xref: /linux/drivers/dma/amba-pl08x.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * Copyright (c) 2006 ARM Ltd.
3  * Copyright (c) 2010 ST-Ericsson SA
4  *
5  * Author: Peter Pearse <peter.pearse@arm.com>
6  * Author: Linus Walleij <linus.walleij@stericsson.com>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the Free
10  * Software Foundation; either version 2 of the License, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  * more details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * this program; if not, write to the Free Software Foundation, Inc., 59
20  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
21  *
22  * The full GNU General Public License is in this distribution in the file
23  * called COPYING.
24  *
25  * Documentation: ARM DDI 0196G == PL080
26  * Documentation: ARM DDI 0218E == PL081
27  *
28  * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
29  * channel.
30  *
31  * The PL080 has 8 channels available for simultaneous use, and the PL081
32  * has only two channels. So on these DMA controllers the number of channels
33  * and the number of incoming DMA signals are two totally different things.
34  * It is usually not possible to theoretically handle all physical signals,
35  * so a multiplexing scheme with possible denial of use is necessary.
36  *
37  * The PL080 has a dual bus master, PL081 has a single master.
38  *
39  * Memory to peripheral transfer may be visualized as
40  *	Get data from memory to DMAC
41  *	Until no data left
42  *		On burst request from peripheral
43  *			Destination burst from DMAC to peripheral
44  *			Clear burst request
45  *	Raise terminal count interrupt
46  *
47  * For peripherals with a FIFO:
48  * Source      burst size == half the depth of the peripheral FIFO
49  * Destination burst size == the depth of the peripheral FIFO
50  *
51  * (Bursts are irrelevant for mem to mem transfers - there are no burst
52  * signals, the DMA controller will simply facilitate its AHB master.)
53  *
54  * ASSUMES default (little) endianness for DMA transfers
55  *
56  * The PL08x has two flow control settings:
57  *  - DMAC flow control: the transfer size defines the number of transfers
58  *    which occur for the current LLI entry, and the DMAC raises TC at the
59  *    end of every LLI entry.  Observed behaviour shows the DMAC listening
60  *    to both the BREQ and SREQ signals (contrary to documented),
61  *    transferring data if either is active.  The LBREQ and LSREQ signals
62  *    are ignored.
63  *
64  *  - Peripheral flow control: the transfer size is ignored (and should be
65  *    zero).  The data is transferred from the current LLI entry, until
66  *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
67  *    will then move to the next LLI entry.
68  *
69  * Global TODO:
70  * - Break out common code from arch/arm/mach-s3c64xx and share
71  */
72 #include <linux/amba/bus.h>
73 #include <linux/amba/pl08x.h>
74 #include <linux/debugfs.h>
75 #include <linux/delay.h>
76 #include <linux/device.h>
77 #include <linux/dmaengine.h>
78 #include <linux/dmapool.h>
79 #include <linux/dma-mapping.h>
80 #include <linux/init.h>
81 #include <linux/interrupt.h>
82 #include <linux/module.h>
83 #include <linux/pm_runtime.h>
84 #include <linux/seq_file.h>
85 #include <linux/slab.h>
86 #include <asm/hardware/pl080.h>
87 
88 #define DRIVER_NAME	"pl08xdmac"
89 
90 static struct amba_driver pl08x_amba_driver;
91 
92 /**
93  * struct vendor_data - vendor-specific config parameters for PL08x derivatives
94  * @channels: the number of channels available in this variant
95  * @dualmaster: whether this version supports dual AHB masters or not.
96  */
97 struct vendor_data {
98 	u8 channels;
99 	bool dualmaster;
100 };
101 
102 /*
103  * PL08X private data structures
104  * An LLI struct - see PL08x TRM.  Note that next uses bit[0] as a bus bit,
105  * start & end do not - their bus bit info is in cctl.  Also note that these
106  * are fixed 32-bit quantities.
107  */
108 struct pl08x_lli {
109 	u32 src;
110 	u32 dst;
111 	u32 lli;
112 	u32 cctl;
113 };
114 
115 /**
116  * struct pl08x_driver_data - the local state holder for the PL08x
117  * @slave: slave engine for this instance
118  * @memcpy: memcpy engine for this instance
119  * @base: virtual memory base (remapped) for the PL08x
120  * @adev: the corresponding AMBA (PrimeCell) bus entry
121  * @vd: vendor data for this PL08x variant
122  * @pd: platform data passed in from the platform/machine
123  * @phy_chans: array of data for the physical channels
124  * @pool: a pool for the LLI descriptors
125  * @pool_ctr: counter of LLIs in the pool
126  * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
127  * fetches
128  * @mem_buses: set to indicate memory transfers on AHB2.
129  * @lock: a spinlock for this struct
130  */
131 struct pl08x_driver_data {
132 	struct dma_device slave;
133 	struct dma_device memcpy;
134 	void __iomem *base;
135 	struct amba_device *adev;
136 	const struct vendor_data *vd;
137 	struct pl08x_platform_data *pd;
138 	struct pl08x_phy_chan *phy_chans;
139 	struct dma_pool *pool;
140 	int pool_ctr;
141 	u8 lli_buses;
142 	u8 mem_buses;
143 	spinlock_t lock;
144 };
145 
146 /*
147  * PL08X specific defines
148  */
149 
150 /* Size (bytes) of each LLI buffer allocated for one transfer */
151 # define PL08X_LLI_TSFR_SIZE	0x2000
152 
153 /* Maximum times we call dma_pool_alloc on this pool without freeing */
154 #define MAX_NUM_TSFR_LLIS	(PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
155 #define PL08X_ALIGN		8
156 
157 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
158 {
159 	return container_of(chan, struct pl08x_dma_chan, chan);
160 }
161 
162 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
163 {
164 	return container_of(tx, struct pl08x_txd, tx);
165 }
166 
167 /*
168  * Physical channel handling
169  */
170 
171 /* Whether a certain channel is busy or not */
172 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
173 {
174 	unsigned int val;
175 
176 	val = readl(ch->base + PL080_CH_CONFIG);
177 	return val & PL080_CONFIG_ACTIVE;
178 }
179 
180 /*
181  * Set the initial DMA register values i.e. those for the first LLI
182  * The next LLI pointer and the configuration interrupt bit have
183  * been set when the LLIs were constructed.  Poke them into the hardware
184  * and start the transfer.
185  */
186 static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
187 	struct pl08x_txd *txd)
188 {
189 	struct pl08x_driver_data *pl08x = plchan->host;
190 	struct pl08x_phy_chan *phychan = plchan->phychan;
191 	struct pl08x_lli *lli = &txd->llis_va[0];
192 	u32 val;
193 
194 	plchan->at = txd;
195 
196 	/* Wait for channel inactive */
197 	while (pl08x_phy_channel_busy(phychan))
198 		cpu_relax();
199 
200 	dev_vdbg(&pl08x->adev->dev,
201 		"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
202 		"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
203 		phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
204 		txd->ccfg);
205 
206 	writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
207 	writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
208 	writel(lli->lli, phychan->base + PL080_CH_LLI);
209 	writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
210 	writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
211 
212 	/* Enable the DMA channel */
213 	/* Do not access config register until channel shows as disabled */
214 	while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
215 		cpu_relax();
216 
217 	/* Do not access config register until channel shows as inactive */
218 	val = readl(phychan->base + PL080_CH_CONFIG);
219 	while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
220 		val = readl(phychan->base + PL080_CH_CONFIG);
221 
222 	writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
223 }
224 
225 /*
226  * Pause the channel by setting the HALT bit.
227  *
228  * For M->P transfers, pause the DMAC first and then stop the peripheral -
229  * the FIFO can only drain if the peripheral is still requesting data.
230  * (note: this can still timeout if the DMAC FIFO never drains of data.)
231  *
232  * For P->M transfers, disable the peripheral first to stop it filling
233  * the DMAC FIFO, and then pause the DMAC.
234  */
235 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
236 {
237 	u32 val;
238 	int timeout;
239 
240 	/* Set the HALT bit and wait for the FIFO to drain */
241 	val = readl(ch->base + PL080_CH_CONFIG);
242 	val |= PL080_CONFIG_HALT;
243 	writel(val, ch->base + PL080_CH_CONFIG);
244 
245 	/* Wait for channel inactive */
246 	for (timeout = 1000; timeout; timeout--) {
247 		if (!pl08x_phy_channel_busy(ch))
248 			break;
249 		udelay(1);
250 	}
251 	if (pl08x_phy_channel_busy(ch))
252 		pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
253 }
254 
255 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
256 {
257 	u32 val;
258 
259 	/* Clear the HALT bit */
260 	val = readl(ch->base + PL080_CH_CONFIG);
261 	val &= ~PL080_CONFIG_HALT;
262 	writel(val, ch->base + PL080_CH_CONFIG);
263 }
264 
265 /*
266  * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
267  * clears any pending interrupt status.  This should not be used for
268  * an on-going transfer, but as a method of shutting down a channel
269  * (eg, when it's no longer used) or terminating a transfer.
