1 /* 2 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems) 3 * 4 * Copyright (C) 2008 Atmel Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * 12 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs. 13 * The only Atmel DMA Controller that is not covered by this driver is the one 14 * found on AT91SAM9263. 15 */ 16 17 #include <dt-bindings/dma/at91.h> 18 #include <linux/clk.h> 19 #include <linux/dmaengine.h> 20 #include <linux/dma-mapping.h> 21 #include <linux/dmapool.h> 22 #include <linux/interrupt.h> 23 #include <linux/module.h> 24 #include <linux/platform_device.h> 25 #include <linux/slab.h> 26 #include <linux/of.h> 27 #include <linux/of_device.h> 28 #include <linux/of_dma.h> 29 30 #include "at_hdmac_regs.h" 31 #include "dmaengine.h" 32 33 /* 34 * Glossary 35 * -------- 36 * 37 * at_hdmac : Name of the ATmel AHB DMA Controller 38 * at_dma_ / atdma : ATmel DMA controller entity related 39 * atc_ / atchan : ATmel DMA Channel entity related 40 */ 41 42 #define ATC_DEFAULT_CFG (ATC_FIFOCFG_HALFFIFO) 43 #define ATC_DEFAULT_CTRLB (ATC_SIF(AT_DMA_MEM_IF) \ 44 |ATC_DIF(AT_DMA_MEM_IF)) 45 #define ATC_DMA_BUSWIDTHS\ 46 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\ 47 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\ 48 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\ 49 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) 50 51 /* 52 * Initial number of descriptors to allocate for each channel. This could 53 * be increased during dma usage. 54 */ 55 static unsigned int init_nr_desc_per_channel = 64; 56 module_param(init_nr_desc_per_channel, uint, 0644); 57 MODULE_PARM_DESC(init_nr_desc_per_channel, 58 "initial descriptors per channel (default: 64)"); 59 60 61 /* prototypes */ 62 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx); 63 static void atc_issue_pending(struct dma_chan *chan); 64 65 66 /*----------------------------------------------------------------------*/ 67 68 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst, 69 size_t len) 70 { 71 unsigned int width; 72 73 if (!((src | dst | len) & 3)) 74 width = 2; 75 else if (!((src | dst | len) & 1)) 76 width = 1; 77 else 78 width = 0; 79 80 return width; 81 } 82 83 static struct at_desc *atc_first_active(struct at_dma_chan *atchan) 84 { 85 return list_first_entry(&atchan->active_list, 86 struct at_desc, desc_node); 87 } 88 89 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan) 90 { 91 return list_first_entry(&atchan->queue, 92 struct at_desc, desc_node); 93 } 94 95 /** 96 * atc_alloc_descriptor - allocate and return an initialized descriptor 97 * @chan: the channel to allocate descriptors for 98 * @gfp_flags: GFP allocation flags 99 * 100 * Note: The ack-bit is positioned in the descriptor flag at creation time 101 * to make initial allocation more convenient. This bit will be cleared 102 * and control will be given to client at usage time (during 103 * preparation functions). 104 */ 105 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan, 106 gfp_t gfp_flags) 107 { 108 struct at_desc *desc = NULL; 109 struct at_dma *atdma = to_at_dma(chan->device); 110 dma_addr_t phys; 111 112 desc = dma_pool_alloc(atdma->dma_desc_pool, gfp_flags, &phys); 113 if (desc) { 114 memset(desc, 0, sizeof(struct at_desc)); 115 INIT_LIST_HEAD(&desc->tx_list); 116 dma_async_tx_descriptor_init(&desc->txd, chan); 117 /* txd.flags will be overwritten in prep functions */ 118 desc->txd.flags = DMA_CTRL_ACK; 119 desc->txd.tx_submit = atc_tx_submit; 120 desc->txd.phys = phys; 121 } 122 123 return desc; 124 } 125 126 /** 127 * atc_desc_get - get an unused descriptor from free_list 128 * @atchan: channel we want a new descriptor for 129 */ 130 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan) 131 { 132 struct at_desc *desc, *_desc; 133 struct at_desc *ret = NULL; 134 unsigned long flags; 135 unsigned int i = 0; 136 LIST_HEAD(tmp_list); 137 138 spin_lock_irqsave(&atchan->lock, flags); 139 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) { 140 i++; 141 if (async_tx_test_ack(&desc->txd)) { 142 list_del(&desc->desc_node); 143 ret = desc; 144 break; 145 } 146 dev_dbg(chan2dev(&atchan->chan_common), 147 "desc %p not ACKed\n", desc); 148 } 149 spin_unlock_irqrestore(&atchan->lock, flags); 150 dev_vdbg(chan2dev(&atchan->chan_common), 151 "scanned %u descriptors on freelist\n", i); 152 153 /* no more descriptor available in initial pool: create one more */ 154 if (!ret) { 155 ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC); 156 if (ret) { 157 spin_lock_irqsave(&atchan->lock, flags); 158 atchan->descs_allocated++; 159 spin_unlock_irqrestore(&atchan->lock, flags); 160 } else { 161 dev_err(chan2dev(&atchan->chan_common), 162 "not enough descriptors available\n"); 163 } 164 } 165 166 return ret; 167 } 168 169 /** 170 * atc_desc_put - move a descriptor, including any children, to the free list 171 * @atchan: channel we work on 172 * @desc: descriptor, at the head of a chain, to move to free list 173 */ 174 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc) 175 { 176 if (desc) { 177 struct at_desc *child; 178 unsigned long flags; 179 180 spin_lock_irqsave(&atchan->lock, flags); 181 list_for_each_entry(child, &desc->tx_list, desc_node) 182 dev_vdbg(chan2dev(&atchan->chan_common), 183 "moving child desc %p to freelist\n", 184 child); 185 list_splice_init(&desc->tx_list, &atchan->free_list); 186 dev_vdbg(chan2dev(&atchan->chan_common), 187 "moving desc %p to freelist\n", desc); 188 list_add(&desc->desc_node, &atchan->free_list); 189 spin_unlock_irqrestore(&atchan->lock, flags); 190 } 191 } 192 193 /** 194 * atc_desc_chain - build chain adding a descriptor 195 * @first: address of first descriptor of the chain 196 * @prev: address of previous descriptor of the chain 197 * @desc: descriptor to queue 198 * 199 * Called from prep_* functions 200 */ 201 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev, 202 struct at_desc *desc) 203 { 204 if (!(*first)) { 205 *first = desc; 206 } else { 207 /* inform the HW lli about chaining */ 208 (*prev)->lli.dscr = desc->txd.phys; 209 /* insert the link descriptor to the LD ring */ 210 list_add_tail(&desc->desc_node, 211 &(*first)->tx_list); 212 } 213 *prev = desc; 214 } 215 216 /** 217 * atc_dostart - starts the DMA engine for real 218 * @atchan: the channel we want to start 219 * @first: first descriptor in the list we want to begin with 220 * 221 * Called with atchan->lock held and bh disabled 222 */ 223 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first) 224 { 225 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 226 227 /* ASSERT: channel is idle */ 228 if (atc_chan_is_enabled(atchan)) { 229 dev_err(chan2dev(&atchan->chan_common), 230 "BUG: Attempted to start non-idle channel\n"); 231 dev_err(chan2dev(&atchan->chan_common), 232 " channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n", 233 channel_readl(atchan, SADDR), 234 channel_readl(atchan, DADDR), 235 channel_readl(atchan, CTRLA), 236 channel_readl(atchan, CTRLB), 237 channel_readl(atchan, DSCR)); 238 239 /* The tasklet will hopefully advance the queue... */ 240 return; 241 } 242 243 vdbg_dump_regs(atchan); 244 245 channel_writel(atchan, SADDR, 0); 246 channel_writel(atchan, DADDR, 0); 247 channel_writel(atchan, CTRLA, 0); 248 channel_writel(atchan, CTRLB, 0); 249 channel_writel(atchan, DSCR, first->txd.phys); 250 channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) | 251 ATC_SPIP_BOUNDARY(first->boundary)); 252 channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) | 253 ATC_DPIP_BOUNDARY(first->boundary)); 254 dma_writel(atdma, CHER, atchan->mask); 255 256 vdbg_dump_regs(atchan); 257 } 258 259 /* 260 * atc_get_desc_by_cookie - get the descriptor of a cookie 261 * @atchan: the DMA channel 262 * @cookie: the cookie to get the descriptor for 263 */ 264 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan, 265 dma_cookie_t cookie) 266 { 267 struct at_desc *desc, *_desc; 268 269 list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) { 270 if (desc->txd.cookie == cookie) 271 return desc; 272 } 273 274 list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) { 275 if (desc->txd.cookie == cookie) 276 return desc; 277 } 278 279 return NULL; 280 } 281 282 /** 283 * atc_calc_bytes_left - calculates the number of bytes left according to the 284 * value read from CTRLA. 