xref: /linux/drivers/dma-buf/heaps/system_heap.c (revision b4ada0618eed0fbd1b1630f73deb048c592b06a1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * DMABUF System heap exporter
4  *
5  * Copyright (C) 2011 Google, Inc.
6  * Copyright (C) 2019, 2020 Linaro Ltd.
7  *
8  * Portions based off of Andrew Davis' SRAM heap:
9  * Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com/
10  *	Andrew F. Davis <afd@ti.com>
11  */
12 
13 #include <linux/dma-buf.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dma-heap.h>
16 #include <linux/err.h>
17 #include <linux/highmem.h>
18 #include <linux/mm.h>
19 #include <linux/module.h>
20 #include <linux/scatterlist.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 
24 struct system_heap_buffer {
25 	struct dma_heap *heap;
26 	struct list_head attachments;
27 	struct mutex lock;
28 	unsigned long len;
29 	struct sg_table sg_table;
30 	int vmap_cnt;
31 	void *vaddr;
32 };
33 
34 struct dma_heap_attachment {
35 	struct device *dev;
36 	struct sg_table table;
37 	struct list_head list;
38 	bool mapped;
39 };
40 
41 #define LOW_ORDER_GFP (GFP_HIGHUSER | __GFP_ZERO)
42 #define HIGH_ORDER_GFP  (((GFP_HIGHUSER | __GFP_ZERO | __GFP_NOWARN \
43 				| __GFP_NORETRY) & ~__GFP_RECLAIM) \
44 				| __GFP_COMP)
45 static gfp_t order_flags[] = {HIGH_ORDER_GFP, HIGH_ORDER_GFP, LOW_ORDER_GFP};
46 /*
47  * The selection of the orders used for allocation (1MB, 64K, 4K) is designed
48  * to match with the sizes often found in IOMMUs. Using order 4 pages instead
49  * of order 0 pages can significantly improve the performance of many IOMMUs
50  * by reducing TLB pressure and time spent updating page tables.
51  */
52 static const unsigned int orders[] = {8, 4, 0};
53 #define NUM_ORDERS ARRAY_SIZE(orders)
54 
55 static int dup_sg_table(struct sg_table *from, struct sg_table *to)
56 {
57 	struct scatterlist *sg, *new_sg;
58 	int ret, i;
59 
60 	ret = sg_alloc_table(to, from->orig_nents, GFP_KERNEL);
61 	if (ret)
62 		return ret;
63 
64 	new_sg = to->sgl;
65 	for_each_sgtable_sg(from, sg, i) {
66 		sg_set_page(new_sg, sg_page(sg), sg->length, sg->offset);
67 		new_sg = sg_next(new_sg);
68 	}
69 
70 	return 0;
71 }
72 
73 static int system_heap_attach(struct dma_buf *dmabuf,
74 			      struct dma_buf_attachment *attachment)
75 {
76 	struct system_heap_buffer *buffer = dmabuf->priv;
77 	struct dma_heap_attachment *a;
78 	int ret;
79 
80 	a = kzalloc(sizeof(*a), GFP_KERNEL);
81 	if (!a)
82 		return -ENOMEM;
83 
84 	ret = dup_sg_table(&buffer->sg_table, &a->table);
85 	if (ret) {
86 		kfree(a);
87 		return ret;
88 	}
89 
90 	a->dev = attachment->dev;
91 	INIT_LIST_HEAD(&a->list);
92 	a->mapped = false;
93 
94 	attachment->priv = a;
95 
96 	mutex_lock(&buffer->lock);
97 	list_add(&a->list, &buffer->attachments);
98 	mutex_unlock(&buffer->lock);
99 
100 	return 0;
101 }
102 
103 static void system_heap_detach(struct dma_buf *dmabuf,
104 			       struct dma_buf_attachment *attachment)
105 {
106 	struct system_heap_buffer *buffer = dmabuf->priv;
107 	struct dma_heap_attachment *a = attachment->priv;
108 
109 	mutex_lock(&buffer->lock);
110 	list_del(&a->list);
111 	mutex_unlock(&buffer->lock);
112 
113 	sg_free_table(&a->table);
114 	kfree(a);
115 }
116 
117 static struct sg_table *system_heap_map_dma_buf(struct dma_buf_attachment *attachment,
118 						enum dma_data_direction direction)
119 {
120 	struct dma_heap_attachment *a = attachment->priv;
121 	struct sg_table *table = &a->table;
122 	int ret;
123 
124 	ret = dma_map_sgtable(attachment->dev, table, direction, 0);
125 	if (ret)
126 		return ERR_PTR(ret);
127 
128 	a->mapped = true;
129 	return table;
130 }
131 
132 static void system_heap_unmap_dma_buf(struct dma_buf_attachment *attachment,
133 				      struct sg_table *table,
134 				      enum dma_data_direction direction)
135 {
136 	struct dma_heap_attachment *a = attachment->priv;
137 
138 	a->mapped = false;