270  */
271 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
272 	struct pl08x_phy_chan *ch)
273 {
274 	u32 val = readl(ch->base + PL080_CH_CONFIG);
275 
276 	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
277 	         PL080_CONFIG_TC_IRQ_MASK);
278 
279 	writel(val, ch->base + PL080_CH_CONFIG);
280 
281 	writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
282 	writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
283 }
284 
285 static inline u32 get_bytes_in_cctl(u32 cctl)
286 {
287 	/* The source width defines the number of bytes */
288 	u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
289 
290 	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
291 	case PL080_WIDTH_8BIT:
292 		break;
293 	case PL080_WIDTH_16BIT:
294 		bytes *= 2;
295 		break;
296 	case PL080_WIDTH_32BIT:
297 		bytes *= 4;
298 		break;
299 	}
300 	return bytes;
301 }
302 
303 /* The channel should be paused when calling this */
304 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
305 {
306 	struct pl08x_phy_chan *ch;
307 	struct pl08x_txd *txd;
308 	unsigned long flags;
309 	size_t bytes = 0;
310 
311 	spin_lock_irqsave(&plchan->lock, flags);
312 	ch = plchan->phychan;
313 	txd = plchan->at;
314 
315 	/*
316 	 * Follow the LLIs to get the number of remaining
317 	 * bytes in the currently active transaction.
318 	 */
319 	if (ch && txd) {
320 		u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
321 
322 		/* First get the remaining bytes in the active transfer */
323 		bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
324 
325 		if (clli) {
326 			struct pl08x_lli *llis_va = txd->llis_va;
327 			dma_addr_t llis_bus = txd->llis_bus;
328 			int index;
329 
330 			BUG_ON(clli < llis_bus || clli >= llis_bus +
331 				sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
332 
333 			/*
334 			 * Locate the next LLI - as this is an array,
335 			 * it's simple maths to find.
336 			 */
337 			index = (clli - llis_bus) / sizeof(struct pl08x_lli);
338 
339 			for (; index < MAX_NUM_TSFR_LLIS; index++) {
340 				bytes += get_bytes_in_cctl(llis_va[index].cctl);
341 
342 				/*
343 				 * A LLI pointer of 0 terminates the LLI list
344 				 */
345 				if (!llis_va[index].lli)
346 					break;
347 			}
348 		}
349 	}
350 
351 	/* Sum up all queued transactions */
352 	if (!list_empty(&plchan->pend_list)) {
353 		struct pl08x_txd *txdi;
354 		list_for_each_entry(txdi, &plchan->pend_list, node) {
355 			struct pl08x_sg *dsg;
356 			list_for_each_entry(dsg, &txd->dsg_list, node)
357 				bytes += dsg->len;
358 		}
359 	}
360 
361 	spin_unlock_irqrestore(&plchan->lock, flags);
362 
363 	return bytes;
364 }
365 
366 /*
367  * Allocate a physical channel for a virtual channel
368  *
369  * Try to locate a physical channel to be used for this transfer. If all
370  * are taken return NULL and the requester will have to cope by using
371  * some fallback PIO mode or retrying later.
372  */
373 static struct pl08x_phy_chan *
374 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
375 		      struct pl08x_dma_chan *virt_chan)
376 {
377 	struct pl08x_phy_chan *ch = NULL;
378 	unsigned long flags;
379 	int i;
380 
381 	for (i = 0; i < pl08x->vd->channels; i++) {
382 		ch = &pl08x->phy_chans[i];
383 
384 		spin_lock_irqsave(&ch->lock, flags);
385 
386 		if (!ch->serving) {
387 			ch->serving = virt_chan;
388 			ch->signal = -1;
389 			spin_unlock_irqrestore(&ch->lock, flags);
390 			break;
391 		}
392 
393 		spin_unlock_irqrestore(&ch->lock, flags);
394 	}
395 
396 	if (i == pl08x->vd->channels) {
397 		/* No physical channel available, cope with it */
398 		return NULL;
399 	}
400 
401 	pm_runtime_get_sync(&pl08x->adev->dev);
402 	return ch;
403 }
404 
405 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
406 					 struct pl08x_phy_chan *ch)
407 {
408 	unsigned long flags;
409 
410 	spin_lock_irqsave(&ch->lock, flags);
411 
412 	/* Stop the channel and clear its interrupts */
413 	pl08x_terminate_phy_chan(pl08x, ch);
414 
415 	pm_runtime_put(&pl08x->adev->dev);
416 
417 	/* Mark it as free */
418 	ch->serving = NULL;
419 	spin_unlock_irqrestore(&ch->lock, flags);
420 }
421 
422 /*
423  * LLI handling
424  */
425 
426 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
427 {
428 	switch (coded) {
429 	case PL080_WIDTH_8BIT:
430 		return 1;
431 	case PL080_WIDTH_16BIT:
432 		return 2;
433 	case PL080_WIDTH_32BIT:
434 		return 4;
435 	default:
436 		break;
437 	}
438 	BUG();
439 	return 0;
440 }
441 
442 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
443 				  size_t tsize)
444 {
445 	u32 retbits = cctl;
446 
447 	/* Remove all src, dst and transfer size bits */
448 	retbits &= ~PL080_CONTROL_DWIDTH_MASK;
449 	retbits &= ~PL080_CONTROL_SWIDTH_MASK;
450 	retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
451 
452 	/* Then set the bits according to the parameters */
453 	switch (srcwidth) {
454 	case 1:
455 		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
456 		break;
457 	case 2:
458 		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
459 		break;
460 	case 4:
461 		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
462 		break;
463 	default:
464 		BUG();
465 		break;
466 	}
467 
468 	switch (dstwidth) {
469 	case 1:
470 		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
471 		break;
472 	case 2:
473 		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
474 		break;
475 	case 4:
476 		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
477 		break;
478 	default:
479 		BUG();
480 		break;
481 	}
482 
483 	retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
484 	return retbits;
485 }
486 
487 struct pl08x_lli_build_data {
488 	struct pl08x_txd *txd;
489 	struct pl08x_bus_data srcbus;
490 	struct pl08x_bus_data dstbus;
491 	size_t remainder;
492 	u32 lli_bus;
493 };
494 
495 /*
496  * Autoselect a master bus to use for the transfer. Slave will be the chosen as
497  * victim in case src & dest are not similarly aligned. i.e. If after aligning
498  * masters address with width requirements of transfer (by sending few byte by
499  * byte data), slave is still not aligned, then its width will be reduced to
500  * BYTE.
