xref: /linux/drivers/dma/amba-pl08x.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * Copyright (c) 2006 ARM Ltd.
3  * Copyright (c) 2010 ST-Ericsson SA
4  *
5  * Author: Peter Pearse <peter.pearse@arm.com>
6  * Author: Linus Walleij <linus.walleij@stericsson.com>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the Free
10  * Software Foundation; either version 2 of the License, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  * more details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * this program; if not, write to the Free Software Foundation, Inc., 59
20  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
21  *
22  * The full GNU General Public License is in this distribution in the file
23  * called COPYING.
24  *
25  * Documentation: ARM DDI 0196G == PL080
26  * Documentation: ARM DDI 0218E == PL081
27  *
28  * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
29  * channel.
30  *
31  * The PL080 has 8 channels available for simultaneous use, and the PL081
32  * has only two channels. So on these DMA controllers the number of channels
33  * and the number of incoming DMA signals are two totally different things.
34  * It is usually not possible to theoretically handle all physical signals,
35  * so a multiplexing scheme with possible denial of use is necessary.
36  *
37  * The PL080 has a dual bus master, PL081 has a single master.
38  *
39  * Memory to peripheral transfer may be visualized as
40  *	Get data from memory to DMAC
41  *	Until no data left
42  *		On burst request from peripheral
43  *			Destination burst from DMAC to peripheral
44  *			Clear burst request
45  *	Raise terminal count interrupt
46  *
47  * For peripherals with a FIFO:
48  * Source      burst size == half the depth of the peripheral FIFO
49  * Destination burst size == the depth of the peripheral FIFO
50  *
51  * (Bursts are irrelevant for mem to mem transfers - there are no burst
52  * signals, the DMA controller will simply facilitate its AHB master.)
53  *
54  * ASSUMES default (little) endianness for DMA transfers
55  *
56  * The PL08x has two flow control settings:
57  *  - DMAC flow control: the transfer size defines the number of transfers
58  *    which occur for the current LLI entry, and the DMAC raises TC at the
59  *    end of every LLI entry.  Observed behaviour shows the DMAC listening
60  *    to both the BREQ and SREQ signals (contrary to documented),
61  *    transferring data if either is active.  The LBREQ and LSREQ signals
62  *    are ignored.
63  *
64  *  - Peripheral flow control: the transfer size is ignored (and should be
65  *    zero).  The data is transferred from the current LLI entry, until
66  *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
67  *    will then move to the next LLI entry.
68  *
69  * Global TODO:
70  * - Break out common code from arch/arm/mach-s3c64xx and share
71  */
72 #include <linux/amba/bus.h>
73 #include <linux/amba/pl08x.h>
74 #include <linux/debugfs.h>
75 #include <linux/delay.h>
76 #include <linux/device.h>
77 #include <linux/dmaengine.h>
78 #include <linux/dmapool.h>
79 #include <linux/dma-mapping.h>
80 #include <linux/init.h>
81 #include <linux/interrupt.h>
82 #include <linux/module.h>
83 #include <linux/pm_runtime.h>
84 #include <linux/seq_file.h>
85 #include <linux/slab.h>
86 #include <asm/hardware/pl080.h>
87 
88 #include "dmaengine.h"
89 
90 #define DRIVER_NAME	"pl08xdmac"
91 
92 static struct amba_driver pl08x_amba_driver;
93 
94 /**
95  * struct vendor_data - vendor-specific config parameters for PL08x derivatives
96  * @channels: the number of channels available in this variant
97  * @dualmaster: whether this version supports dual AHB masters or not.
98  * @nomadik: whether the channels have Nomadik security extension bits
99  *	that need to be checked for permission before use and some registers are
100  *	missing
101  */
102 struct vendor_data {
103 	u8 channels;
104 	bool dualmaster;
105 	bool nomadik;
106 };
107 
108 /*
109  * PL08X private data structures
110  * An LLI struct - see PL08x TRM.  Note that next uses bit[0] as a bus bit,
111  * start & end do not - their bus bit info is in cctl.  Also note that these
112  * are fixed 32-bit quantities.
113  */
114 struct pl08x_lli {
115 	u32 src;
116 	u32 dst;
117 	u32 lli;
118 	u32 cctl;
119 };
120 
121 /**
122  * struct pl08x_driver_data - the local state holder for the PL08x
123  * @slave: slave engine for this instance
124  * @memcpy: memcpy engine for this instance
125  * @base: virtual memory base (remapped) for the PL08x
126  * @adev: the corresponding AMBA (PrimeCell) bus entry
127  * @vd: vendor data for this PL08x variant
128  * @pd: platform data passed in from the platform/machine
129  * @phy_chans: array of data for the physical channels
130  * @pool: a pool for the LLI descriptors
131  * @pool_ctr: counter of LLIs in the pool
132  * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
133  * fetches
134  * @mem_buses: set to indicate memory transfers on AHB2.
135  * @lock: a spinlock for this struct
136  */
137 struct pl08x_driver_data {
138 	struct dma_device slave;
139 	struct dma_device memcpy;
140 	void __iomem *base;
141 	struct amba_device *adev;
142 	const struct vendor_data *vd;
143 	struct pl08x_platform_data *pd;
144 	struct pl08x_phy_chan *phy_chans;
145 	struct dma_pool *pool;
146 	int pool_ctr;
147 	u8 lli_buses;
148 	u8 mem_buses;
149 	spinlock_t lock;
150 };
151 
152 /*
153  * PL08X specific defines
154  */
155 
156 /* Size (bytes) of each LLI buffer allocated for one transfer */
157 # define PL08X_LLI_TSFR_SIZE	0x2000
158 
159 /* Maximum times we call dma_pool_alloc on this pool without freeing */
160 #define MAX_NUM_TSFR_LLIS	(PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
161 #define PL08X_ALIGN		8
162 
163 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
164 {
165 	return container_of(chan, struct pl08x_dma_chan, chan);
166 }
167 
168 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
169 {
170 	return container_of(tx, struct pl08x_txd, tx);
171 }
172 
173 /*
174  * Physical channel handling
175  */
176 
177 /* Whether a certain channel is busy or not */
178 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
179 {
180 	unsigned int val;
181 
182 	val = readl(ch->base + PL080_CH_CONFIG);
183 	return val & PL080_CONFIG_ACTIVE;
184 }
185 
186 /*
187  * Set the initial DMA register values i.e. those for the first LLI
188  * The next LLI pointer and the configuration interrupt bit have
189  * been set when the LLIs were constructed.  Poke them into the hardware
190  * and start the transfer.
191  */
192 static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
193 	struct pl08x_txd *txd)
194 {
195 	struct pl08x_driver_data *pl08x = plchan->host;
196 	struct pl08x_phy_chan *phychan = plchan->phychan;
197 	struct pl08x_lli *lli = &txd->llis_va[0];
198 	u32 val;
199 
200 	plchan->at = txd;
201 
202 	/* Wait for channel inactive */
203 	while (pl08x_phy_channel_busy(phychan))
204 		cpu_relax();
205 
206 	dev_vdbg(&pl08x->adev->dev,
207 		"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
208 		"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
209 		phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
210 		txd->ccfg);
211 
212 	writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
213 	writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
214 	writel(lli->lli, phychan->base + PL080_CH_LLI);
215 	writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
216 	writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
217 
218 	/* Enable the DMA channel */
219 	/* Do not access config register until channel shows as disabled */
220 	while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
221 		cpu_relax();
222 
223 	/* Do not access config register until channel shows as inactive */
224 	val = readl(phychan->base + PL080_CH_CONFIG);
225 	while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
226 		val = readl(phychan->base + PL080_CH_CONFIG);
227 
228 	writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
229 }
230 
231 /*
232  * Pause the channel by setting the HALT bit.
233  *
234  * For M->P transfers, pause the DMAC first and then stop the peripheral -
235  * the FIFO can only drain if the peripheral is still requesting data.
236  * (note: this can still timeout if the DMAC FIFO never drains of data.)
237  *
238  * For P->M transfers, disable the peripheral first to stop it filling
239  * the DMAC FIFO, and then pause the DMAC.
240  */
241 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
242 {
243 	u32 val;
244 	int timeout;
245 
246 	/* Set the HALT bit and wait for the FIFO to drain */
247 	val = readl(ch->base + PL080_CH_CONFIG);
248 	val |= PL080_CONFIG_HALT;
249 	writel(val, ch->base + PL080_CH_CONFIG);
250 
251 	/* Wait for channel inactive */
252 	for (timeout = 1000; timeout; timeout--) {
253 		if (!pl08x_phy_channel_busy(ch))
254 			break;
255 		udelay(1);
256 	}
257 	if (pl08x_phy_channel_busy(ch))
258 		pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
259 }
260 
261 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
262 {
263 	u32 val;
264 
265 	/* Clear the HALT bit */
266 	val = readl(ch->base + PL080_CH_CONFIG);
267 	val &= ~PL080_CONFIG_HALT;
268 	writel(val, ch->base + PL080_CH_CONFIG);
269 }
270 
271 /*
272  * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
273  * clears any pending interrupt status.  This should not be used for
274  * an on-going transfer, but as a method of shutting down a channel
275  * (eg, when it's no longer used) or terminating a transfer.
