xt: Interleaved transfer template
645  * @flags: tx descriptor status flags
646  */
647 static struct dma_async_tx_descriptor *
648 atc_prep_dma_interleaved(struct dma_chan *chan,
649 			 struct dma_interleaved_template *xt,
650 			 unsigned long flags)
651 {
652 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
653 	struct data_chunk	*first = xt->sgl;
654 	struct at_desc		*desc = NULL;
655 	size_t			xfer_count;
656 	unsigned int		dwidth;
657 	u32			ctrla;
658 	u32			ctrlb;
659 	size_t			len = 0;
660 	int			i;
661 
662 	dev_info(chan2dev(chan),
663 		 "%s: src=0x%08x, dest=0x%08x, numf=%d, frame_size=%d, flags=0x%lx\n",
664 		__func__, xt->src_start, xt->dst_start, xt->numf,
665 		xt->frame_size, flags);
666 
667 	if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
668 		return NULL;
669 
670 	/*
671 	 * The controller can only "skip" X bytes every Y bytes, so we
672 	 * need to make sure we are given a template that fit that
673 	 * description, ie a template with chunks that always have the
674 	 * same size, with the same ICGs.
675 	 */
676 	for (i = 0; i < xt->frame_size; i++) {
677 		struct data_chunk *chunk = xt->sgl + i;
678 
679 		if ((chunk->size != xt->sgl->size) ||
680 		    (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
681 		    (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
682 			dev_err(chan2dev(chan),
683 				"%s: the controller can transfer only identical chunks\n",
684 				__func__);
685 			return NULL;
686 		}
687 
688 		len += chunk->size;
689 	}
690 
691 	dwidth = atc_get_xfer_width(xt->src_start,
692 				    xt->dst_start, len);
693 
694 	xfer_count = len >> dwidth;
695 	if (xfer_count > ATC_BTSIZE_MAX) {
696 		dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
697 		return NULL;
698 	}
699 
700 	ctrla = ATC_SRC_WIDTH(dwidth) |
701 		ATC_DST_WIDTH(dwidth);
702 
703 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
704 		| ATC_SRC_ADDR_MODE_INCR
705 		| ATC_DST_ADDR_MODE_INCR
706 		| ATC_SRC_PIP
707 		| ATC_DST_PIP
708 		| ATC_FC_MEM2MEM;
709 
710 	/* create the transfer */
711 	desc = atc_desc_get(atchan);
712 	if (!desc) {
713 		dev_err(chan2dev(chan),
714 			"%s: couldn't allocate our descriptor\n", __func__);
715 		return NULL;
716 	}
717 
718 	desc->lli.saddr = xt->src_start;
719 	desc->lli.daddr = xt->dst_start;
720 	desc->lli.ctrla = ctrla | xfer_count;
721 	desc->lli.ctrlb = ctrlb;
722 
723 	desc->boundary = first->size >> dwidth;
724 	desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
725 	desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
726 
727 	desc->txd.cookie = -EBUSY;
728 	desc->total_len = desc->len = len;
729 	desc->tx_width = dwidth;
730 
731 	/* set end-of-link to the last link descriptor of list*/
732 	set_desc_eol(desc);
733 
734 	desc->txd.flags = flags; /* client is in control of this ack */
735 
736 	return &desc->txd;
737 }
738 
739 /**
740  * atc_prep_dma_memcpy - prepare a memcpy operation
741  * @chan: the channel to prepare operation on
742  * @dest: operation virtual destination address
743  * @src: operation virtual source address
744  * @len: operation length
745  * @flags: tx descriptor status flags
746  */
747 static struct dma_async_tx_descriptor *
748 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
749 		size_t len, unsigned long flags)
750 {
751 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
752 	struct at_desc		*desc = NULL;
753 	struct at_desc		*first = NULL;
754 	struct at_desc		*prev = NULL;
755 	size_t			xfer_count;
756 	size_t			offset;
757 	unsigned int		src_width;
758 	unsigned int		dst_width;
759 	u32			ctrla;
760 	u32			ctrlb;
761 
762 	dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d0x%x s0x%x l0x%zx f0x%lx\n",
763 			dest, src, len, flags);
764 
765 	if (unlikely(!len)) {
766 		dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
767 		return NULL;
768 	}
769 
770 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
771 		| ATC_SRC_ADDR_MODE_INCR
772 		| ATC_DST_ADDR_MODE_INCR
773 		| ATC_FC_MEM2MEM;
774 
775 	/*
776 	 * We can be a lot more clever here, but this should take care
777 	 * of the most common optimization.