501  * - prefers the destination bus if both available
502  * - prefers bus with fixed address (i.e. peripheral)
503  */
504 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
505 	struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
506 {
507 	if (!(cctl & PL080_CONTROL_DST_INCR)) {
508 		*mbus = &bd->dstbus;
509 		*sbus = &bd->srcbus;
510 	} else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
511 		*mbus = &bd->srcbus;
512 		*sbus = &bd->dstbus;
513 	} else {
514 		if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
515 			*mbus = &bd->dstbus;
516 			*sbus = &bd->srcbus;
517 		} else {
518 			*mbus = &bd->srcbus;
519 			*sbus = &bd->dstbus;
520 		}
521 	}
522 }
523 
524 /*
525  * Fills in one LLI for a certain transfer descriptor and advance the counter
526  */
527 static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
528 	int num_llis, int len, u32 cctl)
529 {
530 	struct pl08x_lli *llis_va = bd->txd->llis_va;
531 	dma_addr_t llis_bus = bd->txd->llis_bus;
532 
533 	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
534 
535 	llis_va[num_llis].cctl = cctl;
536 	llis_va[num_llis].src = bd->srcbus.addr;
537 	llis_va[num_llis].dst = bd->dstbus.addr;
538 	llis_va[num_llis].lli = llis_bus + (num_llis + 1) *
539 		sizeof(struct pl08x_lli);
540 	llis_va[num_llis].lli |= bd->lli_bus;
541 
542 	if (cctl & PL080_CONTROL_SRC_INCR)
543 		bd->srcbus.addr += len;
544 	if (cctl & PL080_CONTROL_DST_INCR)
545 		bd->dstbus.addr += len;
546 
547 	BUG_ON(bd->remainder < len);
548 
549 	bd->remainder -= len;
550 }
551 
552 static inline void prep_byte_width_lli(struct pl08x_lli_build_data *bd,
553 		u32 *cctl, u32 len, int num_llis, size_t *total_bytes)
554 {
555 	*cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
556 	pl08x_fill_lli_for_desc(bd, num_llis, len, *cctl);
557 	(*total_bytes) += len;
558 }
559 
560 /*
561  * This fills in the table of LLIs for the transfer descriptor
562  * Note that we assume we never have to change the burst sizes
563  * Return 0 for error
564  */
565 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
566 			      struct pl08x_txd *txd)
567 {
568 	struct pl08x_bus_data *mbus, *sbus;
569 	struct pl08x_lli_build_data bd;
570 	int num_llis = 0;
571 	u32 cctl, early_bytes = 0;
572 	size_t max_bytes_per_lli, total_bytes;
573 	struct pl08x_lli *llis_va;
574 	struct pl08x_sg *dsg;
575 
576 	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
577 	if (!txd->llis_va) {
578 		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
579 		return 0;
580 	}
581 
582 	pl08x->pool_ctr++;
583 
584 	bd.txd = txd;
585 	bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
586 	cctl = txd->cctl;
587 
588 	/* Find maximum width of the source bus */
589 	bd.srcbus.maxwidth =
590 		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
591 				       PL080_CONTROL_SWIDTH_SHIFT);
592 
593 	/* Find maximum width of the destination bus */
594 	bd.dstbus.maxwidth =
595 		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
596 				       PL080_CONTROL_DWIDTH_SHIFT);
597 
598 	list_for_each_entry(dsg, &txd->dsg_list, node) {
599 		total_bytes = 0;
600 		cctl = txd->cctl;
601 
602 		bd.srcbus.addr = dsg->src_addr;
603 		bd.dstbus.addr = dsg->dst_addr;
604 		bd.remainder = dsg->len;
605 		bd.srcbus.buswidth = bd.srcbus.maxwidth;
606 		bd.dstbus.buswidth = bd.dstbus.maxwidth;
607 
608 		pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
609 
610 		dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
611 			bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
612 			bd.srcbus.buswidth,
613 			bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
614 			bd.dstbus.buswidth,
615 			bd.remainder);
616 		dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
617 			mbus == &bd.srcbus ? "src" : "dst",
618 			sbus == &bd.srcbus ? "src" : "dst");
619 
620 		/*
621 		 * Zero length is only allowed if all these requirements are
622 		 * met:
623 		 * - flow controller is peripheral.
624 		 * - src.addr is aligned to src.width
625 		 * - dst.addr is aligned to dst.width
626 		 *
627 		 * sg_len == 1 should be true, as there can be two cases here:
628 		 *
629 		 * - Memory addresses are contiguous and are not scattered.
630 		 *   Here, Only one sg will be passed by user driver, with
631 		 *   memory address and zero length. We pass this to controller
632 		 *   and after the transfer it will receive the last burst
633 		 *   request from peripheral and so transfer finishes.
634 		 *
635 		 * - Memory addresses are scattered and are not contiguous.
636 		 *   Here, Obviously as DMA controller doesn't know when a lli's
637 		 *   transfer gets over, it can't load next lli. So in this
638 		 *   case, there has to be an assumption that only one lli is
639 		 *   supported. Thus, we can't have scattered addresses.
640 		 */
641 		if (!bd.remainder) {
642 			u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
643 				PL080_CONFIG_FLOW_CONTROL_SHIFT;
644 			if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
645 					(fc <= PL080_FLOW_SRC2DST_SRC))) {
646 				dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
647 					__func__);
648 				return 0;
649 			}
650 
651 			if ((bd.srcbus.addr % bd.srcbus.buswidth) ||
652 					(bd.srcbus.addr % bd.srcbus.buswidth)) {
653 				dev_err(&pl08x->adev->dev,
654 					"%s src & dst address must be aligned to src"
655 					" & dst width if peripheral is flow controller",
656 					__func__);
657 				return 0;
658 			}
659 
660 			cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
661 					bd.dstbus.buswidth, 0);
662 			pl08x_fill_lli_for_desc(&bd, num_llis++, 0, cctl);
663 			break;
664 		}
665 
666 		/*
667 		 * Send byte by byte for following cases
668 		 * - Less than a bus width available
669 		 * - until master bus is aligned
670 		 */
671 		if (bd.remainder < mbus->buswidth)
672 			early_bytes = bd.remainder;
673 		else if ((mbus->addr) % (mbus->buswidth)) {
674 			early_bytes = mbus->buswidth - (mbus->addr) %
675 				(mbus->buswidth);
676 			if ((bd.remainder - early_bytes) < mbus->buswidth)
677 				early_bytes = bd.remainder;
678 		}
679 
680 		if (early_bytes) {
681 			dev_vdbg(&pl08x->adev->dev,
682 				"%s byte width LLIs (remain 0x%08x)\n",
683 				__func__, bd.remainder);
684 			prep_byte_width_lli(&bd, &cctl, early_bytes, num_llis++,
685 				&total_bytes);
686 		}
687 
688 		if (bd.remainder) {
689 			/*
690 			 * Master now aligned
691 			 * - if slave is not then we must set its width down
692 			 */
693 			if (sbus->addr % sbus->buswidth) {
694 				dev_dbg(&pl08x->adev->dev,
695 					"%s set down bus width to one byte\n",
696 					__func__);
697 
698 				sbus->buswidth = 1;
699 			}
700 
701 			/*
702 			 * Bytes transferred = tsize * src width, not
703 			 * MIN(buswidths)
704 			 */
705 			max_bytes_per_lli = bd.srcbus.buswidth *
706 				PL080_CONTROL_TRANSFER_SIZE_MASK;
707 			dev_vdbg(&pl08x->adev->dev,
708 				"%s max bytes per lli = %zu\n",
709 				__func__, max_bytes_per_lli);
710 
711 			/*
712 			 * Make largest possible LLIs until less than one bus
713 			 * width left
714 			 */
715 			while (bd.remainder > (mbus->buswidth - 1)) {
716 				size_t lli_len, tsize, width;
717 
718 				/*
719 				 * If enough left try to send max possible,
720 				 * otherwise try to send the remainder
721 				 */
722 				lli_len = min(bd.remainder, max_bytes_per_lli);
723 
724 				/*
725 				 * Check against maximum bus alignment:
726 				 * Calculate actual transfer size in relation to
727 				 * bus width an get a maximum remainder of the
728 				 * highest bus width - 1
729 				 */
730 				width = max(mbus->buswidth, sbus->buswidth);
731 				lli_len = (lli_len / width) * width;
732 				tsize = lli_len / bd.srcbus.buswidth;
733 
734 				dev_vdbg(&pl08x->adev->dev,
735 					"%s fill lli with single lli chunk of "
736 					"size 0x%08zx (remainder 0x%08zx)\n",
737 					__func__, lli_len, bd.remainder);
738 
739 				cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
740 					bd.dstbus.buswidth, tsize);
741 				pl08x_fill_lli_for_desc(&bd, num_llis++,
742 						lli_len, cctl);
743 				total_bytes += lli_len;
744 			}
745 
746 			/*
747 			 * Send any odd bytes
748 			 */
749 			if (bd.remainder) {
750 				dev_vdbg(&pl08x->adev->dev,
751 					"%s align with boundary, send odd bytes (remain %zu)\n",
752 					__func__, bd.remainder);
753 				prep_byte_width_lli(&bd, &cctl, bd.remainder,
754 						num_llis++, &total_bytes);
755 			}
756 		}
757 
758 		if (total_bytes != dsg->len) {
759 			dev_err(&pl08x->adev->dev,
760 				"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
761 				__func__, total_bytes, dsg->len);
762 			return 0;
763 		}
764 
765 		if (num_llis >= MAX_NUM_TSFR_LLIS) {
766 			dev_err(&pl08x->adev->dev,
767 				"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
768 				__func__, (u32) MAX_NUM_TSFR_LLIS);
769 			return 0;
770 		}
771 	}
772 
773 	llis_va = txd->llis_va;
774 	/* The final LLI terminates the LLI. */
775 	llis_va[num_llis - 1].lli = 0;
776 	/* The final LLI element shall also fire an interrupt. */
777 	llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
778 
779 #ifdef VERBOSE_DEBUG
780 	{
781 		int i;
782 
783 		dev_vdbg(&pl08x->adev->dev,
784 			 "%-3s %-9s  %-10s %-10s %-10s %s\n",
785 			 "lli", "", "csrc", "cdst", "clli", "cctl");
786 		for (i = 0; i < num_llis; i++) {
787 			dev_vdbg(&pl08x->adev->dev,
788 				 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
789 				 i, &llis_va[i], llis_va[i].src,
790 				 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
791 				);
792 		}
793 	}
794 #endif
795 
796 	return num_llis;
797 }
798 
799 /* You should call this with the struct pl08x lock held */
800 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
801 			   struct pl08x_txd *txd)
802 {
803 	struct pl08x_sg *dsg, *_dsg;
804 
805 	/* Free the LLI */
806 	if (txd->llis_va)
807 		dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
808 
809 	pl08x->pool_ctr--;
810 
811 	list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
812 		list_del(&dsg->node);
813 		kfree(dsg);
814 	}
815 
816 	kfree(txd);
817 }
818 
819 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
820 				struct pl08x_dma_chan *plchan)
821 {
822 	struct pl08x_txd *txdi = NULL;
823 	struct pl08x_txd *next;
824 
825 	if (!list_empty(&plchan->pend_list)) {
826 		list_for_each_entry_safe(txdi,
827 					 next, &plchan->pend_list, node) {
828 			list_del(&txdi->node);
829 			pl08x_free_txd(pl08x, txdi);
830 		}
831 	}
832 }
833 
834 /*
835  * The DMA ENGINE API
836  */
837 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
838 {
839 	return 0;
840 }
841 
842 static void pl08x_free_chan_resources(struct dma_chan *chan)
843 {
844 }
845 
846 /*
847  * This should be called with the channel plchan->lock held
848  */
849 static int prep_phy_channel(struct pl08x_dma_chan *plchan,
850 			    struct pl08x_txd *txd)
851 {
852 	struct pl08x_driver_data *pl08x = plchan->host;
853 	struct pl08x_phy_chan *ch;
854 	int ret;
855 
856 	/* Check if we already have a channel */
857 	if (plchan->phychan)
858 		return 0;
859 
860 	ch = pl08x_get_phy_channel(pl08x, plchan);
861 	if (!ch) {
862 		/* No physical channel available, cope with it */
863 		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
864 		return -EBUSY;
865 	}
866 
867 	/*
868 	 * OK we have a physical channel: for memcpy() this is all we
869 	 * need, but for slaves the physical signals may be muxed!
