xref: /linux/drivers/dma/apple-admac.c (revision 643e2e259c2b25a2af0ae4c23c6e16586d9fd19c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Audio DMA Controller (ADMAC) on t8103 (M1) and other Apple chips
4  *
5  * Copyright (C) The Asahi Linux Contributors
6  */
7 
8 #include <linux/bits.h>
9 #include <linux/bitfield.h>
10 #include <linux/device.h>
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/of_dma.h>
15 #include <linux/platform_device.h>
16 #include <linux/reset.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 
20 #include "dmaengine.h"
21 
22 #define NCHANNELS_MAX	64
23 #define IRQ_NOUTPUTS	4
24 
25 /*
26  * For allocation purposes we split the cache
27  * memory into blocks of fixed size (given in bytes).
28  */
29 #define SRAM_BLOCK	2048
30 
31 #define RING_WRITE_SLOT		GENMASK(1, 0)
32 #define RING_READ_SLOT		GENMASK(5, 4)
33 #define RING_FULL		BIT(9)
34 #define RING_EMPTY		BIT(8)
35 #define RING_ERR		BIT(10)
36 
37 #define STATUS_DESC_DONE	BIT(0)
38 #define STATUS_ERR		BIT(6)
39 
40 #define FLAG_DESC_NOTIFY	BIT(16)
41 
42 #define REG_TX_START		0x0000
43 #define REG_TX_STOP		0x0004
44 #define REG_RX_START		0x0008
45 #define REG_RX_STOP		0x000c
46 #define REG_IMPRINT		0x0090
47 #define REG_TX_SRAM_SIZE	0x0094
48 #define REG_RX_SRAM_SIZE	0x0098
49 
50 #define REG_CHAN_CTL(ch)	(0x8000 + (ch) * 0x200)
51 #define REG_CHAN_CTL_RST_RINGS	BIT(0)
52 
53 #define REG_DESC_RING(ch)	(0x8070 + (ch) * 0x200)
54 #define REG_REPORT_RING(ch)	(0x8074 + (ch) * 0x200)
55 
56 #define REG_RESIDUE(ch)		(0x8064 + (ch) * 0x200)
57 
58 #define REG_BUS_WIDTH(ch)	(0x8040 + (ch) * 0x200)
59 
60 #define BUS_WIDTH_WORD_SIZE	GENMASK(3, 0)
61 #define BUS_WIDTH_FRAME_SIZE	GENMASK(7, 4)
62 #define BUS_WIDTH_8BIT		0x00
63 #define BUS_WIDTH_16BIT		0x01
64 #define BUS_WIDTH_32BIT		0x02
65 #define BUS_WIDTH_FRAME_2_WORDS	0x10
66 #define BUS_WIDTH_FRAME_4_WORDS	0x20
67 
68 #define REG_CHAN_SRAM_CARVEOUT(ch)	(0x8050 + (ch) * 0x200)
69 #define CHAN_SRAM_CARVEOUT_SIZE		GENMASK(31, 16)
70 #define CHAN_SRAM_CARVEOUT_BASE		GENMASK(15, 0)
71 
72 #define REG_CHAN_FIFOCTL(ch)	(0x8054 + (ch) * 0x200)
73 #define CHAN_FIFOCTL_LIMIT	GENMASK(31, 16)
74 #define CHAN_FIFOCTL_THRESHOLD	GENMASK(15, 0)
75 
76 #define REG_DESC_WRITE(ch)	(0x10000 + ((ch) / 2) * 0x4 + ((ch) & 1) * 0x4000)
77 #define REG_REPORT_READ(ch)	(0x10100 + ((ch) / 2) * 0x4 + ((ch) & 1) * 0x4000)
78 
79 #define REG_TX_INTSTATE(idx)		(0x0030 + (idx) * 4)
80 #define REG_RX_INTSTATE(idx)		(0x0040 + (idx) * 4)
81 #define REG_GLOBAL_INTSTATE(idx)	(0x0050 + (idx) * 4)
82 #define REG_CHAN_INTSTATUS(ch, idx)	(0x8010 + (ch) * 0x200 + (idx) * 4)
83 #define REG_CHAN_INTMASK(ch, idx)	(0x8020 + (ch) * 0x200 + (idx) * 4)
84 
85 struct admac_data;
86 struct admac_tx;
87 
88 struct admac_chan {
89 	unsigned int no;
90 	struct admac_data *host;
91 	struct dma_chan chan;
92 	struct tasklet_struct tasklet;
93 
94 	u32 carveout;
95 
96 	spinlock_t lock;
97 	struct admac_tx *current_tx;
98 	int nperiod_acks;
99 
100 	/*
101 	 * We maintain a 'submitted' and 'issued' list mainly for interface
102 	 * correctness. Typical use of the driver (per channel) will be
103 	 * prepping, submitting and issuing a single cyclic transaction which
104 	 * will stay current until terminate_all is called.