139 	dma_unmap_sgtable(attachment->dev, table, direction, 0);
140 }
141 
142 static int system_heap_dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
143 						enum dma_data_direction direction)
144 {
145 	struct system_heap_buffer *buffer = dmabuf->priv;
146 	struct dma_heap_attachment *a;
147 
148 	mutex_lock(&buffer->lock);
149 
150 	if (buffer->vmap_cnt)
151 		invalidate_kernel_vmap_range(buffer->vaddr, buffer->len);
152 
153 	list_for_each_entry(a, &buffer->attachments, list) {
154 		if (!a->mapped)
155 			continue;
156 		dma_sync_sgtable_for_cpu(a->dev, &a->table, direction);
157 	}
158 	mutex_unlock(&buffer->lock);
159 
160 	return 0;
161 }
162 
163 static int system_heap_dma_buf_end_cpu_access(struct dma_buf *dmabuf,
164 					      enum dma_data_direction direction)
165 {
166 	struct system_heap_buffer *buffer = dmabuf->priv;
167 	struct dma_heap_attachment *a;
168 
169 	mutex_lock(&buffer->lock);
170 
171 	if (buffer->vmap_cnt)
172 		flush_kernel_vmap_range(buffer->vaddr, buffer->len);
173 
174 	list_for_each_entry(a, &buffer->attachments, list) {
175 		if (!a->mapped)
176 			continue;
177 		dma_sync_sgtable_for_device(a->dev, &a->table, direction);
178 	}
179 	mutex_unlock(&buffer->lock);
180 
181 	return 0;
182 }
183 
184 static int system_heap_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma)
185 {
186 	struct system_heap_buffer *buffer = dmabuf->priv;
187 	struct sg_table *table = &buffer->sg_table;
188 	unsigned long addr = vma->vm_start;
189 	struct sg_page_iter piter;
190 	int ret;
191 
192 	for_each_sgtable_page(table, &piter, vma->vm_pgoff) {
193 		struct page *page = sg_page_iter_page(&piter);
194 
195 		ret = remap_pfn_range(vma, addr, page_to_pfn(page), PAGE_SIZE,
196 				      vma->vm_page_prot);
197 		if (ret)
198 			return ret;
199 		addr += PAGE_SIZE;
200 		if (addr >= vma->vm_end)
201 			return 0;
202 	}
203 	return 0;
204 }
205 
206 static void *system_heap_do_vmap(struct system_heap_buffer *buffer)
207 {
208 	struct sg_table *table = &buffer->sg_table;
209 	int npages = PAGE_ALIGN(buffer->len) / PAGE_SIZE;
210 	struct page **pages = vmalloc(sizeof(struct page *) * npages);
211 	struct page **tmp = pages;
212 	struct sg_page_iter piter;
213 	void *vaddr;
214 
215 	if (!pages)
216 		return ERR_PTR(-ENOMEM);
217 
218 	for_each_sgtable_page(table, &piter, 0) {
219 		WARN_ON(tmp - pages >= npages);
220 		*tmp++ = sg_page_iter_page(&piter);
221 	}
222 
223 	vaddr = vmap(pages, npages, VM_MAP, PAGE_KERNEL);
224 	vfree(pages);
225 
226 	if (!vaddr)
227 		return ERR_PTR(-ENOMEM);
228 
229 	return vaddr;
230 }
231 
232 static int system_heap_vmap(struct dma_buf *dmabuf, struct iosys_map *map)
233 {
234 	struct system_heap_buffer *buffer = dmabuf->priv;
235 	void *vaddr;
236 	int ret = 0;
237 
238 	mutex_lock(&buffer->lock);
239 	if (buffer->vmap_cnt) {
240 		buffer->vmap_cnt++;
241 		iosys_map_set_vaddr(map, buffer->vaddr);
242 		goto out;
243 	}
244 
245 	vaddr = system_heap_do_vmap(buffer);
246 	if (IS_ERR(vaddr)) {
247 		ret = PTR_ERR(vaddr);
248 		goto out;
249 	}
250 
251 	buffer->vaddr = vaddr;
252 	buffer->vmap_cnt++;
253 	iosys_map_set_vaddr(map, buffer->vaddr);
254 out:
255 	mutex_unlock(&buffer->lock);
256 
257 	return ret;
258 }
259 
260 static void system_heap_vunmap(struct dma_buf *dmabuf, struct iosys_map *map)
261 {
262 	struct system_heap_buffer *buffer = dmabuf->priv;
263 
264 	mutex_lock(&buffer->lock);
265 	if (!--buffer->vmap_cnt) {
266 		vunmap(buffer->vaddr);
267 		buffer->vaddr = NULL;
268 	}
269 	mutex_unlock(&buffer->lock);
270 	iosys_map_clear(map);
271 }
272 
273 static void system_heap_dma_buf_release(struct dma_buf *dmabuf)
274 {
275 	struct system_heap_buffer *buffer = dmabuf->priv;
276 	struct sg_table *table;
277 	struct scatterlist *sg;
278 	int i;
279 
280 	table = &buffer->sg_table;
281 	for_each_sgtable_sg(table, sg, i) {
282 		struct page *page = sg_page(sg);
283 