285 * 286 * @current_len: the number of bytes left before reading CTRLA 287 * @ctrla: the value of CTRLA 288 * @desc: the descriptor containing the transfer width 289 */ 290 static inline int atc_calc_bytes_left(int current_len, u32 ctrla, 291 struct at_desc *desc) 292 { 293 return current_len - ((ctrla & ATC_BTSIZE_MAX) << desc->tx_width); 294 } 295 296 /** 297 * atc_calc_bytes_left_from_reg - calculates the number of bytes left according 298 * to the current value of CTRLA. 299 * 300 * @current_len: the number of bytes left before reading CTRLA 301 * @atchan: the channel to read CTRLA for 302 * @desc: the descriptor containing the transfer width 303 */ 304 static inline int atc_calc_bytes_left_from_reg(int current_len, 305 struct at_dma_chan *atchan, struct at_desc *desc) 306 { 307 u32 ctrla = channel_readl(atchan, CTRLA); 308 309 return atc_calc_bytes_left(current_len, ctrla, desc); 310 } 311 312 /** 313 * atc_get_bytes_left - get the number of bytes residue for a cookie 314 * @chan: DMA channel 315 * @cookie: transaction identifier to check status of 316 */ 317 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie) 318 { 319 struct at_dma_chan *atchan = to_at_dma_chan(chan); 320 struct at_desc *desc_first = atc_first_active(atchan); 321 struct at_desc *desc; 322 int ret; 323 u32 ctrla, dscr; 324 325 /* 326 * If the cookie doesn't match to the currently running transfer then 327 * we can return the total length of the associated DMA transfer, 328 * because it is still queued. 329 */ 330 desc = atc_get_desc_by_cookie(atchan, cookie); 331 if (desc == NULL) 332 return -EINVAL; 333 else if (desc != desc_first) 334 return desc->total_len; 335 336 /* cookie matches to the currently running transfer */ 337 ret = desc_first->total_len; 338 339 if (desc_first->lli.dscr) { 340 /* hardware linked list transfer */ 341 342 /* 343 * Calculate the residue by removing the length of the child 344 * descriptors already transferred from the total length. 345 * To get the current child descriptor we can use the value of 346 * the channel's DSCR register and compare it against the value 347 * of the hardware linked list structure of each child 348 * descriptor. 349 */ 350 351 ctrla = channel_readl(atchan, CTRLA); 352 rmb(); /* ensure CTRLA is read before DSCR */ 353 dscr = channel_readl(atchan, DSCR); 354 355 /* for the first descriptor we can be more accurate */ 356 if (desc_first->lli.dscr == dscr) 357 return atc_calc_bytes_left(ret, ctrla, desc_first); 358 359 ret -= desc_first->len; 360 list_for_each_entry(desc, &desc_first->tx_list, desc_node) { 361 if (desc->lli.dscr == dscr) 362 break; 363 364 ret -= desc->len; 365 } 366 367 /* 368 * For the last descriptor in the chain we can calculate 369 * the remaining bytes using the channel's register. 370 * Note that the transfer width of the first and last 371 * descriptor may differ. 372 */ 373 if (!desc->lli.dscr) 374 ret = atc_calc_bytes_left_from_reg(ret, atchan, desc); 375 } else { 376 /* single transfer */ 377 ret = atc_calc_bytes_left_from_reg(ret, atchan, desc_first); 378 } 379 380 return ret; 381 } 382 383 /** 384 * atc_chain_complete - finish work for one transaction chain 385 * @atchan: channel we work on 386 * @desc: descriptor at the head of the chain we want do complete 387 * 388 * Called with atchan->lock held and bh disabled */ 389 static void 390 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc) 391 { 392 struct dma_async_tx_descriptor *txd = &desc->txd; 393 394 dev_vdbg(chan2dev(&atchan->chan_common), 395 "descriptor %u complete\n", txd->cookie); 396 397 /* mark the descriptor as complete for non cyclic cases only */ 398 if (!atc_chan_is_cyclic(atchan)) 399 dma_cookie_complete(txd); 400 401 /* move children to free_list */ 402 list_splice_init(&desc->tx_list, &atchan->free_list); 403 /* move myself to free_list */ 404 list_move(&desc->desc_node, &atchan->free_list); 405 406 dma_descriptor_unmap(txd); 407 /* for cyclic transfers, 408 * no need to replay callback function while stopping */ 409 if (!atc_chan_is_cyclic(atchan)) { 410 dma_async_tx_callback callback = txd->callback; 411 void *param = txd->callback_param; 412 413 /* 414 * The API requires that no submissions are done from a 415 * callback, so we don't need to drop the lock here 416 */ 417 if (callback) 418 callback(param); 419 } 420 421 dma_run_dependencies(txd); 422 } 423 424 /** 425 * atc_complete_all - finish work for all transactions 426 * @atchan: channel to complete transactions for 427 * 428 * Eventually submit queued descriptors if any 429 * 430 * Assume channel is idle while calling this function 431 * Called with atchan->lock held and bh disabled 432 */ 433 static void atc_complete_all(struct at_dma_chan *atchan) 434 { 435 struct at_desc *desc, *_desc; 436 LIST_HEAD(list); 437 438 dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n"); 439 440 /* 441 * Submit queued descriptors ASAP, i.e. before we go through 442 * the completed ones. 443 */ 444 if (!list_empty(&atchan->queue)) 445 atc_dostart(atchan, atc_first_queued(atchan)); 446 /* empty active_list now it is completed */ 447 list_splice_init(&atchan->active_list, &list); 448 /* empty queue list by moving descriptors (if any) to active_list */ 449 list_splice_init(&atchan->queue, &atchan->active_list); 450 451 list_for_each_entry_safe(desc, _desc, &list, desc_node) 452 atc_chain_complete(atchan, desc); 453 } 454 455 /** 456 * atc_advance_work - at the end of a transaction, move forward 457 * @atchan: channel where the transaction ended 458 * 459 * Called with atchan->lock held and bh disabled 460 */ 461 static void atc_advance_work(struct at_dma_chan *atchan) 462 { 463 dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n"); 464 465 if (atc_chan_is_enabled(atchan)) 466 return; 467 468 if (list_empty(&atchan->active_list) || 469 list_is_singular(&atchan->active_list)) { 470 atc_complete_all(atchan); 471 } else { 472 atc_chain_complete(atchan, atc_first_active(atchan)); 473 /* advance work */ 474 atc_dostart(atchan, atc_first_active(atchan)); 475 } 476 } 477 478 479 /** 480 * atc_handle_error - handle errors reported by DMA controller 481 * @atchan: channel where error occurs 482 * 483 * Called with atchan->lock held and bh disabled 484 */ 485 static void atc_handle_error(struct at_dma_chan *atchan) 486 { 487 struct at_desc *bad_desc; 488 struct at_desc *child; 489 490 /* 491 * The descriptor currently at the head of the active list is 492 * broked. Since we don't have any way to report errors, we'll 493 * just have to scream loudly and try to carry on. 494 */ 495 bad_desc = atc_first_active(atchan); 496 list_del_init(&bad_desc->desc_node); 497 498 /* As we are stopped, take advantage to push queued descriptors 499 * in active_list */ 500 list_splice_init(&atchan->queue, atchan->active_list.prev); 501 502 /* Try to restart the controller */ 503 if (!list_empty(&atchan->active_list)) 504 atc_dostart(atchan, atc_first_active(atchan)); 505 506 /* 507 * KERN_CRITICAL may seem harsh, but since this only happens 508 * when someone submits a bad physical address in a 509 * descriptor, we should consider ourselves lucky that the 510 * controller flagged an error instead of scribbling over 511 * random memory locations. 