105 	 */
106 	struct list_head submitted;
107 	struct list_head issued;
108 
109 	struct list_head to_free;
110 };
111 
112 struct admac_sram {
113 	u32 size;
114 	/*
115 	 * SRAM_CARVEOUT has 16-bit fields, so the SRAM cannot be larger than
116 	 * 64K and a 32-bit bitfield over 2K blocks covers it.
117 	 */
118 	u32 allocated;
119 };
120 
121 struct admac_data {
122 	struct dma_device dma;
123 	struct device *dev;
124 	__iomem void *base;
125 	struct reset_control *rstc;
126 
127 	struct mutex cache_alloc_lock;
128 	struct admac_sram txcache, rxcache;
129 
130 	int irq;
131 	int irq_index;
132 	int nchannels;
133 	struct admac_chan channels[] __counted_by(nchannels);
134 };
135 
136 struct admac_tx {
137 	struct dma_async_tx_descriptor tx;
138 	bool cyclic;
139 	dma_addr_t buf_addr;
140 	dma_addr_t buf_end;
141 	size_t buf_len;
142 	size_t period_len;
143 
144 	size_t submitted_pos;
145 	size_t reclaimed_pos;
146 
147 	struct list_head node;
148 };
149 
150 static int admac_alloc_sram_carveout(struct admac_data *ad,
151 				     enum dma_transfer_direction dir,
152 				     u32 *out)
153 {
154 	struct admac_sram *sram;
155 	int i, ret = 0, nblocks;
156 	ad->txcache.size = readl_relaxed(ad->base + REG_TX_SRAM_SIZE);
157 	ad->rxcache.size = readl_relaxed(ad->base + REG_RX_SRAM_SIZE);
158 
159 	if (dir == DMA_MEM_TO_DEV)
160 		sram = &ad->txcache;
161 	else
162 		sram = &ad->rxcache;
163 
164 	mutex_lock(&ad->cache_alloc_lock);
165 
166 	nblocks = sram->size / SRAM_BLOCK;
167 	for (i = 0; i < nblocks; i++)
168 		if (!(sram->allocated & BIT(i)))
169 			break;
170 
171 	if (i < nblocks) {
172 		*out = FIELD_PREP(CHAN_SRAM_CARVEOUT_BASE, i * SRAM_BLOCK) |
173 			FIELD_PREP(CHAN_SRAM_CARVEOUT_SIZE, SRAM_BLOCK);
174 		sram->allocated |= BIT(i);
175 	} else {
176 		ret = -EBUSY;
177 	}
178 
179 	mutex_unlock(&ad->cache_alloc_lock);
180 
181 	return ret;
182 }
183 
184 static void admac_free_sram_carveout(struct admac_data *ad,
185 				     enum dma_transfer_direction dir,
186 				     u32 carveout)
187 {
188 	struct admac_sram *sram;
189 	u32 base = FIELD_GET(CHAN_SRAM_CARVEOUT_BASE, carveout);
190 	int i;
191 
192 	if (dir == DMA_MEM_TO_DEV)
193 		sram = &ad->txcache;
194 	else
195 		sram = &ad->rxcache;
196 
197 	if (WARN_ON(base >= sram->size))
198 		return;
199 
200 	mutex_lock(&ad->cache_alloc_lock);
201 	i = base / SRAM_BLOCK;
202 	sram->allocated &= ~BIT(i);
203 	mutex_unlock(&ad->cache_alloc_lock);
204 }
205 
206 static void admac_modify(struct admac_data *ad, int reg, u32 mask, u32 val)
207 {
208 	void __iomem *addr = ad->base + reg;
209 	u32 curr = readl_relaxed(addr);
210 
211 	writel_relaxed((curr & ~mask) | (val & mask), addr);
212 }
213 
214 static struct admac_chan *to_admac_chan(struct dma_chan *chan)
215 {
216 	return container_of(chan, struct admac_chan, chan);
217 }
218 
219 static struct admac_tx *to_admac_tx(struct dma_async_tx_descriptor *tx)
220 {
221 	return container_of(tx, struct admac_tx, tx);
222 }
223 
224 static enum dma_transfer_direction admac_chan_direction(int channo)
225 {
226 	/* Channel directions are hardwired */
227 	return (channo & 1) ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
228 }
229 
230 static dma_cookie_t admac_tx_submit(struct dma_async_tx_descriptor *tx)
231 {
