1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * DMABUF System heap exporter 4 * 5 * Copyright (C) 2011 Google, Inc. 6 * Copyright (C) 2019, 2020 Linaro Ltd. 7 * 8 * Portions based off of Andrew Davis' SRAM heap: 9 * Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com/ 10 * Andrew F. Davis <afd@ti.com> 11 */ 12 13 #include <linux/dma-buf.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/dma-heap.h> 16 #include <linux/err.h> 17 #include <linux/highmem.h> 18 #include <linux/mm.h> 19 #include <linux/module.h> 20 #include <linux/scatterlist.h> 21 #include <linux/slab.h> 22 #include <linux/vmalloc.h> 23 24 struct system_heap_buffer { 25 struct dma_heap *heap; 26 struct list_head attachments; 27 struct mutex lock; 28 unsigned long len; 29 struct sg_table sg_table; 30 int vmap_cnt; 31 void *vaddr; 32 }; 33 34 struct dma_heap_attachment { 35 struct device *dev; 36 struct sg_table table; 37 struct list_head list; 38 bool mapped; 39 }; 40 41 #define LOW_ORDER_GFP (GFP_HIGHUSER | __GFP_ZERO) 42 #define HIGH_ORDER_GFP (((GFP_HIGHUSER | __GFP_ZERO | __GFP_NOWARN \ 43 | __GFP_NORETRY) & ~__GFP_RECLAIM) \ 44 | __GFP_COMP) 45 static gfp_t order_flags[] = {HIGH_ORDER_GFP, HIGH_ORDER_GFP, LOW_ORDER_GFP}; 46 /* 47 * The selection of the orders used for allocation (1MB, 64K, 4K) is designed 48 * to match with the sizes often found in IOMMUs. Using order 4 pages instead 49 * of order 0 pages can significantly improve the performance of many IOMMUs 50 * by reducing TLB pressure and time spent updating page tables. 51 */ 52 static const unsigned int orders[] = {8, 4, 0}; 53 #define NUM_ORDERS ARRAY_SIZE(orders) 54 55 static int dup_sg_table(struct sg_table *from, struct sg_table *to) 56 { 57 struct scatterlist *sg, *new_sg; 58 int ret, i; 59 60 ret = sg_alloc_table(to, from->orig_nents, GFP_KERNEL); 61 if (ret) 62 return ret; 63 64 new_sg = to->sgl; 65 for_each_sgtable_sg(from, sg, i) { 66 sg_set_page(new_sg, sg_page(sg), sg->length, sg->offset); 67 new_sg = sg_next(new_sg); 68 } 69 70 return 0; 71 } 72 73 static int system_heap_attach(struct dma_buf *dmabuf, 74 struct dma_buf_attachment *attachment) 75 { 76 struct system_heap_buffer *buffer = dmabuf->priv; 77 struct dma_heap_attachment *a; 78 int ret; 79 80 a = kzalloc(sizeof(*a), GFP_KERNEL); 81 if (!a) 82 return -ENOMEM; 83 84 ret = dup_sg_table(&buffer->sg_table, &a->table); 85 if (ret) { 86 kfree(a); 87 return ret; 88 } 89 90 a->dev = attachment->dev; 91 INIT_LIST_HEAD(&a->list); 92 a->mapped = false; 93 94 attachment->priv = a; 95 96 mutex_lock(&buffer->lock); 97 list_add(&a->list, &buffer->attachments); 98 mutex_unlock(&buffer->lock); 99 100 return 0; 101 } 102 103 static void system_heap_detach(struct dma_buf *dmabuf, 104 struct dma_buf_attachment *attachment) 105 { 106 struct system_heap_buffer *buffer = dmabuf->priv; 107 struct dma_heap_attachment *a = attachment->priv; 108 109 mutex_lock(&buffer->lock); 110 list_del(&a->list); 111 mutex_unlock(&buffer->lock); 112 113 sg_free_table(&a->table); 114 kfree(a); 115 } 116 117 static struct sg_table *system_heap_map_dma_buf(struct dma_buf_attachment *attachment, 118 enum dma_data_direction direction) 119 { 120 struct dma_heap_attachment *a = attachment->priv; 121 struct sg_table *table = &a->table; 122 int ret; 123 124 ret = dma_map_sgtable(attachment->dev, table, direction, 0); 125 if (ret) 126 return ERR_PTR(ret); 127 128 a->mapped = true; 129 return table; 130 } 131 132 static void system_heap_unmap_dma_buf(struct dma_buf_attachment *attachment, 133 struct sg_table *table, 134 enum dma_data_direction direction) 135 { 136 struct dma_heap_attachment *a = attachment->priv; 137 138 a->mapped = false; 139 dma_unmap_sgtable(attachment->dev, table, direction, 0); 140 } 141 142 static int system_heap_dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 