284 		__free_pages(page, compound_order(page));
285 	}
286 	sg_free_table(table);
287 	kfree(buffer);
288 }
289 
290 static const struct dma_buf_ops system_heap_buf_ops = {
291 	.attach = system_heap_attach,
292 	.detach = system_heap_detach,
293 	.map_dma_buf = system_heap_map_dma_buf,
294 	.unmap_dma_buf = system_heap_unmap_dma_buf,
295 	.begin_cpu_access = system_heap_dma_buf_begin_cpu_access,
296 	.end_cpu_access = system_heap_dma_buf_end_cpu_access,
297 	.mmap = system_heap_mmap,
298 	.vmap = system_heap_vmap,
299 	.vunmap = system_heap_vunmap,
300 	.release = system_heap_dma_buf_release,
301 };
302 
303 static struct page *alloc_largest_available(unsigned long size,
304 					    unsigned int max_order)
305 {
306 	struct page *page;
307 	int i;
308 
309 	for (i = 0; i < NUM_ORDERS; i++) {
310 		if (size <  (PAGE_SIZE << orders[i]))
311 			continue;
312 		if (max_order < orders[i])
313 			continue;
314 
315 		page = alloc_pages(order_flags[i], orders[i]);
316 		if (!page)
317 			continue;
318 		return page;
319 	}
320 	return NULL;
321 }
322 
323 static struct dma_buf *system_heap_allocate(struct dma_heap *heap,
324 					    unsigned long len,
325 					    u32 fd_flags,
326 					    u64 heap_flags)
327 {
328 	struct system_heap_buffer *buffer;
329 	DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
330 	unsigned long size_remaining = len;
331 	unsigned int max_order = orders[0];
332 	struct dma_buf *dmabuf;
333 	struct sg_table *table;
334 	struct scatterlist *sg;
335 	struct list_head pages;
336 	struct page *page, *tmp_page;
337 	int i, ret = -ENOMEM;
338 
339 	buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
340 	if (!buffer)
341 		return ERR_PTR(-ENOMEM);
342 
343 	INIT_LIST_HEAD(&buffer->attachments);
344 	mutex_init(&buffer->lock);
345 	buffer->heap = heap;
346 	buffer->len = len;
347 
348 	INIT_LIST_HEAD(&pages);
349 	i = 0;
350 	while (size_remaining > 0) {
351 		/*
352 		 * Avoid trying to allocate memory if the process
353 		 * has been killed by SIGKILL
354 		 */
355 		if (fatal_signal_pending(current)) {
356 			ret = -EINTR;
357 			goto free_buffer;
358 		}
359 
360 		page = alloc_largest_available(size_remaining, max_order);
361 		if (!page)
362 			goto free_buffer;
363 
364 		list_add_tail(&page->lru, &pages);
365 		size_remaining -= page_size(page);
366 		max_order = compound_order(page);
367 		i++;
368 	}
369 
370 	table = &buffer->sg_table;
371 	if (sg_alloc_table(table, i, GFP_KERNEL))
372 		goto free_buffer;
373 
374 	sg = table->sgl;
375 	list_for_each_entry_safe(page, tmp_page, &pages, lru) {
376 		sg_set_page(sg, page, page_size(page), 0);
377 		sg = sg_next(sg);
378 		list_del(&page->lru);
379 	}
380 
381 	/* create the dmabuf */
382 	exp_info.exp_name = dma_heap_get_name(heap);
383 	exp_info.ops = &system_heap_buf_ops;
384 	exp_info.size = buffer->len;
385 	exp_info.flags = fd_flags;
386 	exp_info.priv = buffer;
387 	dmabuf = dma_buf_export(&exp_info);
388 	if (IS_ERR(dmabuf)) {
389 		ret = PTR_ERR(dmabuf);
390 		goto free_pages;
391 	}
392 	return dmabuf;
393 
394 free_pages:
395 	for_each_sgtable_sg(table, sg, i) {
396 		struct page *p = sg_page(sg);
397 
398 		__free_pages(p, compound_order(p));
399 	}
400 	sg_free_table(table);
401 free_buffer:
402 	list_for_each_entry_safe(page, tmp_page, &pages, lru)
403 		__free_pages(page, compound_order(page));
404 	kfree(buffer);
405 
406 	return ERR_PTR(ret);
407 }
408 
409 static const struct dma_heap_ops system_heap_ops = {
410 	.allocate = system_heap_allocate,
411 };
412 
413 static int __init system_heap_create(void)
414 {
415 	struct dma_heap_export_info exp_info;
416 	struct dma_heap *sys_heap;
417 
418 	exp_info.name = "system";
419 	exp_info.ops = &system_heap_ops;
420 	exp_info.priv = NULL;
421 
422 	sys_heap = dma_heap_add(&exp_info);
423 	if (IS_ERR(sys_heap))
424 		return PTR_ERR(sys_heap);
425 
426 	return 0;
427 }
428 module_init(system_heap_create);
429