778 	 */
779 	src_width = dst_width = atc_get_xfer_width(src, dest, len);
780 
781 	ctrla = ATC_SRC_WIDTH(src_width) |
782 		ATC_DST_WIDTH(dst_width);
783 
784 	for (offset = 0; offset < len; offset += xfer_count << src_width) {
785 		xfer_count = min_t(size_t, (len - offset) >> src_width,
786 				ATC_BTSIZE_MAX);
787 
788 		desc = atc_desc_get(atchan);
789 		if (!desc)
790 			goto err_desc_get;
791 
792 		desc->lli.saddr = src + offset;
793 		desc->lli.daddr = dest + offset;
794 		desc->lli.ctrla = ctrla | xfer_count;
795 		desc->lli.ctrlb = ctrlb;
796 
797 		desc->txd.cookie = 0;
798 		desc->len = xfer_count << src_width;
799 
800 		atc_desc_chain(&first, &prev, desc);
801 	}
802 
803 	/* First descriptor of the chain embedds additional information */
804 	first->txd.cookie = -EBUSY;
805 	first->total_len = len;
806 
807 	/* set transfer width for the calculation of the residue */
808 	first->tx_width = src_width;
809 	prev->tx_width = src_width;
810 
811 	/* set end-of-link to the last link descriptor of list*/
812 	set_desc_eol(desc);
813 
814 	first->txd.flags = flags; /* client is in control of this ack */
815 
816 	return &first->txd;
817 
818 err_desc_get:
819 	atc_desc_put(atchan, first);
820 	return NULL;
821 }
822 
823 
824 /**
825  * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
826  * @chan: DMA channel
827  * @sgl: scatterlist to transfer to/from
828  * @sg_len: number of entries in @scatterlist
829  * @direction: DMA direction
830  * @flags: tx descriptor status flags
831  * @context: transaction context (ignored)
832  */
833 static struct dma_async_tx_descriptor *
834 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
835 		unsigned int sg_len, enum dma_transfer_direction direction,
836 		unsigned long flags, void *context)
837 {
838 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
839 	struct at_dma_slave	*atslave = chan->private;
840 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
841 	struct at_desc		*first = NULL;
842 	struct at_desc		*prev = NULL;
843 	u32			ctrla;
844 	u32			ctrlb;
845 	dma_addr_t		reg;
846 	unsigned int		reg_width;
847 	unsigned int		mem_width;
848 	unsigned int		i;
849 	struct scatterlist	*sg;
850 	size_t			total_len = 0;
851 
852 	dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
853 			sg_len,
854 			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
855 			flags);
856 
857 	if (unlikely(!atslave || !sg_len)) {
858 		dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
859 		return NULL;
860 	}
861 
862 	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
863 		| ATC_DCSIZE(sconfig->dst_maxburst);
864 	ctrlb = ATC_IEN;
865 
866 	switch (direction) {
867 	case DMA_MEM_TO_DEV:
868 		reg_width = convert_buswidth(sconfig->dst_addr_width);
869 		ctrla |=  ATC_DST_WIDTH(reg_width);
870 		ctrlb |=  ATC_DST_ADDR_MODE_FIXED
871 			| ATC_SRC_ADDR_MODE_INCR
872 			| ATC_FC_MEM2PER
873 			| ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
874 		reg = sconfig->dst_addr;
875 		for_each_sg(sgl, sg, sg_len, i) {
876 			struct at_desc	*desc;
877 			u32		len;
878 			u32		mem;
879 
880 			desc = atc_desc_get(atchan);
881 			if (!desc)
882 				goto err_desc_get;
883 
884 			mem = sg_dma_address(sg);
885 			len = sg_dma_len(sg);
886 			if (unlikely(!len)) {
887 				dev_dbg(chan2dev(chan),
888 					"prep_slave_sg: sg(%d) data length is zero\n", i);
889 				goto err;
890 			}
891 			mem_width = 2;
892 			if (unlikely(mem & 3 || len & 3))
893 				mem_width = 0;
894 
895 			desc->lli.saddr = mem;
896 			desc->lli.daddr = reg;
897 			desc->lli.ctrla = ctrla
898 					| ATC_SRC_WIDTH(mem_width)
899 					| len >> mem_width;
900 			desc->lli.ctrlb = ctrlb;
901 			desc->len = len;
902 
903 			atc_desc_chain(&first, &prev, desc);
904 			total_len += len;
905 		}
906 		break;
907 	case DMA_DEV_TO_MEM:
908 		reg_width = convert_buswidth(sconfig->src_addr_width);
909 		ctrla |=  ATC_SRC_WIDTH(reg_width);
910 		ctrlb |=  ATC_DST_ADDR_MODE_INCR
911 			| ATC_SRC_ADDR_MODE_FIXED
912 			| ATC_FC_PER2MEM
913 			| ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
914 
915 		reg = sconfig->src_addr;
916 		for_each_sg(sgl, sg, sg_len, i) {
917 			struct at_desc	*desc;
918 			u32		len;
919 			u32		mem;
920 
921 			desc = atc_desc_get(atchan);
922 			if (!desc)
923 				goto err_desc_get;
924 
925 			mem = sg_dma_address(sg);
926 			len = sg_dma_len(sg);
927 			if (unlikely(!len)) {
928 				dev_dbg(chan2dev(chan),
929 					"prep_slave_sg: sg(%d) data length is zero\n", i);
930 				goto err;
931 			}
932 			mem_width = 2;
933 			if (unlikely(mem & 3 || len & 3))
934 				mem_width = 0;
935 
936 			desc->lli.saddr = reg;
937 			desc->lli.daddr = mem;
938 			desc->lli.ctrla = ctrla
939 					| ATC_DST_WIDTH(mem_width)
940 					| len >> reg_width;
941 			desc->lli.ctrlb = ctrlb;
942 			desc->len = len;
943 
944 			atc_desc_chain(&first, &prev, desc);
945 			total_len += len;
946 		}
947 		break;
948 	default:
949 		return NULL;
950 	}
951 
952 	/* set end-of-link to the last link descriptor of list*/
953 	set_desc_eol(prev);
954 
955 	/* First descriptor of the chain embedds additional information */
956 	first->txd.cookie = -EBUSY;
957 	first->total_len = total_len;
958 
959 	/* set transfer width for the calculation of the residue */
960 	first->tx_width = reg_width;
961 	prev->tx_width = reg_width;
962 
963 	/* first link descriptor of list is responsible of flags */
964 	first->txd.flags = flags; /* client is in control of this ack */
965 
966 	return &first->txd;
967 
968 err_desc_get:
969 	dev_err(chan2dev(chan), "not enough descriptors available\n");
970 err:
971 	atc_desc_put(atchan, first);
972 	return NULL;
973 }
974 
975 /**