276  */
277 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
278 	struct pl08x_phy_chan *ch)
279 {
280 	u32 val = readl(ch->base + PL080_CH_CONFIG);
281 
282 	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
283 	         PL080_CONFIG_TC_IRQ_MASK);
284 
285 	writel(val, ch->base + PL080_CH_CONFIG);
286 
287 	writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
288 	writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
289 }
290 
291 static inline u32 get_bytes_in_cctl(u32 cctl)
292 {
293 	/* The source width defines the number of bytes */
294 	u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
295 
296 	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
297 	case PL080_WIDTH_8BIT:
298 		break;
299 	case PL080_WIDTH_16BIT:
300 		bytes *= 2;
301 		break;
302 	case PL080_WIDTH_32BIT:
303 		bytes *= 4;
304 		break;
305 	}
306 	return bytes;
307 }
308 
309 /* The channel should be paused when calling this */
310 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
311 {
312 	struct pl08x_phy_chan *ch;
313 	struct pl08x_txd *txd;
314 	unsigned long flags;
315 	size_t bytes = 0;
316 
317 	spin_lock_irqsave(&plchan->lock, flags);
318 	ch = plchan->phychan;
319 	txd = plchan->at;
320 
321 	/*
322 	 * Follow the LLIs to get the number of remaining
323 	 * bytes in the currently active transaction.
324 	 */
325 	if (ch && txd) {
326 		u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
327 
328 		/* First get the remaining bytes in the active transfer */
329 		bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
330 
331 		if (clli) {
332 			struct pl08x_lli *llis_va = txd->llis_va;
333 			dma_addr_t llis_bus = txd->llis_bus;
334 			int index;
335 
336 			BUG_ON(clli < llis_bus || clli >= llis_bus +
337 				sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
338 
339 			/*
340 			 * Locate the next LLI - as this is an array,
341 			 * it's simple maths to find.
342 			 */
343 			index = (clli - llis_bus) / sizeof(struct pl08x_lli);
344 
345 			for (; index < MAX_NUM_TSFR_LLIS; index++) {
346 				bytes += get_bytes_in_cctl(llis_va[index].cctl);
347 
348 				/*
349 				 * A LLI pointer of 0 terminates the LLI list
350 				 */
351 				if (!llis_va[index].lli)
352 					break;
353 			}
354 		}
355 	}
356 
357 	/* Sum up all queued transactions */
358 	if (!list_empty(&plchan->pend_list)) {
359 		struct pl08x_txd *txdi;
360 		list_for_each_entry(txdi, &plchan->pend_list, node) {
361 			struct pl08x_sg *dsg;
362 			list_for_each_entry(dsg, &txd->dsg_list, node)
363 				bytes += dsg->len;
364 		}
365 	}
366 
367 	spin_unlock_irqrestore(&plchan->lock, flags);
368 
369 	return bytes;
370 }
371 
372 /*
373  * Allocate a physical channel for a virtual channel
374  *
375  * Try to locate a physical channel to be used for this transfer. If all
376  * are taken return NULL and the requester will have to cope by using
377  * some fallback PIO mode or retrying later.
378  */
379 static struct pl08x_phy_chan *
380 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
381 		      struct pl08x_dma_chan *virt_chan)
382 {
383 	struct pl08x_phy_chan *ch = NULL;
384 	unsigned long flags;
385 	int i;
386 
387 	for (i = 0; i < pl08x->vd->channels; i++) {
388 		ch = &pl08x->phy_chans[i];
389 
390 		spin_lock_irqsave(&ch->lock, flags);
391 
392 		if (!ch->locked && !ch->serving) {
393 			ch->serving = virt_chan;
394 			ch->signal = -1;
395 			spin_unlock_irqrestore(&ch->lock, flags);
396 			break;
397 		}
398 
399 		spin_unlock_irqrestore(&ch->lock, flags);
400 	}
401 
402 	if (i == pl08x->vd->channels) {
403 		/* No physical channel available, cope with it */
404 		return NULL;
405 	}
406 
407 	pm_runtime_get_sync(&pl08x->adev->dev);
408 	return ch;
409 }
410 
411 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
412 					 struct pl08x_phy_chan *ch)
413 {
414 	unsigned long flags;
415 
416 	spin_lock_irqsave(&ch->lock, flags);
417 
418 	/* Stop the channel and clear its interrupts */
419 	pl08x_terminate_phy_chan(pl08x, ch);
420 
421 	pm_runtime_put(&pl08x->adev->dev);
422 
423 	/* Mark it as free */
424 	ch->serving = NULL;
425 	spin_unlock_irqrestore(&ch->lock, flags);
426 }
427 
428 /*
429  * LLI handling
430  */
431 
432 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
433 {
434 	switch (coded) {
435 	case PL080_WIDTH_8BIT:
436 		return 1;
437 	case PL080_WIDTH_16BIT:
438 		return 2;
439 	case PL080_WIDTH_32BIT:
440 		return 4;
441 	default:
442 		break;
443 	}
444 	BUG();
445 	return 0;
446 }
447 
448 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
449 				  size_t tsize)
450 {
451 	u32 retbits = cctl;
452 
453 	/* Remove all src, dst and transfer size bits */
454 	retbits &= ~PL080_CONTROL_DWIDTH_MASK;
455 	retbits &= ~PL080_CONTROL_SWIDTH_MASK;
456 	retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
457 
458 	/* Then set the bits according to the parameters */
459 	switch (srcwidth) {
460 	case 1:
461 		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
462 		break;
463 	case 2:
464 		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
465 		break;
466 	case 4:
467 		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
468 		break;
469 	default:
470 		BUG();
471 		break;
472 	}
473 
474 	switch (dstwidth) {
475 	case 1:
476 		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
477 		break;
478 	case 2:
479 		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
480 		break;
481 	case 4:
482 		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
483 		break;
484 	default:
485 		BUG();
486 		break;
487 	}
488 
489 	retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
490 	return retbits;
491 }
492 
493 struct pl08x_lli_build_data {
494 	struct pl08x_txd *txd;
495 	struct pl08x_bus_data srcbus;
496 	struct pl08x_bus_data dstbus;
497 	size_t remainder;
498 	u32 lli_bus;
499 };
500 
501 /*
502  * Autoselect a master bus to use for the transfer. Slave will be the chosen as
503  * victim in case src & dest are not similarly aligned. i.e. If after aligning
504  * masters address with width requirements of transfer (by sending few byte by
505  * byte data), slave is still not aligned, then its width will be reduced to
506  * BYTE.
