1 /* 2 * Copyright (c) 2006 ARM Ltd. 3 * Copyright (c) 2010 ST-Ericsson SA 4 * 5 * Author: Peter Pearse <peter.pearse@arm.com> 6 * Author: Linus Walleij <linus.walleij@stericsson.com> 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License as published by the Free 10 * Software Foundation; either version 2 of the License, or (at your option) 11 * any later version. 12 * 13 * This program is distributed in the hope that it will be useful, but WITHOUT 14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 16 * more details. 17 * 18 * You should have received a copy of the GNU General Public License along with 19 * this program; if not, write to the Free Software Foundation, Inc., 59 20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 21 * 22 * The full GNU General Public License is in this distribution in the file 23 * called COPYING. 24 * 25 * Documentation: ARM DDI 0196G == PL080 26 * Documentation: ARM DDI 0218E == PL081 27 * 28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any 29 * channel. 30 * 31 * The PL080 has 8 channels available for simultaneous use, and the PL081 32 * has only two channels. So on these DMA controllers the number of channels 33 * and the number of incoming DMA signals are two totally different things. 34 * It is usually not possible to theoretically handle all physical signals, 35 * so a multiplexing scheme with possible denial of use is necessary. 36 * 37 * The PL080 has a dual bus master, PL081 has a single master. 38 * 39 * Memory to peripheral transfer may be visualized as 40 * Get data from memory to DMAC 41 * Until no data left 42 * On burst request from peripheral 43 * Destination burst from DMAC to peripheral 44 * Clear burst request 45 * Raise terminal count interrupt 46 * 47 * For peripherals with a FIFO: 48 * Source burst size == half the depth of the peripheral FIFO 49 * Destination burst size == the depth of the peripheral FIFO 50 * 51 * (Bursts are irrelevant for mem to mem transfers - there are no burst 52 * signals, the DMA controller will simply facilitate its AHB master.) 53 * 54 * ASSUMES default (little) endianness for DMA transfers 55 * 56 * The PL08x has two flow control settings: 57 * - DMAC flow control: the transfer size defines the number of transfers 58 * which occur for the current LLI entry, and the DMAC raises TC at the 59 * end of every LLI entry. Observed behaviour shows the DMAC listening 60 * to both the BREQ and SREQ signals (contrary to documented), 61 * transferring data if either is active. The LBREQ and LSREQ signals 62 * are ignored. 63 * 64 * - Peripheral flow control: the transfer size is ignored (and should be 65 * zero). The data is transferred from the current LLI entry, until 66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC 67 * will then move to the next LLI entry. 68 * 69 * Global TODO: 70 * - Break out common code from arch/arm/mach-s3c64xx and share 71 */ 72 #include <linux/amba/bus.h> 73 #include <linux/amba/pl08x.h> 74 #include <linux/debugfs.h> 75 #include <linux/delay.h> 76 #include <linux/device.h> 77 #include <linux/dmaengine.h> 78 #include <linux/dmapool.h> 79 #include <linux/dma-mapping.h> 80 #include <linux/init.h> 81 #include <linux/interrupt.h> 82 #include <linux/module.h> 83 #include <linux/pm_runtime.h> 84 #include <linux/seq_file.h> 85 #include <linux/slab.h> 86 #include <asm/hardware/pl080.h> 87 88 #define DRIVER_NAME "pl08xdmac" 89 90 static struct amba_driver pl08x_amba_driver; 91 92 /** 93 * struct vendor_data - vendor-specific config parameters for PL08x derivatives 94 * @channels: the number of channels available in this variant 95 * @dualmaster: whether this version supports dual AHB masters or not. 96 */ 97 struct vendor_data { 98 u8 channels; 99 bool dualmaster; 100 }; 101 102 /* 103 * PL08X private data structures 104 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit, 105 * start & end do not - their bus bit info is in cctl. Also note that these 106 * are fixed 32-bit quantities. 107 */ 108 struct pl08x_lli { 109 u32 src; 110 u32 dst; 111 u32 lli; 112 u32 cctl; 113 }; 114 115 /** 116 * struct pl08x_driver_data - the local state holder for the PL08x 117 * @slave: slave engine for this instance 118 * @memcpy: memcpy engine for this instance 119 * @base: virtual memory base (remapped) for the PL08x 120 * @adev: the corresponding AMBA (PrimeCell) bus entry 121 * @vd: vendor data for this PL08x variant 122 * @pd: platform data passed in from the platform/machine 123 * @phy_chans: array of data for the physical channels 124 * @pool: a pool for the LLI descriptors 125 * @pool_ctr: counter of LLIs in the pool 126 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI 127 * fetches 128 * @mem_buses: set to indicate memory transfers on AHB2. 129 * @lock: a spinlock for this struct 130 */ 131 struct pl08x_driver_data { 132 struct dma_device slave; 133 struct dma_device memcpy; 134 void __iomem *base; 135 struct amba_device *adev; 136 const struct vendor_data *vd; 137 struct pl08x_platform_data *pd; 138 struct pl08x_phy_chan *phy_chans; 139 struct dma_pool *pool; 140 int pool_ctr; 141 u8 lli_buses; 142 u8 mem_buses; 143 spinlock_t lock; 144 }; 145 146 /* 147 * PL08X specific defines 148 */ 149 150 /* Size (bytes) of each LLI buffer allocated for one transfer */ 151 # define PL08X_LLI_TSFR_SIZE 0x2000 152 153 /* Maximum times we call dma_pool_alloc on this pool without freeing */ 154 #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli)) 155 #define PL08X_ALIGN 8 156 157 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan) 158 { 159 return container_of(chan, struct pl08x_dma_chan, chan); 160 } 161 162 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx) 163 { 164 return container_of(tx, struct pl08x_txd, tx); 165 } 166 167 /* 168 * Physical channel handling 169 */ 170 171 /* Whether a certain channel is busy or not */ 172 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch) 173 { 174 unsigned int val; 175 176 val = readl(ch->base + PL080_CH_CONFIG); 177 return val & PL080_CONFIG_ACTIVE; 178 } 179 180 /* 181 * Set the initial DMA register values i.e. those for the first LLI 182 * The next LLI pointer and the configuration interrupt bit have 183 * been set when the LLIs were constructed. Poke them into the hardware 184 * and start the transfer. 185 */ 186 static void pl08x_start_txd(struct pl08x_dma_chan *plchan, 187 struct pl08x_txd *txd) 188 { 189 struct pl08x_driver_data *pl08x = plchan->host; 190 struct pl08x_phy_chan *phychan = plchan->phychan; 191 struct pl08x_lli *lli = &txd->llis_va[0]; 192 u32 val; 193 194 plchan->at = txd; 195 196 /* Wait for channel inactive */ 197 while (pl08x_phy_channel_busy(phychan)) 198 cpu_relax(); 199 200 dev_vdbg(&pl08x->adev->dev, 201 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, " 202 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n", 203 phychan->id, lli->src, lli->dst, lli->lli, lli->cctl, 204 txd->ccfg); 205 206 writel(lli->src, phychan->base + PL080_CH_SRC_ADDR); 207 writel(lli->dst, phychan->base + PL080_CH_DST_ADDR); 208 writel(lli->lli, phychan->base + PL080_CH_LLI); 209 writel(lli->cctl, phychan->base + PL080_CH_CONTROL); 210 writel(txd->ccfg, phychan->base + PL080_CH_CONFIG); 211 212 /* Enable the DMA channel */ 213 /* Do not access config register until channel shows as disabled */ 214 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id)) 215 cpu_relax(); 216 217 /* Do not access config register until channel shows as inactive */ 218 val = readl(phychan->base + PL080_CH_CONFIG); 219 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE)) 220 val = readl(phychan->base + PL080_CH_CONFIG); 221 222 writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG); 223 } 224 225 /* 226 * Pause the channel by setting the HALT bit. 227 * 228 * For M->P transfers, pause the DMAC first and then stop the peripheral - 229 * the FIFO can only drain if the peripheral is still requesting data. 230 * (note: this can still timeout if the DMAC FIFO never drains of data.) 231 * 232 * For P->M transfers, disable the peripheral first to stop it filling 233 * the DMAC FIFO, and then pause the DMAC. 234 */ 235 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch) 236 { 237 u32 val; 238 int timeout; 239 240 /* Set the HALT bit and wait for the FIFO to drain */ 241 val = readl(ch->base + PL080_CH_CONFIG); 242 val |= PL080_CONFIG_HALT; 243 writel(val, ch->base + PL080_CH_CONFIG); 244 245 /* Wait for channel inactive */ 246 for (timeout = 1000; timeout; timeout--) { 247 if (!pl08x_phy_channel_busy(ch)) 248 break; 249 udelay(1); 250 } 251 if (pl08x_phy_channel_busy(ch)) 252 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id); 253 } 254 255 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch) 256 { 257 u32 val; 258 259 /* Clear the HALT bit */ 260 val = readl(ch->base + PL080_CH_CONFIG); 261 val &= ~PL080_CONFIG_HALT; 262 writel(val, ch->base + PL080_CH_CONFIG); 263 } 264 265 /* 266 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and 267 * clears any pending interrupt status. This should not be used for 268 * an on-going transfer, but as a method of shutting down a channel 269 * (eg, when it's no longer used) or terminating a transfer. 270 */ 271 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x, 272 struct pl08x_phy_chan *ch) 273 { 274 u32 val = readl(ch->base + PL080_CH_CONFIG); 275 276 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK | 277 PL080_CONFIG_TC_IRQ_MASK); 278 279 writel(val, ch->base + PL080_CH_CONFIG); 280 281 writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR); 282 writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR); 283 } 284 285 static inline u32 get_bytes_in_cctl(u32 cctl) 286 { 287 /* The source width defines the number of bytes */ 288 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK; 289 290 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) { 291 case PL080_WIDTH_8BIT: 292 break; 293 case PL080_WIDTH_16BIT: 294 bytes *= 2; 295 break; 296 case PL080_WIDTH_32BIT: 297 bytes *= 4; 298 break; 299 } 300 return bytes; 301 } 302 303 /* The channel should be paused when calling this */ 304 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan) 305 { 306 struct pl08x_phy_chan *ch; 307 struct pl08x_txd *txd; 308 unsigned long flags; 309 size_t bytes = 0; 310 311 spin_lock_irqsave(&plchan->lock, flags); 312 ch = plchan->phychan; 313 txd = plchan->at; 314 315 /* 316 * Follow the LLIs to get the number of remaining 317 * bytes in the currently active transaction. 318 */ 319 if (ch && txd) { 320 u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2; 321 322 /* First get the remaining bytes in the active transfer */ 323 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL)); 324 325 if (clli) { 326 struct pl08x_lli *llis_va = txd->llis_va; 327 dma_addr_t llis_bus = txd->llis_bus; 328 int index; 329 330 BUG_ON(clli < llis_bus || clli >= llis_bus + 331 sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS); 332 333 /* 334 * Locate the next LLI - as this is an array, 335 * it's simple maths to find. 336 */ 337 index = (clli - llis_bus) / sizeof(struct pl08x_lli); 338 339 for (; index < MAX_NUM_TSFR_LLIS; index++) { 340 bytes += get_bytes_in_cctl(llis_va[index].cctl); 341 342 /* 343 * A LLI pointer of 0 terminates the LLI list 344 */ 345 if (!llis_va[index].lli) 346 break; 347 } 348 } 349 } 350 351 /* Sum up all queued transactions */ 352 if (!list_empty(&plchan->pend_list)) { 353 struct pl08x_txd *txdi; 354 list_for_each_entry(txdi, &plchan->pend_list, node) { 355 struct pl08x_sg *dsg; 356 list_for_each_entry(dsg, &txd->dsg_list, node) 357 bytes += dsg->len; 358 } 359 } 360 361 spin_unlock_irqrestore(&plchan->lock, flags); 362 363 return bytes; 364 } 365 366 /* 367 * Allocate a physical channel for a virtual channel 368 * 369 * Try to locate a physical channel to be used for this transfer. If all 370 * are taken return NULL and the requester will have to cope by using 371 * some fallback PIO mode or retrying later. 372 */ 373 static struct pl08x_phy_chan * 374 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x, 375 struct pl08x_dma_chan *virt_chan) 376 { 377 struct pl08x_phy_chan *ch = NULL; 378 unsigned long flags; 379 int i; 380 381 for (i = 0; i < pl08x->vd->channels; i++) { 382 ch = &pl08x->phy_chans[i]; 383 384 spin_lock_irqsave(&ch->lock, flags); 385 386 if (!ch->serving) { 387 ch->serving = virt_chan; 388 ch->signal = -1; 389 spin_unlock_irqrestore(&ch->lock, flags); 390 break; 391 } 392 393 spin_unlock_irqrestore(&ch->lock, flags); 394 } 395 396 if (i == pl08x->vd->channels) { 397 /* No physical channel available, cope with it */ 398 return NULL; 399 } 400 401 pm_runtime_get_sync(&pl08x->adev->dev); 402 return ch; 403 } 404 405 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x, 406 struct pl08x_phy_chan *ch) 407 { 408 unsigned long flags; 409 410 spin_lock_irqsave(&ch->lock, flags); 411 412 /* Stop the channel and clear its interrupts */ 413 pl08x_terminate_phy_chan(pl08x, ch); 414 415 pm_runtime_put(&pl08x->adev->dev); 416 417 /* Mark it as free */ 418 ch->serving = NULL; 419 spin_unlock_irqrestore(&ch->lock, flags); 420 } 421 422 /* 423 * LLI handling 424 */ 425 426 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded) 427 { 428 switch (coded) { 429 case PL080_WIDTH_8BIT: 430 return 1; 431 case PL080_WIDTH_16BIT: 432 return 2; 433 case PL080_WIDTH_32BIT: 434 return 4; 435 default: 436 break; 437 } 438 BUG(); 439 return 0; 440 } 441 442 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth, 443 size_t tsize) 444 { 445 u32 retbits = cctl; 446 447 /* Remove all src, dst and transfer size bits */ 448 retbits &= ~PL080_CONTROL_DWIDTH_MASK; 449 retbits &= ~PL080_CONTROL_SWIDTH_MASK; 450 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK; 451 452 /* Then set the bits according to the parameters */ 453 switch (srcwidth) { 454 case 1: 455 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT; 456 break; 457 case 2: 458 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT; 459 break; 460 case 4: 461 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT; 462 break; 463 default: 464 BUG(); 465 break; 466 } 467 468 switch (dstwidth) { 469 case 1: 470 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT; 471 break; 472 case 2: 473 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT; 474 break; 475 case 4: 476 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT; 477 break; 478 default: 479 BUG(); 480 break; 481 } 482 483 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT; 484 return retbits; 485 } 486 487 struct pl08x_lli_build_data { 488 struct pl08x_txd *txd; 489 struct pl08x_bus_data srcbus; 490 struct pl08x_bus_data dstbus; 491 size_t remainder; 492 u32 lli_bus; 493 }; 494 495 /* 496 * Autoselect a master bus to use for the transfer. Slave will be the chosen as 497 * victim in case src & dest are not similarly aligned. i.e. If after aligning 498 * masters address with width requirements of transfer (by sending few byte by 499 * byte data), slave is still not aligned, then its width will be reduced to 500 * BYTE. 501 * - prefers the destination bus if both available 502 * - prefers bus with fixed address (i.e. peripheral) 503 */ 504 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd, 505 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl) 506 { 507 if (!