512 */ 513 dev_crit(chan2dev(&atchan->chan_common), 514 "Bad descriptor submitted for DMA!\n"); 515 dev_crit(chan2dev(&atchan->chan_common), 516 " cookie: %d\n", bad_desc->txd.cookie); 517 atc_dump_lli(atchan, &bad_desc->lli); 518 list_for_each_entry(child, &bad_desc->tx_list, desc_node) 519 atc_dump_lli(atchan, &child->lli); 520 521 /* Pretend the descriptor completed successfully */ 522 atc_chain_complete(atchan, bad_desc); 523 } 524 525 /** 526 * atc_handle_cyclic - at the end of a period, run callback function 527 * @atchan: channel used for cyclic operations 528 * 529 * Called with atchan->lock held and bh disabled 530 */ 531 static void atc_handle_cyclic(struct at_dma_chan *atchan) 532 { 533 struct at_desc *first = atc_first_active(atchan); 534 struct dma_async_tx_descriptor *txd = &first->txd; 535 dma_async_tx_callback callback = txd->callback; 536 void *param = txd->callback_param; 537 538 dev_vdbg(chan2dev(&atchan->chan_common), 539 "new cyclic period llp 0x%08x\n", 540 channel_readl(atchan, DSCR)); 541 542 if (callback) 543 callback(param); 544 } 545 546 /*-- IRQ & Tasklet ---------------------------------------------------*/ 547 548 static void atc_tasklet(unsigned long data) 549 { 550 struct at_dma_chan *atchan = (struct at_dma_chan *)data; 551 unsigned long flags; 552 553 spin_lock_irqsave(&atchan->lock, flags); 554 if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status)) 555 atc_handle_error(atchan); 556 else if (atc_chan_is_cyclic(atchan)) 557 atc_handle_cyclic(atchan); 558 else 559 atc_advance_work(atchan); 560 561 spin_unlock_irqrestore(&atchan->lock, flags); 562 } 563 564 static irqreturn_t at_dma_interrupt(int irq, void *dev_id) 565 { 566 struct at_dma *atdma = (struct at_dma *)dev_id; 567 struct at_dma_chan *atchan; 568 int i; 569 u32 status, pending, imr; 570 int ret = IRQ_NONE; 571 572 do { 573 imr = dma_readl(atdma, EBCIMR); 574 status = dma_readl(atdma, EBCISR); 575 pending = status & imr; 576 577 if (!pending) 578 break; 579 580 dev_vdbg(atdma->dma_common.dev, 581 "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n", 582 status, imr, pending); 583 584 for (i = 0; i < atdma->dma_common.chancnt; i++) { 585 atchan = &atdma->chan[i]; 586 if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) { 587 if (pending & AT_DMA_ERR(i)) { 588 /* Disable channel on AHB error */ 589 dma_writel(atdma, CHDR, 590 AT_DMA_RES(i) | atchan->mask); 591 /* Give information to tasklet */ 592 set_bit(ATC_IS_ERROR, &atchan->status); 593 } 594 tasklet_schedule(&atchan->tasklet); 595 ret = IRQ_HANDLED; 596 } 597 } 598 599 } while (pending); 600 601 return ret; 602 } 603 604 605 /*-- DMA Engine API --------------------------------------------------*/ 606 607 /** 608 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine 609 * @desc: descriptor at the head of the transaction chain 610 * 611 * Queue chain if DMA engine is working already 612 * 613 * Cookie increment and adding to active_list or queue must be atomic 614 */ 615 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx) 616 { 617 struct at_desc *desc = txd_to_at_desc(tx); 618 struct at_dma_chan *atchan = to_at_dma_chan(tx->chan); 619 dma_cookie_t cookie; 620 unsigned long flags; 621 622 spin_lock_irqsave(&atchan->lock, flags); 623 cookie = dma_cookie_assign(tx); 624 625 if (list_empty(&atchan->active_list)) { 626 dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n", 627 desc->txd.cookie); 628 atc_dostart(atchan, desc); 629 list_add_tail(&desc->desc_node, &atchan->active_list); 630 } else { 631 dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n", 632 desc->txd.cookie); 633 list_add_tail(&desc->desc_node, &atchan->queue); 634 } 635 636 spin_unlock_irqrestore(&atchan->lock, flags); 637 638 return cookie; 639 } 640 641 /** 642 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation 643 * @chan: the channel to prepare operation on 644 * @xt: Interleaved transfer template 645 * @flags: tx descriptor status flags 646 */ 647 static struct dma_async_tx_descriptor * 648 atc_prep_dma_interleaved(struct dma_chan *chan, 649 struct dma_interleaved_template *xt, 650 unsigned long flags) 651 { 652 struct at_dma_chan *atchan = to_at_dma_chan(chan); 653 struct data_chunk *first = xt->sgl; 654 struct at_desc *desc = NULL; 655 size_t xfer_count; 656 unsigned int dwidth; 657 u32 ctrla; 658 u32 ctrlb; 659 size_t len = 0; 660 int i; 661 662 dev_info(chan2dev(chan), 663 "%s: src=0x%08x, dest=0x%08x, numf=%d, frame_size=%d, flags=0x%lx\n", 664 __func__, xt->src_start, xt->dst_start, xt->numf, 665 xt->frame_size, flags); 666 667 if (unlikely(!xt || xt->numf != 1 || !xt->frame_size)) 668 return NULL; 669 670 /* 671 * The controller can only "skip" X bytes every Y bytes, so we 672 * need to make sure we are given a template that fit that 673 * description, ie a template with chunks that always have the 674 * same size, with the same ICGs. 675 */ 676 for (i = 0; i < xt->frame_size; i++) { 677 struct data_chunk *chunk = xt->sgl + i; 678 679 if ((chunk->size != xt->sgl->size) || 680 (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) || 681 (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) { 682 dev_err(chan2dev(chan), 683 "%s: the controller can transfer only identical chunks\n", 684 __func__); 685 return NULL; 686 } 687 688 len += chunk->size; 689 } 690 691 dwidth = atc_get_xfer_width(xt->src_start, 692 xt->dst_start, len); 693 694 xfer_count = len >> dwidth; 695 if (xfer_count > ATC_BTSIZE_MAX) { 696 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__); 697 return NULL; 698 } 699 700 ctrla = ATC_SRC_WIDTH(dwidth) | 701 ATC_DST_WIDTH(dwidth); 702 703 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 704 | ATC_SRC_ADDR_MODE_INCR 705 | ATC_DST_ADDR_MODE_INCR 706 | ATC_SRC_PIP 707 | ATC_DST_PIP 708 | ATC_FC_MEM2MEM; 709 710 /* create the transfer */ 711 desc = atc_desc_get(atchan); 712 if (!desc) { 713 dev_err(chan2dev(chan), 714 "%s: couldn't allocate our descriptor\n", __func__); 715 return NULL; 716 } 717 718 desc->lli.saddr = xt->src_start; 719 desc->lli.daddr = xt->dst_start; 720 desc->lli.ctrla = ctrla | xfer_count; 721 desc->lli.ctrlb = ctrlb; 722 723 desc->boundary = first->size >> dwidth; 724 desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1; 725 desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1; 726 727 desc->txd.cookie = -EBUSY; 728 desc->total_len = desc->len = len; 729 desc->tx_width = dwidth; 730 731 /* set end-of-link to the last link descriptor of list*/ 732 set_desc_eol(desc); 733 734 desc->txd.flags = flags; /* client is in control of this ack */ 735 736 return &desc->txd; 737 } 738 739 /** 740 * atc_prep_dma_memcpy - prepare a memcpy operation 741 * @chan: the channel to prepare operation on 742 * @dest: operation virtual destination address 743 * @src: operation virtual source address 744 * @len: operation length 745 * @flags: tx descriptor status flags 746 */ 747 static struct dma_async_tx_descriptor * 748 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 749 size_t len, unsigned long flags) 750 { 751 struct at_dma_chan *atchan = to_at_dma_chan(chan); 752 struct at_desc *desc = NULL; 753 struct at_desc *first = NULL; 754 struct at_desc *prev = NULL; 755 size_t xfer_count; 756 size_t offset; 757 unsigned int src_width; 758 unsigned int dst_width; 759 u32 ctrla; 760 u32 ctrlb; 761 762 dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d0x%x s0x%x l0x%zx f0x%lx\n", 763 dest, src, len, flags); 764 765 if (unlikely(!len)) { 766 dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n"); 767 return NULL; 768 } 769 770 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 771 | ATC_SRC_ADDR_MODE_INCR 772 | ATC_DST_ADDR_MODE_INCR 773 | ATC_FC_MEM2MEM; 774 775 /* 776 * We can be a lot more clever here, but this should take care 777 * of the most common optimization. 