232 	struct admac_tx *adtx = to_admac_tx(tx);
233 	struct admac_chan *adchan = to_admac_chan(tx->chan);
234 	unsigned long flags;
235 	dma_cookie_t cookie;
236 
237 	spin_lock_irqsave(&adchan->lock, flags);
238 	cookie = dma_cookie_assign(tx);
239 	list_add_tail(&adtx->node, &adchan->submitted);
240 	spin_unlock_irqrestore(&adchan->lock, flags);
241 
242 	return cookie;
243 }
244 
245 static int admac_desc_free(struct dma_async_tx_descriptor *tx)
246 {
247 	kfree(to_admac_tx(tx));
248 
249 	return 0;
250 }
251 
252 static struct dma_async_tx_descriptor *admac_prep_dma_cyclic(
253 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
254 		size_t period_len, enum dma_transfer_direction direction,
255 		unsigned long flags)
256 {
257 	struct admac_chan *adchan = container_of(chan, struct admac_chan, chan);
258 	struct admac_tx *adtx;
259 
260 	if (direction != admac_chan_direction(adchan->no))
261 		return NULL;
262 
263 	adtx = kzalloc(sizeof(*adtx), GFP_NOWAIT);
264 	if (!adtx)
265 		return NULL;
266 
267 	adtx->cyclic = true;
268 
269 	adtx->buf_addr = buf_addr;
270 	adtx->buf_len = buf_len;
271 	adtx->buf_end = buf_addr + buf_len;
272 	adtx->period_len = period_len;
273 
274 	adtx->submitted_pos = 0;
275 	adtx->reclaimed_pos = 0;
276 
277 	dma_async_tx_descriptor_init(&adtx->tx, chan);
278 	adtx->tx.tx_submit = admac_tx_submit;
279 	adtx->tx.desc_free = admac_desc_free;
280 
281 	return &adtx->tx;
282 }
283 
284 /*
285  * Write one hardware descriptor for a dmaengine cyclic transaction.
286  */
287 static void admac_cyclic_write_one_desc(struct admac_data *ad, int channo,
288 					struct admac_tx *tx)
289 {
290 	dma_addr_t addr;
291 
292 	addr = tx->buf_addr + (tx->submitted_pos % tx->buf_len);
293 
294 	/* If happens means we have buggy code */
295 	WARN_ON_ONCE(addr + tx->period_len > tx->buf_end);
296 
297 	dev_dbg(ad->dev, "ch%d descriptor: addr=0x%pad len=0x%zx flags=0x%lx\n",
298 		channo, &addr, tx->period_len, FLAG_DESC_NOTIFY);
299 
300 	writel_relaxed(lower_32_bits(addr), ad->base + REG_DESC_WRITE(channo));
301 	writel_relaxed(upper_32_bits(addr), ad->base + REG_DESC_WRITE(channo));
302 	writel_relaxed(tx->period_len,      ad->base + REG_DESC_WRITE(channo));
303 	writel_relaxed(FLAG_DESC_NOTIFY,    ad->base + REG_DESC_WRITE(channo));
304 
305 	tx->submitted_pos += tx->period_len;
306 	tx->submitted_pos %= 2 * tx->buf_len;
307 }
308 
309 /*
310  * Write all the hardware descriptors for a dmaengine cyclic
311  * transaction there is space for.
312  */
313 static void admac_cyclic_write_desc(struct admac_data *ad, int channo,
314 				    struct admac_tx *tx)
315 {
316 	int i;
317 
318 	for (i = 0; i < 4; i++) {
319 		if (readl_relaxed(ad->base + REG_DESC_RING(channo)) & RING_FULL)
320 			break;
321 		admac_cyclic_write_one_desc(ad, channo, tx);
322 	}
323 }
324 
325 static int admac_ring_noccupied_slots(int ringval)
326 {
327 	int wrslot = FIELD_GET(RING_WRITE_SLOT, ringval);
328 	int rdslot = FIELD_GET(RING_READ_SLOT, ringval);
329 
330 	if (wrslot != rdslot) {
331 		return (wrslot + 4 - rdslot) % 4;
332 	} else {
333 		WARN_ON((ringval & (RING_FULL | RING_EMPTY)) == 0);
334 
335 		if (ringval & RING_FULL)
336 			return 4;
337 		else
338 			return 0;
339 	}
340 }
341 
342 /*
343  * Read from hardware the residue of a cyclic dmaengine transaction.