(cctl & PL080_CONTROL_DST_INCR)) { 508 *mbus = &bd->dstbus; 509 *sbus = &bd->srcbus; 510 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) { 511 *mbus = &bd->srcbus; 512 *sbus = &bd->dstbus; 513 } else { 514 if (bd->dstbus.buswidth >= bd->srcbus.buswidth) { 515 *mbus = &bd->dstbus; 516 *sbus = &bd->srcbus; 517 } else { 518 *mbus = &bd->srcbus; 519 *sbus = &bd->dstbus; 520 } 521 } 522 } 523 524 /* 525 * Fills in one LLI for a certain transfer descriptor and advance the counter 526 */ 527 static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd, 528 int num_llis, int len, u32 cctl) 529 { 530 struct pl08x_lli *llis_va = bd->txd->llis_va; 531 dma_addr_t llis_bus = bd->txd->llis_bus; 532 533 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS); 534 535 llis_va[num_llis].cctl = cctl; 536 llis_va[num_llis].src = bd->srcbus.addr; 537 llis_va[num_llis].dst = bd->dstbus.addr; 538 llis_va[num_llis].lli = llis_bus + (num_llis + 1) * 539 sizeof(struct pl08x_lli); 540 llis_va[num_llis].lli |= bd->lli_bus; 541 542 if (cctl & PL080_CONTROL_SRC_INCR) 543 bd->srcbus.addr += len; 544 if (cctl & PL080_CONTROL_DST_INCR) 545 bd->dstbus.addr += len; 546 547 BUG_ON(bd->remainder < len); 548 549 bd->remainder -= len; 550 } 551 552 static inline void prep_byte_width_lli(struct pl08x_lli_build_data *bd, 553 u32 *cctl, u32 len, int num_llis, size_t *total_bytes) 554 { 555 *cctl = pl08x_cctl_bits(*cctl, 1, 1, len); 556 pl08x_fill_lli_for_desc(bd, num_llis, len, *cctl); 557 (*total_bytes) += len; 558 } 559 560 /* 561 * This fills in the table of LLIs for the transfer descriptor 562 * Note that we assume we never have to change the burst sizes 563 * Return 0 for error 564 */ 565 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x, 566 struct pl08x_txd *txd) 567 { 568 struct pl08x_bus_data *mbus, *sbus; 569 struct pl08x_lli_build_data bd; 570 int num_llis = 0; 571 u32 cctl, early_bytes = 0; 572 size_t max_bytes_per_lli, total_bytes; 573 struct pl08x_lli *llis_va; 574 struct pl08x_sg *dsg; 575 576 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus); 577 if (!txd->llis_va) { 578 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__); 579 return 0; 580 } 581 582 pl08x->pool_ctr++; 583 584 bd.txd = txd; 585 bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0; 586 cctl = txd->cctl; 587 588 /* Find maximum width of the source bus */ 589 bd.srcbus.maxwidth = 590 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >> 591 PL080_CONTROL_SWIDTH_SHIFT); 592 593 /* Find maximum width of the destination bus */ 594 bd.dstbus.maxwidth = 595 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >> 596 PL080_CONTROL_DWIDTH_SHIFT); 597 598 list_for_each_entry(dsg, &txd->dsg_list, node) { 599 total_bytes = 0; 600 cctl = txd->cctl; 601 602 bd.srcbus.addr = dsg->src_addr; 603 bd.dstbus.addr = dsg->dst_addr; 604 bd.remainder = dsg->len; 605 bd.srcbus.buswidth = bd.srcbus.maxwidth; 606 bd.dstbus.buswidth = bd.dstbus.maxwidth; 607 608 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl); 609 610 dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n", 611 bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "", 612 bd.srcbus.buswidth, 613 bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "", 614 bd.dstbus.buswidth, 615 bd.remainder); 616 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n", 617 mbus == &bd.srcbus ? "src" : "dst", 618 sbus == &bd.srcbus ? "src" : "dst"); 619 620 /* 621 * Zero length is only allowed if all these requirements are 622 * met: 623 * - flow controller is peripheral. 624 * - src.addr is aligned to src.width 625 * - dst.addr is aligned to dst.width 626 * 627 * sg_len == 1 should be true, as there can be two cases here: 628 * 629 * - Memory addresses are contiguous and are not scattered. 630 * Here, Only one sg will be passed by user driver, with 631 * memory address and zero length. We pass this to controller 632 * and after the transfer it will receive the last burst 633 * request from peripheral and so transfer finishes. 634 * 635 * - Memory addresses are scattered and are not contiguous. 636 * Here, Obviously as DMA controller doesn't know when a lli's 637 * transfer gets over, it can't load next lli. So in this 638 * case, there has to be an assumption that only one lli is 639 * supported. Thus, we can't have scattered addresses. 640 */ 641 if (!bd.remainder) { 642 u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >> 643 PL080_CONFIG_FLOW_CONTROL_SHIFT; 644 if (!((fc >= PL080_FLOW_SRC2DST_DST) && 645 (fc <= PL080_FLOW_SRC2DST_SRC))) { 646 dev_err(&pl08x->adev->dev, "%s sg len can't be zero", 647 __func__); 648 return 0; 649 } 650 651 if ((bd.srcbus.addr % bd.srcbus.buswidth) || 652 (bd.srcbus.addr % bd.srcbus.buswidth)) { 653 dev_err(&pl08x->adev->dev, 654 "%s src & dst address must be aligned to src" 655 " & dst width if peripheral is flow controller", 656 __func__); 657 return 0; 658 } 659 660 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth, 661 bd.dstbus.buswidth, 0); 662 pl08x_fill_lli_for_desc(&bd, num_llis++, 0, cctl); 663 break; 664 } 665 666 /* 667 * Send byte by byte for following cases 668 * - Less than a bus width available 669 * - until master bus is aligned 670 */ 671 if (bd.remainder < mbus->buswidth) 672 early_bytes = bd.remainder; 673 else if ((mbus->addr) % (mbus->buswidth)) { 674 early_bytes = mbus->buswidth - (mbus->addr) % 675 (mbus->buswidth); 676 if ((bd.remainder - early_bytes) < mbus->buswidth) 677 early_bytes = bd.remainder; 678 } 679 680 if (early_bytes) { 681 dev_vdbg(&pl08x->adev->dev, 682 "%s byte width LLIs (remain 0x%08x)\n", 683 __func__, bd.remainder); 684 prep_byte_width_lli(&bd, &cctl, early_bytes, num_llis++, 685 &total_bytes); 686 } 687 688 if (bd.remainder) { 689 /* 690 * Master now aligned 691 * - if slave is not then we must set its width down 692 */ 693 if (sbus->addr % sbus->buswidth) { 694 dev_dbg(&pl08x->adev->dev, 695 "%s set down bus width to one byte\n", 696 __func__); 697 698 sbus->buswidth = 1; 699 } 700 701 /* 702 * Bytes transferred = tsize * src width, not 703 * MIN(buswidths) 704 */ 705 max_bytes_per_lli = bd.srcbus.buswidth * 706 PL080_CONTROL_TRANSFER_SIZE_MASK; 707 dev_vdbg(&pl08x->adev->dev, 708 "%s max bytes per lli = %zu\n", 709 __func__, max_bytes_per_lli); 710 711 /* 712 * Make largest possible LLIs until less than one bus 713 * width left 714 */ 715 while (bd.remainder > (mbus->buswidth - 1)) { 716 size_t lli_len, tsize, width; 717 718 /* 719 * If enough left try to send max possible, 720 * otherwise try to send the remainder 721 */ 722 lli_len = min(bd.remainder, max_bytes_per_lli); 723 724 /* 725 * Check against maximum bus alignment: 726 * Calculate actual transfer size in relation to 727 * bus width an get a maximum remainder of the 728 * highest bus width - 1 729 */ 730 width = max(mbus->buswidth, sbus->buswidth); 731 lli_len = (lli_len / width) * width; 732 tsize = lli_len / bd.srcbus.buswidth; 733 734 dev_vdbg(&pl08x->adev->dev, 735 "%s fill lli with single lli chunk of " 736 "size 0x%08zx (remainder 0x%08zx)\n", 737 __func__, lli_len, bd.remainder); 738 739 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth, 740 bd.dstbus.buswidth, tsize); 741 pl08x_fill_lli_for_desc(&bd, num_llis++, 742 lli_len, cctl); 743 total_bytes += lli_len; 744 } 745 746 /* 747 * Send any odd bytes 748 */ 749 if (bd.remainder) { 750 dev_vdbg(&pl08x->adev->dev, 751 "%s align with boundary, send odd bytes (remain %zu)\n", 752 __func__, bd.remainder); 