507  * - prefers the destination bus if both available
508  * - prefers bus with fixed address (i.e. peripheral)
509  */
510 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
511 	struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
512 {
513 	if (!(cctl & PL080_CONTROL_DST_INCR)) {
514 		*mbus = &bd->dstbus;
515 		*sbus = &bd->srcbus;
516 	} else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
517 		*mbus = &bd->srcbus;
518 		*sbus = &bd->dstbus;
519 	} else {
520 		if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
521 			*mbus = &bd->dstbus;
522 			*sbus = &bd->srcbus;
523 		} else {
524 			*mbus = &bd->srcbus;
525 			*sbus = &bd->dstbus;
526 		}
527 	}
528 }
529 
530 /*
531  * Fills in one LLI for a certain transfer descriptor and advance the counter
532  */
533 static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
534 	int num_llis, int len, u32 cctl)
535 {
536 	struct pl08x_lli *llis_va = bd->txd->llis_va;
537 	dma_addr_t llis_bus = bd->txd->llis_bus;
538 
539 	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
540 
541 	llis_va[num_llis].cctl = cctl;
542 	llis_va[num_llis].src = bd->srcbus.addr;
543 	llis_va[num_llis].dst = bd->dstbus.addr;
544 	llis_va[num_llis].lli = llis_bus + (num_llis + 1) *
545 		sizeof(struct pl08x_lli);
546 	llis_va[num_llis].lli |= bd->lli_bus;
547 
548 	if (cctl & PL080_CONTROL_SRC_INCR)
549 		bd->srcbus.addr += len;
550 	if (cctl & PL080_CONTROL_DST_INCR)
551 		bd->dstbus.addr += len;
552 
553 	BUG_ON(bd->remainder < len);
554 
555 	bd->remainder -= len;
556 }
557 
558 static inline void prep_byte_width_lli(struct pl08x_lli_build_data *bd,
559 		u32 *cctl, u32 len, int num_llis, size_t *total_bytes)
560 {
561 	*cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
562 	pl08x_fill_lli_for_desc(bd, num_llis, len, *cctl);
563 	(*total_bytes) += len;
564 }
565 
566 /*
567  * This fills in the table of LLIs for the transfer descriptor
568  * Note that we assume we never have to change the burst sizes
569  * Return 0 for error
570  */
571 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
572 			      struct pl08x_txd *txd)
573 {
574 	struct pl08x_bus_data *mbus, *sbus;
575 	struct pl08x_lli_build_data bd;
576 	int num_llis = 0;
577 	u32 cctl, early_bytes = 0;
578 	size_t max_bytes_per_lli, total_bytes;
579 	struct pl08x_lli *llis_va;
580 	struct pl08x_sg *dsg;
581 
582 	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
583 	if (!txd->llis_va) {
584 		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
585 		return 0;
586 	}
587 
588 	pl08x->pool_ctr++;
589 
590 	bd.txd = txd;
591 	bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
592 	cctl = txd->cctl;
593 
594 	/* Find maximum width of the source bus */
595 	bd.srcbus.maxwidth =
596 		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
597 				       PL080_CONTROL_SWIDTH_SHIFT);
598 
599 	/* Find maximum width of the destination bus */
600 	bd.dstbus.maxwidth =
601 		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
602 				       PL080_CONTROL_DWIDTH_SHIFT);
603 
604 	list_for_each_entry(dsg, &txd->dsg_list, node) {
605 		total_bytes = 0;
606 		cctl = txd->cctl;
607 
608 		bd.srcbus.addr = dsg->src_addr;
609 		bd.dstbus.addr = dsg->dst_addr;
610 		bd.remainder = dsg->len;
611 		bd.srcbus.buswidth = bd.srcbus.maxwidth;
612 		bd.dstbus.buswidth = bd.dstbus.maxwidth;
613 
614 		pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
615 
616 		dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
617 			bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
618 			bd.srcbus.buswidth,
619 			bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
620 			bd.dstbus.buswidth,
621 			bd.remainder);
622 		dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
623 			mbus == &bd.srcbus ? "src" : "dst",
624 			sbus == &bd.srcbus ? "src" : "dst");
625 
626 		/*
627 		 * Zero length is only allowed if all these requirements are
628 		 * met:
629 		 * - flow controller is peripheral.
630 		 * - src.addr is aligned to src.width
631 		 * - dst.addr is aligned to dst.width
632 		 *
633 		 * sg_len == 1 should be true, as there can be two cases here:
634 		 *
635 		 * - Memory addresses are contiguous and are not scattered.
636 		 *   Here, Only one sg will be passed by user driver, with
637 		 *   memory address and zero length. We pass this to controller
638 		 *   and after the transfer it will receive the last burst
639 		 *   request from peripheral and so transfer finishes.
640 		 *
641 		 * - Memory addresses are scattered and are not contiguous.
642 		 *   Here, Obviously as DMA controller doesn't know when a lli's
643 		 *   transfer gets over, it can't load next lli. So in this
644 		 *   case, there has to be an assumption that only one lli is
645 		 *   supported. Thus, we can't have scattered addresses.
646 		 */
647 		if (!bd.remainder) {
648 			u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
649 				PL080_CONFIG_FLOW_CONTROL_SHIFT;
650 			if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
651 					(fc <= PL080_FLOW_SRC2DST_SRC))) {
652 				dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
653 					__func__);
654 				return 0;
655 			}
656 
657 			if ((bd.srcbus.addr % bd.srcbus.buswidth) ||
658 					(bd.dstbus.addr % bd.dstbus.buswidth)) {
659 				dev_err(&pl08x->adev->dev,
660 					"%s src & dst address must be aligned to src"
661 					" & dst width if peripheral is flow controller",
662 					__func__);
663 				return 0;
664 			}
665 
666 			cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
667 					bd.dstbus.buswidth, 0);
668 			pl08x_fill_lli_for_desc(&bd, num_llis++, 0, cctl);
669 			break;
670 		}
671 
672 		/*
673 		 * Send byte by byte for following cases
674 		 * - Less than a bus width available
675 		 * - until master bus is aligned
676 		 */
677 		if (bd.remainder < mbus->buswidth)
678 			early_bytes = bd.remainder;
679 		else if ((mbus->addr) % (mbus->buswidth)) {
680 			early_bytes = mbus->buswidth - (mbus->addr) %
681 				(mbus->buswidth);
682 			if ((bd.remainder - early_bytes) < mbus->buswidth)
683 				early_bytes = bd.remainder;
684 		}
685 
686 		if (early_bytes) {
687 			dev_vdbg(&pl08x->adev->dev,
688 				"%s byte width LLIs (remain 0x%08x)\n",
689 				__func__, bd.remainder);
690 			prep_byte_width_lli(&bd, &cctl, early_bytes, num_llis++,
691 				&total_bytes);
692 		}
693 
694 		if (bd.remainder) {
695 			/*
696 			 * Master now aligned
697 			 * - if slave is not then we must set its width down
698 			 */
699 			if (sbus->addr % sbus->buswidth) {
700 				dev_dbg(&pl08x->adev->dev,
701 					"%s set down bus width to one byte\n",
702 					__func__);
703 
704 				sbus->buswidth = 1;
705 			}
706 
707 			/*
708 			 * Bytes transferred = tsize * src width, not
709 			 * MIN(buswidths)
710 			 */
711 			max_bytes_per_lli = bd.srcbus.buswidth *
712 				PL080_CONTROL_TRANSFER_SIZE_MASK;
713 			dev_vdbg(&pl08x->adev->dev,
714 				"%s max bytes per lli = %zu\n",
715 				__func__, max_bytes_per_lli);
716 
717 			/*
718 			 * Make largest possible LLIs until less than one bus
719 			 * width left
720 			 */
721 			while (bd.remainder > (mbus->buswidth - 1)) {
722 				size_t lli_len, tsize, width;
723 
724 				/*
725 				 * If enough left try to send max possible,
726 				 * otherwise try to send the remainder
727 				 */
728 				lli_len = min(bd.remainder, max_bytes_per_lli);
729 
730 				/*
731 				 * Check against maximum bus alignment:
732 				 * Calculate actual transfer size in relation to
733 				 * bus width an get a maximum remainder of the
734 				 * highest bus width - 1
735 				 */
736 				width = max(mbus->buswidth, sbus->buswidth);
737 				lli_len = (lli_len / width) * width;
738 				tsize = lli_len / bd.srcbus.buswidth;
739 
740 				dev_vdbg(&pl08x->adev->dev,
741 					"%s fill lli with single lli chunk of "
742 					"size 0x%08zx (remainder 0x%08zx)\n",
743 					__func__, lli_len, bd.remainder);
744 
745 				cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
746 					bd.dstbus.buswidth, tsize);
747 				pl08x_fill_lli_for_desc(&bd, num_llis++,
748 						lli_len, cctl);
749 				total_bytes += lli_len;
750 			}
751 
752 			/*
753 			 * Send any odd bytes
754 			 */
755 			if (bd.remainder) {
756 				dev_vdbg(&pl08x->adev->dev,
757 					"%s align with boundary, send odd bytes (remain %zu)\n",
758 					__func__, bd.remainder);
759 				prep_byte_width_lli(&bd, &cctl, bd.remainder,
760 						num_llis++, &total_bytes);
761 			}
762 		}
763 
764 		if (total_bytes != dsg->len) {
765 			dev_err(&pl08x->adev->dev,
766 				"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
767 				__func__, total_bytes, dsg->len);
768 			return 0;
769 		}
770 
771 		if (num_llis >= MAX_NUM_TSFR_LLIS) {
772 			dev_err(&pl08x->adev->dev,
773 				"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
774 				__func__, (u32) MAX_NUM_TSFR_LLIS);
775 			return 0;
776 		}
777 	}
778 
779 	llis_va = txd->llis_va;
780 	/* The final LLI terminates the LLI. */
781 	llis_va[num_llis - 1].lli = 0;
782 	/* The final LLI element shall also fire an interrupt. */
783 	llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
784 
785 #ifdef VERBOSE_DEBUG
786 	{
787 		int i;
788 
789 		dev_vdbg(&pl08x->adev->dev,
790 			 "%-3s %-9s  %-10s %-10s %-10s %s\n",
791 			 "lli", "", "csrc", "cdst", "clli", "cctl");
792 		for (i = 0; i < num_llis; i++) {
793 			dev_vdbg(&pl08x->adev->dev,
794 				 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
795 				 i, &llis_va[i], llis_va[i].src,
796 				 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
797 				);
798 		}
799 	}
800 #endif
801 
802 	return num_llis;
803 }
804 
805 /* You should call this with the struct pl08x lock held */
806 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
807 			   struct pl08x_txd *txd)
808 {
809 	struct pl08x_sg *dsg, *_dsg;
810 
811 	/* Free the LLI */
812 	if (txd->llis_va)
813 		dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
814 
815 	pl08x->pool_ctr--;
816 
817 	list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
818 		list_del(&dsg->node);
819 		kfree(dsg);
820 	}
821 
822 	kfree(txd);
823 }
824 
825 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
826 				struct pl08x_dma_chan *plchan)
827 {
828 	struct pl08x_txd *txdi = NULL;
829 	struct pl08x_txd *next;
830 
831 	if (!list_empty(&plchan->pend_list)) {
832 		list_for_each_entry_safe(txdi,
833 					 next, &plchan->pend_list, node) {
834 			list_del(&txdi->node);
835 			pl08x_free_txd(pl08x, txdi);
836 		}
837 	}
838 }
839 
840 /*
841  * The DMA ENGINE API
842  */
843 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
844 {
845 	return 0;
846 }
847 
848 static void pl08x_free_chan_resources(struct dma_chan *chan)
849 {
850 }
851 
852 /*
853  * This should be called with the channel plchan->lock held
854  */
855 static int prep_phy_channel(struct pl08x_dma_chan *plchan,
856 			    struct pl08x_txd *txd)
857 {
858 	struct pl08x_driver_data *pl08x = plchan->host;
859 	struct pl08x_phy_chan *ch;
860 	int ret;
861 
862 	/* Check if we already have a channel */
863 	if (plchan->phychan) {
864 		ch = plchan->phychan;
865 		goto got_channel;
866 	}
867 
868 	ch = pl08x_get_phy_channel(pl08x, plchan);
869 	if (!ch) {
870 		/* No physical channel available, cope with it */
871 		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
872 		return -EBUSY;
873 	}
874 
875 	/*
876 	 * OK we have a physical channel: for memcpy() this is all we
877 	 * need, but for slaves the physical signals may be muxed!