344  */
345 static u32 admac_cyclic_read_residue(struct admac_data *ad, int channo,
346 				     struct admac_tx *adtx)
347 {
348 	u32 ring1, ring2;
349 	u32 residue1, residue2;
350 	int nreports;
351 	size_t pos;
352 
353 	ring1 =    readl_relaxed(ad->base + REG_REPORT_RING(channo));
354 	residue1 = readl_relaxed(ad->base + REG_RESIDUE(channo));
355 	ring2 =    readl_relaxed(ad->base + REG_REPORT_RING(channo));
356 	residue2 = readl_relaxed(ad->base + REG_RESIDUE(channo));
357 
358 	if (residue2 > residue1) {
359 		/*
360 		 * Controller must have loaded next descriptor between
361 		 * the two residue reads
362 		 */
363 		nreports = admac_ring_noccupied_slots(ring1) + 1;
364 	} else {
365 		/* No descriptor load between the two reads, ring2 is safe to use */
366 		nreports = admac_ring_noccupied_slots(ring2);
367 	}
368 
369 	pos = adtx->reclaimed_pos + adtx->period_len * (nreports + 1) - residue2;
370 
371 	return adtx->buf_len - pos % adtx->buf_len;
372 }
373 
374 static enum dma_status admac_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
375 				       struct dma_tx_state *txstate)
376 {
377 	struct admac_chan *adchan = to_admac_chan(chan);
378 	struct admac_data *ad = adchan->host;
379 	struct admac_tx *adtx;
380 
381 	enum dma_status ret;
382 	size_t residue;
383 	unsigned long flags;
384 
385 	ret = dma_cookie_status(chan, cookie, txstate);
386 	if (ret == DMA_COMPLETE || !txstate)
387 		return ret;
388 
389 	spin_lock_irqsave(&adchan->lock, flags);
390 	adtx = adchan->current_tx;
391 
392 	if (adtx && adtx->tx.cookie == cookie) {
393 		ret = DMA_IN_PROGRESS;
394 		residue = admac_cyclic_read_residue(ad, adchan->no, adtx);
395 	} else {
396 		ret = DMA_IN_PROGRESS;
397 		residue = 0;
398 		list_for_each_entry(adtx, &adchan->issued, node) {
399 			if (adtx->tx.cookie == cookie) {
400 				residue = adtx->buf_len;
401 				break;
402 			}
403 		}
404 	}
405 	spin_unlock_irqrestore(&adchan->lock, flags);
406 
407 	dma_set_residue(txstate, residue);
408 	return ret;
409 }
410 
411 static void admac_start_chan(struct admac_chan *adchan)
412 {
413 	struct admac_data *ad = adchan->host;
414 	u32 startbit = 1 << (adchan->no / 2);
415 
416 	writel_relaxed(STATUS_DESC_DONE | STATUS_ERR,
417 		       ad->base + REG_CHAN_INTSTATUS(adchan->no, ad->irq_index));
418 	writel_relaxed(STATUS_DESC_DONE | STATUS_ERR,
419 		       ad->base + REG_CHAN_INTMASK(adchan->no, ad->irq_index));
420 
421 	switch (admac_chan_direction(adchan->no)) {
422 	case DMA_MEM_TO_DEV:
423 		writel_relaxed(startbit, ad->base + REG_TX_START);
424 		break;
425 	case DMA_DEV_TO_MEM:
426 		writel_relaxed(startbit, ad->base + REG_RX_START);
427 		break;
428 	default:
429 		break;
430 	}
431 	dev_dbg(adchan->host->dev, "ch%d start\n", adchan->no);
432 }
433 
434 static void admac_stop_chan(struct admac_chan *adchan)
435 {
436 	struct admac_data *ad = adchan->host;
437 	u32 stopbit = 1 << (adchan->no / 2);
438 
439 	switch (admac_chan_direction(adchan->no)) {
440 	case DMA_MEM_TO_DEV:
441 		writel_relaxed(stopbit, ad->base + REG_TX_STOP);
442 		break;
443 	case DMA_DEV_TO_MEM:
444 		writel_relaxed(stopbit, ad->base + REG_RX_STOP);
445 		break;
446 	default:
447 		break;
448 	}
449 	dev_dbg(adchan->host->dev, "ch%d stop\n", adchan->no);
450 }
451 
452 static void admac_reset_rings(struct admac_chan *adchan)
453 {
454 	struct admac_data *ad = adchan->host;
455 
456 	writel_relaxed(REG_CHAN_CTL_RST_RINGS,
457 		       ad->base + REG_CHAN_CTL(adchan->no));
458 	writel_relaxed(0, ad->base + REG_CHAN_CTL(adchan->no));
459 }
460 
461 static void admac_start_current_tx(struct admac_chan *adchan)
462 {
463 	struct admac_data *ad = adchan->host;
464 	int ch = adchan->no;
465 
466 	admac_reset_rings(adchan);