753 prep_byte_width_lli(&bd, &cctl, bd.remainder, 754 num_llis++, &total_bytes); 755 } 756 } 757 758 if (total_bytes != dsg->len) { 759 dev_err(&pl08x->adev->dev, 760 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n", 761 __func__, total_bytes, dsg->len); 762 return 0; 763 } 764 765 if (num_llis >= MAX_NUM_TSFR_LLIS) { 766 dev_err(&pl08x->adev->dev, 767 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n", 768 __func__, (u32) MAX_NUM_TSFR_LLIS); 769 return 0; 770 } 771 } 772 773 llis_va = txd->llis_va; 774 /* The final LLI terminates the LLI. */ 775 llis_va[num_llis - 1].lli = 0; 776 /* The final LLI element shall also fire an interrupt. */ 777 llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN; 778 779 #ifdef VERBOSE_DEBUG 780 { 781 int i; 782 783 dev_vdbg(&pl08x->adev->dev, 784 "%-3s %-9s %-10s %-10s %-10s %s\n", 785 "lli", "", "csrc", "cdst", "clli", "cctl"); 786 for (i = 0; i < num_llis; i++) { 787 dev_vdbg(&pl08x->adev->dev, 788 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n", 789 i, &llis_va[i], llis_va[i].src, 790 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl 791 ); 792 } 793 } 794 #endif 795 796 return num_llis; 797 } 798 799 /* You should call this with the struct pl08x lock held */ 800 static void pl08x_free_txd(struct pl08x_driver_data *pl08x, 801 struct pl08x_txd *txd) 802 { 803 struct pl08x_sg *dsg, *_dsg; 804 805 /* Free the LLI */ 806 if (txd->llis_va) 807 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus); 808 809 pl08x->pool_ctr--; 810 811 list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) { 812 list_del(&dsg->node); 813 kfree(dsg); 814 } 815 816 kfree(txd); 817 } 818 819 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x, 820 struct pl08x_dma_chan *plchan) 821 { 822 struct pl08x_txd *txdi = NULL; 823 struct pl08x_txd *next; 824 825 if (!list_empty(&plchan->pend_list)) { 826 list_for_each_entry_safe(txdi, 827 next, &plchan->pend_list, node) { 828 list_del(&txdi->node); 829 pl08x_free_txd(pl08x, txdi); 830 } 831 } 832 } 833 834 /* 835 * The DMA ENGINE API 836 */ 837 static int pl08x_alloc_chan_resources(struct dma_chan *chan) 838 { 839 return 0; 840 } 841 842 static void pl08x_free_chan_resources(struct dma_chan *chan) 843 { 844 } 845 846 /* 847 * This should be called with the channel plchan->lock held 848 */ 849 static int prep_phy_channel(struct pl08x_dma_chan *plchan, 850 struct pl08x_txd *txd) 851 { 852 struct pl08x_driver_data *pl08x = plchan->host; 853 struct pl08x_phy_chan *ch; 854 int ret; 855 856 /* Check if we already have a channel */ 857 if (plchan->phychan) 858 return 0; 859 860 ch = pl08x_get_phy_channel(pl08x, plchan); 861 if (!ch) { 862 /* No physical channel available, cope with it */ 863 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name); 864 return -EBUSY; 865 } 866 867 /* 868 * OK we have a physical channel: for memcpy() this is all we 869 * need, but for slaves the physical signals may be muxed! 870 * Can the platform allow us to use this channel? 871 */ 872 if (plchan->slave && pl08x->pd->get_signal) { 873 ret = pl08x->pd->get_signal(plchan); 874 if (ret < 0) { 875 dev_dbg(&pl08x->adev->dev, 876 "unable to use physical channel %d for transfer on %s due to platform restrictions\n", 877 ch->id, plchan->name); 878 /* Release physical channel & return */ 879 pl08x_put_phy_channel(pl08x, ch); 880 return -EBUSY; 881 } 882 ch->signal = ret; 883 884 /* Assign the flow control signal to this channel */ 885 if (txd->direction == DMA_TO_DEVICE) 886 txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT; 887 else if (txd->direction == DMA_FROM_DEVICE) 888 txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT; 889 } 890 891 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n", 892 ch->id, 893 ch->signal, 894 plchan->name); 895 896 plchan->phychan_hold++; 897 plchan->phychan = ch; 898 899 return 0; 900 } 901 902 static void release_phy_channel(struct pl08x_dma_chan *plchan) 903 { 904 struct pl08x_driver_data *pl08x = plchan->host; 905 906 if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) { 907 pl08x->pd->put_signal(plchan); 908 plchan->phychan->signal = -1; 909 } 910 pl08x_put_phy_channel(pl08x, plchan->phychan); 911 plchan->phychan = NULL; 912 } 913 914 static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx) 915 { 916 struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan); 917 struct pl08x_txd *txd = to_pl08x_txd(tx); 918 unsigned long flags; 919 920 spin_lock_irqsave(&plchan->lock, flags); 921 922 plchan->chan.cookie += 1; 923 if (plchan->chan.cookie < 0) 924 plchan->chan.cookie = 1; 925 tx->cookie = plchan->chan.cookie; 926 927 /* Put this onto the pending list */ 928 list_add_tail(&txd->node, &plchan->pend_list); 929 930 /* 931 * If there was no physical channel available for this memcpy, 932 * stack the request up and indicate that the channel is waiting 933 * for a free physical channel. 934 */ 935 if (!plchan->slave && !plchan->phychan) { 936 /* Do this memcpy whenever there is a channel ready */ 937 plchan->state = PL08X_CHAN_WAITING; 938 plchan->waiting = txd; 939 } else { 940 plchan->phychan_hold--; 941 } 942 943 spin_unlock_irqrestore(&plchan->lock, flags); 944 945 return tx->cookie; 946 } 947 948 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt( 949 struct dma_chan *chan, unsigned long flags) 950 { 951 struct dma_async_tx_descriptor *retval = NULL; 952 953 return retval; 954 } 955 956 /* 957 * Code accessing dma_async_is_complete() in a tight loop may give problems. 958 * If slaves are relying on interrupts to signal completion this function 959 * must not be called with interrupts disabled. 960 */ 961 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan, 962 dma_cookie_t cookie, struct dma_tx_state *txstate) 963 { 964 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); 965 dma_cookie_t last_used; 966 dma_cookie_t last_complete; 967 enum dma_status ret; 968 u32 bytesleft = 0; 969 970 last_used = plchan->chan.cookie; 971 last_complete = plchan->lc; 972 973 ret = dma_async_is_complete(cookie, last_complete, last_used); 974 if (ret == DMA_SUCCESS) { 975 dma_set_tx_state(txstate, last_complete, last_used, 0); 976 return ret; 977 } 978 979 /* 980 * This cookie not complete yet 981 */ 982 last_used = plchan->chan.cookie; 983 last_complete = plchan->lc; 984 985 /* Get number of bytes left in the active transactions and queue */ 986 bytesleft = pl08x_getbytes_chan(plchan); 987 988 dma_set_tx_state(txstate, last_complete, last_used, 989 bytesleft); 990 991 if (plchan->state == PL08X_CHAN_PAUSED) 992 return DMA_PAUSED; 993 994 /* Whether waiting or running, we're in progress */ 995 return DMA_IN_PROGRESS; 996 } 997 998 /* PrimeCell DMA extension */ 999 struct burst_table { 1000 u32 burstwords; 1001 u32 reg; 1002 }; 1003 1004 static const struct burst_table burst_sizes[] = { 1005 { 1006 .burstwords = 256, 1007 .reg = PL080_BSIZE_256, 1008 }, 1009 { 1010 .burstwords = 128, 1011 .reg = PL080_BSIZE_128, 1012 }, 1013 { 1014 .burstwords = 64, 1015 .reg = PL080_BSIZE_64, 1016 }, 1017 { 1018 .burstwords = 32, 1019 .reg = PL080_BSIZE_32, 1020 }, 1021 { 1022 .burstwords = 16, 1023 .reg = PL080_BSIZE_16, 1024 }, 1025 { 1026 .burstwords = 8, 1027 .reg = PL080_BSIZE_8, 1028 }, 1029 { 1030 .burstwords = 4, 1031 .reg = PL080_BSIZE_4, 1032 }, 1033 { 1034 .burstwords = 0, 1035 .reg = PL080_BSIZE_1, 1036 }, 1037 }; 1038 1039 /* 1040 * Given the source and destination available bus masks, select which 1041 * will be routed to each port. We try to have source and destination 1042 * on separate ports, but always respect the allowable settings. 