778 */ 779 src_width = dst_width = atc_get_xfer_width(src, dest, len); 780 781 ctrla = ATC_SRC_WIDTH(src_width) | 782 ATC_DST_WIDTH(dst_width); 783 784 for (offset = 0; offset < len; offset += xfer_count << src_width) { 785 xfer_count = min_t(size_t, (len - offset) >> src_width, 786 ATC_BTSIZE_MAX); 787 788 desc = atc_desc_get(atchan); 789 if (!desc) 790 goto err_desc_get; 791 792 desc->lli.saddr = src + offset; 793 desc->lli.daddr = dest + offset; 794 desc->lli.ctrla = ctrla | xfer_count; 795 desc->lli.ctrlb = ctrlb; 796 797 desc->txd.cookie = 0; 798 desc->len = xfer_count << src_width; 799 800 atc_desc_chain(&first, &prev, desc); 801 } 802 803 /* First descriptor of the chain embedds additional information */ 804 first->txd.cookie = -EBUSY; 805 first->total_len = len; 806 807 /* set transfer width for the calculation of the residue */ 808 first->tx_width = src_width; 809 prev->tx_width = src_width; 810 811 /* set end-of-link to the last link descriptor of list*/ 812 set_desc_eol(desc); 813 814 first->txd.flags = flags; /* client is in control of this ack */ 815 816 return &first->txd; 817 818 err_desc_get: 819 atc_desc_put(atchan, first); 820 return NULL; 821 } 822 823 824 /** 825 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction 826 * @chan: DMA channel 827 * @sgl: scatterlist to transfer to/from 828 * @sg_len: number of entries in @scatterlist 829 * @direction: DMA direction 830 * @flags: tx descriptor status flags 831 * @context: transaction context (ignored) 832 */ 833 static struct dma_async_tx_descriptor * 834 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 835 unsigned int sg_len, enum dma_transfer_direction direction, 836 unsigned long flags, void *context) 837 { 838 struct at_dma_chan *atchan = to_at_dma_chan(chan); 839 struct at_dma_slave *atslave = chan->private; 840 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 841 struct at_desc *first = NULL; 842 struct at_desc *prev = NULL; 843 u32 ctrla; 844 u32 ctrlb; 845 dma_addr_t reg; 846 unsigned int reg_width; 847 unsigned int mem_width; 848 unsigned int i; 849 struct scatterlist *sg; 850 size_t total_len = 0; 851 852 dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n", 853 sg_len, 854 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", 855 flags); 856 857 if (unlikely(!atslave || !sg_len)) { 858 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n"); 859 return NULL; 860 } 861 862 ctrla = ATC_SCSIZE(sconfig->src_maxburst) 863 | ATC_DCSIZE(sconfig->dst_maxburst); 864 ctrlb = ATC_IEN; 865 866 switch (direction) { 867 case DMA_MEM_TO_DEV: 868 reg_width = convert_buswidth(sconfig->dst_addr_width); 869 ctrla |= ATC_DST_WIDTH(reg_width); 870 ctrlb |= ATC_DST_ADDR_MODE_FIXED 871 | ATC_SRC_ADDR_MODE_INCR 872 | ATC_FC_MEM2PER 873 | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if); 874 reg = sconfig->dst_addr; 875 for_each_sg(sgl, sg, sg_len, i) { 876 struct at_desc *desc; 877 u32 len; 878 u32 mem; 879 880 desc = atc_desc_get(atchan); 881 if (!desc) 882 goto err_desc_get; 883 884 mem = sg_dma_address(sg); 885 len = sg_dma_len(sg); 886 if (unlikely(!len)) { 887 dev_dbg(chan2dev(chan), 888 "prep_slave_sg: sg(%d) data length is zero\n", i); 889 goto err; 890 } 891 mem_width = 2; 892 if (unlikely(mem & 3 || len & 3)) 893 mem_width = 0; 894 895 desc->lli.saddr = mem; 896 desc->lli.daddr = reg; 897 desc->lli.ctrla = ctrla 898 | ATC_SRC_WIDTH(mem_width) 899 | len >> mem_width; 900 desc->lli.ctrlb = ctrlb; 901 desc->len = len; 902 903 atc_desc_chain(&first, &prev, desc); 904 total_len += len; 905 } 906 break; 907 case DMA_DEV_TO_MEM: 908 reg_width = convert_buswidth(sconfig->src_addr_width); 909 ctrla |= ATC_SRC_WIDTH(reg_width); 910 ctrlb |= ATC_DST_ADDR_MODE_INCR 911 | ATC_SRC_ADDR_MODE_FIXED 912 | ATC_FC_PER2MEM 913 | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if); 914 915 reg = sconfig->src_addr; 916 for_each_sg(sgl, sg, sg_len, i) { 917 struct at_desc *desc; 918 u32 len; 919 u32 mem; 920 921 desc = atc_desc_get(atchan); 922 if (!desc) 923 goto err_desc_get; 924 925 mem = sg_dma_address(sg); 926 len = sg_dma_len(sg); 927 if (unlikely(!len)) { 928 dev_dbg(chan2dev(chan), 929 "prep_slave_sg: sg(%d) data length is zero\n", i); 930 goto err; 931 } 932 mem_width = 2; 933 if (unlikely(mem & 3 || len & 3)) 934 mem_width = 0; 935 936 desc->lli.saddr = reg; 937 desc->lli.daddr = mem; 938 desc->lli.ctrla = ctrla 939 | ATC_DST_WIDTH(mem_width) 940 | len >> reg_width; 941 desc->lli.ctrlb = ctrlb; 942 desc->len = len; 943 944 atc_desc_chain(&first, &prev, desc); 945 total_len += len; 946 } 947 break; 948 default: 949 return NULL; 950 } 951 952 /* set end-of-link to the last link descriptor of list*/ 953 set_desc_eol(prev); 954 955 /* First descriptor of the chain embedds additional information */ 956 first->txd.cookie = -EBUSY; 957 first->total_len = total_len; 958 959 /* set transfer width for the calculation of the residue */ 960 first->tx_width = reg_width; 961 prev->tx_width = reg_width; 962 963 /* first link descriptor of list is responsible of flags */ 964 first->txd.flags = flags; /* client is in control of this ack */ 965 966 return &first->txd; 967 968 err_desc_get: 969 dev_err(chan2dev(chan), "not enough descriptors available\n"); 970 err: 971 atc_desc_put(atchan, first); 972 return NULL; 973 } 974 975 /** 976 * atc_prep_dma_sg - prepare memory to memory scather-gather operation 977 * @chan: the channel to prepare operation on 978 * @dst_sg: destination scatterlist 979 * @dst_nents: number of destination scatterlist entries 980 * @src_sg: source scatterlist 981 * @src_nents: number of source scatterlist entries 982 * @flags: tx descriptor status flags 983 */ 984 static struct dma_async_tx_descriptor * 985 atc_prep_dma_sg(struct dma_chan *chan, 986 struct scatterlist *dst_sg, unsigned int dst_nents, 987 struct scatterlist *src_sg, unsigned int src_nents, 988 unsigned long flags) 989 { 990 struct at_dma_chan *atchan = to_at_dma_chan(chan); 991 struct at_desc *desc = NULL; 992 struct at_desc *first = NULL; 993 struct at_desc *prev = NULL; 994 unsigned int src_width; 995 unsigned int dst_width; 996 size_t xfer_count; 997 u32 ctrla; 998 u32 ctrlb; 999 size_t dst_len = 0, src_len = 0; 1000 dma_addr_t dst = 0, src = 0; 1001 size_t len = 0, total_len = 0; 1002 1003 if (unlikely(dst_nents == 0 || src_nents == 0)) 1004 return NULL; 1005 1006 if (unlikely(dst_sg == NULL || src_sg == NULL)) 1007 return NULL; 1008 1009 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN 1010 | ATC_SRC_ADDR_MODE_INCR 1011 | ATC_DST_ADDR_MODE_INCR 1012 | ATC_FC_MEM2MEM; 1013 1014 /* 1015 * loop until there is either no more source or no more destination 1016 * scatterlist entry 1017 */ 1018 while (true) { 1019 1020 /* prepare the next transfer */ 1021 if (dst_len == 0) { 1022 1023 /* no more destination scatterlist entries */ 1024 if (!dst_sg || !dst_nents) 1025 break; 1026 1027 dst = sg_dma_address(dst_sg); 1028 dst_len = sg_dma_len(dst_sg); 1029 1030 dst_sg = sg_next(dst_sg); 1031 dst_nents--; 1032 } 1033 1034 if (src_len == 0) { 1035 1036 /* no more source scatterlist entries */ 1037 if (!src_sg || !src_nents) 1038 break; 1039 1040 src = sg_dma_address(src_sg); 1041 src_len = sg_dma_len(src_sg); 1042 1043 src_sg = sg_next(src_sg); 1044 src_nents--; 1045 } 1046 1047 len = min_t(size_t, src_len, dst_len); 1048 if (len == 0) 1049 continue; 1050 1051 /* take care for the alignment */ 1052 src_width = dst_width = atc_get_xfer_width(src, dst, len); 1053 1054 ctrla = ATC_SRC_WIDTH(src_width) | 1055 ATC_DST_WIDTH(dst_width); 1056 1057 /* 1058 * The number of transfers to set up refer to the source width 1059 * that depends on the alignment. 