467 	writel_relaxed(0, ad->base + REG_CHAN_CTL(ch));
468 
469 	admac_cyclic_write_one_desc(ad, ch, adchan->current_tx);
470 	admac_start_chan(adchan);
471 	admac_cyclic_write_desc(ad, ch, adchan->current_tx);
472 }
473 
474 static void admac_issue_pending(struct dma_chan *chan)
475 {
476 	struct admac_chan *adchan = to_admac_chan(chan);
477 	struct admac_tx *tx;
478 	unsigned long flags;
479 
480 	spin_lock_irqsave(&adchan->lock, flags);
481 	list_splice_tail_init(&adchan->submitted, &adchan->issued);
482 	if (!list_empty(&adchan->issued) && !adchan->current_tx) {
483 		tx = list_first_entry(&adchan->issued, struct admac_tx, node);
484 		list_del(&tx->node);
485 
486 		adchan->current_tx = tx;
487 		adchan->nperiod_acks = 0;
488 		admac_start_current_tx(adchan);
489 	}
490 	spin_unlock_irqrestore(&adchan->lock, flags);
491 }
492 
493 static int admac_pause(struct dma_chan *chan)
494 {
495 	struct admac_chan *adchan = to_admac_chan(chan);
496 
497 	admac_stop_chan(adchan);
498 
499 	return 0;
500 }
501 
502 static int admac_resume(struct dma_chan *chan)
503 {
504 	struct admac_chan *adchan = to_admac_chan(chan);
505 
506 	admac_start_chan(adchan);
507 
508 	return 0;
509 }
510 
511 static int admac_terminate_all(struct dma_chan *chan)
512 {
513 	struct admac_chan *adchan = to_admac_chan(chan);
514 	unsigned long flags;
515 
516 	spin_lock_irqsave(&adchan->lock, flags);
517 	admac_stop_chan(adchan);
518 	admac_reset_rings(adchan);
519 
520 	if (adchan->current_tx) {
521 		list_add_tail(&adchan->current_tx->node, &adchan->to_free);
522 		adchan->current_tx = NULL;
523 	}
524 	/*
525 	 * Descriptors can only be freed after the tasklet
526 	 * has been killed (in admac_synchronize).
527 	 */
528 	list_splice_tail_init(&adchan->submitted, &adchan->to_free);
529 	list_splice_tail_init(&adchan->issued, &adchan->to_free);
530 	spin_unlock_irqrestore(&adchan->lock, flags);
531 
532 	return 0;
533 }
534 
535 static void admac_synchronize(struct dma_chan *chan)
536 {
537 	struct admac_chan *adchan = to_admac_chan(chan);
538 	struct admac_tx *adtx, *_adtx;
539 	unsigned long flags;
540 	LIST_HEAD(head);
541 
542 	spin_lock_irqsave(&adchan->lock, flags);
543 	list_splice_tail_init(&adchan->to_free, &head);
544 	spin_unlock_irqrestore(&adchan->lock, flags);
545 
546 	tasklet_kill(&adchan->tasklet);
547 
548 	list_for_each_entry_safe(adtx, _adtx, &head, node) {
549 		list_del(&adtx->node);
550 		admac_desc_free(&adtx->tx);
551 	}
552 }
553 
554 static int admac_alloc_chan_resources(struct dma_chan *chan)
555 {
556 	struct admac_chan *adchan = to_admac_chan(chan);
557 	struct admac_data *ad = adchan->host;
558 	int ret;
559 
560 	dma_cookie_init(&adchan->chan);
561 	ret = admac_alloc_sram_carveout(ad, admac_chan_direction(adchan->no),
562 					&adchan->carveout);
563 	if (ret < 0)
564 		return ret;
565 
566 	writel_relaxed(adchan->carveout,
567 		       ad->base + REG_CHAN_SRAM_CARVEOUT(adchan->no));
568 	return 0;
569 }
570 
571 static void admac_free_chan_resources(struct dma_chan *chan)
572 {
573 	struct admac_chan *adchan = to_admac_chan(chan);
574 
575 	admac_terminate_all(chan);
576 	admac_synchronize(chan);
577 	admac_free_sram_carveout(adchan->host, admac_chan_direction(adchan->no),
578 				 adchan->carveout);
579 }
580 
581 static struct dma_chan *admac_dma_of_xlate(struct of_phandle_args *dma_spec,
582 					   struct of_dma *ofdma)
583 {
584 	struct admac_data *ad = (struct admac_data *) ofdma->of_dma_data;
585 	unsigned int index;
586 
587 	if (dma_spec->args_count != 1)
588 		return NULL;
589 
590 	index = dma_spec->args[0];
591 
592 	if (index >= ad->nchannels) {
593 		dev_err(ad->dev, "channel index %u out of bounds\n", index);
594 		return NULL;
595 	}
596 