870 	 * Can the platform allow us to use this channel?
871 	 */
872 	if (plchan->slave && pl08x->pd->get_signal) {
873 		ret = pl08x->pd->get_signal(plchan);
874 		if (ret < 0) {
875 			dev_dbg(&pl08x->adev->dev,
876 				"unable to use physical channel %d for transfer on %s due to platform restrictions\n",
877 				ch->id, plchan->name);
878 			/* Release physical channel & return */
879 			pl08x_put_phy_channel(pl08x, ch);
880 			return -EBUSY;
881 		}
882 		ch->signal = ret;
883 
884 		/* Assign the flow control signal to this channel */
885 		if (txd->direction == DMA_TO_DEVICE)
886 			txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
887 		else if (txd->direction == DMA_FROM_DEVICE)
888 			txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
889 	}
890 
891 	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
892 		 ch->id,
893 		 ch->signal,
894 		 plchan->name);
895 
896 	plchan->phychan_hold++;
897 	plchan->phychan = ch;
898 
899 	return 0;
900 }
901 
902 static void release_phy_channel(struct pl08x_dma_chan *plchan)
903 {
904 	struct pl08x_driver_data *pl08x = plchan->host;
905 
906 	if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
907 		pl08x->pd->put_signal(plchan);
908 		plchan->phychan->signal = -1;
909 	}
910 	pl08x_put_phy_channel(pl08x, plchan->phychan);
911 	plchan->phychan = NULL;
912 }
913 
914 static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
915 {
916 	struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
917 	struct pl08x_txd *txd = to_pl08x_txd(tx);
918 	unsigned long flags;
919 
920 	spin_lock_irqsave(&plchan->lock, flags);
921 
922 	plchan->chan.cookie += 1;
923 	if (plchan->chan.cookie < 0)
924 		plchan->chan.cookie = 1;
925 	tx->cookie = plchan->chan.cookie;
926 
927 	/* Put this onto the pending list */
928 	list_add_tail(&txd->node, &plchan->pend_list);
929 
930 	/*
931 	 * If there was no physical channel available for this memcpy,
932 	 * stack the request up and indicate that the channel is waiting
933 	 * for a free physical channel.
934 	 */
935 	if (!plchan->slave && !plchan->phychan) {
936 		/* Do this memcpy whenever there is a channel ready */
937 		plchan->state = PL08X_CHAN_WAITING;
938 		plchan->waiting = txd;
939 	} else {
940 		plchan->phychan_hold--;
941 	}
942 
943 	spin_unlock_irqrestore(&plchan->lock, flags);
944 
945 	return tx->cookie;
946 }
947 
948 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
949 		struct dma_chan *chan, unsigned long flags)
950 {
951 	struct dma_async_tx_descriptor *retval = NULL;
952 
953 	return retval;
954 }
955 
956 /*
957  * Code accessing dma_async_is_complete() in a tight loop may give problems.
958  * If slaves are relying on interrupts to signal completion this function
959  * must not be called with interrupts disabled.
960  */
961 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
962 		dma_cookie_t cookie, struct dma_tx_state *txstate)
963 {
964 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
965 	dma_cookie_t last_used;
966 	dma_cookie_t last_complete;
967 	enum dma_status ret;
968 	u32 bytesleft = 0;
969 
970 	last_used = plchan->chan.cookie;
971 	last_complete = plchan->lc;
972 
973 	ret = dma_async_is_complete(cookie, last_complete, last_used);
974 	if (ret == DMA_SUCCESS) {
975 		dma_set_tx_state(txstate, last_complete, last_used, 0);
976 		return ret;
977 	}
978 
979 	/*
980 	 * This cookie not complete yet
981 	 */
982 	last_used = plchan->chan.cookie;
983 	last_complete = plchan->lc;
984 
985 	/* Get number of bytes left in the active transactions and queue */
986 	bytesleft = pl08x_getbytes_chan(plchan);
987 
988 	dma_set_tx_state(txstate, last_complete, last_used,
989 			 bytesleft);
990 
991 	if (plchan->state == PL08X_CHAN_PAUSED)
992 		return DMA_PAUSED;
993 
994 	/* Whether waiting or running, we're in progress */
995 	return DMA_IN_PROGRESS;
996 }
997 
998 /* PrimeCell DMA extension */
999 struct burst_table {
1000 	u32 burstwords;
1001 	u32 reg;
1002 };
1003 
1004 static const struct burst_table burst_sizes[] = {
1005 	{
1006 		.burstwords = 256,
1007 		.reg = PL080_BSIZE_256,
1008 	},
1009 	{
1010 		.burstwords = 128,
1011 		.reg = PL080_BSIZE_128,
1012 	},
1013 	{
1014 		.burstwords = 64,
1015 		.reg = PL080_BSIZE_64,
1016 	},
1017 	{
1018 		.burstwords = 32,
1019 		.reg = PL080_BSIZE_32,
1020 	},
1021 	{
1022 		.burstwords = 16,
1023 		.reg = PL080_BSIZE_16,
1024 	},
1025 	{
1026 		.burstwords = 8,
1027 		.reg = PL080_BSIZE_8,
1028 	},
1029 	{
1030 		.burstwords = 4,
1031 		.reg = PL080_BSIZE_4,
1032 	},
1033 	{
1034 		.burstwords = 0,
1035 		.reg = PL080_BSIZE_1,
1036 	},
1037 };
1038 
1039 /*
1040  * Given the source and destination available bus masks, select which
1041  * will be routed to each port.  We try to have source and destination
1042  * on separate ports, but always respect the allowable settings.