878 	 * Can the platform allow us to use this channel?
879 	 */
880 	if (plchan->slave && pl08x->pd->get_signal) {
881 		ret = pl08x->pd->get_signal(plchan);
882 		if (ret < 0) {
883 			dev_dbg(&pl08x->adev->dev,
884 				"unable to use physical channel %d for transfer on %s due to platform restrictions\n",
885 				ch->id, plchan->name);
886 			/* Release physical channel & return */
887 			pl08x_put_phy_channel(pl08x, ch);
888 			return -EBUSY;
889 		}
890 		ch->signal = ret;
891 	}
892 
893 	plchan->phychan = ch;
894 	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
895 		 ch->id,
896 		 ch->signal,
897 		 plchan->name);
898 
899 got_channel:
900 	/* Assign the flow control signal to this channel */
901 	if (txd->direction == DMA_MEM_TO_DEV)
902 		txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
903 	else if (txd->direction == DMA_DEV_TO_MEM)
904 		txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
905 
906 	plchan->phychan_hold++;
907 
908 	return 0;
909 }
910 
911 static void release_phy_channel(struct pl08x_dma_chan *plchan)
912 {
913 	struct pl08x_driver_data *pl08x = plchan->host;
914 
915 	if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
916 		pl08x->pd->put_signal(plchan);
917 		plchan->phychan->signal = -1;
918 	}
919 	pl08x_put_phy_channel(pl08x, plchan->phychan);
920 	plchan->phychan = NULL;
921 }
922 
923 static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
924 {
925 	struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
926 	struct pl08x_txd *txd = to_pl08x_txd(tx);
927 	unsigned long flags;
928 	dma_cookie_t cookie;
929 
930 	spin_lock_irqsave(&plchan->lock, flags);
931 	cookie = dma_cookie_assign(tx);
932 
933 	/* Put this onto the pending list */
934 	list_add_tail(&txd->node, &plchan->pend_list);
935 
936 	/*
937 	 * If there was no physical channel available for this memcpy,
938 	 * stack the request up and indicate that the channel is waiting
939 	 * for a free physical channel.
940 	 */
941 	if (!plchan->slave && !plchan->phychan) {
942 		/* Do this memcpy whenever there is a channel ready */
943 		plchan->state = PL08X_CHAN_WAITING;
944 		plchan->waiting = txd;
945 	} else {
946 		plchan->phychan_hold--;
947 	}
948 
949 	spin_unlock_irqrestore(&plchan->lock, flags);
950 
951 	return cookie;
952 }
953 
954 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
955 		struct dma_chan *chan, unsigned long flags)
956 {
957 	struct dma_async_tx_descriptor *retval = NULL;
958 
959 	return retval;
960 }
961 
962 /*
963  * Code accessing dma_async_is_complete() in a tight loop may give problems.
964  * If slaves are relying on interrupts to signal completion this function
965  * must not be called with interrupts disabled.
966  */
967 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
968 		dma_cookie_t cookie, struct dma_tx_state *txstate)
969 {
970 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
971 	enum dma_status ret;
972 
973 	ret = dma_cookie_status(chan, cookie, txstate);
974 	if (ret == DMA_SUCCESS)
975 		return ret;
976 
977 	/*
978 	 * This cookie not complete yet
979 	 * Get number of bytes left in the active transactions and queue
980 	 */
981 	dma_set_residue(txstate, pl08x_getbytes_chan(plchan));
982 
983 	if (plchan->state == PL08X_CHAN_PAUSED)
984 		return DMA_PAUSED;
985 
986 	/* Whether waiting or running, we're in progress */
987 	return DMA_IN_PROGRESS;
988 }
989 
990 /* PrimeCell DMA extension */
991 struct burst_table {
992 	u32 burstwords;
993 	u32 reg;
994 };
995 
996 static const struct burst_table burst_sizes[] = {
997 	{
998 		.burstwords = 256,
999 		.reg = PL080_BSIZE_256,
1000 	},
1001 	{
1002 		.burstwords = 128,
1003 		.reg = PL080_BSIZE_128,
1004 	},
1005 	{
1006 		.burstwords = 64,
1007 		.reg = PL080_BSIZE_64,
1008 	},
1009 	{
1010 		.burstwords = 32,
1011 		.reg = PL080_BSIZE_32,
1012 	},
1013 	{
1014 		.burstwords = 16,
1015 		.reg = PL080_BSIZE_16,
1016 	},
1017 	{
1018 		.burstwords = 8,
1019 		.reg = PL080_BSIZE_8,
1020 	},
1021 	{
1022 		.burstwords = 4,
1023 		.reg = PL080_BSIZE_4,
1024 	},
1025 	{
1026 		.burstwords = 0,
1027 		.reg = PL080_BSIZE_1,
1028 	},
1029 };
1030 
1031 /*
1032  * Given the source and destination available bus masks, select which
1033  * will be routed to each port.  We try to have source and destination
1034  * on separate ports, but always respect the allowable settings.
1035  */
1036 static u32 pl08x_select_bus(u8 src, u8 dst)
1037 {
1038 	u32 cctl = 0;
1039 
1040 	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1041 		cctl |= PL080_CONTROL_DST_AHB2;
1042 	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1043 		cctl |= PL080_CONTROL_SRC_AHB2;
1044 
1045 	return cctl;
1046 }
1047 
1048 static u32 pl08x_cctl(u32 cctl)
1049 {
1050 	cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1051 		  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1052 		  PL080_CONTROL_PROT_MASK);
1053 
1054 	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
1055 	return cctl | PL080_CONTROL_PROT_SYS;
1056 }
1057 
1058 static u32 pl08x_width(enum dma_slave_buswidth width)
1059 {
1060 	switch (width) {
1061 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
1062 		return PL080_WIDTH_8BIT;
1063 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
1064 		return PL080_WIDTH_16BIT;
1065 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
1066 		return PL080_WIDTH_32BIT;
1067 	default:
1068 		return ~0;
1069 	}
1070 }
1071 
1072 static u32 pl08x_burst(u32 maxburst)
1073 {
1074 	int i;
1075 
1076 	for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1077 		if (burst_sizes[i].burstwords <= maxburst)
1078 			break;
1079 
1080 	return burst_sizes[i].reg;
1081 }
1082 
1083 static int dma_set_runtime_config(struct dma_chan *chan,
1084 				  struct dma_slave_config *config)
1085 {
1086 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1087 	struct pl08x_driver_data *pl08x = plchan->host;
1088 	enum dma_slave_buswidth addr_width;
1089 	u32 width, burst, maxburst;
1090 	u32 cctl = 0;
1091 
1092 	if (!plchan->slave)
1093 		return -EINVAL;
1094 
1095 	/* Transfer direction */
1096 	plchan->runtime_direction = config->direction;
1097 	if (config->direction == DMA_MEM_TO_DEV) {
1098 		addr_width = config->dst_addr_width;
1099 		maxburst = config->dst_maxburst;
1100 	} else if (config->direction == DMA_DEV_TO_MEM) {
1101 		addr_width = config->src_addr_width;
1102 		maxburst = config->src_maxburst;
1103 	} else {
1104 		dev_err(&pl08x->adev->dev,
1105 			"bad runtime_config: alien transfer direction\n");
1106 		return -EINVAL;
1107 	}
1108 
1109 	width = pl08x_width(addr_width);
1110 	if (width == ~0) {
1111 		dev_err(&pl08x->adev->dev,
1112 			"bad runtime_config: alien address width\n");
1113 		return -EINVAL;
1114 	}
1115 
1116 	cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1117 	cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1118 
1119 	/*
1120 	 * If this channel will only request single transfers, set this
1121 	 * down to ONE element.  Also select one element if no maxburst
1122 	 * is specified.