976  * atc_prep_dma_sg - prepare memory to memory scather-gather operation
977  * @chan: the channel to prepare operation on
978  * @dst_sg: destination scatterlist
979  * @dst_nents: number of destination scatterlist entries
980  * @src_sg: source scatterlist
981  * @src_nents: number of source scatterlist entries
982  * @flags: tx descriptor status flags
983  */
984 static struct dma_async_tx_descriptor *
985 atc_prep_dma_sg(struct dma_chan *chan,
986 		struct scatterlist *dst_sg, unsigned int dst_nents,
987 		struct scatterlist *src_sg, unsigned int src_nents,
988 		unsigned long flags)
989 {
990 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
991 	struct at_desc		*desc = NULL;
992 	struct at_desc		*first = NULL;
993 	struct at_desc		*prev = NULL;
994 	unsigned int		src_width;
995 	unsigned int		dst_width;
996 	size_t			xfer_count;
997 	u32			ctrla;
998 	u32			ctrlb;
999 	size_t			dst_len = 0, src_len = 0;
1000 	dma_addr_t		dst = 0, src = 0;
1001 	size_t			len = 0, total_len = 0;
1002 
1003 	if (unlikely(dst_nents == 0 || src_nents == 0))
1004 		return NULL;
1005 
1006 	if (unlikely(dst_sg == NULL || src_sg == NULL))
1007 		return NULL;
1008 
1009 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
1010 		| ATC_SRC_ADDR_MODE_INCR
1011 		| ATC_DST_ADDR_MODE_INCR
1012 		| ATC_FC_MEM2MEM;
1013 
1014 	/*
1015 	 * loop until there is either no more source or no more destination
1016 	 * scatterlist entry
1017 	 */
1018 	while (true) {
1019 
1020 		/* prepare the next transfer */
1021 		if (dst_len == 0) {
1022 
1023 			/* no more destination scatterlist entries */
1024 			if (!dst_sg || !dst_nents)
1025 				break;
1026 
1027 			dst = sg_dma_address(dst_sg);
1028 			dst_len = sg_dma_len(dst_sg);
1029 
1030 			dst_sg = sg_next(dst_sg);
1031 			dst_nents--;
1032 		}
1033 
1034 		if (src_len == 0) {
1035 
1036 			/* no more source scatterlist entries */
1037 			if (!src_sg || !src_nents)
1038 				break;
1039 
1040 			src = sg_dma_address(src_sg);
1041 			src_len = sg_dma_len(src_sg);
1042 
1043 			src_sg = sg_next(src_sg);
1044 			src_nents--;
1045 		}
1046 
1047 		len = min_t(size_t, src_len, dst_len);
1048 		if (len == 0)
1049 			continue;
1050 
1051 		/* take care for the alignment */
1052 		src_width = dst_width = atc_get_xfer_width(src, dst, len);
1053 
1054 		ctrla = ATC_SRC_WIDTH(src_width) |
1055 			ATC_DST_WIDTH(dst_width);
1056 
1057 		/*
1058 		 * The number of transfers to set up refer to the source width
1059 		 * that depends on the alignment.
1060 		 */
1061 		xfer_count = len >> src_width;
1062 		if (xfer_count > ATC_BTSIZE_MAX) {
1063 			xfer_count = ATC_BTSIZE_MAX;
1064 			len = ATC_BTSIZE_MAX << src_width;
1065 		}
1066 
1067 		/* create the transfer */
1068 		desc = atc_desc_get(atchan);
1069 		if (!desc)
1070 			goto err_desc_get;
1071 
1072 		desc->lli.saddr = src;
1073 		desc->lli.daddr = dst;
1074 		desc->lli.ctrla = ctrla | xfer_count;
1075 		desc->lli.ctrlb = ctrlb;
1076 
1077 		desc->txd.cookie = 0;
1078 		desc->len = len;
1079 
1080 		/*
1081 		 * Although we only need the transfer width for the first and
1082 		 * the last descriptor, its easier to set it to all descriptors.
1083 		 */
1084 		desc->tx_width = src_width;
1085 
1086 		atc_desc_chain(&first, &prev, desc);
1087 
1088 		/* update the lengths and addresses for the next loop cycle */
1089 		dst_len -= len;
1090 		src_len -= len;
1091 		dst += len;
1092 		src += len;
1093 
1094 		total_len += len;
1095 	}
1096 
1097 	/* First descriptor of the chain embedds additional information */
1098 	first->txd.cookie = -EBUSY;
1099 	first->total_len = total_len;
1100 
1101 	/* set end-of-link to the last link descriptor of list*/
1102 	set_desc_eol(desc);
1103 
1104 	first->txd.flags = flags; /* client is in control of this ack */
1105 
1106 	return &first->txd;
1107 
1108 err_desc_get:
1109 	atc_desc_put(atchan, first);
1110 	return NULL;
1111 }
1112 
1113 /**
1114  * atc_dma_cyclic_check_values
1115  * Check for too big/unaligned periods and unaligned DMA buffer
1116  */
1117 static int
1118 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1119 		size_t period_len)
1120 {
1121 	if (period_len > (ATC_BTSIZE_MAX << reg_width))
1122 		goto err_out;
1123 	if (unlikely(period_len & ((1 << reg_width) - 1)))
1124 		goto err_out;
1125 	if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1126 		goto err_out;
1127 
1128 	return 0;
1129 
1130 err_out:
1131 	return -EINVAL;
1132 }
1133 
1134 /**
1135  * atc_dma_cyclic_fill_desc - Fill one period descriptor
1136  */
1137 static int
1138 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1139 		unsigned int period_index, dma_addr_t buf_addr,
1140 		unsigned int reg_width, size_t period_len,
1141 		enum dma_transfer_direction direction)
1142 {
1143 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1144 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1145 	u32			ctrla;
1146 
1147 	/* prepare common CRTLA value */
1148 	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1149 		| ATC_DCSIZE(sconfig->dst_maxburst)
1150 		| ATC_DST_WIDTH(reg_width)
1151 		| ATC_SRC_WIDTH(reg_width)
1152 		| period_len >> reg_width;
1153 
1154 	switch (direction) {
1155 	case DMA_MEM_TO_DEV:
1156 		desc->lli.saddr = buf_addr + (period_len * period_index);
1157 		desc->lli.daddr = sconfig->dst_addr;
1158 		desc->lli.ctrla = ctrla;
1159 		desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1160 				| ATC_SRC_ADDR_MODE_INCR
1161 				| ATC_FC_MEM2PER
1162 				| ATC_SIF(atchan->mem_if)
1163 				| ATC_DIF(atchan->per_if);
1164 		desc->len = period_len;
1165 		break;
1166 
1167 	case DMA_DEV_TO_MEM:
1168 		desc->lli.saddr = sconfig->src_addr;
1169 		desc->lli.daddr = buf_addr + (period_len * period_index);