1043  */
1044 static u32 pl08x_select_bus(u8 src, u8 dst)
1045 {
1046 	u32 cctl = 0;
1047 
1048 	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1049 		cctl |= PL080_CONTROL_DST_AHB2;
1050 	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1051 		cctl |= PL080_CONTROL_SRC_AHB2;
1052 
1053 	return cctl;
1054 }
1055 
1056 static u32 pl08x_cctl(u32 cctl)
1057 {
1058 	cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1059 		  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1060 		  PL080_CONTROL_PROT_MASK);
1061 
1062 	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
1063 	return cctl | PL080_CONTROL_PROT_SYS;
1064 }
1065 
1066 static u32 pl08x_width(enum dma_slave_buswidth width)
1067 {
1068 	switch (width) {
1069 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
1070 		return PL080_WIDTH_8BIT;
1071 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
1072 		return PL080_WIDTH_16BIT;
1073 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
1074 		return PL080_WIDTH_32BIT;
1075 	default:
1076 		return ~0;
1077 	}
1078 }
1079 
1080 static u32 pl08x_burst(u32 maxburst)
1081 {
1082 	int i;
1083 
1084 	for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1085 		if (burst_sizes[i].burstwords <= maxburst)
1086 			break;
1087 
1088 	return burst_sizes[i].reg;
1089 }
1090 
1091 static int dma_set_runtime_config(struct dma_chan *chan,
1092 				  struct dma_slave_config *config)
1093 {
1094 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1095 	struct pl08x_driver_data *pl08x = plchan->host;
1096 	enum dma_slave_buswidth addr_width;
1097 	u32 width, burst, maxburst;
1098 	u32 cctl = 0;
1099 
1100 	if (!plchan->slave)
1101 		return -EINVAL;
1102 
1103 	/* Transfer direction */
1104 	plchan->runtime_direction = config->direction;
1105 	if (config->direction == DMA_TO_DEVICE) {
1106 		addr_width = config->dst_addr_width;
1107 		maxburst = config->dst_maxburst;
1108 	} else if (config->direction == DMA_FROM_DEVICE) {
1109 		addr_width = config->src_addr_width;
1110 		maxburst = config->src_maxburst;
1111 	} else {
1112 		dev_err(&pl08x->adev->dev,
1113 			"bad runtime_config: alien transfer direction\n");
1114 		return -EINVAL;
1115 	}
1116 
1117 	width = pl08x_width(addr_width);
1118 	if (width == ~0) {
1119 		dev_err(&pl08x->adev->dev,
1120 			"bad runtime_config: alien address width\n");
1121 		return -EINVAL;
1122 	}
1123 
1124 	cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1125 	cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1126 
1127 	/*
1128 	 * If this channel will only request single transfers, set this
1129 	 * down to ONE element.  Also select one element if no maxburst
1130 	 * is specified.
1131 	 */
1132 	if (plchan->cd->single)
1133 		maxburst = 1;
1134 
1135 	burst = pl08x_burst(maxburst);
1136 	cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1137 	cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1138 
1139 	if (plchan->runtime_direction == DMA_FROM_DEVICE) {
1140 		plchan->src_addr = config->src_addr;
1141 		plchan->src_cctl = pl08x_cctl(cctl) | PL080_CONTROL_DST_INCR |
1142 			pl08x_select_bus(plchan->cd->periph_buses,
1143 					 pl08x->mem_buses);
1144 	} else {
1145 		plchan->dst_addr = config->dst_addr;
1146 		plchan->dst_cctl = pl08x_cctl(cctl) | PL080_CONTROL_SRC_INCR |
1147 			pl08x_select_bus(pl08x->mem_buses,
1148 					 plchan->cd->periph_buses);
1149 	}
1150 
1151 	dev_dbg(&pl08x->adev->dev,
1152 		"configured channel %s (%s) for %s, data width %d, "
1153 		"maxburst %d words, LE, CCTL=0x%08x\n",
1154 		dma_chan_name(chan), plchan->name,
1155 		(config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
1156 		addr_width,
1157 		maxburst,
1158 		cctl);
1159 
1160 	return 0;
1161 }
1162 
1163 /*
1164  * Slave transactions callback to the slave device to allow
1165  * synchronization of slave DMA signals with the DMAC enable
1166  */
1167 static void pl08x_issue_pending(struct dma_chan *chan)
1168 {
1169 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1170 	unsigned long flags;
1171 
1172 	spin_lock_irqsave(&plchan->lock, flags);
1173 	/* Something is already active, or we're waiting for a channel... */
1174 	if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1175 		spin_unlock_irqrestore(&plchan->lock, flags);
1176 		return;
1177 	}
1178 
1179 	/* Take the first element in the queue and execute it */
1180 	if (!list_empty(&plchan->pend_list)) {
1181 		struct pl08x_txd *next;
1182 
1183 		next = list_first_entry(&plchan->pend_list,
1184 					struct pl08x_txd,
1185 					node);
1186 		list_del(&next->node);
1187 		plchan->state = PL08X_CHAN_RUNNING;
1188 
1189 		pl08x_start_txd(plchan, next);
1190 	}
1191 
1192 	spin_unlock_irqrestore(&plchan->lock, flags);
1193 }
1194 
1195 static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1196 					struct pl08x_txd *txd)
1197 {
1198 	struct pl08x_driver_data *pl08x = plchan->host;
1199 	unsigned long flags;
1200 	int num_llis, ret;
1201 
1202 	num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1203 	if (!num_llis) {
1204 		spin_lock_irqsave(&plchan->lock, flags);
1205 		pl08x_free_txd(pl08x, txd);
1206 		spin_unlock_irqrestore(&plchan->lock, flags);
1207 		return -EINVAL;
1208 	}
1209 
1210 	spin_lock_irqsave(&plchan->lock, flags);
1211 
1212 	/*
1213 	 * See if we already have a physical channel allocated,
1214 	 * else this is the time to try to get one.
1215 	 */
1216 	ret = prep_phy_channel(plchan, txd);
1217 	if (ret) {
1218 		/*
1219 		 * No physical channel was available.
1220 		 *
1221 		 * memcpy transfers can be sorted out at submission time.
1222 		 *
1223 		 * Slave transfers may have been denied due to platform
1224 		 * channel muxing restrictions.  Since there is no guarantee
1225 		 * that this will ever be resolved, and the signal must be
1226 		 * acquired AFTER acquiring the physical channel, we will let
1227 		 * them be NACK:ed with -EBUSY here. The drivers can retry
1228 		 * the prep() call if they are eager on doing this using DMA.
1229 		 */
1230 		if (plchan->slave) {
1231 			pl08x_free_txd_list(pl08x, plchan);
1232 			pl08x_free_txd(pl08x, txd);
1233 			spin_unlock_irqrestore(&plchan->lock, flags);
1234 			return -EBUSY;
1235 		}
1236 	} else
1237 		/*
1238 		 * Else we're all set, paused and ready to roll, status
1239 		 * will switch to PL08X_CHAN_RUNNING when we call
1240 		 * issue_pending(). If there is something running on the
1241 		 * channel already we don't change its state.
1242 		 */
1243 		if (plchan->state == PL08X_CHAN_IDLE)
1244 			plchan->state = PL08X_CHAN_PAUSED;
1245 
1246 	spin_unlock_irqrestore(&plchan->lock, flags);
1247 
1248 	return 0;
1249 }
1250 
1251 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
1252 	unsigned long flags)
1253 {
1254 	struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1255 
1256 	if (txd) {
1257 		dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1258 		txd->tx.flags = flags;
1259 		txd->tx.tx_submit = pl08x_tx_submit;
1260 		INIT_LIST_HEAD(&txd->node);
1261 		INIT_LIST_HEAD(&txd->dsg_list);
1262 
1263 		/* Always enable error and terminal interrupts */
1264 		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1265 			    PL080_CONFIG_TC_IRQ_MASK;
1266 	}
1267 	return txd;
1268 }
1269 
1270 /*
1271  * Initialize a descriptor to be used by memcpy submit
1272  */
1273 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1274 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1275 		size_t len, unsigned long flags)
1276 {
1277 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1278 	struct pl08x_driver_data *pl08x = plchan->host;
1279 	struct pl08x_txd *txd;
1280 	struct pl08x_sg *dsg;
1281 	int ret;
1282 
1283 	txd = pl08x_get_txd(plchan, flags);
1284 	if (!txd) {
1285 		dev_err(&pl08x->adev->dev,
1286 			"%s no memory for descriptor\n", __func__);
1287 		return NULL;
1288 	}
1289 
1290 	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1291 	if (!dsg) {
1292 		pl08x_free_txd(pl08x, txd);
1293 		dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1294 				__func__);
1295 		return NULL;
1296 	}
1297 	list_add_tail(&dsg->node, &txd->dsg_list);
1298 
1299 	txd->direction = DMA_NONE;
1300 	dsg->src_addr = src;
1301 	dsg->dst_addr = dest;
1302 	dsg->len = len;
1303 
1304 	/* Set platform data for m2m */
1305 	txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1306 	txd->cctl = pl08x->pd->memcpy_channel.cctl &
1307 			~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1308 
1309 	/* Both to be incremented or the code will break */
1310 	txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1311 
1312 	if (pl08x->vd->dualmaster)
1313 		txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1314 					      pl08x->mem_buses);
1315 
1316 	ret = pl08x_prep_channel_resources(plchan, txd);
1317 	if (ret)
1318 		return NULL;
1319 
1320 	return &txd->tx;
1321 }
1322 
1323 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1324 		struct dma_chan *chan, struct scatterlist *sgl,
1325 		unsigned int sg_len, enum dma_data_direction direction,
1326 		unsigned long flags)
1327 {
1328 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1329 	struct pl08x_driver_data *pl08x = plchan->host;
1330 	struct pl08x_txd *txd;
1331 	struct pl08x_sg *dsg;
1332 	struct scatterlist *sg;
1333 	dma_addr_t slave_addr;
1334 	int ret, tmp;
1335 
1336 	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1337 			__func__, sgl->length, plchan->name);
1338 
1339 	txd = pl08x_get_txd(plchan, flags);
1340 	if (!txd) {
1341 		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1342 		return NULL;
1343 	}
1344 
1345 	if (direction != plchan->runtime_direction)
1346 		dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
1347 			"the direction configured for the PrimeCell\n",
1348 			__func__);
1349 
1350 	/*
1351 	 * Set up addresses, the PrimeCell configured address
1352 	 * will take precedence since this may configure the
1353 	 * channel target address dynamically at runtime.