1123 	 */
1124 	if (plchan->cd->single)
1125 		maxburst = 1;
1126 
1127 	burst = pl08x_burst(maxburst);
1128 	cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1129 	cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1130 
1131 	plchan->device_fc = config->device_fc;
1132 
1133 	if (plchan->runtime_direction == DMA_DEV_TO_MEM) {
1134 		plchan->src_addr = config->src_addr;
1135 		plchan->src_cctl = pl08x_cctl(cctl) | PL080_CONTROL_DST_INCR |
1136 			pl08x_select_bus(plchan->cd->periph_buses,
1137 					 pl08x->mem_buses);
1138 	} else {
1139 		plchan->dst_addr = config->dst_addr;
1140 		plchan->dst_cctl = pl08x_cctl(cctl) | PL080_CONTROL_SRC_INCR |
1141 			pl08x_select_bus(pl08x->mem_buses,
1142 					 plchan->cd->periph_buses);
1143 	}
1144 
1145 	dev_dbg(&pl08x->adev->dev,
1146 		"configured channel %s (%s) for %s, data width %d, "
1147 		"maxburst %d words, LE, CCTL=0x%08x\n",
1148 		dma_chan_name(chan), plchan->name,
1149 		(config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
1150 		addr_width,
1151 		maxburst,
1152 		cctl);
1153 
1154 	return 0;
1155 }
1156 
1157 /*
1158  * Slave transactions callback to the slave device to allow
1159  * synchronization of slave DMA signals with the DMAC enable
1160  */
1161 static void pl08x_issue_pending(struct dma_chan *chan)
1162 {
1163 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1164 	unsigned long flags;
1165 
1166 	spin_lock_irqsave(&plchan->lock, flags);
1167 	/* Something is already active, or we're waiting for a channel... */
1168 	if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1169 		spin_unlock_irqrestore(&plchan->lock, flags);
1170 		return;
1171 	}
1172 
1173 	/* Take the first element in the queue and execute it */
1174 	if (!list_empty(&plchan->pend_list)) {
1175 		struct pl08x_txd *next;
1176 
1177 		next = list_first_entry(&plchan->pend_list,
1178 					struct pl08x_txd,
1179 					node);
1180 		list_del(&next->node);
1181 		plchan->state = PL08X_CHAN_RUNNING;
1182 
1183 		pl08x_start_txd(plchan, next);
1184 	}
1185 
1186 	spin_unlock_irqrestore(&plchan->lock, flags);
1187 }
1188 
1189 static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1190 					struct pl08x_txd *txd)
1191 {
1192 	struct pl08x_driver_data *pl08x = plchan->host;
1193 	unsigned long flags;
1194 	int num_llis, ret;
1195 
1196 	num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1197 	if (!num_llis) {
1198 		spin_lock_irqsave(&plchan->lock, flags);
1199 		pl08x_free_txd(pl08x, txd);
1200 		spin_unlock_irqrestore(&plchan->lock, flags);
1201 		return -EINVAL;
1202 	}
1203 
1204 	spin_lock_irqsave(&plchan->lock, flags);
1205 
1206 	/*
1207 	 * See if we already have a physical channel allocated,
1208 	 * else this is the time to try to get one.
1209 	 */
1210 	ret = prep_phy_channel(plchan, txd);
1211 	if (ret) {
1212 		/*
1213 		 * No physical channel was available.
1214 		 *
1215 		 * memcpy transfers can be sorted out at submission time.
1216 		 *
1217 		 * Slave transfers may have been denied due to platform
1218 		 * channel muxing restrictions.  Since there is no guarantee
1219 		 * that this will ever be resolved, and the signal must be
1220 		 * acquired AFTER acquiring the physical channel, we will let
1221 		 * them be NACK:ed with -EBUSY here. The drivers can retry
1222 		 * the prep() call if they are eager on doing this using DMA.
1223 		 */
1224 		if (plchan->slave) {
1225 			pl08x_free_txd_list(pl08x, plchan);
1226 			pl08x_free_txd(pl08x, txd);
1227 			spin_unlock_irqrestore(&plchan->lock, flags);
1228 			return -EBUSY;
1229 		}
1230 	} else
1231 		/*
1232 		 * Else we're all set, paused and ready to roll, status
1233 		 * will switch to PL08X_CHAN_RUNNING when we call
1234 		 * issue_pending(). If there is something running on the
1235 		 * channel already we don't change its state.
1236 		 */
1237 		if (plchan->state == PL08X_CHAN_IDLE)
1238 			plchan->state = PL08X_CHAN_PAUSED;
1239 
1240 	spin_unlock_irqrestore(&plchan->lock, flags);
1241 
1242 	return 0;
1243 }
1244 
1245 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
1246 	unsigned long flags)
1247 {
1248 	struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1249 
1250 	if (txd) {
1251 		dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1252 		txd->tx.flags = flags;
1253 		txd->tx.tx_submit = pl08x_tx_submit;
1254 		INIT_LIST_HEAD(&txd->node);
1255 		INIT_LIST_HEAD(&txd->dsg_list);
1256 
1257 		/* Always enable error and terminal interrupts */
1258 		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1259 			    PL080_CONFIG_TC_IRQ_MASK;
1260 	}
1261 	return txd;
1262 }
1263 
1264 /*
1265  * Initialize a descriptor to be used by memcpy submit
1266  */
1267 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1268 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1269 		size_t len, unsigned long flags)
1270 {
1271 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1272 	struct pl08x_driver_data *pl08x = plchan->host;
1273 	struct pl08x_txd *txd;
1274 	struct pl08x_sg *dsg;
1275 	int ret;
1276 
1277 	txd = pl08x_get_txd(plchan, flags);
1278 	if (!txd) {
1279 		dev_err(&pl08x->adev->dev,
1280 			"%s no memory for descriptor\n", __func__);
1281 		return NULL;
1282 	}
1283 
1284 	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1285 	if (!dsg) {
1286 		pl08x_free_txd(pl08x, txd);
1287 		dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1288 				__func__);
1289 		return NULL;
1290 	}
1291 	list_add_tail(&dsg->node, &txd->dsg_list);
1292 
1293 	txd->direction = DMA_NONE;
1294 	dsg->src_addr = src;
1295 	dsg->dst_addr = dest;
1296 	dsg->len = len;
1297 
1298 	/* Set platform data for m2m */
1299 	txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1300 	txd->cctl = pl08x->pd->memcpy_channel.cctl &
1301 			~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1302 
1303 	/* Both to be incremented or the code will break */
1304 	txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1305 
1306 	if (pl08x->vd->dualmaster)
1307 		txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1308 					      pl08x->mem_buses);
1309 
1310 	ret = pl08x_prep_channel_resources(plchan, txd);
1311 	if (ret)
1312 		return NULL;
1313 
1314 	return &txd->tx;
1315 }
1316 
1317 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1318 		struct dma_chan *chan, struct scatterlist *sgl,
1319 		unsigned int sg_len, enum dma_transfer_direction direction,
1320 		unsigned long flags, void *context)
1321 {
1322 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1323 	struct pl08x_driver_data *pl08x = plchan->host;
1324 	struct pl08x_txd *txd;
1325 	struct pl08x_sg *dsg;
1326 	struct scatterlist *sg;
1327 	dma_addr_t slave_addr;
1328 	int ret, tmp;
1329 
1330 	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1331 			__func__, sg_dma_len(sgl), plchan->name);
1332 
1333 	txd = pl08x_get_txd(plchan, flags);
1334 	if (!txd) {
1335 		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1336 		return NULL;
1337 	}
1338 
1339 	if (direction != plchan->runtime_direction)
1340 		dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
1341 			"the direction configured for the PrimeCell\n",
1342 			__func__);
1343 
1344 	/*
1345 	 * Set up addresses, the PrimeCell configured address
1346 	 * will take precedence since this may configure the
1347 	 * channel target address dynamically at runtime.