597 	return dma_get_slave_channel(&ad->channels[index].chan);
598 }
599 
600 static int admac_drain_reports(struct admac_data *ad, int channo)
601 {
602 	int count;
603 
604 	for (count = 0; count < 4; count++) {
605 		u32 countval_hi, countval_lo, unk1, flags;
606 
607 		if (readl_relaxed(ad->base + REG_REPORT_RING(channo)) & RING_EMPTY)
608 			break;
609 
610 		countval_lo = readl_relaxed(ad->base + REG_REPORT_READ(channo));
611 		countval_hi = readl_relaxed(ad->base + REG_REPORT_READ(channo));
612 		unk1 =        readl_relaxed(ad->base + REG_REPORT_READ(channo));
613 		flags =       readl_relaxed(ad->base + REG_REPORT_READ(channo));
614 
615 		dev_dbg(ad->dev, "ch%d report: countval=0x%llx unk1=0x%x flags=0x%x\n",
616 			channo, ((u64) countval_hi) << 32 | countval_lo, unk1, flags);
617 	}
618 
619 	return count;
620 }
621 
622 static void admac_handle_status_err(struct admac_data *ad, int channo)
623 {
624 	bool handled = false;
625 
626 	if (readl_relaxed(ad->base + REG_DESC_RING(channo)) & RING_ERR) {
627 		writel_relaxed(RING_ERR, ad->base + REG_DESC_RING(channo));
628 		dev_err_ratelimited(ad->dev, "ch%d descriptor ring error\n", channo);
629 		handled = true;
630 	}
631 
632 	if (readl_relaxed(ad->base + REG_REPORT_RING(channo)) & RING_ERR) {
633 		writel_relaxed(RING_ERR, ad->base + REG_REPORT_RING(channo));
634 		dev_err_ratelimited(ad->dev, "ch%d report ring error\n", channo);
635 		handled = true;
636 	}
637 
638 	if (unlikely(!handled)) {
639 		dev_err(ad->dev, "ch%d unknown error, masking errors as cause of IRQs\n", channo);
640 		admac_modify(ad, REG_CHAN_INTMASK(channo, ad->irq_index),
641 			     STATUS_ERR, 0);
642 	}
643 }
644 
645 static void admac_handle_status_desc_done(struct admac_data *ad, int channo)
646 {
647 	struct admac_chan *adchan = &ad->channels[channo];
648 	unsigned long flags;
649 	int nreports;
650 
651 	writel_relaxed(STATUS_DESC_DONE,
652 		       ad->base + REG_CHAN_INTSTATUS(channo, ad->irq_index));
653 
654 	spin_lock_irqsave(&adchan->lock, flags);
655 	nreports = admac_drain_reports(ad, channo);
656 
657 	if (adchan->current_tx) {
658 		struct admac_tx *tx = adchan->current_tx;
659 
660 		adchan->nperiod_acks += nreports;
661 		tx->reclaimed_pos += nreports * tx->period_len;
662 		tx->reclaimed_pos %= 2 * tx->buf_len;
663 
664 		admac_cyclic_write_desc(ad, channo, tx);
665 		tasklet_schedule(&adchan->tasklet);
666 	}
667 	spin_unlock_irqrestore(&adchan->lock, flags);
668 }
669 
670 static void admac_handle_chan_int(struct admac_data *ad, int no)
671 {
672 	u32 cause = readl_relaxed(ad->base + REG_CHAN_INTSTATUS(no, ad->irq_index));
673 
674 	if (cause & STATUS_ERR)
675 		admac_handle_status_err(ad, no);
676 
677 	if (cause & STATUS_DESC_DONE)
678 		admac_handle_status_desc_done(ad, no);
679 }
680 
681 static irqreturn_t admac_interrupt(int irq, void *devid)
682 {
683 	struct admac_data *ad = devid;
684 	u32 rx_intstate, tx_intstate, global_intstate;
685 	int i;
686 
687 	rx_intstate = readl_relaxed(ad->base + REG_RX_INTSTATE(ad->irq_index));
688 	tx_intstate = readl_relaxed(ad->base + REG_TX_INTSTATE(ad->irq_index));
689 	global_intstate = readl_relaxed(ad->base + REG_GLOBAL_INTSTATE(ad->irq_index));
690 
691 	if (!tx_intstate && !rx_intstate && !global_intstate)
692 		return IRQ_NONE;
693 
694 	for (i = 0; i < ad->nchannels; i += 2) {
695 		if (tx_intstate & 1)
696 			admac_handle_chan_int(ad, i);
697 		tx_intstate >>= 1;
698 	}
699 
700 	for (i = 1; i < ad->nchannels; i += 2) {
701 		if (rx_intstate & 1)
702 			admac_handle_chan_int(ad, i);
703 		rx_intstate >>= 1;
704 	}
705 
706 	if (global_intstate) {
707 		dev_warn(ad->dev, "clearing unknown global interrupt flag: %x\n",
708 			 global_intstate);