1354 	 */
1355 	txd->direction = direction;
1356 
1357 	if (direction == DMA_TO_DEVICE) {
1358 		txd->cctl = plchan->dst_cctl;
1359 		slave_addr = plchan->dst_addr;
1360 	} else if (direction == DMA_FROM_DEVICE) {
1361 		txd->cctl = plchan->src_cctl;
1362 		slave_addr = plchan->src_addr;
1363 	} else {
1364 		pl08x_free_txd(pl08x, txd);
1365 		dev_err(&pl08x->adev->dev,
1366 			"%s direction unsupported\n", __func__);
1367 		return NULL;
1368 	}
1369 
1370 	if (plchan->cd->device_fc)
1371 		tmp = (direction == DMA_TO_DEVICE) ? PL080_FLOW_MEM2PER_PER :
1372 			PL080_FLOW_PER2MEM_PER;
1373 	else
1374 		tmp = (direction == DMA_TO_DEVICE) ? PL080_FLOW_MEM2PER :
1375 			PL080_FLOW_PER2MEM;
1376 
1377 	txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1378 
1379 	for_each_sg(sgl, sg, sg_len, tmp) {
1380 		dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1381 		if (!dsg) {
1382 			pl08x_free_txd(pl08x, txd);
1383 			dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1384 					__func__);
1385 			return NULL;
1386 		}
1387 		list_add_tail(&dsg->node, &txd->dsg_list);
1388 
1389 		dsg->len = sg_dma_len(sg);
1390 		if (direction == DMA_TO_DEVICE) {
1391 			dsg->src_addr = sg_phys(sg);
1392 			dsg->dst_addr = slave_addr;
1393 		} else {
1394 			dsg->src_addr = slave_addr;
1395 			dsg->dst_addr = sg_phys(sg);
1396 		}
1397 	}
1398 
1399 	ret = pl08x_prep_channel_resources(plchan, txd);
1400 	if (ret)
1401 		return NULL;
1402 
1403 	return &txd->tx;
1404 }
1405 
1406 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1407 			 unsigned long arg)
1408 {
1409 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1410 	struct pl08x_driver_data *pl08x = plchan->host;
1411 	unsigned long flags;
1412 	int ret = 0;
1413 
1414 	/* Controls applicable to inactive channels */
1415 	if (cmd == DMA_SLAVE_CONFIG) {
1416 		return dma_set_runtime_config(chan,
1417 					      (struct dma_slave_config *)arg);
1418 	}
1419 
1420 	/*
1421 	 * Anything succeeds on channels with no physical allocation and
1422 	 * no queued transfers.
1423 	 */
1424 	spin_lock_irqsave(&plchan->lock, flags);
1425 	if (!plchan->phychan && !plchan->at) {
1426 		spin_unlock_irqrestore(&plchan->lock, flags);
1427 		return 0;
1428 	}
1429 
1430 	switch (cmd) {
1431 	case DMA_TERMINATE_ALL:
1432 		plchan->state = PL08X_CHAN_IDLE;
1433 
1434 		if (plchan->phychan) {
1435 			pl08x_terminate_phy_chan(pl08x, plchan->phychan);
1436 
1437 			/*
1438 			 * Mark physical channel as free and free any slave
1439 			 * signal
1440 			 */
1441 			release_phy_channel(plchan);
1442 		}
1443 		/* Dequeue jobs and free LLIs */
1444 		if (plchan->at) {
1445 			pl08x_free_txd(pl08x, plchan->at);
1446 			plchan->at = NULL;
1447 		}
1448 		/* Dequeue jobs not yet fired as well */
1449 		pl08x_free_txd_list(pl08x, plchan);
1450 		break;
1451 	case DMA_PAUSE:
1452 		pl08x_pause_phy_chan(plchan->phychan);
1453 		plchan->state = PL08X_CHAN_PAUSED;
1454 		break;
1455 	case DMA_RESUME:
1456 		pl08x_resume_phy_chan(plchan->phychan);
1457 		plchan->state = PL08X_CHAN_RUNNING;
1458 		break;
1459 	default:
1460 		/* Unknown command */
1461 		ret = -ENXIO;
1462 		break;
1463 	}
1464 
1465 	spin_unlock_irqrestore(&plchan->lock, flags);
1466 
1467 	return ret;
1468 }
1469 
1470 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1471 {
1472 	struct pl08x_dma_chan *plchan;
1473 	char *name = chan_id;
1474 
1475 	/* Reject channels for devices not bound to this driver */
1476 	if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1477 		return false;
1478 
1479 	plchan = to_pl08x_chan(chan);
1480 
1481 	/* Check that the channel is not taken! */
1482 	if (!strcmp(plchan->name, name))
1483 		return true;
1484 
1485 	return false;
1486 }
1487 
1488 /*
1489  * Just check that the device is there and active
1490  * TODO: turn this bit on/off depending on the number of physical channels
1491  * actually used, if it is zero... well shut it off. That will save some
1492  * power. Cut the clock at the same time.
1493  */
1494 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1495 {
1496 	writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1497 }
1498 
1499 static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1500 {
1501 	struct device *dev = txd->tx.chan->device->dev;
1502 	struct pl08x_sg *dsg;
1503 
1504 	if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1505 		if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1506 			list_for_each_entry(dsg, &txd->dsg_list, node)
1507 				dma_unmap_single(dev, dsg->src_addr, dsg->len,
1508 						DMA_TO_DEVICE);
1509 		else {
1510 			list_for_each_entry(dsg, &txd->dsg_list, node)
1511 				dma_unmap_page(dev, dsg->src_addr, dsg->len,
1512 						DMA_TO_DEVICE);
1513 		}
1514 	}
1515 	if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1516 		if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1517 			list_for_each_entry(dsg, &txd->dsg_list, node)
1518 				dma_unmap_single(dev, dsg->dst_addr, dsg->len,
1519 						DMA_FROM_DEVICE);
1520 		else
1521 			list_for_each_entry(dsg, &txd->dsg_list, node)
1522 				dma_unmap_page(dev, dsg->dst_addr, dsg->len,
1523 						DMA_FROM_DEVICE);
1524 	}
1525 }
1526 
1527 static void pl08x_tasklet(unsigned long data)
1528 {
1529 	struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1530 	struct pl08x_driver_data *pl08x = plchan->host;
1531 	struct pl08x_txd *txd;
1532 	unsigned long flags;
1533 
1534 	spin_lock_irqsave(&plchan->lock, flags);
1535 
1536 	txd = plchan->at;
1537 	plchan->at = NULL;
1538 
1539 	if (txd) {
1540 		/* Update last completed */
1541 		plchan->lc = txd->tx.cookie;
1542 	}
1543 
1544 	/* If a new descriptor is queued, set it up plchan->at is NULL here */
1545 	if (!list_empty(&plchan->pend_list)) {
1546 		struct pl08x_txd *next;
1547 
1548 		next = list_first_entry(&plchan->pend_list,
1549 					struct pl08x_txd,
1550 					node);
1551 		list_del(&next->node);
1552 
1553 		pl08x_start_txd(plchan, next);
1554 	} else if (plchan->phychan_hold) {
1555 		/*
1556 		 * This channel is still in use - we have a new txd being
1557 		 * prepared and will soon be queued.  Don't give up the
1558 		 * physical channel.
1559 		 */
1560 	} else {
1561 		struct pl08x_dma_chan *waiting = NULL;
1562 
1563 		/*
1564 		 * No more jobs, so free up the physical channel
1565 		 * Free any allocated signal on slave transfers too
1566 		 */
1567 		release_phy_channel(plchan);
1568 		plchan->state = PL08X_CHAN_IDLE;
1569 
1570 		/*
1571 		 * And NOW before anyone else can grab that free:d up
1572 		 * physical channel, see if there is some memcpy pending
1573 		 * that seriously needs to start because of being stacked
1574 		 * up while we were choking the physical channels with data.