1348 	 */
1349 	txd->direction = direction;
1350 
1351 	if (direction == DMA_MEM_TO_DEV) {
1352 		txd->cctl = plchan->dst_cctl;
1353 		slave_addr = plchan->dst_addr;
1354 	} else if (direction == DMA_DEV_TO_MEM) {
1355 		txd->cctl = plchan->src_cctl;
1356 		slave_addr = plchan->src_addr;
1357 	} else {
1358 		pl08x_free_txd(pl08x, txd);
1359 		dev_err(&pl08x->adev->dev,
1360 			"%s direction unsupported\n", __func__);
1361 		return NULL;
1362 	}
1363 
1364 	if (plchan->device_fc)
1365 		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1366 			PL080_FLOW_PER2MEM_PER;
1367 	else
1368 		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1369 			PL080_FLOW_PER2MEM;
1370 
1371 	txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1372 
1373 	for_each_sg(sgl, sg, sg_len, tmp) {
1374 		dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1375 		if (!dsg) {
1376 			pl08x_free_txd(pl08x, txd);
1377 			dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1378 					__func__);
1379 			return NULL;
1380 		}
1381 		list_add_tail(&dsg->node, &txd->dsg_list);
1382 
1383 		dsg->len = sg_dma_len(sg);
1384 		if (direction == DMA_MEM_TO_DEV) {
1385 			dsg->src_addr = sg_dma_address(sg);
1386 			dsg->dst_addr = slave_addr;
1387 		} else {
1388 			dsg->src_addr = slave_addr;
1389 			dsg->dst_addr = sg_dma_address(sg);
1390 		}
1391 	}
1392 
1393 	ret = pl08x_prep_channel_resources(plchan, txd);
1394 	if (ret)
1395 		return NULL;
1396 
1397 	return &txd->tx;
1398 }
1399 
1400 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1401 			 unsigned long arg)
1402 {
1403 	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1404 	struct pl08x_driver_data *pl08x = plchan->host;
1405 	unsigned long flags;
1406 	int ret = 0;
1407 
1408 	/* Controls applicable to inactive channels */
1409 	if (cmd == DMA_SLAVE_CONFIG) {
1410 		return dma_set_runtime_config(chan,
1411 					      (struct dma_slave_config *)arg);
1412 	}
1413 
1414 	/*
1415 	 * Anything succeeds on channels with no physical allocation and
1416 	 * no queued transfers.
1417 	 */
1418 	spin_lock_irqsave(&plchan->lock, flags);
1419 	if (!plchan->phychan && !plchan->at) {
1420 		spin_unlock_irqrestore(&plchan->lock, flags);
1421 		return 0;
1422 	}
1423 
1424 	switch (cmd) {
1425 	case DMA_TERMINATE_ALL:
1426 		plchan->state = PL08X_CHAN_IDLE;
1427 
1428 		if (plchan->phychan) {
1429 			pl08x_terminate_phy_chan(pl08x, plchan->phychan);
1430 
1431 			/*
1432 			 * Mark physical channel as free and free any slave
1433 			 * signal
1434 			 */
1435 			release_phy_channel(plchan);
1436 			plchan->phychan_hold = 0;
1437 		}
1438 		/* Dequeue jobs and free LLIs */
1439 		if (plchan->at) {
1440 			pl08x_free_txd(pl08x, plchan->at);
1441 			plchan->at = NULL;
1442 		}
1443 		/* Dequeue jobs not yet fired as well */
1444 		pl08x_free_txd_list(pl08x, plchan);
1445 		break;
1446 	case DMA_PAUSE:
1447 		pl08x_pause_phy_chan(plchan->phychan);
1448 		plchan->state = PL08X_CHAN_PAUSED;
1449 		break;
1450 	case DMA_RESUME:
1451 		pl08x_resume_phy_chan(plchan->phychan);
1452 		plchan->state = PL08X_CHAN_RUNNING;
1453 		break;
1454 	default:
1455 		/* Unknown command */
1456 		ret = -ENXIO;
1457 		break;
1458 	}
1459 
1460 	spin_unlock_irqrestore(&plchan->lock, flags);
1461 
1462 	return ret;
1463 }
1464 
1465 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1466 {
1467 	struct pl08x_dma_chan *plchan;
1468 	char *name = chan_id;
1469 
1470 	/* Reject channels for devices not bound to this driver */
1471 	if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1472 		return false;
1473 
1474 	plchan = to_pl08x_chan(chan);
1475 
1476 	/* Check that the channel is not taken! */
1477 	if (!strcmp(plchan->name, name))
1478 		return true;
1479 
1480 	return false;
1481 }
1482 
1483 /*
1484  * Just check that the device is there and active
1485  * TODO: turn this bit on/off depending on the number of physical channels
1486  * actually used, if it is zero... well shut it off. That will save some
1487  * power. Cut the clock at the same time.
1488  */
1489 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1490 {
1491 	/* The Nomadik variant does not have the config register */
1492 	if (pl08x->vd->nomadik)
1493 		return;
1494 	writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1495 }
1496 
1497 static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1498 {
1499 	struct device *dev = txd->tx.chan->device->dev;
1500 	struct pl08x_sg *dsg;
1501 
1502 	if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1503 		if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1504 			list_for_each_entry(dsg, &txd->dsg_list, node)
1505 				dma_unmap_single(dev, dsg->src_addr, dsg->len,
1506 						DMA_TO_DEVICE);
1507 		else {
1508 			list_for_each_entry(dsg, &txd->dsg_list, node)
1509 				dma_unmap_page(dev, dsg->src_addr, dsg->len,
1510 						DMA_TO_DEVICE);
1511 		}
1512 	}
1513 	if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1514 		if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1515 			list_for_each_entry(dsg, &txd->dsg_list, node)
1516 				dma_unmap_single(dev, dsg->dst_addr, dsg->len,
1517 						DMA_FROM_DEVICE);
1518 		else
1519 			list_for_each_entry(dsg, &txd->dsg_list, node)
1520 				dma_unmap_page(dev, dsg->dst_addr, dsg->len,
1521 						DMA_FROM_DEVICE);
1522 	}
1523 }
1524 
1525 static void pl08x_tasklet(unsigned long data)
1526 {
1527 	struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1528 	struct pl08x_driver_data *pl08x = plchan->host;
1529 	struct pl08x_txd *txd;
1530 	unsigned long flags;
1531 
1532 	spin_lock_irqsave(&plchan->lock, flags);
1533 
1534 	txd = plchan->at;
1535 	plchan->at = NULL;
1536 
1537 	if (txd) {
1538 		/* Update last completed */
1539 		dma_cookie_complete(&txd->tx);
1540 	}
1541 
1542 	/* If a new descriptor is queued, set it up plchan->at is NULL here */
1543 	if (!list_empty(&plchan->pend_list)) {
1544 		struct pl08x_txd *next;
1545 
1546 		next = list_first_entry(&plchan->pend_list,
1547 					struct pl08x_txd,
1548 					node);
1549 		list_del(&next->node);
1550 
1551 		pl08x_start_txd(plchan, next);
1552 	} else if (plchan->phychan_hold) {
1553 		/*
1554 		 * This channel is still in use - we have a new txd being
1555 		 * prepared and will soon be queued.  Don't give up the
1556 		 * physical channel.
1557 		 */
1558 	} else {
1559 		struct pl08x_dma_chan *waiting = NULL;
1560 
1561 		/*
1562 		 * No more jobs, so free up the physical channel
1563 		 * Free any allocated signal on slave transfers too
1564 		 */
1565 		release_phy_channel(plchan);
1566 		plchan->state = PL08X_CHAN_IDLE;
1567 
1568 		/*
1569 		 * And NOW before anyone else can grab that free:d up
1570 		 * physical channel, see if there is some memcpy pending
1571 		 * that seriously needs to start because of being stacked
1572 		 * up while we were choking the physical channels with data.