143 enum dma_data_direction direction) 144 { 145 struct system_heap_buffer *buffer = dmabuf->priv; 146 struct dma_heap_attachment *a; 147 148 mutex_lock(&buffer->lock); 149 150 if (buffer->vmap_cnt) 151 invalidate_kernel_vmap_range(buffer->vaddr, buffer->len); 152 153 list_for_each_entry(a, &buffer->attachments, list) { 154 if (!a->mapped) 155 continue; 156 dma_sync_sgtable_for_cpu(a->dev, &a->table, direction); 157 } 158 mutex_unlock(&buffer->lock); 159 160 return 0; 161 } 162 163 static int system_heap_dma_buf_end_cpu_access(struct dma_buf *dmabuf, 164 enum dma_data_direction direction) 165 { 166 struct system_heap_buffer *buffer = dmabuf->priv; 167 struct dma_heap_attachment *a; 168 169 mutex_lock(&buffer->lock); 170 171 if (buffer->vmap_cnt) 172 flush_kernel_vmap_range(buffer->vaddr, buffer->len); 173 174 list_for_each_entry(a, &buffer->attachments, list) { 175 if (!a->mapped) 176 continue; 177 dma_sync_sgtable_for_device(a->dev, &a->table, direction); 178 } 179 mutex_unlock(&buffer->lock); 180 181 return 0; 182 } 183 184 static int system_heap_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma) 185 { 186 struct system_heap_buffer *buffer = dmabuf->priv; 187 struct sg_table *table = &buffer->sg_table; 188 unsigned long addr = vma->vm_start; 189 unsigned long pgoff = vma->vm_pgoff; 190 struct scatterlist *sg; 191 int i, ret; 192 193 for_each_sgtable_sg(table, sg, i) { 194 unsigned long n = sg->length >> PAGE_SHIFT; 195 196 if (pgoff < n) 197 break; 198 pgoff -= n; 199 } 200 201 for (; sg && addr < vma->vm_end; sg = sg_next(sg)) { 202 unsigned long n = (sg->length >> PAGE_SHIFT) - pgoff; 203 struct page *page = sg_page(sg) + pgoff; 204 unsigned long size = n << PAGE_SHIFT; 205 206 if (addr + size > vma->vm_end) 207 size = vma->vm_end - addr; 208 209 ret = remap_pfn_range(vma, addr, page_to_pfn(page), 210 size, vma->vm_page_prot); 211 if (ret) 212 return ret; 213 214 addr += size; 215 pgoff = 0; 216 } 217 218 return 0; 219 } 220 221 static void *system_heap_do_vmap(struct system_heap_buffer *buffer) 222 { 223 struct sg_table *table = &buffer->sg_table; 224 int npages = PAGE_ALIGN(buffer->len) / PAGE_SIZE; 225 struct page **pages = vmalloc(sizeof(struct page *) * npages); 226 struct page **tmp = pages; 227 struct sg_page_iter piter; 228 void *vaddr; 229 230 if (!pages) 231 return ERR_PTR(-ENOMEM); 232 233 for_each_sgtable_page(table, &piter, 0) { 234 WARN_ON(tmp - pages >= npages); 235 *tmp++ = sg_page_iter_page(&piter); 236 } 237 238 vaddr = vmap(pages, npages, VM_MAP, PAGE_KERNEL); 239 vfree(pages); 240 241 if (!vaddr) 242 return ERR_PTR(-ENOMEM); 243 244 return vaddr; 245 } 246 247 static int system_heap_vmap(struct dma_buf *dmabuf, struct iosys_map *map) 248 { 249 struct system_heap_buffer *buffer = dmabuf->priv; 250 void *vaddr; 251 int ret = 0; 252 253 mutex_lock(&buffer->lock); 254 if (buffer->vmap_cnt) { 255 buffer->vmap_cnt++; 256 iosys_map_set_vaddr(map, buffer->vaddr); 257 goto out; 258 } 259 260 vaddr = system_heap_do_vmap(buffer); 261 if (IS_ERR(vaddr)) { 262 ret = PTR_ERR(vaddr); 263 goto out; 264 } 265 266 buffer->vaddr = vaddr; 267 buffer->vmap_cnt++; 268 iosys_map_set_vaddr(map, buffer->vaddr); 269 out: 270 mutex_unlock(&buffer->lock); 271 272 return ret; 273 } 274 275 static void system_heap_vunmap(struct dma_buf *dmabuf, struct iosys_map *map) 276 { 277 struct system_heap_buffer *buffer = dmabuf->priv; 278 279 mutex_lock(&buffer->lock); 280 if (!