709 		writel_relaxed(~(u32) 0, ad->base + REG_GLOBAL_INTSTATE(ad->irq_index));
710 	}
711 
712 	return IRQ_HANDLED;
713 }
714 
715 static void admac_chan_tasklet(struct tasklet_struct *t)
716 {
717 	struct admac_chan *adchan = from_tasklet(adchan, t, tasklet);
718 	struct admac_tx *adtx;
719 	struct dmaengine_desc_callback cb;
720 	struct dmaengine_result tx_result;
721 	int nacks;
722 
723 	spin_lock_irq(&adchan->lock);
724 	adtx = adchan->current_tx;
725 	nacks = adchan->nperiod_acks;
726 	adchan->nperiod_acks = 0;
727 	spin_unlock_irq(&adchan->lock);
728 
729 	if (!adtx || !nacks)
730 		return;
731 
732 	tx_result.result = DMA_TRANS_NOERROR;
733 	tx_result.residue = 0;
734 
735 	dmaengine_desc_get_callback(&adtx->tx, &cb);
736 	while (nacks--)
737 		dmaengine_desc_callback_invoke(&cb, &tx_result);
738 }
739 
740 static int admac_device_config(struct dma_chan *chan,
741 			       struct dma_slave_config *config)
742 {
743 	struct admac_chan *adchan = to_admac_chan(chan);
744 	struct admac_data *ad = adchan->host;
745 	bool is_tx = admac_chan_direction(adchan->no) == DMA_MEM_TO_DEV;
746 	int wordsize = 0;
747 	u32 bus_width = readl_relaxed(ad->base + REG_BUS_WIDTH(adchan->no)) &
748 		~(BUS_WIDTH_WORD_SIZE | BUS_WIDTH_FRAME_SIZE);
749 
750 	switch (is_tx ? config->dst_addr_width : config->src_addr_width) {
751 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
752 		wordsize = 1;
753 		bus_width |= BUS_WIDTH_8BIT;
754 		break;
755 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
756 		wordsize = 2;
757 		bus_width |= BUS_WIDTH_16BIT;
758 		break;
759 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
760 		wordsize = 4;
761 		bus_width |= BUS_WIDTH_32BIT;
762 		break;
763 	default:
764 		return -EINVAL;
765 	}
766 
767 	/*
768 	 * We take port_window_size to be the number of words in a frame.
769 	 *
770 	 * The controller has some means of out-of-band signalling, to the peripheral,
771 	 * of words position in a frame. That's where the importance of this control
772 	 * comes from.
773 	 */
774 	switch (is_tx ? config->dst_port_window_size : config->src_port_window_size) {
775 	case 0 ... 1:
776 		break;
777 	case 2:
778 		bus_width |= BUS_WIDTH_FRAME_2_WORDS;
779 		break;
780 	case 4:
781 		bus_width |= BUS_WIDTH_FRAME_4_WORDS;
782 		break;
783 	default:
784 		return -EINVAL;
785 	}
786 
787 	writel_relaxed(bus_width, ad->base + REG_BUS_WIDTH(adchan->no));
788 
789 	/*
790 	 * By FIFOCTL_LIMIT we seem to set the maximal number of bytes allowed to be
791 	 * held in controller's per-channel FIFO. Transfers seem to be triggered
792 	 * around the time FIFO occupancy touches FIFOCTL_THRESHOLD.
793 	 *
794 	 * The numbers we set are more or less arbitrary.
795 	 */
796 	writel_relaxed(FIELD_PREP(CHAN_FIFOCTL_LIMIT, 0x30 * wordsize)
797 		       | FIELD_PREP(CHAN_FIFOCTL_THRESHOLD, 0x18 * wordsize),
798 		       ad->base + REG_CHAN_FIFOCTL(adchan->no));
799 
800 	return 0;
801 }
802 
803 static int admac_probe(struct platform_device *pdev)
804 {
805 	struct device_node *np = pdev->dev.of_node;
806 	struct admac_data *ad;
807 	struct dma_device *dma;
808 	int nchannels;
809 	int err, irq, i;
810 
811 	err = of_property_read_u32(np, "dma-channels", &nchannels);
812 	if (err || nchannels > NCHANNELS_MAX) {
813 		dev_err(&pdev->dev, "missing or invalid dma-channels property\n");
814 		return -EINVAL;
815 	}
816 
817 	ad = devm_kzalloc(&pdev->dev, struct_size(ad, channels, nchannels), GFP_KERNEL);
818 	if (!ad)
819 		return -ENOMEM;
820 
821 	platform_set_drvdata(pdev, ad);
822 	ad->dev = &pdev->dev;
823 	ad->nchannels = nchannels;
824 	mutex_init(&ad->cache_alloc_lock);
825 
826 	/*
827 	 * The controller has 4 IRQ outputs. Try them all until
828 	 * we find one we can use.