1060 */ 1061 xfer_count = len >> src_width; 1062 if (xfer_count > ATC_BTSIZE_MAX) { 1063 xfer_count = ATC_BTSIZE_MAX; 1064 len = ATC_BTSIZE_MAX << src_width; 1065 } 1066 1067 /* create the transfer */ 1068 desc = atc_desc_get(atchan); 1069 if (!desc) 1070 goto err_desc_get; 1071 1072 desc->lli.saddr = src; 1073 desc->lli.daddr = dst; 1074 desc->lli.ctrla = ctrla | xfer_count; 1075 desc->lli.ctrlb = ctrlb; 1076 1077 desc->txd.cookie = 0; 1078 desc->len = len; 1079 1080 /* 1081 * Although we only need the transfer width for the first and 1082 * the last descriptor, its easier to set it to all descriptors. 1083 */ 1084 desc->tx_width = src_width; 1085 1086 atc_desc_chain(&first, &prev, desc); 1087 1088 /* update the lengths and addresses for the next loop cycle */ 1089 dst_len -= len; 1090 src_len -= len; 1091 dst += len; 1092 src += len; 1093 1094 total_len += len; 1095 } 1096 1097 /* First descriptor of the chain embedds additional information */ 1098 first->txd.cookie = -EBUSY; 1099 first->total_len = total_len; 1100 1101 /* set end-of-link to the last link descriptor of list*/ 1102 set_desc_eol(desc); 1103 1104 first->txd.flags = flags; /* client is in control of this ack */ 1105 1106 return &first->txd; 1107 1108 err_desc_get: 1109 atc_desc_put(atchan, first); 1110 return NULL; 1111 } 1112 1113 /** 1114 * atc_dma_cyclic_check_values 1115 * Check for too big/unaligned periods and unaligned DMA buffer 1116 */ 1117 static int 1118 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr, 1119 size_t period_len) 1120 { 1121 if (period_len > (ATC_BTSIZE_MAX << reg_width)) 1122 goto err_out; 1123 if (unlikely(period_len & ((1 << reg_width) - 1))) 1124 goto err_out; 1125 if (unlikely(buf_addr & ((1 << reg_width) - 1))) 1126 goto err_out; 1127 1128 return 0; 1129 1130 err_out: 1131 return -EINVAL; 1132 } 1133 1134 /** 1135 * atc_dma_cyclic_fill_desc - Fill one period descriptor 1136 */ 1137 static int 1138 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc, 1139 unsigned int period_index, dma_addr_t buf_addr, 1140 unsigned int reg_width, size_t period_len, 1141 enum dma_transfer_direction direction) 1142 { 1143 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1144 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1145 u32 ctrla; 1146 1147 /* prepare common CRTLA value */ 1148 ctrla = ATC_SCSIZE(sconfig->src_maxburst) 1149 | ATC_DCSIZE(sconfig->dst_maxburst) 1150 | ATC_DST_WIDTH(reg_width) 1151 | ATC_SRC_WIDTH(reg_width) 1152 | period_len >> reg_width; 1153 1154 switch (direction) { 1155 case DMA_MEM_TO_DEV: 1156 desc->lli.saddr = buf_addr + (period_len * period_index); 1157 desc->lli.daddr = sconfig->dst_addr; 1158 desc->lli.ctrla = ctrla; 1159 desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED 1160 | ATC_SRC_ADDR_MODE_INCR 1161 | ATC_FC_MEM2PER 1162 | ATC_SIF(atchan->mem_if) 1163 | ATC_DIF(atchan->per_if); 1164 desc->len = period_len; 1165 break; 1166 1167 case DMA_DEV_TO_MEM: 1168 desc->lli.saddr = sconfig->src_addr; 1169 desc->lli.daddr = buf_addr + (period_len * period_index); 1170 desc->lli.ctrla = ctrla; 1171 desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR 1172 | ATC_SRC_ADDR_MODE_FIXED 1173 | ATC_FC_PER2MEM 1174 | ATC_SIF(atchan->per_if) 1175 | ATC_DIF(atchan->mem_if); 1176 desc->len = period_len; 1177 break; 1178 1179 default: 1180 return -EINVAL; 1181 } 1182 1183 return 0; 1184 } 1185 1186 /** 1187 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer 1188 * @chan: the DMA channel to prepare 1189 * @buf_addr: physical DMA address where the buffer starts 1190 * @buf_len: total number of bytes for the entire buffer 1191 * @period_len: number of bytes for each period 1192 * @direction: transfer direction, to or from device 1193 * @flags: tx descriptor status flags 1194 */ 1195 static struct dma_async_tx_descriptor * 1196 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 1197 size_t period_len, enum dma_transfer_direction direction, 1198 unsigned long flags) 1199 { 1200 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1201 struct at_dma_slave *atslave = chan->private; 1202 struct dma_slave_config *sconfig = &atchan->dma_sconfig; 1203 struct at_desc *first = NULL; 1204 struct at_desc *prev = NULL; 1205 unsigned long was_cyclic; 1206 unsigned int reg_width; 1207 unsigned int periods = buf_len / period_len; 1208 unsigned int i; 1209 1210 dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@0x%08x - %d (%d/%d)\n", 1211 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE", 1212 buf_addr, 1213 periods, buf_len, period_len); 1214 1215 if (unlikely(!atslave || !buf_len || !period_len)) { 1216 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n"); 1217 return NULL; 1218 } 1219 1220 was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status); 1221 if (was_cyclic) { 1222 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n"); 1223 return NULL; 1224 } 1225 1226 if (unlikely(!is_slave_direction(direction))) 1227 goto err_out; 1228 1229 if (sconfig->direction == DMA_MEM_TO_DEV) 1230 reg_width = convert_buswidth(sconfig->dst_addr_width); 1231 else 1232 reg_width = convert_buswidth(sconfig->src_addr_width); 1233 1234 /* Check for too big/unaligned periods and unaligned DMA buffer */ 1235 if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len)) 1236 goto err_out; 1237 1238 /* build cyclic linked list */ 1239 for (i = 0; i < periods; i++) { 1240 struct at_desc *desc; 1241 1242 desc = atc_desc_get(atchan); 1243 if (!desc) 1244 goto err_desc_get; 1245 1246 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr, 1247 reg_width, period_len, direction)) 1248 goto err_desc_get; 1249 1250 atc_desc_chain(&first, &prev, desc); 1251 } 1252 1253 /* lets make a cyclic list */ 1254 prev->lli.dscr = first->txd.phys; 1255 1256 /* First descriptor of the chain embedds additional information */ 1257 first->txd.cookie = -EBUSY; 1258 first->total_len = buf_len; 1259 first->tx_width = reg_width; 1260 1261 return &first->txd; 1262 1263 err_desc_get: 1264 dev_err(chan2dev(chan), "not enough descriptors available\n"); 1265 atc_desc_put(atchan, first); 1266 err_out: 1267 clear_bit(ATC_IS_CYCLIC, &atchan->status); 1268 return NULL; 1269 } 1270 1271 static int atc_config(struct dma_chan *chan, 1272 struct dma_slave_config *sconfig) 1273 { 1274 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1275 1276 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1277 1278 /* Check if it is chan is configured for slave transfers */ 1279 if (!chan->private) 1280 return -EINVAL; 1281 1282 memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig)); 1283 1284 convert_burst(&atchan->dma_sconfig.src_maxburst); 1285 convert_burst(&atchan->dma_sconfig.dst_maxburst); 1286 1287 return 0; 1288 } 1289 1290 static int atc_pause(struct dma_chan *chan) 1291 { 1292 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1293 struct at_dma *atdma = to_at_dma(chan->device); 1294 int chan_id = atchan->chan_common.chan_id; 1295 unsigned long flags; 1296 1297 LIST_HEAD(list); 1298 1299 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1300 1301 spin_lock_irqsave(&atchan->lock, flags); 1302 1303 dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id)); 1304 set_bit(ATC_IS_PAUSED, &atchan->status); 1305 1306 spin_unlock_irqrestore(&atchan->lock, flags); 1307 1308 return 0; 1309 } 1310 1311 static int atc_resume(struct dma_chan *chan) 1312 { 1313 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1314 struct at_dma *atdma = to_at_dma(chan->device); 1315 int chan_id = atchan->chan_common.chan_id; 1316 unsigned long flags; 1317 1318 LIST_HEAD(list); 1319 1320 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1321 1322 if (!atc_chan_is_paused(atchan)) 1323 return 0; 1324 1325 spin_lock_irqsave(&atchan->lock, flags); 1326 1327 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id)); 1328 clear_bit(ATC_IS_PAUSED, &atchan->status); 1329 1330 spin_unlock_irqrestore(&atchan->lock, flags); 1331 1332 return 0; 1333 } 1334 1335 static int atc_terminate_all(struct dma_chan *chan) 1336 { 1337 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1338 struct at_dma *atdma = to_at_dma(chan->device); 1339 int chan_id = atchan->chan_common.chan_id; 1340 struct at_desc *desc, *_desc; 1341 unsigned long flags; 1342 1343 LIST_HEAD(list); 1344 1345 dev_vdbg(chan2dev(chan), "%s\n", __func__); 1346 1347 /* 1348 * This is only called when something went wrong elsewhere, so 1349 * we don't really care about the data. Just disable the 1350 * channel. We still have to poll the channel enable bit due 1351 * to AHB/HSB limitations. 