1170 		desc->lli.ctrla = ctrla;
1171 		desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1172 				| ATC_SRC_ADDR_MODE_FIXED
1173 				| ATC_FC_PER2MEM
1174 				| ATC_SIF(atchan->per_if)
1175 				| ATC_DIF(atchan->mem_if);
1176 		desc->len = period_len;
1177 		break;
1178 
1179 	default:
1180 		return -EINVAL;
1181 	}
1182 
1183 	return 0;
1184 }
1185 
1186 /**
1187  * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1188  * @chan: the DMA channel to prepare
1189  * @buf_addr: physical DMA address where the buffer starts
1190  * @buf_len: total number of bytes for the entire buffer
1191  * @period_len: number of bytes for each period
1192  * @direction: transfer direction, to or from device
1193  * @flags: tx descriptor status flags
1194  */
1195 static struct dma_async_tx_descriptor *
1196 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1197 		size_t period_len, enum dma_transfer_direction direction,
1198 		unsigned long flags)
1199 {
1200 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1201 	struct at_dma_slave	*atslave = chan->private;
1202 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1203 	struct at_desc		*first = NULL;
1204 	struct at_desc		*prev = NULL;
1205 	unsigned long		was_cyclic;
1206 	unsigned int		reg_width;
1207 	unsigned int		periods = buf_len / period_len;
1208 	unsigned int		i;
1209 
1210 	dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@0x%08x - %d (%d/%d)\n",
1211 			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1212 			buf_addr,
1213 			periods, buf_len, period_len);
1214 
1215 	if (unlikely(!atslave || !buf_len || !period_len)) {
1216 		dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1217 		return NULL;
1218 	}
1219 
1220 	was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1221 	if (was_cyclic) {
1222 		dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1223 		return NULL;
1224 	}
1225 
1226 	if (unlikely(!is_slave_direction(direction)))
1227 		goto err_out;
1228 
1229 	if (sconfig->direction == DMA_MEM_TO_DEV)
1230 		reg_width = convert_buswidth(sconfig->dst_addr_width);
1231 	else
1232 		reg_width = convert_buswidth(sconfig->src_addr_width);
1233 
1234 	/* Check for too big/unaligned periods and unaligned DMA buffer */
1235 	if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1236 		goto err_out;
1237 
1238 	/* build cyclic linked list */
1239 	for (i = 0; i < periods; i++) {
1240 		struct at_desc	*desc;
1241 
1242 		desc = atc_desc_get(atchan);
1243 		if (!desc)
1244 			goto err_desc_get;
1245 
1246 		if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1247 					     reg_width, period_len, direction))
1248 			goto err_desc_get;
1249 
1250 		atc_desc_chain(&first, &prev, desc);
1251 	}
1252 
1253 	/* lets make a cyclic list */
1254 	prev->lli.dscr = first->txd.phys;
1255 
1256 	/* First descriptor of the chain embedds additional information */
1257 	first->txd.cookie = -EBUSY;
1258 	first->total_len = buf_len;
1259 	first->tx_width = reg_width;
1260 
1261 	return &first->txd;
1262 
1263 err_desc_get:
1264 	dev_err(chan2dev(chan), "not enough descriptors available\n");
1265 	atc_desc_put(atchan, first);
1266 err_out:
1267 	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1268 	return NULL;
1269 }
1270 
1271 static int atc_config(struct dma_chan *chan,
1272 		      struct dma_slave_config *sconfig)
1273 {
1274 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1275 
1276 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1277 
1278 	/* Check if it is chan is configured for slave transfers */
1279 	if (!chan->private)
1280 		return -EINVAL;
1281 
1282 	memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1283 
1284 	convert_burst(&atchan->dma_sconfig.src_maxburst);
1285 	convert_burst(&atchan->dma_sconfig.dst_maxburst);
1286 
1287 	return 0;
1288 }
1289 
1290 static int atc_pause(struct dma_chan *chan)
1291 {
1292 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1293 	struct at_dma		*atdma = to_at_dma(chan->device);
1294 	int			chan_id = atchan->chan_common.chan_id;
1295 	unsigned long		flags;
1296 
1297 	LIST_HEAD(list);
1298 
1299 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1300 
1301 	spin_lock_irqsave(&atchan->lock, flags);
1302 
1303 	dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1304 	set_bit(ATC_IS_PAUSED, &atchan->status);
1305 
1306 	spin_unlock_irqrestore(&atchan->lock, flags);
1307 
1308 	return 0;
1309 }
1310 
1311 static int atc_resume(struct dma_chan *chan)
1312 {
1313 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1314 	struct at_dma		*atdma = to_at_dma(chan->device);
1315 	int			chan_id = atchan->chan_common.chan_id;
1316 	unsigned long		flags;
1317 
1318 	LIST_HEAD(list);
1319 
1320 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1321 
1322 	if (!atc_chan_is_paused(atchan))
1323 		return 0;
1324 
1325 	spin_lock_irqsave(&atchan->lock, flags);
1326 
1327 	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1328 	clear_bit(ATC_IS_PAUSED, &atchan->status);
1329 
1330 	spin_unlock_irqrestore(&atchan->lock, flags);
1331 
1332 	return 0;
1333 }
1334 
1335 static int atc_terminate_all(struct dma_chan *chan)
1336 {
1337 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1338 	struct at_dma		*atdma = to_at_dma(chan->device);
1339 	int			chan_id = atchan->chan_common.chan_id;
1340 	struct at_desc		*desc, *_desc;
1341 	unsigned long		flags;
1342 
1343 	LIST_HEAD(list);
1344 
1345 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1346 
1347 	/*
1348 	 * This is only called when something went wrong elsewhere, so
1349 	 * we don't really care about the data. Just disable the
1350 	 * channel. We still have to poll the channel enable bit due
1351 	 * to AHB/HSB limitations.