829 	 */
830 	for (i = 0; i < IRQ_NOUTPUTS; i++) {
831 		irq = platform_get_irq_optional(pdev, i);
832 		if (irq >= 0) {
833 			ad->irq_index = i;
834 			break;
835 		}
836 	}
837 
838 	if (irq < 0)
839 		return dev_err_probe(&pdev->dev, irq, "no usable interrupt\n");
840 	ad->irq = irq;
841 
842 	ad->base = devm_platform_ioremap_resource(pdev, 0);
843 	if (IS_ERR(ad->base))
844 		return dev_err_probe(&pdev->dev, PTR_ERR(ad->base),
845 				     "unable to obtain MMIO resource\n");
846 
847 	ad->rstc = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
848 	if (IS_ERR(ad->rstc))
849 		return PTR_ERR(ad->rstc);
850 
851 	dma = &ad->dma;
852 
853 	dma_cap_set(DMA_PRIVATE, dma->cap_mask);
854 	dma_cap_set(DMA_CYCLIC, dma->cap_mask);
855 
856 	dma->dev = &pdev->dev;
857 	dma->device_alloc_chan_resources = admac_alloc_chan_resources;
858 	dma->device_free_chan_resources = admac_free_chan_resources;
859 	dma->device_tx_status = admac_tx_status;
860 	dma->device_issue_pending = admac_issue_pending;
861 	dma->device_terminate_all = admac_terminate_all;
862 	dma->device_synchronize = admac_synchronize;
863 	dma->device_prep_dma_cyclic = admac_prep_dma_cyclic;
864 	dma->device_config = admac_device_config;
865 	dma->device_pause = admac_pause;
866 	dma->device_resume = admac_resume;
867 
868 	dma->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
869 	dma->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
870 	dma->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
871 			BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
872 			BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
873 	dma->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
874 			BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
875 			BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
876 
877 	INIT_LIST_HEAD(&dma->channels);
878 	for (i = 0; i < nchannels; i++) {
879 		struct admac_chan *adchan = &ad->channels[i];
880 
881 		adchan->host = ad;
882 		adchan->no = i;
883 		adchan->chan.device = &ad->dma;
884 		spin_lock_init(&adchan->lock);
885 		INIT_LIST_HEAD(&adchan->submitted);
886 		INIT_LIST_HEAD(&adchan->issued);
887 		INIT_LIST_HEAD(&adchan->to_free);
888 		list_add_tail(&adchan->chan.device_node, &dma->channels);
889 		tasklet_setup(&adchan->tasklet, admac_chan_tasklet);
890 	}
891 
892 	err = reset_control_reset(ad->rstc);
893 	if (err)
894 		return dev_err_probe(&pdev->dev, err,
895 				     "unable to trigger reset\n");
896 
897 	err = request_irq(irq, admac_interrupt, 0, dev_name(&pdev->dev), ad);
898 	if (err) {
899 		dev_err_probe(&pdev->dev, err,
900 				"unable to register interrupt\n");
901 		goto free_reset;
902 	}
903 
904 	err = dma_async_device_register(&ad->dma);
905 	if (err) {
906 		dev_err_probe(&pdev->dev, err, "failed to register DMA device\n");
907 		goto free_irq;
908 	}
909 
910 	err = of_dma_controller_register(pdev->dev.of_node, admac_dma_of_xlate, ad);
911 	if (err) {
912 		dma_async_device_unregister(&ad->dma);
913 		dev_err_probe(&pdev->dev, err, "failed to register with OF\n");
914 		goto free_irq;
915 	}
916 
917 	dev_info(&pdev->dev, "Audio DMA Controller\n");
918 
919 	return 0;
920 
921 free_irq:
922 	free_irq(ad->irq, ad);
923 free_reset:
924 	reset_control_rearm(ad->rstc);
925 	return err;
926 }
927 
928 static void admac_remove(struct platform_device *pdev)
929 {
930 	struct admac_data *ad = platform_get_drvdata(pdev);
931 
932 	of_dma_controller_free(pdev->dev.of_node);
933 	dma_async_device_unregister(&ad->dma);
934 	free_irq(ad->irq, ad);
935 	reset_control_rearm(ad->rstc);
936 }
937 
938 static const struct of_device_id admac_of_match[] = {
939 	{ .compatible = "apple,admac", },
940 	{ }
941 };
942 MODULE_DEVICE_TABLE(of, admac_of_match);
943 
944 static struct platform_driver apple_admac_driver = {
945 	.driver = {
946 		.name = "apple-admac",
947 		.of_match_table = admac_of_match,
948 	},
949 	.probe = admac_probe,
950 	.remove = admac_remove,
951 };
952 module_platform_driver(apple_admac_driver);
953 
954 MODULE_AUTHOR("Martin Povišer <povik+lin@cutebit.org>");
955 MODULE_DESCRIPTION("Driver for Audio DMA Controller (ADMAC) on Apple SoCs");
956 MODULE_LICENSE("GPL");
957