1352 */ 1353 spin_lock_irqsave(&atchan->lock, flags); 1354 1355 /* disabling channel: must also remove suspend state */ 1356 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask); 1357 1358 /* confirm that this channel is disabled */ 1359 while (dma_readl(atdma, CHSR) & atchan->mask) 1360 cpu_relax(); 1361 1362 /* active_list entries will end up before queued entries */ 1363 list_splice_init(&atchan->queue, &list); 1364 list_splice_init(&atchan->active_list, &list); 1365 1366 /* Flush all pending and queued descriptors */ 1367 list_for_each_entry_safe(desc, _desc, &list, desc_node) 1368 atc_chain_complete(atchan, desc); 1369 1370 clear_bit(ATC_IS_PAUSED, &atchan->status); 1371 /* if channel dedicated to cyclic operations, free it */ 1372 clear_bit(ATC_IS_CYCLIC, &atchan->status); 1373 1374 spin_unlock_irqrestore(&atchan->lock, flags); 1375 1376 return 0; 1377 } 1378 1379 /** 1380 * atc_tx_status - poll for transaction completion 1381 * @chan: DMA channel 1382 * @cookie: transaction identifier to check status of 1383 * @txstate: if not %NULL updated with transaction state 1384 * 1385 * If @txstate is passed in, upon return it reflect the driver 1386 * internal state and can be used with dma_async_is_complete() to check 1387 * the status of multiple cookies without re-checking hardware state. 1388 */ 1389 static enum dma_status 1390 atc_tx_status(struct dma_chan *chan, 1391 dma_cookie_t cookie, 1392 struct dma_tx_state *txstate) 1393 { 1394 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1395 unsigned long flags; 1396 enum dma_status ret; 1397 int bytes = 0; 1398 1399 ret = dma_cookie_status(chan, cookie, txstate); 1400 if (ret == DMA_COMPLETE) 1401 return ret; 1402 /* 1403 * There's no point calculating the residue if there's 1404 * no txstate to store the value. 1405 */ 1406 if (!txstate) 1407 return DMA_ERROR; 1408 1409 spin_lock_irqsave(&atchan->lock, flags); 1410 1411 /* Get number of bytes left in the active transactions */ 1412 bytes = atc_get_bytes_left(chan, cookie); 1413 1414 spin_unlock_irqrestore(&atchan->lock, flags); 1415 1416 if (unlikely(bytes < 0)) { 1417 dev_vdbg(chan2dev(chan), "get residual bytes error\n"); 1418 return DMA_ERROR; 1419 } else { 1420 dma_set_residue(txstate, bytes); 1421 } 1422 1423 dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n", 1424 ret, cookie, bytes); 1425 1426 return ret; 1427 } 1428 1429 /** 1430 * atc_issue_pending - try to finish work 1431 * @chan: target DMA channel 1432 */ 1433 static void atc_issue_pending(struct dma_chan *chan) 1434 { 1435 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1436 unsigned long flags; 1437 1438 dev_vdbg(chan2dev(chan), "issue_pending\n"); 1439 1440 /* Not needed for cyclic transfers */ 1441 if (atc_chan_is_cyclic(atchan)) 1442 return; 1443 1444 spin_lock_irqsave(&atchan->lock, flags); 1445 atc_advance_work(atchan); 1446 spin_unlock_irqrestore(&atchan->lock, flags); 1447 } 1448 1449 /** 1450 * atc_alloc_chan_resources - allocate resources for DMA channel 1451 * @chan: allocate descriptor resources for this channel 1452 * @client: current client requesting the channel be ready for requests 1453 * 1454 * return - the number of allocated descriptors 1455 */ 1456 static int atc_alloc_chan_resources(struct dma_chan *chan) 1457 { 1458 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1459 struct at_dma *atdma = to_at_dma(chan->device); 1460 struct at_desc *desc; 1461 struct at_dma_slave *atslave; 1462 unsigned long flags; 1463 int i; 1464 u32 cfg; 1465 LIST_HEAD(tmp_list); 1466 1467 dev_vdbg(chan2dev(chan), "alloc_chan_resources\n"); 1468 1469 /* ASSERT: channel is idle */ 1470 if (atc_chan_is_enabled(atchan)) { 1471 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n"); 1472 return -EIO; 1473 } 1474 1475 cfg = ATC_DEFAULT_CFG; 1476 1477 atslave = chan->private; 1478 if (atslave) { 1479 /* 1480 * We need controller-specific data to set up slave 1481 * transfers. 1482 */ 1483 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev); 1484 1485 /* if cfg configuration specified take it instead of default */ 1486 if (atslave->cfg) 1487 cfg = atslave->cfg; 1488 } 1489 1490 /* have we already been set up? 1491 * reconfigure channel but no need to reallocate descriptors */ 1492 if (!list_empty(&atchan->free_list)) 1493 return atchan->descs_allocated; 1494 1495 /* Allocate initial pool of descriptors */ 1496 for (i = 0; i < init_nr_desc_per_channel; i++) { 1497 desc = atc_alloc_descriptor(chan, GFP_KERNEL); 1498 if (!desc) { 1499 dev_err(atdma->dma_common.dev, 1500 "Only %d initial descriptors\n", i); 1501 break; 1502 } 1503 list_add_tail(&desc->desc_node, &tmp_list); 1504 } 1505 1506 spin_lock_irqsave(&atchan->lock, flags); 1507 atchan->descs_allocated = i; 1508 list_splice(&tmp_list, &atchan->free_list); 1509 dma_cookie_init(chan); 1510 spin_unlock_irqrestore(&atchan->lock, flags); 1511 1512 /* channel parameters */ 1513 channel_writel(atchan, CFG, cfg); 1514 1515 dev_dbg(chan2dev(chan), 1516 "alloc_chan_resources: allocated %d descriptors\n", 1517 atchan->descs_allocated); 1518 1519 return atchan->descs_allocated; 1520 } 1521 1522 /** 1523 * atc_free_chan_resources - free all channel resources 1524 * @chan: DMA channel 1525 */ 1526 static void atc_free_chan_resources(struct dma_chan *chan) 1527 { 1528 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1529 struct at_dma *atdma = to_at_dma(chan->device); 1530 struct at_desc *desc, *_desc; 1531 LIST_HEAD(list); 1532 1533 dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n", 1534 atchan->descs_allocated); 1535 1536 /* ASSERT: channel is idle */ 1537 BUG_ON(!list_empty(&atchan->active_list)); 1538 BUG_ON(!list_empty(&atchan->queue)); 1539 BUG_ON(atc_chan_is_enabled(atchan)); 1540 1541 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) { 1542 dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc); 1543 list_del(&desc->desc_node); 1544 /* free link descriptor */ 1545 dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys); 1546 } 1547 list_splice_init(&atchan->free_list, &list); 1548 atchan->descs_allocated = 0; 1549 atchan->status = 0; 1550 1551 dev_vdbg(chan2dev(chan), "free_chan_resources: done\n"); 1552 } 1553 1554 #ifdef CONFIG_OF 1555 static bool at_dma_filter(struct dma_chan *chan, void *slave) 1556 { 1557 struct at_dma_slave *atslave = slave; 1558 1559 if (atslave->dma_dev == chan->device->dev) { 1560 chan->private = atslave; 1561 return true; 1562 } else { 1563 return false; 1564 } 1565 } 1566 1567 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, 1568 struct of_dma *of_dma) 1569 { 1570 struct dma_chan *chan; 1571 struct at_dma_chan *atchan; 1572 struct at_dma_slave *atslave; 1573 dma_cap_mask_t mask; 1574 unsigned int per_id; 1575 struct platform_device *dmac_pdev; 1576 1577 if (dma_spec->args_count != 2) 1578 return NULL; 1579 1580 dmac_pdev = of_find_device_by_node(dma_spec->np); 1581 1582 dma_cap_zero(mask); 1583 dma_cap_set(DMA_SLAVE, mask); 1584 1585 atslave = devm_kzalloc(&dmac_pdev->dev, sizeof(*atslave), GFP_KERNEL); 1586 if (!atslave) 1587 return NULL; 1588 1589 atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW; 1590 /* 1591 * We can fill both SRC_PER and DST_PER, one of these fields will be 1592 * ignored depending on DMA transfer direction. 