1352 	 */
1353 	spin_lock_irqsave(&atchan->lock, flags);
1354 
1355 	/* disabling channel: must also remove suspend state */
1356 	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1357 
1358 	/* confirm that this channel is disabled */
1359 	while (dma_readl(atdma, CHSR) & atchan->mask)
1360 		cpu_relax();
1361 
1362 	/* active_list entries will end up before queued entries */
1363 	list_splice_init(&atchan->queue, &list);
1364 	list_splice_init(&atchan->active_list, &list);
1365 
1366 	/* Flush all pending and queued descriptors */
1367 	list_for_each_entry_safe(desc, _desc, &list, desc_node)
1368 		atc_chain_complete(atchan, desc);
1369 
1370 	clear_bit(ATC_IS_PAUSED, &atchan->status);
1371 	/* if channel dedicated to cyclic operations, free it */
1372 	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1373 
1374 	spin_unlock_irqrestore(&atchan->lock, flags);
1375 
1376 	return 0;
1377 }
1378 
1379 /**
1380  * atc_tx_status - poll for transaction completion
1381  * @chan: DMA channel
1382  * @cookie: transaction identifier to check status of
1383  * @txstate: if not %NULL updated with transaction state
1384  *
1385  * If @txstate is passed in, upon return it reflect the driver
1386  * internal state and can be used with dma_async_is_complete() to check
1387  * the status of multiple cookies without re-checking hardware state.
1388  */
1389 static enum dma_status
1390 atc_tx_status(struct dma_chan *chan,
1391 		dma_cookie_t cookie,
1392 		struct dma_tx_state *txstate)
1393 {
1394 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1395 	unsigned long		flags;
1396 	enum dma_status		ret;
1397 	int bytes = 0;
1398 
1399 	ret = dma_cookie_status(chan, cookie, txstate);
1400 	if (ret == DMA_COMPLETE)
1401 		return ret;
1402 	/*
1403 	 * There's no point calculating the residue if there's
1404 	 * no txstate to store the value.
1405 	 */
1406 	if (!txstate)
1407 		return DMA_ERROR;
1408 
1409 	spin_lock_irqsave(&atchan->lock, flags);
1410 
1411 	/*  Get number of bytes left in the active transactions */
1412 	bytes = atc_get_bytes_left(chan, cookie);
1413 
1414 	spin_unlock_irqrestore(&atchan->lock, flags);
1415 
1416 	if (unlikely(bytes < 0)) {
1417 		dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1418 		return DMA_ERROR;
1419 	} else {
1420 		dma_set_residue(txstate, bytes);
1421 	}
1422 
1423 	dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1424 		 ret, cookie, bytes);
1425 
1426 	return ret;
1427 }
1428 
1429 /**
1430  * atc_issue_pending - try to finish work
1431  * @chan: target DMA channel
1432  */
1433 static void atc_issue_pending(struct dma_chan *chan)
1434 {
1435 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1436 	unsigned long		flags;
1437 
1438 	dev_vdbg(chan2dev(chan), "issue_pending\n");
1439 
1440 	/* Not needed for cyclic transfers */
1441 	if (atc_chan_is_cyclic(atchan))
1442 		return;
1443 
1444 	spin_lock_irqsave(&atchan->lock, flags);
1445 	atc_advance_work(atchan);
1446 	spin_unlock_irqrestore(&atchan->lock, flags);
1447 }
1448 
1449 /**
1450  * atc_alloc_chan_resources - allocate resources for DMA channel
1451  * @chan: allocate descriptor resources for this channel
1452  * @client: current client requesting the channel be ready for requests
1453  *
1454  * return - the number of allocated descriptors
1455  */
1456 static int atc_alloc_chan_resources(struct dma_chan *chan)
1457 {
1458 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1459 	struct at_dma		*atdma = to_at_dma(chan->device);
1460 	struct at_desc		*desc;
1461 	struct at_dma_slave	*atslave;
1462 	unsigned long		flags;
1463 	int			i;
1464 	u32			cfg;
1465 	LIST_HEAD(tmp_list);
1466 
1467 	dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1468 
1469 	/* ASSERT:  channel is idle */
1470 	if (atc_chan_is_enabled(atchan)) {
1471 		dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1472 		return -EIO;
1473 	}
1474 
1475 	cfg = ATC_DEFAULT_CFG;
1476 
1477 	atslave = chan->private;
1478 	if (atslave) {
1479 		/*
1480 		 * We need controller-specific data to set up slave
1481 		 * transfers.
1482 		 */
1483 		BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1484 
1485 		/* if cfg configuration specified take it instead of default */
1486 		if (atslave->cfg)
1487 			cfg = atslave->cfg;
1488 	}
1489 
1490 	/* have we already been set up?
1491 	 * reconfigure channel but no need to reallocate descriptors */
1492 	if (!list_empty(&atchan->free_list))
1493 		return atchan->descs_allocated;
1494 
1495 	/* Allocate initial pool of descriptors */
1496 	for (i = 0; i < init_nr_desc_per_channel; i++) {
1497 		desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1498 		if (!desc) {
1499 			dev_err(atdma->dma_common.dev,
1500 				"Only %d initial descriptors\n", i);
1501 			break;
1502 		}
1503 		list_add_tail(&desc->desc_node, &tmp_list);
1504 	}
1505 
1506 	spin_lock_irqsave(&atchan->lock, flags);
1507 	atchan->descs_allocated = i;
1508 	list_splice(&tmp_list, &atchan->free_list);
1509 	dma_cookie_init(chan);
1510 	spin_unlock_irqrestore(&atchan->lock, flags);
1511 
1512 	/* channel parameters */
1513 	channel_writel(atchan, CFG, cfg);
1514 
1515 	dev_dbg(chan2dev(chan),
1516 		"alloc_chan_resources: allocated %d descriptors\n",
1517 		atchan->descs_allocated);
1518 
1519 	return atchan->descs_allocated;
1520 }
1521 
1522 /**
1523  * atc_free_chan_resources - free all channel resources
1524  * @chan: DMA channel
1525  */
1526 static void atc_free_chan_resources(struct dma_chan *chan)
1527 {
1528 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1529 	struct at_dma		*atdma = to_at_dma(chan->device);
1530 	struct at_desc		*desc, *_desc;
1531 	LIST_HEAD(list);
1532 
1533 	dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n",
1534 		atchan->descs_allocated);
1535 
1536 	/* ASSERT:  channel is idle */
1537 	BUG_ON(!list_empty(&atchan->active_list));
1538 	BUG_ON(!list_empty(&atchan->queue));
1539 	BUG_ON(atc_chan_is_enabled(atchan));
1540 
1541 	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1542 		dev_vdbg(chan2dev(chan), "  freeing descriptor %p\n", desc);
1543 		list_del(&desc->desc_node);
1544 		/* free link descriptor */
1545 		dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1546 	}
1547 	list_splice_init(&atchan->free_list, &list);
1548 	atchan->descs_allocated = 0;
1549 	atchan->status = 0;
1550 
1551 	dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1552 }
1553 
1554 #ifdef CONFIG_OF
1555 static bool at_dma_filter(struct dma_chan *chan, void *slave)
1556 {
1557 	struct at_dma_slave *atslave = slave;
1558 
1559 	if (atslave->dma_dev == chan->device->dev) {
1560 		chan->private = atslave;
1561 		return true;
1562 	} else {
1563 		return false;
1564 	}
1565 }
1566 
1567 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1568 				     struct of_dma *of_dma)
1569 {
1570 	struct dma_chan *chan;
1571 	struct at_dma_chan *atchan;
1572 	struct at_dma_slave *atslave;
1573 	dma_cap_mask_t mask;
1574 	unsigned int per_id;
1575 	struct platform_device *dmac_pdev;
1576 
1577 	if (dma_spec->args_count != 2)
1578 		return NULL;
1579 
1580 	dmac_pdev = of_find_device_by_node(dma_spec->np);
1581 
1582 	dma_cap_zero(mask);
1583 	dma_cap_set(DMA_SLAVE, mask);
1584 
1585 	atslave = devm_kzalloc(&dmac_pdev->dev, sizeof(*atslave), GFP_KERNEL);
1586 	if (!atslave)
1587 		return NULL;
1588 
1589 	atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1590 	/*
1591 	 * We can fill both SRC_PER and DST_PER, one of these fields will be
1592 	 * ignored depending on DMA transfer direction.