1043 */ 1044 static u32 pl08x_select_bus(u8 src, u8 dst) 1045 { 1046 u32 cctl = 0; 1047 1048 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1))) 1049 cctl |= PL080_CONTROL_DST_AHB2; 1050 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2))) 1051 cctl |= PL080_CONTROL_SRC_AHB2; 1052 1053 return cctl; 1054 } 1055 1056 static u32 pl08x_cctl(u32 cctl) 1057 { 1058 cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 | 1059 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR | 1060 PL080_CONTROL_PROT_MASK); 1061 1062 /* Access the cell in privileged mode, non-bufferable, non-cacheable */ 1063 return cctl | PL080_CONTROL_PROT_SYS; 1064 } 1065 1066 static u32 pl08x_width(enum dma_slave_buswidth width) 1067 { 1068 switch (width) { 1069 case DMA_SLAVE_BUSWIDTH_1_BYTE: 1070 return PL080_WIDTH_8BIT; 1071 case DMA_SLAVE_BUSWIDTH_2_BYTES: 1072 return PL080_WIDTH_16BIT; 1073 case DMA_SLAVE_BUSWIDTH_4_BYTES: 1074 return PL080_WIDTH_32BIT; 1075 default: 1076 return ~0; 1077 } 1078 } 1079 1080 static u32 pl08x_burst(u32 maxburst) 1081 { 1082 int i; 1083 1084 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++) 1085 if (burst_sizes[i].burstwords <= maxburst) 1086 break; 1087 1088 return burst_sizes[i].reg; 1089 } 1090 1091 static int dma_set_runtime_config(struct dma_chan *chan, 1092 struct dma_slave_config *config) 1093 { 1094 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); 1095 struct pl08x_driver_data *pl08x = plchan->host; 1096 enum dma_slave_buswidth addr_width; 1097 u32 width, burst, maxburst; 1098 u32 cctl = 0; 1099 1100 if (!plchan->slave) 1101 return -EINVAL; 1102 1103 /* Transfer direction */ 1104 plchan->runtime_direction = config->direction; 1105 if (config->direction == DMA_TO_DEVICE) { 1106 addr_width = config->dst_addr_width; 1107 maxburst = config->dst_maxburst; 1108 } else if (config->direction == DMA_FROM_DEVICE) { 1109 addr_width = config->src_addr_width; 1110 maxburst = config->src_maxburst; 1111 } else { 1112 dev_err(&pl08x->adev->dev, 1113 "bad runtime_config: alien transfer direction\n"); 1114 return -EINVAL; 1115 } 1116 1117 width = pl08x_width(addr_width); 1118 if (width == ~0) { 1119 dev_err(&pl08x->adev->dev, 1120 "bad runtime_config: alien address width\n"); 1121 return -EINVAL; 1122 } 1123 1124 cctl |= width << PL080_CONTROL_SWIDTH_SHIFT; 1125 cctl |= width << PL080_CONTROL_DWIDTH_SHIFT; 1126 1127 /* 1128 * If this channel will only request single transfers, set this 1129 * down to ONE element. Also select one element if no maxburst 1130 * is specified. 1131 */ 1132 if (plchan->cd->single) 1133 maxburst = 1; 1134 1135 burst = pl08x_burst(maxburst); 1136 cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT; 1137 cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT; 1138 1139 if (plchan->runtime_direction == DMA_FROM_DEVICE) { 1140 plchan->src_addr = config->src_addr; 1141 plchan->src_cctl = pl08x_cctl(cctl) | PL080_CONTROL_DST_INCR | 1142 pl08x_select_bus(plchan->cd->periph_buses, 1143 pl08x->mem_buses); 1144 } else { 1145 plchan->dst_addr = config->dst_addr; 1146 plchan->dst_cctl = pl08x_cctl(cctl) | PL080_CONTROL_SRC_INCR | 1147 pl08x_select_bus(pl08x->mem_buses, 1148 plchan->cd->periph_buses); 1149 } 1150 1151 dev_dbg(&pl08x->adev->dev, 1152 "configured channel %s (%s) for %s, data width %d, " 1153 "maxburst %d words, LE, CCTL=0x%08x\n", 1154 dma_chan_name(chan), plchan->name, 1155 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX", 1156 addr_width, 1157 maxburst, 1158 cctl); 1159 1160 return 0; 1161 } 1162 1163 /* 1164 * Slave transactions callback to the slave device to allow 1165 * synchronization of slave DMA signals with the DMAC enable 1166 */ 1167 static void pl08x_issue_pending(struct dma_chan *chan) 1168 { 1169 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); 1170 unsigned long flags; 1171 1172 spin_lock_irqsave(&plchan->lock, flags); 1173 /* Something is already active, or we're waiting for a channel... */ 1174 if (plchan->at || plchan->state == PL08X_CHAN_WAITING) { 1175 spin_unlock_irqrestore(&plchan->lock, flags); 1176 return; 1177 } 1178 1179 /* Take the first element in the queue and execute it */ 1180 if (!list_empty(&plchan->pend_list)) { 1181 struct pl08x_txd *next; 1182 1183 next = list_first_entry(&plchan->pend_list, 1184 struct pl08x_txd, 1185 node); 1186 list_del(&next->node); 1187 plchan->state = PL08X_CHAN_RUNNING; 1188 1189 pl08x_start_txd(plchan, next); 1190 } 1191 1192 spin_unlock_irqrestore(&plchan->lock, flags); 1193 } 1194 1195 static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan, 1196 struct pl08x_txd *txd) 1197 { 1198 struct pl08x_driver_data *pl08x = plchan->host; 1199 unsigned long flags; 1200 int num_llis, ret; 1201 1202 num_llis = pl08x_fill_llis_for_desc(pl08x, txd); 1203 if (!num_llis) { 1204 spin_lock_irqsave(&plchan->lock, flags); 1205 pl08x_free_txd(pl08x, txd); 1206 spin_unlock_irqrestore(&plchan->lock, flags); 1207 return -EINVAL; 1208 } 1209 1210 spin_lock_irqsave(&plchan->lock, flags); 1211 1212 /* 1213 * See if we already have a physical channel allocated, 1214 * else this is the time to try to get one. 1215 */ 1216 ret = prep_phy_channel(plchan, txd); 1217 if (ret) { 1218 /* 1219 * No physical channel was available. 1220 * 1221 * memcpy transfers can be sorted out at submission time. 1222 * 1223 * Slave transfers may have been denied due to platform 1224 * channel muxing restrictions. Since there is no guarantee 1225 * that this will ever be resolved, and the signal must be 1226 * acquired AFTER acquiring the physical channel, we will let 1227 * them be NACK:ed with -EBUSY here. The drivers can retry 1228 * the prep() call if they are eager on doing this using DMA. 1229 */ 1230 if (plchan->slave) { 1231 pl08x_free_txd_list(pl08x, plchan); 1232 pl08x_free_txd(pl08x, txd); 1233 spin_unlock_irqrestore(&plchan->lock, flags); 1234 return -EBUSY; 1235 } 1236 } else 1237 /* 1238 * Else we're all set, paused and ready to roll, status 1239 * will switch to PL08X_CHAN_RUNNING when we call 1240 * issue_pending(). If there is something running on the 1241 * channel already we don't change its state. 1242 */ 1243 if (plchan->state == PL08X_CHAN_IDLE) 1244 plchan->state = PL08X_CHAN_PAUSED; 1245 1246 spin_unlock_irqrestore(&plchan->lock, flags); 1247 1248 return 0; 1249 } 1250 1251 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan, 1252 unsigned long flags) 1253 { 1254 struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT); 1255 1256 if (txd) { 1257 dma_async_tx_descriptor_init(&txd->tx, &plchan->chan); 1258 txd->tx.flags = flags; 1259 txd->tx.tx_submit = pl08x_tx_submit; 1260 INIT_LIST_HEAD(&txd->node); 1261 INIT_LIST_HEAD(&txd->dsg_list); 1262 1263 /* Always enable error and terminal interrupts */ 1264 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK | 1265 PL080_CONFIG_TC_IRQ_MASK; 1266 } 1267 return txd; 1268 } 1269 1270 /* 1271 * Initialize a descriptor to be used by memcpy submit 1272 */ 1273 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy( 1274 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 1275 size_t len, unsigned long flags) 1276 { 1277 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); 1278 struct pl08x_driver_data *pl08x = plchan->host; 1279 struct pl08x_txd *txd; 1280 struct pl08x_sg *dsg; 1281 int ret; 1282 1283 txd = pl08x_get_txd(plchan, flags); 1284 if (!txd) { 1285 dev_err(&pl08x->adev->dev, 1286 "%s no memory for descriptor\n", __func__); 1287 return NULL; 1288 } 1289 1290 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT); 1291 if (!dsg) { 1292 pl08x_free_txd(pl08x, txd); 1293 dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n", 1294 __func__); 1295 return NULL; 1296 } 1297 list_add_tail(&dsg->node, &txd->dsg_list); 1298 1299 txd->direction = DMA_NONE; 1300 dsg->src_addr = src; 1301 dsg->dst_addr = dest; 1302 dsg->len = len; 1303 1304 /* Set platform data for m2m */ 1305 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT; 1306 txd->cctl = pl08x->pd->memcpy_channel.cctl & 1307 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2); 1308 1309 /* Both to be incremented or the code will break */ 1310 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR; 1311 1312 if (pl08x->vd->dualmaster) 1313 txd->cctl |= pl08x_select_bus(pl08x->mem_buses, 1314 pl08x->mem_buses); 1315 1316 ret = pl08x_prep_channel_resources(plchan, txd); 1317 if (ret) 1318 return NULL; 1319 1320 return &txd->tx; 1321 } 1322 1323 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg( 1324 struct dma_chan *chan, struct scatterlist *sgl, 1325 unsigned int sg_len, enum dma_data_direction direction, 1326 unsigned long flags) 1327 { 1328 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); 1329 struct pl08x_driver_data *pl08x = plchan->host; 1330 struct pl08x_txd *txd; 1331 struct pl08x_sg *dsg; 1332 struct scatterlist *sg; 1333 dma_addr_t slave_addr; 1334 int ret, tmp; 1335 1336 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n", 1337 __func__, sgl->length, plchan->name); 1338 1339 txd = pl08x_get_txd(plchan, flags); 1340 if (!txd) { 1341 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__); 1342 return NULL; 1343 } 1344 1345 if (direction != plchan->runtime_direction) 1346 dev_err(&pl08x->adev->dev, "%s DMA setup does not match " 1347 "the direction configured for the PrimeCell\n", 1348 __func__); 1349 1350 /* 1351 * Set up addresses, the PrimeCell configured address 1352 * will take precedence since this may configure the 1353 * channel target address dynamically at runtime. 1354 */ 1355 txd->direction = direction; 1356 1357 if (direction == DMA_TO_DEVICE) { 1358 txd->cctl = plchan->dst_cctl; 1359 slave_addr = plchan->dst_addr; 1360 } else if (direction == DMA_FROM_DEVICE) { 1361 txd->cctl = plchan->src_cctl; 1362 slave_addr = plchan->src_addr; 1363 } else { 1364 pl08x_free_txd(pl08x, txd); 1365 dev_err(&pl08x->adev->dev, 1366 "%s direction unsupported\n", __func__); 1367 return NULL; 1368 } 1369 1370 if (plchan->cd->device_fc) 1371 tmp = (direction == DMA_TO_DEVICE) ? PL080_FLOW_MEM2PER_PER : 1372 PL080_FLOW_PER2MEM_PER; 1373 else 1374 tmp = (direction == DMA_TO_DEVICE) ? PL080_FLOW_MEM2PER : 1375 PL080_FLOW_PER2MEM; 1376 1377 txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT; 1378 1379 for_each_sg(sgl, sg, sg_len, tmp) { 1380 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT); 1381 if (!dsg) { 1382 pl08x_free_txd(pl08x, txd); 1383 dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n", 1384 __func__); 1385 return NULL; 1386 } 1387 list_add_tail(&dsg->node, &txd->dsg_list); 1388 1389 dsg->len = sg_dma_len(sg); 1390 if (direction == DMA_TO_DEVICE) { 1391 dsg->src_addr = sg_phys(sg); 1392 dsg->dst_addr = slave_addr; 1393 } else { 1394 dsg->src_addr = slave_addr; 1395 dsg->dst_addr = sg_phys(sg); 1396 } 1397 } 1398 1399 ret = pl08x_prep_channel_resources(plchan, txd); 1400 if (ret) 1401 return NULL; 1402 1403 return &txd->tx; 1404 } 1405 1406 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, 1407 unsigned long arg) 1408 { 1409 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); 1410 struct pl08x_driver_data *pl08x = plchan->host; 1411 unsigned long flags; 1412 int ret = 0; 1413 1414 /* Controls applicable to inactive channels */ 1415 if (cmd == DMA_SLAVE_CONFIG) { 1416 return dma_set_runtime_config(chan, 1417 (struct dma_slave_config *)arg); 1418 } 1419 1420 /* 1421 * Anything succeeds on channels with no physical allocation and 1422 * no queued transfers. 1423 */ 1424 spin_lock_irqsave(&plchan->lock, flags); 1425 if (!plchan->phychan && !plchan->at) { 1426 spin_unlock_irqrestore(&plchan->lock, flags); 1427 return 0; 1428 } 1429 1430 switch (cmd) { 1431 case DMA_TERMINATE_ALL: 1432 plchan->state = PL08X_CHAN_IDLE; 1433 1434 if (plchan->phychan) { 1435 pl08x_terminate_phy_chan(pl08x, plchan->phychan); 1436 1437 /* 1438 * Mark physical channel as free and free any slave 1439 * signal 1440 */ 1441 release_phy_channel(plchan); 1442 } 1443 /* Dequeue jobs and free LLIs */ 1444 if (plchan->at) { 1445 pl08x_free_txd(pl08x, plchan->at); 1446 plchan->at = NULL; 1447 } 1448 /* Dequeue jobs not yet fired as well */ 1449 pl08x_free_txd_list(pl08x, plchan); 1450 break; 1451 case DMA_PAUSE: 1452 pl08x_pause_phy_chan(plchan->phychan); 1453 plchan->state = PL08X_CHAN_PAUSED; 1454 break; 1455 case DMA_RESUME: 1456 pl08x_resume_phy_chan(plchan->phychan); 1457 plchan->state = PL08X_CHAN_RUNNING; 1458 break; 1459 default: 1460 /* Unknown command */ 1461 ret = -ENXIO; 1462 break; 1463 } 1464 1465 spin_unlock_irqrestore(&plchan->lock, flags); 1466 1467 return ret; 1468 } 1469 1470 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id) 1471 { 1472 struct pl08x_dma_chan *plchan; 1473 char *name = chan_id; 1474 1475 /* Reject channels for devices not bound to this driver */ 1476 if (chan->device->dev->driver != &pl08x_amba_driver.drv) 1477 return false; 1478 1479 plchan = to_pl08x_chan(chan); 1480 1481 /* Check that the channel is not taken! */ 1482 if (!strcmp(plchan->name, name)) 1483 return true; 1484 1485 return false; 1486 } 1487 1488 /* 1489 * Just check that the device is there and active 1490 * TODO: turn this bit on/off depending on the number of physical channels 1491 * actually used, if it is zero... well shut it off. That will save some 1492 * power. Cut the clock at the same time. 1493 */ 1494 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x) 1495 { 1496 writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG); 1497 } 1498 1499 static void pl08x_unmap_buffers(struct pl08x_txd *txd) 1500 { 1501 struct device *dev = txd->tx.chan->device->dev; 1502 struct pl08x_sg *dsg; 1503 1504 if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) { 1505 if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE) 1506 list_for_each_entry(dsg, &txd->dsg_list, node) 1507 dma_unmap_single(dev, dsg->src_addr, dsg->len, 1508 DMA_TO_DEVICE); 1509 else { 1510 list_for_each_entry(dsg, &txd->dsg_list, node) 1511 dma_unmap_page(dev, dsg->src_addr, dsg->len, 1512 DMA_TO_DEVICE); 1513 } 1514 } 1515 if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) { 1516 if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE) 1517 list_for_each_entry(dsg, &txd->dsg_list, node) 1518 dma_unmap_single(dev, dsg->dst_addr, dsg->len, 1519 DMA_FROM_DEVICE); 1520 else 1521 list_for_each_entry(dsg, &txd->dsg_list, node) 1522 dma_unmap_page(dev, dsg->dst_addr, dsg->len, 1523 DMA_FROM_DEVICE); 1524 } 1525 } 1526 1527 static void pl08x_tasklet(unsigned long data) 1528 { 1529 struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data; 1530 struct pl08x_driver_data *pl08x = plchan->host; 1531 struct pl08x_txd *txd; 1532 unsigned long flags; 1533 1534 spin_lock_irqsave(&plchan->lock, flags); 1535 1536 txd = plchan->at; 1537 plchan->at = NULL; 1538 1539 if (txd) { 1540 /* Update last completed */ 1541 plchan->lc = txd->tx.cookie; 1542 } 1543 1544 /* If a new descriptor is queued, set it up plchan->at is NULL here */ 1545 if (!list_empty(&plchan->pend_list)) { 1546 struct pl08x_txd *next; 1547 1548 next = list_first_entry(&plchan->pend_list, 1549 struct pl08x_txd, 1550 node); 1551 list_del(&next->node); 1552 1553 pl08x_start_txd(plchan, next); 1554 } else if (plchan->phychan_hold) { 1555 /* 1556 * This channel is still in use - we have a new txd being 1557 * prepared and will soon be queued. Don't give up the 1558 * physical channel. 