1593 */ 1594 per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK; 1595 atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id) 1596 | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id); 1597 /* 1598 * We have to translate the value we get from the device tree since 1599 * the half FIFO configuration value had to be 0 to keep backward 1600 * compatibility. 1601 */ 1602 switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) { 1603 case AT91_DMA_CFG_FIFOCFG_ALAP: 1604 atslave->cfg |= ATC_FIFOCFG_LARGESTBURST; 1605 break; 1606 case AT91_DMA_CFG_FIFOCFG_ASAP: 1607 atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE; 1608 break; 1609 case AT91_DMA_CFG_FIFOCFG_HALF: 1610 default: 1611 atslave->cfg |= ATC_FIFOCFG_HALFFIFO; 1612 } 1613 atslave->dma_dev = &dmac_pdev->dev; 1614 1615 chan = dma_request_channel(mask, at_dma_filter, atslave); 1616 if (!chan) 1617 return NULL; 1618 1619 atchan = to_at_dma_chan(chan); 1620 atchan->per_if = dma_spec->args[0] & 0xff; 1621 atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff; 1622 1623 return chan; 1624 } 1625 #else 1626 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec, 1627 struct of_dma *of_dma) 1628 { 1629 return NULL; 1630 } 1631 #endif 1632 1633 /*-- Module Management -----------------------------------------------*/ 1634 1635 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */ 1636 static struct at_dma_platform_data at91sam9rl_config = { 1637 .nr_channels = 2, 1638 }; 1639 static struct at_dma_platform_data at91sam9g45_config = { 1640 .nr_channels = 8, 1641 }; 1642 1643 #if defined(CONFIG_OF) 1644 static const struct of_device_id atmel_dma_dt_ids[] = { 1645 { 1646 .compatible = "atmel,at91sam9rl-dma", 1647 .data = &at91sam9rl_config, 1648 }, { 1649 .compatible = "atmel,at91sam9g45-dma", 1650 .data = &at91sam9g45_config, 1651 }, { 1652 /* sentinel */ 1653 } 1654 }; 1655 1656 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids); 1657 #endif 1658 1659 static const struct platform_device_id atdma_devtypes[] = { 1660 { 1661 .name = "at91sam9rl_dma", 1662 .driver_data = (unsigned long) &at91sam9rl_config, 1663 }, { 1664 .name = "at91sam9g45_dma", 1665 .driver_data = (unsigned long) &at91sam9g45_config, 1666 }, { 1667 /* sentinel */ 1668 } 1669 }; 1670 1671 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data( 1672 struct platform_device *pdev) 1673 { 1674 if (pdev->dev.of_node) { 1675 const struct of_device_id *match; 1676 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node); 1677 if (match == NULL) 1678 return NULL; 1679 return match->data; 1680 } 1681 return (struct at_dma_platform_data *) 1682 platform_get_device_id(pdev)->driver_data; 1683 } 1684 1685 /** 1686 * at_dma_off - disable DMA controller 1687 * @atdma: the Atmel HDAMC device 1688 */ 1689 static void at_dma_off(struct at_dma *atdma) 1690 { 1691 dma_writel(atdma, EN, 0); 1692 1693 /* disable all interrupts */ 1694 dma_writel(atdma, EBCIDR, -1L); 1695 1696 /* confirm that all channels are disabled */ 1697 while (dma_readl(atdma, CHSR) & atdma->all_chan_mask) 1698 cpu_relax(); 1699 } 1700 1701 static int __init at_dma_probe(struct platform_device *pdev) 1702 { 1703 struct resource *io; 1704 struct at_dma *atdma; 1705 size_t size; 1706 int irq; 1707 int err; 1708 int i; 1709 const struct at_dma_platform_data *plat_dat; 1710 1711 /* setup platform data for each SoC */ 1712 dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask); 1713 dma_cap_set(DMA_SG, at91sam9rl_config.cap_mask); 1714 dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask); 1715 dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask); 1716 dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask); 1717 dma_cap_set(DMA_SG, at91sam9g45_config.cap_mask); 1718 1719 /* get DMA parameters from controller type */ 1720 plat_dat = at_dma_get_driver_data(pdev); 1721 if (!plat_dat) 1722 return -ENODEV; 1723 1724 io = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1725 if (!io) 1726 return -EINVAL; 1727 1728 irq = platform_get_irq(pdev, 0); 1729 if (irq < 0) 1730 return irq; 1731 1732 size = sizeof(struct at_dma); 1733 size += plat_dat->nr_channels * sizeof(struct at_dma_chan); 1734 atdma = kzalloc(size, GFP_KERNEL); 1735 if (!atdma) 1736 return -ENOMEM; 1737 1738 /* discover transaction capabilities */ 1739 atdma->dma_common.cap_mask = plat_dat->cap_mask; 1740 atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1; 1741 1742 size = resource_size(io); 1743 if (!request_mem_region(io->start, size, pdev->dev.driver->name)) { 1744 err = -EBUSY; 1745 goto err_kfree; 1746 } 1747 1748 atdma->regs = ioremap(io->start, size); 1749 if (!atdma->regs) { 1750 err = -ENOMEM; 1751 goto err_release_r; 1752 } 1753 1754 atdma->clk = clk_get(&pdev->dev, "dma_clk"); 1755 if (IS_ERR(atdma->clk)) { 1756 err = PTR_ERR(atdma->clk); 1757 goto err_clk; 1758 } 1759 err = clk_prepare_enable(atdma->clk); 1760 if (err) 1761 goto err_clk_prepare; 1762 1763 /* force dma off, just in case */ 1764 at_dma_off(atdma); 1765 1766 err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma); 1767 if (err) 1768 goto err_irq; 1769 1770 platform_set_drvdata(pdev, atdma); 1771 1772 /* create a pool of consistent memory blocks for hardware descriptors */ 1773 atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool", 1774 &pdev->dev, sizeof(struct at_desc), 1775 4 /* word alignment */, 0); 1776 if (!atdma->dma_desc_pool) { 1777 dev_err(&pdev->dev, "No memory for descriptors dma pool\n"); 1778 err = -ENOMEM; 1779 goto err_pool_create; 1780 } 1781 1782 /* clear any pending interrupt */ 1783 while (dma_readl(atdma, EBCISR)) 1784 cpu_relax(); 1785 1786 /* initialize channels related values */ 1787 INIT_LIST_HEAD(&atdma->dma_common.channels); 1788 for (i = 0; i < plat_dat->nr_channels; i++) { 1789 struct at_dma_chan *atchan = &atdma->chan[i]; 1790 1791 atchan->mem_if = AT_DMA_MEM_IF; 1792 atchan->per_if = AT_DMA_PER_IF; 1793 atchan->chan_common.device = &atdma->dma_common; 1794 dma_cookie_init(&atchan->chan_common); 1795 list_add_tail(&atchan->chan_common.device_node, 1796 &atdma->dma_common.channels); 1797 1798 atchan->ch_regs = atdma->regs + ch_regs(i); 1799 spin_lock_init(&atchan->lock); 1800 atchan->mask = 1 << i; 1801 1802 INIT_LIST_HEAD(&atchan->active_list); 1803 INIT_LIST_HEAD(&atchan->queue); 1804 INIT_LIST_HEAD(&atchan->free_list); 1805 1806 tasklet_init(&atchan->tasklet, atc_tasklet, 1807 (unsigned long)atchan); 1808 atc_enable_chan_irq(atdma, i); 1809 } 1810 1811 /* set base routines */ 1812 atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources; 1813 atdma->dma_common.device_free_chan_resources = atc_free_chan_resources; 1814 atdma->dma_common.device_tx_status = atc_tx_status; 1815 atdma->dma_common.device_issue_pending = atc_issue_pending; 1816 atdma->dma_common.dev = &pdev->dev; 1817 1818 /* set prep routines based on capability */ 1819 if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask)) 1820 atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved; 1821 1822 if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask)) 1823 atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy; 1824 1825 if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) { 1826 atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg; 1827 /* controller can do slave DMA: can trigger cyclic transfers */ 1828 dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask); 1829 atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic; 1830 atdma->dma_common.device_config = atc_config; 1831 atdma->dma_common.device_pause = atc_pause; 1832 atdma->dma_common.device_resume = atc_resume; 1833 atdma->dma_common.device_terminate_all = atc_terminate_all; 1834 atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS; 1835 atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS; 1836 atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 1837 atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; 1838 } 1839 1840 if (dma_has_cap(DMA_SG, atdma->dma_common.cap_mask)) 1841 atdma->dma_common.device_prep_dma_sg = atc_prep_dma_sg; 1842 1843 dma_writel(atdma, EN, AT_DMA_ENABLE); 1844 1845 dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n", 1846 dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "", 1847 dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask) ? "slave " : "", 1848 dma_has_cap(DMA_SG, atdma->dma_common.cap_mask) ? "sg-cpy " : "", 1849 plat_dat->nr_channels); 1850 1851 dma_async_device_register(&atdma->dma_common); 1852 1853 /* 1854 * Do not return an error if the dmac node is not present in order to 1855 * not break the existing way of requesting channel with 1856 * dma_request_channel(). 1857 */ 1858 if (pdev->dev.of_node) { 1859 err = of_dma_controller_register(pdev->dev.of_node, 1860 at_dma_xlate, atdma); 1861 if (err) { 1862 dev_err(&pdev->dev, "could not register of_dma_controller\n"); 1863 goto err_of_dma_controller_register; 1864 } 1865 } 1866 1867 return 0; 1868 1869 err_of_dma_controller_register: 1870 dma_async_device_unregister(&atdma->dma_common); 1871 dma_pool_destroy(atdma->dma_desc_pool); 1872 err_pool_create: 1873 free_irq(platform_get_irq(pdev, 0), atdma); 1874 err_irq: 1875 clk_disable_unprepare(atdma->clk); 1876 err_clk_prepare: 1877 clk_put(atdma->clk); 1878 err_clk: 1879 iounmap(atdma->regs); 1880 atdma->regs = NULL; 1881 err_release_r: 1882 release_mem_region(io->start, size); 1883 err_kfree: 1884 kfree(atdma); 1885 return err; 1886 } 1887 1888 static int at_dma_remove(struct platform_device *pdev) 1889 { 1890 struct at_dma *atdma = platform_get_drvdata(pdev); 1891 struct dma_chan *chan, *_chan; 1892 struct resource *io; 1893 1894 at_dma_off(atdma); 1895 dma_async_device_unregister(&atdma->dma_common); 1896 1897 dma_pool_destroy(atdma->dma_desc_pool); 1898 free_irq(platform_get_irq(pdev, 0), atdma); 1899 1900 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 1901 device_node) { 1902 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1903 1904 /* Disable interrupts */ 1905 atc_disable_chan_irq(atdma, chan->chan_id); 1906 1907 tasklet_kill(&atchan->tasklet); 1908 list_del(&chan->device_node); 1909 } 1910 1911 clk_disable_unprepare(atdma->clk); 1912 clk_put(atdma->clk); 1913 1914 iounmap(atdma->regs); 1915 atdma->regs = NULL; 1916 1917 io = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1918 release_mem_region(io->start, resource_size(io)); 1919 1920 kfree(atdma); 1921 1922 return 0; 1923 } 1924 1925 static void at_dma_shutdown(struct platform_device *pdev) 1926 { 1927 struct at_dma *atdma = platform_get_drvdata(pdev); 1928 1929 at_dma_off(platform_get_drvdata(pdev)); 1930 clk_disable_unprepare(atdma->clk); 1931 } 1932 1933 static int at_dma_prepare(struct device *dev) 1934 { 1935 struct platform_device *pdev = to_platform_device(dev); 1936 struct at_dma *atdma = platform_get_drvdata(pdev); 1937 struct dma_chan *chan, *_chan; 1938 1939 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 1940 device_node) { 1941 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1942 /* wait for transaction completion (except in cyclic case) */ 1943 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan)) 1944 return -EAGAIN; 1945 } 1946 return 0; 1947 } 1948 1949 static void atc_suspend_cyclic(struct at_dma_chan *atchan) 1950 { 1951 struct dma_chan *chan = &atchan->chan_common; 1952 1953 /* Channel should be paused by user 1954 * do it anyway even if it is not done already */ 1955 if (!atc_chan_is_paused(atchan)) { 1956 dev_warn(chan2dev(chan), 1957 "cyclic channel not paused, should be done by channel user\n"); 1958 atc_pause(chan); 1959 } 1960 1961 /* now preserve additional data for cyclic operations */ 1962 /* next descriptor address in the cyclic list */ 1963 atchan->save_dscr = channel_readl(atchan, DSCR); 1964 1965 vdbg_dump_regs(atchan); 1966 } 1967 1968 static int at_dma_suspend_noirq(struct device *dev) 1969 { 1970 struct platform_device *pdev = to_platform_device(dev); 1971 struct at_dma *atdma = platform_get_drvdata(pdev); 1972 struct dma_chan *chan, *_chan; 1973 1974 /* preserve data */ 1975 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 1976 device_node) { 1977 struct at_dma_chan *atchan = to_at_dma_chan(chan); 1978 1979 if (atc_chan_is_cyclic(atchan)) 1980 atc_suspend_cyclic(atchan); 1981 atchan->save_cfg = channel_readl(atchan, CFG); 1982 } 1983 atdma->save_imr = dma_readl(atdma, EBCIMR); 1984 1985 /* disable DMA controller */ 1986 at_dma_off(atdma); 1987 clk_disable_unprepare(atdma->clk); 1988 return 0; 1989 } 1990 1991 static void atc_resume_cyclic(struct at_dma_chan *atchan) 1992 { 1993 struct at_dma *atdma = to_at_dma(atchan->chan_common.device); 1994 1995 /* restore channel status for cyclic descriptors list: 1996 * next descriptor in the cyclic list at the time of suspend */ 1997 channel_writel(atchan, SADDR, 0); 1998 channel_writel(atchan, DADDR, 0); 1999 channel_writel(atchan, CTRLA, 0); 2000 channel_writel(atchan, CTRLB, 0); 2001 channel_writel(atchan, DSCR, atchan->save_dscr); 2002 dma_writel(atdma, CHER, atchan->mask); 2003 2004 /* channel pause status should be removed by channel user 2005 * We cannot take the initiative to do it here */ 2006 2007 vdbg_dump_regs(atchan); 2008 } 2009 2010 static int at_dma_resume_noirq(struct device *dev) 2011 { 2012 struct platform_device *pdev = to_platform_device(dev); 2013 struct at_dma *atdma = platform_get_drvdata(pdev); 2014 struct dma_chan *chan, *_chan; 2015 2016 /* bring back DMA controller */ 2017 clk_prepare_enable(atdma->clk); 2018 dma_writel(atdma, EN, AT_DMA_ENABLE); 2019 2020 /* clear any pending interrupt */ 2021 while (dma_readl(atdma, EBCISR)) 2022 cpu_relax(); 2023 2024 /* restore saved data */ 2025 dma_writel(atdma, EBCIER, atdma->save_imr); 2026 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels, 2027 device_node) { 2028 struct at_dma_chan *atchan = to_at_dma_chan(chan); 2029 2030 channel_writel(atchan, CFG, atchan->save_cfg); 2031 if (atc_chan_is_cyclic(atchan)) 2032 atc_resume_cyclic(atchan); 2033 } 2034 return 0; 2035 } 2036 2037 static const struct dev_pm_ops at_dma_dev_pm_ops = { 2038 .prepare = at_dma_prepare, 2039 .suspend_noirq = at_dma_suspend_noirq, 2040 .resume_noirq = at_dma_resume_noirq, 2041 }; 2042 2043 static struct platform_driver at_dma_driver = { 2044 .remove = at_dma_remove, 2045 .shutdown = at_dma_shutdown, 2046 .id_table = atdma_devtypes, 2047 .driver = { 2048 .name = "at_hdmac", 2049 .pm = &at_dma_dev_pm_ops, 2050 .of_match_table = of_match_ptr(atmel_dma_dt_ids), 2051 }, 2052 }; 2053 2054 static int __init at_dma_init(void) 2055 { 2056 return platform_driver_probe(&at_dma_driver, at_dma_probe); 2057 } 2058 subsys_initcall(at_dma_init); 2059 2060 static void __exit at_dma_exit(void) 2061 { 2062 platform_driver_unregister(&at_dma_driver); 2063 } 2064 module_exit(at_dma_exit); 2065 2066 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver"); 2067 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>"); 2068 MODULE_LICENSE("GPL"); 2069 MODULE_ALIAS("platform:at_hdmac"); 2070