1593 	 */
1594 	per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1595 	atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1596 		     | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1597 	/*
1598 	 * We have to translate the value we get from the device tree since
1599 	 * the half FIFO configuration value had to be 0 to keep backward
1600 	 * compatibility.
1601 	 */
1602 	switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1603 	case AT91_DMA_CFG_FIFOCFG_ALAP:
1604 		atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1605 		break;
1606 	case AT91_DMA_CFG_FIFOCFG_ASAP:
1607 		atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1608 		break;
1609 	case AT91_DMA_CFG_FIFOCFG_HALF:
1610 	default:
1611 		atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1612 	}
1613 	atslave->dma_dev = &dmac_pdev->dev;
1614 
1615 	chan = dma_request_channel(mask, at_dma_filter, atslave);
1616 	if (!chan)
1617 		return NULL;
1618 
1619 	atchan = to_at_dma_chan(chan);
1620 	atchan->per_if = dma_spec->args[0] & 0xff;
1621 	atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1622 
1623 	return chan;
1624 }
1625 #else
1626 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1627 				     struct of_dma *of_dma)
1628 {
1629 	return NULL;
1630 }
1631 #endif
1632 
1633 /*--  Module Management  -----------------------------------------------*/
1634 
1635 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1636 static struct at_dma_platform_data at91sam9rl_config = {
1637 	.nr_channels = 2,
1638 };
1639 static struct at_dma_platform_data at91sam9g45_config = {
1640 	.nr_channels = 8,
1641 };
1642 
1643 #if defined(CONFIG_OF)
1644 static const struct of_device_id atmel_dma_dt_ids[] = {
1645 	{
1646 		.compatible = "atmel,at91sam9rl-dma",
1647 		.data = &at91sam9rl_config,
1648 	}, {
1649 		.compatible = "atmel,at91sam9g45-dma",
1650 		.data = &at91sam9g45_config,
1651 	}, {
1652 		/* sentinel */
1653 	}
1654 };
1655 
1656 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1657 #endif
1658 
1659 static const struct platform_device_id atdma_devtypes[] = {
1660 	{
1661 		.name = "at91sam9rl_dma",
1662 		.driver_data = (unsigned long) &at91sam9rl_config,
1663 	}, {
1664 		.name = "at91sam9g45_dma",
1665 		.driver_data = (unsigned long) &at91sam9g45_config,
1666 	}, {
1667 		/* sentinel */
1668 	}
1669 };
1670 
1671 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1672 						struct platform_device *pdev)
1673 {
1674 	if (pdev->dev.of_node) {
1675 		const struct of_device_id *match;
1676 		match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1677 		if (match == NULL)
1678 			return NULL;
1679 		return match->data;
1680 	}
1681 	return (struct at_dma_platform_data *)
1682 			platform_get_device_id(pdev)->driver_data;
1683 }
1684 
1685 /**
1686  * at_dma_off - disable DMA controller
1687  * @atdma: the Atmel HDAMC device
1688  */
1689 static void at_dma_off(struct at_dma *atdma)
1690 {
1691 	dma_writel(atdma, EN, 0);
1692 
1693 	/* disable all interrupts */
1694 	dma_writel(atdma, EBCIDR, -1L);
1695 
1696 	/* confirm that all channels are disabled */
1697 	while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1698 		cpu_relax();
1699 }
1700 
1701 static int __init at_dma_probe(struct platform_device *pdev)
1702 {
1703 	struct resource		*io;
1704 	struct at_dma		*atdma;
1705 	size_t			size;
1706 	int			irq;
1707 	int			err;
1708 	int			i;
1709 	const struct at_dma_platform_data *plat_dat;
1710 
1711 	/* setup platform data for each SoC */
1712 	dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1713 	dma_cap_set(DMA_SG, at91sam9rl_config.cap_mask);
1714 	dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1715 	dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1716 	dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1717 	dma_cap_set(DMA_SG, at91sam9g45_config.cap_mask);
1718 
1719 	/* get DMA parameters from controller type */
1720 	plat_dat = at_dma_get_driver_data(pdev);
1721 	if (!plat_dat)
1722 		return -ENODEV;
1723 
1724 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1725 	if (!io)
1726 		return -EINVAL;
1727 
1728 	irq = platform_get_irq(pdev, 0);
1729 	if (irq < 0)
1730 		return irq;
1731 
1732 	size = sizeof(struct at_dma);
1733 	size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1734 	atdma = kzalloc(size, GFP_KERNEL);
1735 	if (!atdma)
1736 		return -ENOMEM;
1737 
1738 	/* discover transaction capabilities */