--buffer->vmap_cnt) { 281 vunmap(buffer->vaddr); 282 buffer->vaddr = NULL; 283 } 284 mutex_unlock(&buffer->lock); 285 iosys_map_clear(map); 286 } 287 288 static void system_heap_dma_buf_release(struct dma_buf *dmabuf) 289 { 290 struct system_heap_buffer *buffer = dmabuf->priv; 291 struct sg_table *table; 292 struct scatterlist *sg; 293 int i; 294 295 table = &buffer->sg_table; 296 for_each_sgtable_sg(table, sg, i) { 297 struct page *page = sg_page(sg); 298 299 __free_pages(page, compound_order(page)); 300 } 301 sg_free_table(table); 302 kfree(buffer); 303 } 304 305 static const struct dma_buf_ops system_heap_buf_ops = { 306 .attach = system_heap_attach, 307 .detach = system_heap_detach, 308 .map_dma_buf = system_heap_map_dma_buf, 309 .unmap_dma_buf = system_heap_unmap_dma_buf, 310 .begin_cpu_access = system_heap_dma_buf_begin_cpu_access, 311 .end_cpu_access = system_heap_dma_buf_end_cpu_access, 312 .mmap = system_heap_mmap, 313 .vmap = system_heap_vmap, 314 .vunmap = system_heap_vunmap, 315 .release = system_heap_dma_buf_release, 316 }; 317 318 static struct page *alloc_largest_available(unsigned long size, 319 unsigned int max_order) 320 { 321 struct page *page; 322 int i; 323 324 for (i = 0; i < NUM_ORDERS; i++) { 325 if (size < (PAGE_SIZE << orders[i])) 326 continue; 327 if (max_order < orders[i]) 328 continue; 329 330 page = alloc_pages(order_flags[i], orders[i]); 331 if (!page) 332 continue; 333 return page; 334 } 335 return NULL; 336 } 337 338 static struct dma_buf *system_heap_allocate(struct dma_heap *heap, 339 unsigned long len, 340 u32 fd_flags, 341 u64 heap_flags) 342 { 343 struct system_heap_buffer *buffer; 344 DEFINE_DMA_BUF_EXPORT_INFO(exp_info); 345 unsigned long size_remaining = len; 346 unsigned int max_order = orders[0]; 347 struct dma_buf *dmabuf; 348 struct sg_table *table; 349 struct scatterlist *sg; 350 struct list_head pages; 351 struct page *page, *tmp_page; 352 int i, ret = -ENOMEM; 353 354 buffer = kzalloc(sizeof(*buffer), GFP_KERNEL); 355 if (!buffer) 356 return ERR_PTR(-ENOMEM); 357 358 INIT_LIST_HEAD(&buffer->attachments); 359 mutex_init(&buffer->lock); 360 buffer->heap = heap; 361 buffer->len = len; 362 363 INIT_LIST_HEAD(&pages); 364 i = 0; 365 while (size_remaining > 0) { 366 /* 367 * Avoid trying to allocate memory if the process 368 * has been killed by SIGKILL 369 */ 370 if (fatal_signal_pending(current)) { 371 ret = -EINTR; 372 goto free_buffer; 373 } 374 375 page = alloc_largest_available(size_remaining, max_order); 376 if (!page) 377 goto free_buffer; 378 379 list_add_tail(&page->lru, &pages); 380 size_remaining -= page_size(page); 381 max_order = compound_order(page); 382 i++; 383 } 384 385 table = &buffer->sg_table; 386 if (sg_alloc_table(table, i, GFP_KERNEL)) 387 goto free_buffer; 388 389 sg = table->sgl; 390 list_for_each_entry_safe(page, tmp_page, &pages, lru) { 391 sg_set_page(sg, page, page_size(page), 0); 392 sg = sg_next(sg); 393 list_del(&page->lru); 394 } 395 396 /* create the dmabuf */ 397 exp_info.exp_name = dma_heap_get_name(heap); 398 exp_info.ops = &system_heap_buf_ops; 399 exp_info.size = buffer->len; 400 exp_info.flags = fd_flags; 401 exp_info.priv = buffer; 402 dmabuf = dma_buf_export(&exp_info); 403 if (IS_ERR(dmabuf)) { 404 ret = PTR_ERR(dmabuf); 405 goto free_pages; 406 } 407 return dmabuf; 408 409 free_pages: 410 for_each_sgtable_sg(table, sg, i) { 411 struct page *p = sg_page(sg); 412 413 __free_pages(p, compound_order(p)); 414 } 415 sg_free_table(table); 416 free_buffer: 417 list_for_each_entry_safe(page, tmp_page, &pages, lru) 418 __free_pages(page, compound_order(page)); 419 kfree(buffer); 420 421 return ERR_PTR(ret); 422 } 423 424 static const struct dma_heap_ops system_heap_ops = { 425 .allocate = system_heap_allocate, 426 }; 427 428 static int __init system_heap_create(void) 429 { 430 struct dma_heap_export_info exp_info; 431 struct dma_heap *sys_heap; 432 433 exp_info.name = "system"; 434 exp_info.ops = &system_heap_ops; 435 exp_info.priv = NULL; 436 437 sys_heap = dma_heap_add(&exp_info); 438 if (IS_ERR(sys_heap)) 439 return PTR_ERR(sys_heap); 440 441 return 0; 442 } 443 module_init(system_heap_create); 444