1575 		 */
1576 		list_for_each_entry(waiting, &pl08x->memcpy.channels,
1577 				    chan.device_node) {
1578 			if (waiting->state == PL08X_CHAN_WAITING &&
1579 				waiting->waiting != NULL) {
1580 				int ret;
1581 
1582 				/* This should REALLY not fail now */
1583 				ret = prep_phy_channel(waiting,
1584 						       waiting->waiting);
1585 				BUG_ON(ret);
1586 				waiting->phychan_hold--;
1587 				waiting->state = PL08X_CHAN_RUNNING;
1588 				waiting->waiting = NULL;
1589 				pl08x_issue_pending(&waiting->chan);
1590 				break;
1591 			}
1592 		}
1593 	}
1594 
1595 	spin_unlock_irqrestore(&plchan->lock, flags);
1596 
1597 	if (txd) {
1598 		dma_async_tx_callback callback = txd->tx.callback;
1599 		void *callback_param = txd->tx.callback_param;
1600 
1601 		/* Don't try to unmap buffers on slave channels */
1602 		if (!plchan->slave)
1603 			pl08x_unmap_buffers(txd);
1604 
1605 		/* Free the descriptor */
1606 		spin_lock_irqsave(&plchan->lock, flags);
1607 		pl08x_free_txd(pl08x, txd);
1608 		spin_unlock_irqrestore(&plchan->lock, flags);
1609 
1610 		/* Callback to signal completion */
1611 		if (callback)
1612 			callback(callback_param);
1613 	}
1614 }
1615 
1616 static irqreturn_t pl08x_irq(int irq, void *dev)
1617 {
1618 	struct pl08x_driver_data *pl08x = dev;
1619 	u32 mask = 0, err, tc, i;
1620 
1621 	/* check & clear - ERR & TC interrupts */
1622 	err = readl(pl08x->base + PL080_ERR_STATUS);
1623 	if (err) {
1624 		dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1625 			__func__, err);
1626 		writel(err, pl08x->base + PL080_ERR_CLEAR);
1627 	}
1628 	tc = readl(pl08x->base + PL080_INT_STATUS);
1629 	if (tc)
1630 		writel(tc, pl08x->base + PL080_TC_CLEAR);
1631 
1632 	if (!err && !tc)
1633 		return IRQ_NONE;
1634 
1635 	for (i = 0; i < pl08x->vd->channels; i++) {
1636 		if (((1 << i) & err) || ((1 << i) & tc)) {
1637 			/* Locate physical channel */
1638 			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1639 			struct pl08x_dma_chan *plchan = phychan->serving;
1640 
1641 			if (!plchan) {
1642 				dev_err(&pl08x->adev->dev,
1643 					"%s Error TC interrupt on unused channel: 0x%08x\n",
1644 					__func__, i);
1645 				continue;
1646 			}
1647 
1648 			/* Schedule tasklet on this channel */
1649 			tasklet_schedule(&plchan->tasklet);
1650 			mask |= (1 << i);
1651 		}
1652 	}
1653 
1654 	return mask ? IRQ_HANDLED : IRQ_NONE;
1655 }
1656 
1657 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1658 {
1659 	u32 cctl = pl08x_cctl(chan->cd->cctl);
1660 
1661 	chan->slave = true;
1662 	chan->name = chan->cd->bus_id;
1663 	chan->src_addr = chan->cd->addr;
1664 	chan->dst_addr = chan->cd->addr;
1665 	chan->src_cctl = cctl | PL080_CONTROL_DST_INCR |
1666 		pl08x_select_bus(chan->cd->periph_buses, chan->host->mem_buses);
1667 	chan->dst_cctl = cctl | PL080_CONTROL_SRC_INCR |
1668 		pl08x_select_bus(chan->host->mem_buses, chan->cd->periph_buses);
1669 }
1670 
1671 /*
1672  * Initialise the DMAC memcpy/slave channels.
1673  * Make a local wrapper to hold required data
1674  */
1675 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1676 		struct dma_device *dmadev, unsigned int channels, bool slave)
1677 {
1678 	struct pl08x_dma_chan *chan;
1679 	int i;
1680 
1681 	INIT_LIST_HEAD(&dmadev->channels);
1682 
1683 	/*
1684 	 * Register as many many memcpy as we have physical channels,
1685 	 * we won't always be able to use all but the code will have
1686 	 * to cope with that situation.
1687 	 */
1688 	for (i = 0; i < channels; i++) {
1689 		chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1690 		if (!chan) {
1691 			dev_err(&pl08x->adev->dev,
1692 				"%s no memory for channel\n", __func__);
1693 			return -ENOMEM;
1694 		}
1695 
1696 		chan->host = pl08x;
1697 		chan->state = PL08X_CHAN_IDLE;
1698 
1699 		if (slave) {
1700 			chan->cd = &pl08x->pd->slave_channels[i];
1701 			pl08x_dma_slave_init(chan);
1702 		} else {
1703 			chan->cd = &pl08x->pd->memcpy_channel;
1704 			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1705 			if (!chan->name) {
1706 				kfree(chan);
1707 				return -ENOMEM;
1708 			}
1709 		}
1710 		if (chan->cd->circular_buffer) {
1711 			dev_err(&pl08x->adev->dev,
1712 				"channel %s: circular buffers not supported\n",
1713 				chan->name);
1714 			kfree(chan);
1715 			continue;
1716 		}
1717 		dev_dbg(&pl08x->adev->dev,
1718 			 "initialize virtual channel \"%s\"\n",
1719 			 chan->name);
1720 
1721 		chan->chan.device = dmadev;
1722 		chan->chan.cookie = 0;
1723 		chan->lc = 0;
1724 
1725 		spin_lock_init(&chan->lock);
1726 		INIT_LIST_HEAD(&chan->pend_list);
1727 		tasklet_init(&chan->tasklet, pl08x_tasklet,
1728 			     (unsigned long) chan);
1729 
1730 		list_add_tail(&chan->chan.device_node, &dmadev->channels);
1731 	}
1732 	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1733 		 i, slave ? "slave" : "memcpy");
1734 	return i;
1735 }
1736 
1737 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1738 {
1739 	struct pl08x_dma_chan *chan = NULL;
1740 	struct pl08x_dma_chan *next;
1741 
1742 	list_for_each_entry_safe(chan,
1743 				 next, &dmadev->channels, chan.device_node) {
1744 		list_del(&chan->chan.device_node);
1745 		kfree(chan);
1746 	}
1747 }
1748 
1749 #ifdef CONFIG_DEBUG_FS
1750 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1751 {
1752 	switch (state) {
1753 	case PL08X_CHAN_IDLE:
1754 		return "idle";
1755 	case PL08X_CHAN_RUNNING:
1756 		return "running";
1757 	case PL08X_CHAN_PAUSED:
1758 		return "paused";
1759 	case PL08X_CHAN_WAITING:
1760 		return "waiting";
1761 	default:
1762 		break;
1763 	}
1764 	return "UNKNOWN STATE";
1765 }
1766 
1767 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1768 {
1769 	struct pl08x_driver_data *pl08x = s->private;
1770 	struct pl08x_dma_chan *chan;
1771 	struct pl08x_phy_chan *ch;
1772 	unsigned long flags;
1773 	int i;
1774 
1775 	seq_printf(s, "PL08x physical channels:\n");
1776 	seq_printf(s, "CHANNEL:\tUSER:\n");
1777 	seq_printf(s, "--------\t-----\n");
1778 	for (i = 0; i < pl08x->vd->channels; i++) {
1779 		struct pl08x_dma_chan *virt_chan;
1780 
1781 		ch = &pl08x->phy_chans[i];
1782 
1783 		spin_lock_irqsave(&ch->lock, flags);
1784 		virt_chan = ch->serving;
1785 
1786 		seq_printf(s, "%d\t\t%s\n",
1787 			   ch->id, virt_chan ? virt_chan->name : "(none)");
1788 
1789 		spin_unlock_irqrestore(&ch->lock, flags);
1790 	}
1791 
1792 	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1793 	seq_printf(s, "CHANNEL:\tSTATE:\n");
1794 	seq_printf(s, "--------\t------\n");
1795 	list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1796 		seq_printf(s, "%s\t\t%s\n", chan->name,
1797 			   pl08x_state_str(chan->state));
1798 	}
1799 
1800 	seq_printf(s, "\nPL08x virtual slave channels:\n");
1801 	seq_printf(s, "CHANNEL:\tSTATE:\n");
1802 	seq_printf(s, "--------\t------\n");
1803 	list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1804 		seq_printf(s, "%s\t\t%s\n", chan->name,
1805 			   pl08x_state_str(chan->state));
1806 	}
1807 
1808 	return 0;
1809 }
1810 
1811 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1812 {
1813 	return single_open(file, pl08x_debugfs_show, inode->i_private);
1814 }
1815 
1816 static const struct file_operations pl08x_debugfs_operations = {
1817 	.open		= pl08x_debugfs_open,
1818 	.read		= seq_read,
1819 	.llseek		= seq_lseek,
1820 	.release	= single_release,
1821 };
1822 
1823 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1824 {
1825 	/* Expose a simple debugfs interface to view all clocks */