1739 	atdma->dma_common.cap_mask = plat_dat->cap_mask;
1740 	atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1741 
1742 	size = resource_size(io);
1743 	if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1744 		err = -EBUSY;
1745 		goto err_kfree;
1746 	}
1747 
1748 	atdma->regs = ioremap(io->start, size);
1749 	if (!atdma->regs) {
1750 		err = -ENOMEM;
1751 		goto err_release_r;
1752 	}
1753 
1754 	atdma->clk = clk_get(&pdev->dev, "dma_clk");
1755 	if (IS_ERR(atdma->clk)) {
1756 		err = PTR_ERR(atdma->clk);
1757 		goto err_clk;
1758 	}
1759 	err = clk_prepare_enable(atdma->clk);
1760 	if (err)
1761 		goto err_clk_prepare;
1762 
1763 	/* force dma off, just in case */
1764 	at_dma_off(atdma);
1765 
1766 	err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1767 	if (err)
1768 		goto err_irq;
1769 
1770 	platform_set_drvdata(pdev, atdma);
1771 
1772 	/* create a pool of consistent memory blocks for hardware descriptors */
1773 	atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
1774 			&pdev->dev, sizeof(struct at_desc),
1775 			4 /* word alignment */, 0);
1776 	if (!atdma->dma_desc_pool) {
1777 		dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
1778 		err = -ENOMEM;
1779 		goto err_pool_create;
1780 	}
1781 
1782 	/* clear any pending interrupt */
1783 	while (dma_readl(atdma, EBCISR))
1784 		cpu_relax();
1785 
1786 	/* initialize channels related values */
1787 	INIT_LIST_HEAD(&atdma->dma_common.channels);
1788 	for (i = 0; i < plat_dat->nr_channels; i++) {
1789 		struct at_dma_chan	*atchan = &atdma->chan[i];
1790 
1791 		atchan->mem_if = AT_DMA_MEM_IF;
1792 		atchan->per_if = AT_DMA_PER_IF;
1793 		atchan->chan_common.device = &atdma->dma_common;
1794 		dma_cookie_init(&atchan->chan_common);
1795 		list_add_tail(&atchan->chan_common.device_node,
1796 				&atdma->dma_common.channels);
1797 
1798 		atchan->ch_regs = atdma->regs + ch_regs(i);
1799 		spin_lock_init(&atchan->lock);
1800 		atchan->mask = 1 << i;
1801 
1802 		INIT_LIST_HEAD(&atchan->active_list);
1803 		INIT_LIST_HEAD(&atchan->queue);
1804 		INIT_LIST_HEAD(&atchan->free_list);
1805 
1806 		tasklet_init(&atchan->tasklet, atc_tasklet,
1807 				(unsigned long)atchan);
1808 		atc_enable_chan_irq(atdma, i);
1809 	}
1810 
1811 	/* set base routines */
1812 	atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
1813 	atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
1814 	atdma->dma_common.device_tx_status = atc_tx_status;
1815 	atdma->dma_common.device_issue_pending = atc_issue_pending;
1816 	atdma->dma_common.dev = &pdev->dev;
1817 
1818 	/* set prep routines based on capability */
1819 	if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
1820 		atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
1821 
1822 	if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
1823 		atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
1824 
1825 	if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
1826 		atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
1827 		/* controller can do slave DMA: can trigger cyclic transfers */
1828 		dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
1829 		atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
1830 		atdma->dma_common.device_config = atc_config;
1831 		atdma->dma_common.device_pause = atc_pause;
1832 		atdma->dma_common.device_resume = atc_resume;
1833 		atdma->dma_common.device_terminate_all = atc_terminate_all;
1834 		atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
1835 		atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
1836 		atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1837 		atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1838 	}
1839 
1840 	if (dma_has_cap(DMA_SG, atdma->dma_common.cap_mask))
1841 		atdma->dma_common.device_prep_dma_sg = atc_prep_dma_sg;
1842 
1843 	dma_writel(atdma, EN, AT_DMA_ENABLE);
1844 
1845 	dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n",
1846 	  dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
1847 	  dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)  ? "slave " : "",
1848 	  dma_has_cap(DMA_SG, atdma->dma_common.cap_mask)  ? "sg-cpy " : "",
1849 	  plat_dat->nr_channels);
1850 
1851 	dma_async_device_register(&atdma->dma_common);
1852 
1853 	/*
1854 	 * Do not return an error if the dmac node is not present in order to
1855 	 * not break the existing way of requesting channel with
1856 	 * dma_request_channel().