1559 */ 1560 } else { 1561 struct pl08x_dma_chan *waiting = NULL; 1562 1563 /* 1564 * No more jobs, so free up the physical channel 1565 * Free any allocated signal on slave transfers too 1566 */ 1567 release_phy_channel(plchan); 1568 plchan->state = PL08X_CHAN_IDLE; 1569 1570 /* 1571 * And NOW before anyone else can grab that free:d up 1572 * physical channel, see if there is some memcpy pending 1573 * that seriously needs to start because of being stacked 1574 * up while we were choking the physical channels with data. 1575 */ 1576 list_for_each_entry(waiting, &pl08x->memcpy.channels, 1577 chan.device_node) { 1578 if (waiting->state == PL08X_CHAN_WAITING && 1579 waiting->waiting != NULL) { 1580 int ret; 1581 1582 /* This should REALLY not fail now */ 1583 ret = prep_phy_channel(waiting, 1584 waiting->waiting); 1585 BUG_ON(ret); 1586 waiting->phychan_hold--; 1587 waiting->state = PL08X_CHAN_RUNNING; 1588 waiting->waiting = NULL; 1589 pl08x_issue_pending(&waiting->chan); 1590 break; 1591 } 1592 } 1593 } 1594 1595 spin_unlock_irqrestore(&plchan->lock, flags); 1596 1597 if (txd) { 1598 dma_async_tx_callback callback = txd->tx.callback; 1599 void *callback_param = txd->tx.callback_param; 1600 1601 /* Don't try to unmap buffers on slave channels */ 1602 if (!plchan->slave) 1603 pl08x_unmap_buffers(txd); 1604 1605 /* Free the descriptor */ 1606 spin_lock_irqsave(&plchan->lock, flags); 1607 pl08x_free_txd(pl08x, txd); 1608 spin_unlock_irqrestore(&plchan->lock, flags); 1609 1610 /* Callback to signal completion */ 1611 if (callback) 1612 callback(callback_param); 1613 } 1614 } 1615 1616 static irqreturn_t pl08x_irq(int irq, void *dev) 1617 { 1618 struct pl08x_driver_data *pl08x = dev; 1619 u32 mask = 0, err, tc, i; 1620 1621 /* check & clear - ERR & TC interrupts */ 1622 err = readl(pl08x->base + PL080_ERR_STATUS); 1623 if (err) { 1624 dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n", 1625 __func__, err); 1626 writel(err, pl08x->base + PL080_ERR_CLEAR); 1627 } 1628 tc = readl(pl08x->base + PL080_INT_STATUS); 1629 if (tc) 1630 writel(tc, pl08x->base + PL080_TC_CLEAR); 1631 1632 if (!err && !tc) 1633 return IRQ_NONE; 1634 1635 for (i = 0; i < pl08x->vd->channels; i++) { 1636 if (((1 << i) & err) || ((1 << i) & tc)) { 1637 /* Locate physical channel */ 1638 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i]; 1639 struct pl08x_dma_chan *plchan = phychan->serving; 1640 1641 if (!plchan) { 1642 dev_err(&pl08x->adev->dev, 1643 "%s Error TC interrupt on unused channel: 0x%08x\n", 1644 __func__, i); 1645 continue; 1646 } 1647 1648 /* Schedule tasklet on this channel */ 1649 tasklet_schedule(&plchan->tasklet); 1650 mask |= (1 << i); 1651 } 1652 } 1653 1654 return mask ? IRQ_HANDLED : IRQ_NONE; 1655 } 1656 1657 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan) 1658 { 1659 u32 cctl = pl08x_cctl(chan->cd->cctl); 1660 1661 chan->slave = true; 1662 chan->name = chan->cd->bus_id; 1663 chan->src_addr = chan->cd->addr; 1664 chan->dst_addr = chan->cd->addr; 1665 chan->src_cctl = cctl | PL080_CONTROL_DST_INCR | 1666 pl08x_select_bus(chan->cd->periph_buses, chan->host->mem_buses); 1667 chan->dst_cctl = cctl | PL080_CONTROL_SRC_INCR | 1668 pl08x_select_bus(chan->host->mem_buses, chan->cd->periph_buses); 1669 } 1670 1671 /* 1672 * Initialise the DMAC memcpy/slave channels. 1673 * Make a local wrapper to hold required data 1674 */ 1675 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x, 1676 struct dma_device *dmadev, unsigned int channels, bool slave) 1677 { 1678 struct pl08x_dma_chan *chan; 1679 int i; 1680 1681 INIT_LIST_HEAD(&dmadev->channels); 1682 1683 /* 1684 * Register as many many memcpy as we have physical channels, 1685 * we won't always be able to use all but the code will have 1686 * to cope with that situation. 1687 */ 1688 for (i = 0; i < channels; i++) { 1689 chan = kzalloc(sizeof(*chan), GFP_KERNEL); 1690 if (!chan) { 1691 dev_err(&pl08x->adev->dev, 1692 "%s no memory for channel\n", __func__); 1693 return -ENOMEM; 1694 } 1695 1696 chan->host = pl08x; 1697 chan->state = PL08X_CHAN_IDLE; 1698 1699 if (slave) { 1700 chan->cd = &pl08x->pd->slave_channels[i]; 1701 pl08x_dma_slave_init(chan); 1702 } else { 1703 chan->cd = &pl08x->pd->memcpy_channel; 1704 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i); 1705 if (!chan->name) { 1706 kfree(chan); 1707 return -ENOMEM; 1708 } 1709 } 1710 if (chan->cd->circular_buffer) { 1711 dev_err(&pl08x->adev->dev, 1712 "channel %s: circular buffers not supported\n", 1713 chan->name); 1714 kfree(chan); 1715 continue; 1716 } 1717 dev_dbg(&pl08x->adev->dev, 1718 "initialize virtual channel \"%s\"\n", 1719 chan->name); 1720 1721 chan->chan.device = dmadev; 1722 chan->chan.cookie = 0; 1723 chan->lc = 0; 1724 1725 spin_lock_init(&chan->lock); 1726 INIT_LIST_HEAD(&chan->pend_list); 1727 tasklet_init(&chan->tasklet, pl08x_tasklet, 1728 (unsigned long) chan); 1729 1730 list_add_tail(&chan->chan.device_node, &dmadev->channels); 1731 } 1732 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n", 1733 i, slave ? "slave" : "memcpy"); 1734 return i; 1735 } 1736 1737 static void pl08x_free_virtual_channels(struct dma_device *dmadev) 1738 { 1739 struct pl08x_dma_chan *chan = NULL; 1740 struct pl08x_dma_chan *next; 1741 1742 list_for_each_entry_safe(chan, 1743 next, &dmadev->channels, chan.device_node) { 1744 list_del(&chan->chan.device_node); 1745 kfree(chan); 1746 } 1747 } 1748 1749 #ifdef CONFIG_DEBUG_FS 1750 static const char *pl08x_state_str(enum pl08x_dma_chan_state state) 1751 { 1752 switch (state) { 1753 case PL08X_CHAN_IDLE: 1754 return "idle"; 1755 case PL08X_CHAN_RUNNING: 1756 return "running"; 1757 case PL08X_CHAN_PAUSED: 1758 return "paused"; 1759 case PL08X_CHAN_WAITING: 1760 return "waiting"; 1761 default: 1762 break; 1763 } 1764 return "UNKNOWN STATE"; 1765 } 1766 1767 static int pl08x_debugfs_show(struct seq_file *s, void *data) 1768 { 1769 struct pl08x_driver_data *pl08x = s->private; 1770 struct pl08x_dma_chan *chan; 1771 struct pl08x_phy_chan *ch; 1772 unsigned long flags; 1773 int i; 1774 1775 seq_printf(s, "PL08x physical channels:\n"); 1776 seq_printf(s, "CHANNEL:\tUSER:\n"); 1777 seq_printf(s, "--------\t-----\n"); 1778 for (i = 0; i < pl08x->vd->channels; i++) { 1779 struct pl08x_dma_chan *virt_chan; 1780 1781 ch = &pl08x->phy_chans[i]; 1782 1783 spin_lock_irqsave(&ch->lock, flags); 1784 virt_chan = ch->serving; 1785 1786 seq_printf(s, "%d\t\t%s\n", 1787 ch->id, virt_chan ? virt_chan->name : "(none)"); 1788 1789 spin_unlock_irqrestore(&ch->lock, flags); 1790 } 1791 1792 seq_printf(s, "\nPL08x virtual memcpy channels:\n"); 1793 seq_printf(s, "CHANNEL:\tSTATE:\n"); 1794 seq_printf(s, "--------\t------\n"); 1795 list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) { 1796 seq_printf(s, "%s\t\t%s\n", chan->name, 1797 pl08x_state_str(chan->state)); 1798 } 1799 1800 seq_printf(s, "\nPL08x virtual slave channels:\n"); 1801 seq_printf(s, "CHANNEL:\tSTATE:\n"); 1802 seq_printf(s, "--------\t------\n"); 1803 list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) { 1804 seq_printf(s, "%s\t\t%s\n", chan->name, 1805 pl08x_state_str(chan->state)); 1806 } 1807 1808 return 0; 1809 } 1810 1811 static int pl08x_debugfs_open(struct inode *inode, struct file *file) 1812 { 1813 return single_open(file, pl08x_debugfs_show, inode->i_private); 1814 } 1815 1816 static const struct file_operations pl08x_debugfs_operations = { 1817 .open = pl08x_debugfs_open, 1818 .read = seq_read, 1819 .llseek = seq_lseek, 1820 .release = single_release, 1821 }; 1822 1823 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x) 1824 { 1825 /* Expose a simple debugfs interface to view all clocks */ 1826 (void) debugfs_create_file(dev_name(&pl08x->adev->dev), 1827 S_IFREG | S_IRUGO, NULL, pl08x, 1828 &pl08x_debugfs_operations); 1829 } 1830 1831 #else 1832 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x) 1833 { 1834 } 1835 #endif 1836 1837 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id) 1838 { 1839 struct pl08x_driver_data *pl08x; 1840 const struct vendor_data *vd = id->data; 1841 int ret = 0; 1842 int i; 1843 1844 ret = amba_request_regions(adev, NULL); 1845 if (ret) 1846 return ret; 1847 1848 /* Create the driver state holder */ 1849 pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL); 1850 if (!pl08x) { 1851 ret = -ENOMEM; 1852 goto out_no_pl08x; 1853 } 1854 1855 pm_runtime_set_active(&adev->dev); 1856 pm_runtime_enable(&adev->dev); 1857 1858 /* Initialize memcpy engine */ 1859 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask); 1860 pl08x->memcpy.dev = &adev->dev; 1861 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources; 1862 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources; 1863 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy; 1864 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt; 1865 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status; 1866 pl08x->memcpy.device_issue_pending = pl08x_issue_pending; 1867 pl08x->memcpy.device_control = pl08x_control; 1868 1869 /* Initialize slave engine */ 1870 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask); 1871 pl08x->slave.dev = &adev->dev; 1872 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources; 1873 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources; 1874 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt; 1875 pl08x->slave.device_tx_status = pl08x_dma_tx_status; 1876 pl08x->slave.device_issue_pending = pl08x_issue_pending; 1877 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg; 1878 pl08x->slave.device_control = pl08x_control; 1879 1880 /* Get the platform data */ 1881 pl08x->pd = dev_get_platdata(&adev->dev); 1882 if (!pl08x->pd) { 1883 dev_err(&adev->dev, "no platform data supplied\n"); 1884 goto out_no_platdata; 1885 } 1886 1887 /* Assign useful pointers to the driver state */ 1888 pl08x->adev = adev; 1889 pl08x->vd = vd; 1890 1891 /* By default, AHB1 only. If dualmaster, from platform */ 1892 pl08x->lli_buses = PL08X_AHB1; 1893 pl08x->mem_buses = PL08X_AHB1; 1894 if (pl08x->vd->dualmaster) { 1895 pl08x->lli_buses = pl08x->pd->lli_buses; 1896 pl08x->mem_buses = pl08x->pd->mem_buses; 1897 } 1898 1899 /* A DMA memory pool for LLIs, align on 1-byte boundary */ 1900 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev, 1901 PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0); 1902 if (!pl08x->pool) { 1903 ret = -ENOMEM; 1904 goto out_no_lli_pool; 1905 } 1906 1907 spin_lock_init(&pl08x->lock); 1908 1909 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res)); 1910 if (!pl08x->base) { 1911 ret = -ENOMEM; 1912 goto out_no_ioremap; 1913 } 1914 1915 /* Turn on the PL08x */ 1916 pl08x_ensure_on(pl08x); 1917 1918 /* Attach the interrupt handler */ 1919 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR); 1920 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR); 1921 1922 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED, 1923 DRIVER_NAME, pl08x); 1924 if (ret) { 1925 dev_err(&adev->dev, "%s failed to request interrupt %d\n", 1926 __func__, adev->irq[0]); 1927 goto out_no_irq; 1928 } 1929 1930 /* Initialize physical channels */ 1931 pl08x->phy_chans = kmalloc((vd->channels * sizeof(*pl08x->phy_chans)), 1932 GFP_KERNEL); 1933 if (!pl08x->phy_chans) { 1934 dev_err(&adev->dev, "%s failed to allocate " 1935 "physical channel holders\n", 1936 __func__); 1937 goto out_no_phychans; 1938 } 1939 1940 for (i = 0; i < vd->channels; i++) { 1941 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i]; 1942 1943 ch->id = i; 1944 ch->base = pl08x->base + PL080_Cx_BASE(i); 1945 spin_lock_init(&ch->lock); 1946 ch->serving = NULL; 1947 ch->signal = -1; 1948 dev_dbg(&adev->dev, "physical channel %d is %s\n", 1949 i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE"); 1950 } 1951 1952 /* Register as many memcpy channels as there are physical channels */ 1953 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy, 1954 pl08x->vd->channels, false); 1955 if (ret <= 0) { 1956 dev_warn(&pl08x->adev->dev, 1957 "%s failed to enumerate memcpy channels - %d\n", 1958 __func__, ret); 1959 goto out_no_memcpy; 1960 } 1961 pl08x->memcpy.chancnt = ret; 1962 1963 /* Register slave channels */ 1964 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave, 1965 pl08x->pd->num_slave_channels, true); 1966 if (ret <= 0) { 1967 dev_warn(&pl08x->adev->dev, 1968 "%s failed to enumerate slave channels - %d\n", 1969 __func__, ret); 1970 goto out_no_slave; 1971 } 1972 pl08x->slave.chancnt = ret; 1973 1974 ret = dma_async_device_register(&pl08x->memcpy); 1975 if (ret) { 1976 dev_warn(&pl08x->adev->dev, 1977 "%s failed to register memcpy as an async device - %d\n", 1978 __func__, ret); 1979 goto out_no_memcpy_reg; 1980 } 1981 1982 ret = dma_async_device_register(&pl08x->slave); 1983 if (ret) { 1984 dev_warn(&pl08x->adev->dev, 1985 "%s failed to register slave as an async device - %d\n", 1986 __func__, ret); 1987 goto out_no_slave_reg; 1988 } 1989 1990 amba_set_drvdata(adev, pl08x); 1991 init_pl08x_debugfs(pl08x); 1992 dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n", 1993 amba_part(adev), amba_rev(adev), 1994 (unsigned long long)adev->res.start, adev->irq[0]); 1995 1996 pm_runtime_put(&adev->dev); 1997 return 0; 1998 1999 out_no_slave_reg: 2000 dma_async_device_unregister(&pl08x->memcpy); 2001 out_no_memcpy_reg: 2002 pl08x_free_virtual_channels(&pl08x->slave); 2003 out_no_slave: 2004 pl08x_free_virtual_channels(&pl08x->memcpy); 2005 out_no_memcpy: 2006 kfree(pl08x->phy_chans); 2007 out_no_phychans: 2008 free_irq(adev->irq[0], pl08x); 2009 out_no_irq: 2010 iounmap(pl08x->base); 2011 out_no_ioremap: 2012 dma_pool_destroy(pl08x->pool); 2013 out_no_lli_pool: 2014 out_no_platdata: 2015 pm_runtime_put(&adev->dev); 2016 pm_runtime_disable(&adev->dev); 2017 2018 kfree(pl08x); 2019 out_no_pl08x: 2020 amba_release_regions(adev); 2021 return ret; 2022 } 2023 2024 /* PL080 has 8 channels and the PL080 have just 2 */ 2025 static struct vendor_data vendor_pl080 = { 2026 .channels = 8, 2027 .dualmaster = true, 2028 }; 2029 2030 static struct vendor_data vendor_pl081 = { 2031 .channels = 2, 2032 .dualmaster = false, 2033 }; 2034 2035 static struct amba_id pl08x_ids[] = { 2036 /* PL080 */ 2037 { 2038 .id = 0x00041080, 2039 .mask = 0x000fffff, 2040 .data = &vendor_pl080, 2041 }, 2042 /* PL081 */ 2043 { 2044 .id = 0x00041081, 2045 .mask = 0x000fffff, 2046 .data = &vendor_pl081, 2047 }, 2048 /* Nomadik 8815 PL080 variant */ 2049 { 2050 .id = 0x00280880, 2051 .mask = 0x00ffffff, 2052 .data = &vendor_pl080, 2053 }, 2054 { 0, 0 }, 2055 }; 2056 2057 static struct amba_driver pl08x_amba_driver = { 2058 .drv.name = DRIVER_NAME, 2059 .id_table = pl08x_ids, 2060 .probe = pl08x_probe, 2061 }; 2062 2063 static int __init pl08x_init(void) 2064 { 2065 int retval; 2066 retval = amba_driver_register(&pl08x_amba_driver); 2067 if (retval) 2068 printk(KERN_WARNING DRIVER_NAME 2069 "failed to register as an AMBA device (%d)\n", 2070 retval); 2071 return retval; 2072 } 2073 subsys_initcall(pl08x_init); 2074