1573 		 */
1574 		list_for_each_entry(waiting, &pl08x->memcpy.channels,
1575 				    chan.device_node) {
1576 			if (waiting->state == PL08X_CHAN_WAITING &&
1577 				waiting->waiting != NULL) {
1578 				int ret;
1579 
1580 				/* This should REALLY not fail now */
1581 				ret = prep_phy_channel(waiting,
1582 						       waiting->waiting);
1583 				BUG_ON(ret);
1584 				waiting->phychan_hold--;
1585 				waiting->state = PL08X_CHAN_RUNNING;
1586 				waiting->waiting = NULL;
1587 				pl08x_issue_pending(&waiting->chan);
1588 				break;
1589 			}
1590 		}
1591 	}
1592 
1593 	spin_unlock_irqrestore(&plchan->lock, flags);
1594 
1595 	if (txd) {
1596 		dma_async_tx_callback callback = txd->tx.callback;
1597 		void *callback_param = txd->tx.callback_param;
1598 
1599 		/* Don't try to unmap buffers on slave channels */
1600 		if (!plchan->slave)
1601 			pl08x_unmap_buffers(txd);
1602 
1603 		/* Free the descriptor */
1604 		spin_lock_irqsave(&plchan->lock, flags);
1605 		pl08x_free_txd(pl08x, txd);
1606 		spin_unlock_irqrestore(&plchan->lock, flags);
1607 
1608 		/* Callback to signal completion */
1609 		if (callback)
1610 			callback(callback_param);
1611 	}
1612 }
1613 
1614 static irqreturn_t pl08x_irq(int irq, void *dev)
1615 {
1616 	struct pl08x_driver_data *pl08x = dev;
1617 	u32 mask = 0, err, tc, i;
1618 
1619 	/* check & clear - ERR & TC interrupts */
1620 	err = readl(pl08x->base + PL080_ERR_STATUS);
1621 	if (err) {
1622 		dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1623 			__func__, err);
1624 		writel(err, pl08x->base + PL080_ERR_CLEAR);
1625 	}
1626 	tc = readl(pl08x->base + PL080_TC_STATUS);
1627 	if (tc)
1628 		writel(tc, pl08x->base + PL080_TC_CLEAR);
1629 
1630 	if (!err && !tc)
1631 		return IRQ_NONE;
1632 
1633 	for (i = 0; i < pl08x->vd->channels; i++) {
1634 		if (((1 << i) & err) || ((1 << i) & tc)) {
1635 			/* Locate physical channel */
1636 			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1637 			struct pl08x_dma_chan *plchan = phychan->serving;
1638 
1639 			if (!plchan) {
1640 				dev_err(&pl08x->adev->dev,
1641 					"%s Error TC interrupt on unused channel: 0x%08x\n",
1642 					__func__, i);
1643 				continue;
1644 			}
1645 
1646 			/* Schedule tasklet on this channel */
1647 			tasklet_schedule(&plchan->tasklet);
1648 			mask |= (1 << i);
1649 		}
1650 	}
1651 
1652 	return mask ? IRQ_HANDLED : IRQ_NONE;
1653 }
1654 
1655 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1656 {
1657 	u32 cctl = pl08x_cctl(chan->cd->cctl);
1658 
1659 	chan->slave = true;
1660 	chan->name = chan->cd->bus_id;
1661 	chan->src_addr = chan->cd->addr;
1662 	chan->dst_addr = chan->cd->addr;
1663 	chan->src_cctl = cctl | PL080_CONTROL_DST_INCR |
1664 		pl08x_select_bus(chan->cd->periph_buses, chan->host->mem_buses);
1665 	chan->dst_cctl = cctl | PL080_CONTROL_SRC_INCR |
1666 		pl08x_select_bus(chan->host->mem_buses, chan->cd->periph_buses);
1667 }
1668 
1669 /*
1670  * Initialise the DMAC memcpy/slave channels.
1671  * Make a local wrapper to hold required data
1672  */
1673 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1674 		struct dma_device *dmadev, unsigned int channels, bool slave)
1675 {
1676 	struct pl08x_dma_chan *chan;
1677 	int i;
1678 
1679 	INIT_LIST_HEAD(&dmadev->channels);
1680 
1681 	/*
1682 	 * Register as many many memcpy as we have physical channels,
1683 	 * we won't always be able to use all but the code will have
1684 	 * to cope with that situation.
1685 	 */
1686 	for (i = 0; i < channels; i++) {
1687 		chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1688 		if (!chan) {
1689 			dev_err(&pl08x->adev->dev,
1690 				"%s no memory for channel\n", __func__);
1691 			return -ENOMEM;
1692 		}
1693 
1694 		chan->host = pl08x;
1695 		chan->state = PL08X_CHAN_IDLE;
1696 
1697 		if (slave) {
1698 			chan->cd = &pl08x->pd->slave_channels[i];
1699 			pl08x_dma_slave_init(chan);
1700 		} else {
1701 			chan->cd = &pl08x->pd->memcpy_channel;
1702 			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1703 			if (!chan->name) {
1704 				kfree(chan);
1705 				return -ENOMEM;
1706 			}
1707 		}
1708 		if (chan->cd->circular_buffer) {
1709 			dev_err(&pl08x->adev->dev,
1710 				"channel %s: circular buffers not supported\n",
1711 				chan->name);
1712 			kfree(chan);
1713 			continue;
1714 		}
1715 		dev_dbg(&pl08x->adev->dev,
1716 			 "initialize virtual channel \"%s\"\n",
1717 			 chan->name);
1718 
1719 		chan->chan.device = dmadev;
1720 		dma_cookie_init(&chan->chan);
1721 
1722 		spin_lock_init(&chan->lock);
1723 		INIT_LIST_HEAD(&chan->pend_list);
1724 		tasklet_init(&chan->tasklet, pl08x_tasklet,
1725 			     (unsigned long) chan);
1726 
1727 		list_add_tail(&chan->chan.device_node, &dmadev->channels);
1728 	}
1729 	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1730 		 i, slave ? "slave" : "memcpy");
1731 	return i;
1732 }
1733 
1734 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1735 {
1736 	struct pl08x_dma_chan *chan = NULL;
1737 	struct pl08x_dma_chan *next;
1738 
1739 	list_for_each_entry_safe(chan,
1740 				 next, &dmadev->channels, chan.device_node) {
1741 		list_del(&chan->chan.device_node);
1742 		kfree(chan);
1743 	}
1744 }
1745 
1746 #ifdef CONFIG_DEBUG_FS
1747 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1748 {
1749 	switch (state) {
1750 	case PL08X_CHAN_IDLE:
1751 		return "idle";
1752 	case PL08X_CHAN_RUNNING:
1753 		return "running";
1754 	case PL08X_CHAN_PAUSED:
1755 		return "paused";
1756 	case PL08X_CHAN_WAITING:
1757 		return "waiting";
1758 	default:
1759 		break;
1760 	}
1761 	return "UNKNOWN STATE";
1762 }
1763 
1764 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1765 {
1766 	struct pl08x_driver_data *pl08x = s->private;
1767 	struct pl08x_dma_chan *chan;
1768 	struct pl08x_phy_chan *ch;
1769 	unsigned long flags;
1770 	int i;
1771 
1772 	seq_printf(s, "PL08x physical channels:\n");
1773 	seq_printf(s, "CHANNEL:\tUSER:\n");
1774 	seq_printf(s, "--------\t-----\n");
1775 	for (i = 0; i < pl08x->vd->channels; i++) {
1776 		struct pl08x_dma_chan *virt_chan;
1777 
1778 		ch = &pl08x->phy_chans[i];
1779 
1780 		spin_lock_irqsave(&ch->lock, flags);
1781 		virt_chan = ch->serving;
1782 
1783 		seq_printf(s, "%d\t\t%s%s\n",
1784 			   ch->id,
1785 			   virt_chan ? virt_chan->name : "(none)",
1786 			   ch->locked ? " LOCKED" : "");
1787 
1788 		spin_unlock_irqrestore(&ch->lock, flags);
1789 	}
1790 
1791 	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1792 	seq_printf(s, "CHANNEL:\tSTATE:\n");
1793 	seq_printf(s, "--------\t------\n");
1794 	list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1795 		seq_printf(s, "%s\t\t%s\n", chan->name,
1796 			   pl08x_state_str(chan->state));
1797 	}
1798 
1799 	seq_printf(s, "\nPL08x virtual slave channels:\n");
1800 	seq_printf(s, "CHANNEL:\tSTATE:\n");
1801 	seq_printf(s, "--------\t------\n");
1802 	list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1803 		seq_printf(s, "%s\t\t%s\n", chan->name,
1804 			   pl08x_state_str(chan->state));
1805 	}
1806 
1807 	return 0;
1808 }
1809 
1810 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1811 {
1812 	return single_open(file, pl08x_debugfs_show, inode->i_private);
1813 }
1814 
1815 static const struct file_operations pl08x_debugfs_operations = {
1816 	.open		= pl08x_debugfs_open,
1817 	.read		= seq_read,
1818 	.llseek		= seq_lseek,
1819 	.release	= single_release,
1820 };
1821 
1822 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1823 {
1824 	/* Expose a simple debugfs interface to view all clocks */
1825 	(void) debugfs_create_file(dev_name(&pl08x->adev->dev),
1826 			S_IFREG | S_IRUGO, NULL, pl08x,
1827 			&pl08x_debugfs_operations);
1828 }
1829 
1830 #else
1831 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1832 {
1833 }
1834 #endif
1835 
1836 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1837 {