1857 	 */
1858 	if (pdev->dev.of_node) {
1859 		err = of_dma_controller_register(pdev->dev.of_node,
1860 						 at_dma_xlate, atdma);
1861 		if (err) {
1862 			dev_err(&pdev->dev, "could not register of_dma_controller\n");
1863 			goto err_of_dma_controller_register;
1864 		}
1865 	}
1866 
1867 	return 0;
1868 
1869 err_of_dma_controller_register:
1870 	dma_async_device_unregister(&atdma->dma_common);
1871 	dma_pool_destroy(atdma->dma_desc_pool);
1872 err_pool_create:
1873 	free_irq(platform_get_irq(pdev, 0), atdma);
1874 err_irq:
1875 	clk_disable_unprepare(atdma->clk);
1876 err_clk_prepare:
1877 	clk_put(atdma->clk);
1878 err_clk:
1879 	iounmap(atdma->regs);
1880 	atdma->regs = NULL;
1881 err_release_r:
1882 	release_mem_region(io->start, size);
1883 err_kfree:
1884 	kfree(atdma);
1885 	return err;
1886 }
1887 
1888 static int at_dma_remove(struct platform_device *pdev)
1889 {
1890 	struct at_dma		*atdma = platform_get_drvdata(pdev);
1891 	struct dma_chan		*chan, *_chan;
1892 	struct resource		*io;
1893 
1894 	at_dma_off(atdma);
1895 	dma_async_device_unregister(&atdma->dma_common);
1896 
1897 	dma_pool_destroy(atdma->dma_desc_pool);
1898 	free_irq(platform_get_irq(pdev, 0), atdma);
1899 
1900 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
1901 			device_node) {
1902 		struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1903 
1904 		/* Disable interrupts */
1905 		atc_disable_chan_irq(atdma, chan->chan_id);
1906 
1907 		tasklet_kill(&atchan->tasklet);
1908 		list_del(&chan->device_node);
1909 	}
1910 
1911 	clk_disable_unprepare(atdma->clk);
1912 	clk_put(atdma->clk);
1913 
1914 	iounmap(atdma->regs);
1915 	atdma->regs = NULL;
1916 
1917 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1918 	release_mem_region(io->start, resource_size(io));
1919 
1920 	kfree(atdma);
1921 
1922 	return 0;
1923 }
1924 
1925 static void at_dma_shutdown(struct platform_device *pdev)
1926 {
1927 	struct at_dma	*atdma = platform_get_drvdata(pdev);
1928 
1929 	at_dma_off(platform_get_drvdata(pdev));
1930 	clk_disable_unprepare(atdma->clk);
1931 }
1932 
1933 static int at_dma_prepare(struct device *dev)
1934 {
1935 	struct platform_device *pdev = to_platform_device(dev);
1936 	struct at_dma *atdma = platform_get_drvdata(pdev);
1937 	struct dma_chan *chan, *_chan;
1938 
1939 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
1940 			device_node) {
1941 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
1942 		/* wait for transaction completion (except in cyclic case) */
1943 		if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
1944 			return -EAGAIN;
1945 	}
1946 	return 0;
1947 }
1948 
1949 static void atc_suspend_cyclic(struct at_dma_chan *atchan)
1950 {
1951 	struct dma_chan	*chan = &atchan->chan_common;
1952 
1953 	/* Channel should be paused by user
1954 	 * do it anyway even if it is not done already */
1955 	if (!atc_chan_is_paused(atchan)) {
1956 		dev_warn(chan2dev(chan),
1957 		"cyclic channel not paused, should be done by channel user\n");
1958 		atc_pause(chan);
1959 	}
1960 
1961 	/* now preserve additional data for cyclic operations */
1962 	/* next descriptor address in the cyclic list */
1963 	atchan->save_dscr = channel_readl(atchan, DSCR);
1964 
1965 	vdbg_dump_regs(atchan);
1966 }
1967 
1968 static int at_dma_suspend_noirq(struct device *dev)
1969 {
1970 	struct platform_device *pdev = to_platform_device(dev);
1971 	struct at_dma *atdma = platform_get_drvdata(pdev);
1972 	struct dma_chan *chan, *_chan;
1973 
1974 	/* preserve data */
1975 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
1976 			device_node) {
1977 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
1978 
1979 		if (atc_chan_is_cyclic(atchan))
1980 			atc_suspend_cyclic(atchan);
1981 		atchan->save_cfg = channel_readl(atchan, CFG);
1982 	}
1983 	atdma->save_imr = dma_readl(atdma, EBCIMR);
1984 
1985 	/* disable DMA controller */
1986 	at_dma_off(atdma);
1987 	clk_disable_unprepare(atdma->clk);
1988 	return 0;
1989 }
1990 
1991 static void atc_resume_cyclic(struct at_dma_chan *atchan)
1992 {
1993 	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
1994 
1995 	/* restore channel status for cyclic descriptors list:
1996 	 * next descriptor in the cyclic list at the time of suspend */
1997 	channel_writel(atchan, SADDR, 0);
1998 	channel_writel(atchan, DADDR, 0);
1999 	channel_writel(atchan, CTRLA, 0);
2000 	channel_writel(atchan, CTRLB, 0);
2001 	channel_writel(atchan, DSCR, atchan->save_dscr);
2002 	dma_writel(atdma, CHER, atchan->mask);
2003 
2004 	/* channel pause status should be removed by channel user
2005 	 * We cannot take the initiative to do it here */
2006 
2007 	vdbg_dump_regs(atchan);
2008 }
2009 
2010 static int at_dma_resume_noirq(struct device *dev)
2011 {
2012 	struct platform_device *pdev = to_platform_device(dev);
2013 	struct at_dma *atdma = platform_get_drvdata(pdev);
2014 	struct dma_chan *chan, *_chan;
2015 
2016 	/* bring back DMA controller */
2017 	clk_prepare_enable(atdma->clk);
2018 	dma_writel(atdma, EN, AT_DMA_ENABLE);
2019 
2020 	/* clear any pending interrupt */
2021 	while (dma_readl(atdma, EBCISR))
2022 		cpu_relax();
2023 
2024 	/* restore saved data */
2025 	dma_writel(atdma, EBCIER, atdma->save_imr);
2026 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2027 			device_node) {
2028 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2029 
2030 		channel_writel(atchan, CFG, atchan->save_cfg);
2031 		if (atc_chan_is_cyclic(atchan))
2032 			atc_resume_cyclic(atchan);
2033 	}
2034 	return 0;
2035 }
2036 
2037 static const struct dev_pm_ops at_dma_dev_pm_ops = {
2038 	.prepare = at_dma_prepare,
2039 	.suspend_noirq = at_dma_suspend_noirq,
2040 	.resume_noirq = at_dma_resume_noirq,
2041 };
2042 
2043 static struct platform_driver at_dma_driver = {
2044 	.remove		= at_dma_remove,
2045 	.shutdown	= at_dma_shutdown,
2046 	.id_table	= atdma_devtypes,
2047 	.driver = {
2048 		.name	= "at_hdmac",
2049 		.pm	= &at_dma_dev_pm_ops,
2050 		.of_match_table	= of_match_ptr(atmel_dma_dt_ids),
2051 	},
2052 };
2053 
2054 static int __init at_dma_init(void)
2055 {
2056 	return platform_driver_probe(&at_dma_driver, at_dma_probe);
2057 }
2058 subsys_initcall(at_dma_init);
2059 
2060 static void __exit at_dma_exit(void)
2061 {
2062 	platform_driver_unregister(&at_dma_driver);
2063 }
2064 module_exit(at_dma_exit);
2065 
2066 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2067 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2068 MODULE_LICENSE("GPL");
2069 MODULE_ALIAS("platform:at_hdmac");
2070