1826 	(void) debugfs_create_file(dev_name(&pl08x->adev->dev),
1827 			S_IFREG | S_IRUGO, NULL, pl08x,
1828 			&pl08x_debugfs_operations);
1829 }
1830 
1831 #else
1832 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1833 {
1834 }
1835 #endif
1836 
1837 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1838 {
1839 	struct pl08x_driver_data *pl08x;
1840 	const struct vendor_data *vd = id->data;
1841 	int ret = 0;
1842 	int i;
1843 
1844 	ret = amba_request_regions(adev, NULL);
1845 	if (ret)
1846 		return ret;
1847 
1848 	/* Create the driver state holder */
1849 	pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
1850 	if (!pl08x) {
1851 		ret = -ENOMEM;
1852 		goto out_no_pl08x;
1853 	}
1854 
1855 	pm_runtime_set_active(&adev->dev);
1856 	pm_runtime_enable(&adev->dev);
1857 
1858 	/* Initialize memcpy engine */
1859 	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1860 	pl08x->memcpy.dev = &adev->dev;
1861 	pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1862 	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1863 	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1864 	pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1865 	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1866 	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1867 	pl08x->memcpy.device_control = pl08x_control;
1868 
1869 	/* Initialize slave engine */
1870 	dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1871 	pl08x->slave.dev = &adev->dev;
1872 	pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1873 	pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1874 	pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1875 	pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1876 	pl08x->slave.device_issue_pending = pl08x_issue_pending;
1877 	pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1878 	pl08x->slave.device_control = pl08x_control;
1879 
1880 	/* Get the platform data */
1881 	pl08x->pd = dev_get_platdata(&adev->dev);
1882 	if (!pl08x->pd) {
1883 		dev_err(&adev->dev, "no platform data supplied\n");
1884 		goto out_no_platdata;
1885 	}
1886 
1887 	/* Assign useful pointers to the driver state */
1888 	pl08x->adev = adev;
1889 	pl08x->vd = vd;
1890 
1891 	/* By default, AHB1 only.  If dualmaster, from platform */
1892 	pl08x->lli_buses = PL08X_AHB1;
1893 	pl08x->mem_buses = PL08X_AHB1;
1894 	if (pl08x->vd->dualmaster) {
1895 		pl08x->lli_buses = pl08x->pd->lli_buses;
1896 		pl08x->mem_buses = pl08x->pd->mem_buses;
1897 	}
1898 
1899 	/* A DMA memory pool for LLIs, align on 1-byte boundary */
1900 	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1901 			PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1902 	if (!pl08x->pool) {
1903 		ret = -ENOMEM;
1904 		goto out_no_lli_pool;
1905 	}
1906 
1907 	spin_lock_init(&pl08x->lock);
1908 
1909 	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1910 	if (!pl08x->base) {
1911 		ret = -ENOMEM;
1912 		goto out_no_ioremap;
1913 	}
1914 
1915 	/* Turn on the PL08x */
1916 	pl08x_ensure_on(pl08x);
1917 
1918 	/* Attach the interrupt handler */
1919 	writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1920 	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1921 
1922 	ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1923 			  DRIVER_NAME, pl08x);
1924 	if (ret) {
1925 		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1926 			__func__, adev->irq[0]);
1927 		goto out_no_irq;
1928 	}
1929 
1930 	/* Initialize physical channels */
1931 	pl08x->phy_chans = kmalloc((vd->channels * sizeof(*pl08x->phy_chans)),
1932 			GFP_KERNEL);
1933 	if (!pl08x->phy_chans) {
1934 		dev_err(&adev->dev, "%s failed to allocate "
1935 			"physical channel holders\n",
1936 			__func__);
1937 		goto out_no_phychans;
1938 	}
1939 
1940 	for (i = 0; i < vd->channels; i++) {
1941 		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1942 
1943 		ch->id = i;
1944 		ch->base = pl08x->base + PL080_Cx_BASE(i);
1945 		spin_lock_init(&ch->lock);
1946 		ch->serving = NULL;
1947 		ch->signal = -1;
1948 		dev_dbg(&adev->dev, "physical channel %d is %s\n",
1949 			i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1950 	}
1951 
1952 	/* Register as many memcpy channels as there are physical channels */
1953 	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1954 					      pl08x->vd->channels, false);
1955 	if (ret <= 0) {
1956 		dev_warn(&pl08x->adev->dev,
1957 			 "%s failed to enumerate memcpy channels - %d\n",
1958 			 __func__, ret);
1959 		goto out_no_memcpy;
1960 	}
1961 	pl08x->memcpy.chancnt = ret;
1962 
1963 	/* Register slave channels */
1964 	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1965 			pl08x->pd->num_slave_channels, true);
1966 	if (ret <= 0) {
1967 		dev_warn(&pl08x->adev->dev,
1968 			"%s failed to enumerate slave channels - %d\n",
1969 				__func__, ret);
1970 		goto out_no_slave;
1971 	}
1972 	pl08x->slave.chancnt = ret;
1973 
1974 	ret = dma_async_device_register(&pl08x->memcpy);
1975 	if (ret) {
1976 		dev_warn(&pl08x->adev->dev,
1977 			"%s failed to register memcpy as an async device - %d\n",
1978 			__func__, ret);
1979 		goto out_no_memcpy_reg;
1980 	}
1981 
1982 	ret = dma_async_device_register(&pl08x->slave);
1983 	if (ret) {
1984 		dev_warn(&pl08x->adev->dev,
1985 			"%s failed to register slave as an async device - %d\n",
1986 			__func__, ret);
1987 		goto out_no_slave_reg;
1988 	}
1989 
1990 	amba_set_drvdata(adev, pl08x);
1991 	init_pl08x_debugfs(pl08x);
1992 	dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
1993 		 amba_part(adev), amba_rev(adev),
1994 		 (unsigned long long)adev->res.start, adev->irq[0]);
1995 
1996 	pm_runtime_put(&adev->dev);
1997 	return 0;
1998 
1999 out_no_slave_reg:
2000 	dma_async_device_unregister(&pl08x->memcpy);
2001 out_no_memcpy_reg:
2002 	pl08x_free_virtual_channels(&pl08x->slave);
2003 out_no_slave:
2004 	pl08x_free_virtual_channels(&pl08x->memcpy);
2005 out_no_memcpy:
2006 	kfree(pl08x->phy_chans);
2007 out_no_phychans:
2008 	free_irq(adev->irq[0], pl08x);
2009 out_no_irq:
2010 	iounmap(pl08x->base);
2011 out_no_ioremap:
2012 	dma_pool_destroy(pl08x->pool);
2013 out_no_lli_pool:
2014 out_no_platdata:
2015 	pm_runtime_put(&adev->dev);
2016 	pm_runtime_disable(&adev->dev);
2017 
2018 	kfree(pl08x);
2019 out_no_pl08x:
2020 	amba_release_regions(adev);
2021 	return ret;
2022 }
2023 
2024 /* PL080 has 8 channels and the PL080 have just 2 */
2025 static struct vendor_data vendor_pl080 = {
2026 	.channels = 8,
2027 	.dualmaster = true,
2028 };
2029 
2030 static struct vendor_data vendor_pl081 = {
2031 	.channels = 2,
2032 	.dualmaster = false,
2033 };
2034 
2035 static struct amba_id pl08x_ids[] = {
2036 	/* PL080 */
2037 	{
2038 		.id	= 0x00041080,
2039 		.mask	= 0x000fffff,
2040 		.data	= &vendor_pl080,
2041 	},
2042 	/* PL081 */
2043 	{
2044 		.id	= 0x00041081,
2045 		.mask	= 0x000fffff,
2046 		.data	= &vendor_pl081,
2047 	},
2048 	/* Nomadik 8815 PL080 variant */
2049 	{
2050 		.id	= 0x00280880,
2051 		.mask	= 0x00ffffff,
2052 		.data	= &vendor_pl080,
2053 	},
2054 	{ 0, 0 },
2055 };
2056 
2057 static struct amba_driver pl08x_amba_driver = {
2058 	.drv.name	= DRIVER_NAME,
2059 	.id_table	= pl08x_ids,
2060 	.probe		= pl08x_probe,
2061 };
2062 
2063 static int __init pl08x_init(void)
2064 {
2065 	int retval;
2066 	retval = amba_driver_register(&pl08x_amba_driver);
2067 	if (retval)
2068 		printk(KERN_WARNING DRIVER_NAME
2069 		       "failed to register as an AMBA device (%d)\n",
2070 		       retval);
2071 	return retval;
2072 }
2073 subsys_initcall(pl08x_init);
2074