1838 	struct pl08x_driver_data *pl08x;
1839 	const struct vendor_data *vd = id->data;
1840 	int ret = 0;
1841 	int i;
1842 
1843 	ret = amba_request_regions(adev, NULL);
1844 	if (ret)
1845 		return ret;
1846 
1847 	/* Create the driver state holder */
1848 	pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
1849 	if (!pl08x) {
1850 		ret = -ENOMEM;
1851 		goto out_no_pl08x;
1852 	}
1853 
1854 	pm_runtime_set_active(&adev->dev);
1855 	pm_runtime_enable(&adev->dev);
1856 
1857 	/* Initialize memcpy engine */
1858 	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1859 	pl08x->memcpy.dev = &adev->dev;
1860 	pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1861 	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1862 	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1863 	pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1864 	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1865 	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1866 	pl08x->memcpy.device_control = pl08x_control;
1867 
1868 	/* Initialize slave engine */
1869 	dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1870 	pl08x->slave.dev = &adev->dev;
1871 	pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1872 	pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1873 	pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1874 	pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1875 	pl08x->slave.device_issue_pending = pl08x_issue_pending;
1876 	pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1877 	pl08x->slave.device_control = pl08x_control;
1878 
1879 	/* Get the platform data */
1880 	pl08x->pd = dev_get_platdata(&adev->dev);
1881 	if (!pl08x->pd) {
1882 		dev_err(&adev->dev, "no platform data supplied\n");
1883 		goto out_no_platdata;
1884 	}
1885 
1886 	/* Assign useful pointers to the driver state */
1887 	pl08x->adev = adev;
1888 	pl08x->vd = vd;
1889 
1890 	/* By default, AHB1 only.  If dualmaster, from platform */
1891 	pl08x->lli_buses = PL08X_AHB1;
1892 	pl08x->mem_buses = PL08X_AHB1;
1893 	if (pl08x->vd->dualmaster) {
1894 		pl08x->lli_buses = pl08x->pd->lli_buses;
1895 		pl08x->mem_buses = pl08x->pd->mem_buses;
1896 	}
1897 
1898 	/* A DMA memory pool for LLIs, align on 1-byte boundary */
1899 	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1900 			PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1901 	if (!pl08x->pool) {
1902 		ret = -ENOMEM;
1903 		goto out_no_lli_pool;
1904 	}
1905 
1906 	spin_lock_init(&pl08x->lock);
1907 
1908 	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1909 	if (!pl08x->base) {
1910 		ret = -ENOMEM;
1911 		goto out_no_ioremap;
1912 	}
1913 
1914 	/* Turn on the PL08x */
1915 	pl08x_ensure_on(pl08x);
1916 
1917 	/* Attach the interrupt handler */
1918 	writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1919 	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1920 
1921 	ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1922 			  DRIVER_NAME, pl08x);
1923 	if (ret) {
1924 		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1925 			__func__, adev->irq[0]);
1926 		goto out_no_irq;
1927 	}
1928 
1929 	/* Initialize physical channels */
1930 	pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
1931 			GFP_KERNEL);
1932 	if (!pl08x->phy_chans) {
1933 		dev_err(&adev->dev, "%s failed to allocate "
1934 			"physical channel holders\n",
1935 			__func__);
1936 		goto out_no_phychans;
1937 	}
1938 
1939 	for (i = 0; i < vd->channels; i++) {
1940 		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1941 
1942 		ch->id = i;
1943 		ch->base = pl08x->base + PL080_Cx_BASE(i);
1944 		spin_lock_init(&ch->lock);
1945 		ch->signal = -1;
1946 
1947 		/*
1948 		 * Nomadik variants can have channels that are locked
1949 		 * down for the secure world only. Lock up these channels
1950 		 * by perpetually serving a dummy virtual channel.
1951 		 */
1952 		if (vd->nomadik) {
1953 			u32 val;
1954 
1955 			val = readl(ch->base + PL080_CH_CONFIG);
1956 			if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
1957 				dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
1958 				ch->locked = true;
1959 			}
1960 		}
1961 
1962 		dev_dbg(&adev->dev, "physical channel %d is %s\n",
1963 			i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1964 	}
1965 
1966 	/* Register as many memcpy channels as there are physical channels */
1967 	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1968 					      pl08x->vd->channels, false);
1969 	if (ret <= 0) {
1970 		dev_warn(&pl08x->adev->dev,
1971 			 "%s failed to enumerate memcpy channels - %d\n",
1972 			 __func__, ret);
1973 		goto out_no_memcpy;
1974 	}
1975 	pl08x->memcpy.chancnt = ret;
1976 
1977 	/* Register slave channels */
1978 	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1979 			pl08x->pd->num_slave_channels, true);
1980 	if (ret <= 0) {
1981 		dev_warn(&pl08x->adev->dev,
1982 			"%s failed to enumerate slave channels - %d\n",
1983 				__func__, ret);
1984 		goto out_no_slave;
1985 	}
1986 	pl08x->slave.chancnt = ret;
1987 
1988 	ret = dma_async_device_register(&pl08x->memcpy);
1989 	if (ret) {
1990 		dev_warn(&pl08x->adev->dev,
1991 			"%s failed to register memcpy as an async device - %d\n",
1992 			__func__, ret);
1993 		goto out_no_memcpy_reg;
1994 	}
1995 
1996 	ret = dma_async_device_register(&pl08x->slave);
1997 	if (ret) {
1998 		dev_warn(&pl08x->adev->dev,
1999 			"%s failed to register slave as an async device - %d\n",
2000 			__func__, ret);
2001 		goto out_no_slave_reg;
2002 	}
2003 
2004 	amba_set_drvdata(adev, pl08x);
2005 	init_pl08x_debugfs(pl08x);
2006 	dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
2007 		 amba_part(adev), amba_rev(adev),
2008 		 (unsigned long long)adev->res.start, adev->irq[0]);
2009 
2010 	pm_runtime_put(&adev->dev);
2011 	return 0;
2012 
2013 out_no_slave_reg:
2014 	dma_async_device_unregister(&pl08x->memcpy);
2015 out_no_memcpy_reg:
2016 	pl08x_free_virtual_channels(&pl08x->slave);
2017 out_no_slave:
2018 	pl08x_free_virtual_channels(&pl08x->memcpy);
2019 out_no_memcpy:
2020 	kfree(pl08x->phy_chans);
2021 out_no_phychans:
2022 	free_irq(adev->irq[0], pl08x);
2023 out_no_irq:
2024 	iounmap(pl08x->base);
2025 out_no_ioremap:
2026 	dma_pool_destroy(pl08x->pool);
2027 out_no_lli_pool:
2028 out_no_platdata:
2029 	pm_runtime_put(&adev->dev);
2030 	pm_runtime_disable(&adev->dev);
2031 
2032 	kfree(pl08x);
2033 out_no_pl08x:
2034 	amba_release_regions(adev);
2035 	return ret;
2036 }
2037 
2038 /* PL080 has 8 channels and the PL080 have just 2 */
2039 static struct vendor_data vendor_pl080 = {
2040 	.channels = 8,
2041 	.dualmaster = true,
2042 };
2043 
2044 static struct vendor_data vendor_nomadik = {
2045 	.channels = 8,
2046 	.dualmaster = true,
2047 	.nomadik = true,
2048 };
2049 
2050 static struct vendor_data vendor_pl081 = {
2051 	.channels = 2,
2052 	.dualmaster = false,
2053 };
2054 
2055 static struct amba_id pl08x_ids[] = {
2056 	/* PL080 */
2057 	{
2058 		.id	= 0x00041080,
2059 		.mask	= 0x000fffff,
2060 		.data	= &vendor_pl080,
2061 	},
2062 	/* PL081 */
2063 	{
2064 		.id	= 0x00041081,
2065 		.mask	= 0x000fffff,
2066 		.data	= &vendor_pl081,
2067 	},
2068 	/* Nomadik 8815 PL080 variant */
2069 	{
2070 		.id	= 0x00280080,
2071 		.mask	= 0x00ffffff,
2072 		.data	= &vendor_nomadik,
2073 	},
2074 	{ 0, 0 },
2075 };
2076 
2077 MODULE_DEVICE_TABLE(amba, pl08x_ids);
2078 
2079 static struct amba_driver pl08x_amba_driver = {
2080 	.drv.name	= DRIVER_NAME,
2081 	.id_table	= pl08x_ids,
2082 	.probe		= pl08x_probe,
2083 };
2084 
2085 static int __init pl08x_init(void)
2086 {
2087 	int retval;
2088 	retval = amba_driver_register(&pl08x_amba_driver);
2089 	if (retval)
2090 		printk(KERN_WARNING DRIVER_NAME
2091 		       "failed to register as an AMBA device (%d)\n",
2092 		       retval);
2093 	return retval;
2094 }
2095 subsys_initcall(pl08x_init);
2096