xref: /linux/drivers/dma-buf/heaps/cma_heap.c (revision face6a3615a649456eb4549f6d474221d877d604)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * DMABUF CMA heap exporter
4  *
5  * Copyright (C) 2012, 2019, 2020 Linaro Ltd.
6  * Author: <benjamin.gaignard@linaro.org> for ST-Ericsson.
7  *
8  * Also utilizing parts of Andrew Davis' SRAM heap:
9  * Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com/
10  *	Andrew F. Davis <afd@ti.com>
11  */
12 
13 #define pr_fmt(fmt) "cma_heap: " fmt
14 
15 #include <linux/cma.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-buf/heaps/cma.h>
18 #include <linux/dma-heap.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/err.h>
21 #include <linux/highmem.h>
22 #include <linux/io.h>
23 #include <linux/mm.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/of_reserved_mem.h>
27 #include <linux/scatterlist.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 
31 #define DEFAULT_CMA_NAME "default_cma_region"
32 
33 static struct cma *dma_areas[MAX_CMA_AREAS] __initdata;
34 static unsigned int dma_areas_num __initdata;
35 
36 int __init dma_heap_cma_register_heap(struct cma *cma)
37 {
38 	if (dma_areas_num >= ARRAY_SIZE(dma_areas))
39 		return -EINVAL;
40 
41 	dma_areas[dma_areas_num++] = cma;
42 
43 	return 0;
44 }
45 
46 struct cma_heap {
47 	struct dma_heap *heap;
48 	struct cma *cma;
49 };
50 
51 struct cma_heap_buffer {
52 	struct cma_heap *heap;
53 	struct list_head attachments;
54 	struct mutex lock;
55 	unsigned long len;
56 	struct page *cma_pages;
57 	struct page **pages;
58 	pgoff_t pagecount;
59 	int vmap_cnt;
60 	void *vaddr;
61 };
62 
63 struct dma_heap_attachment {
64 	struct device *dev;
65 	struct sg_table table;
66 	struct list_head list;
67 	bool mapped;
68 };
69 
70 static int cma_heap_attach(struct dma_buf *dmabuf,
71 			   struct dma_buf_attachment *attachment)
72 {
73 	struct cma_heap_buffer *buffer = dmabuf->priv;
74 	struct dma_heap_attachment *a;
75 	int ret;
76 
77 	a = kzalloc(sizeof(*a), GFP_KERNEL);
78 	if (!a)
79 		return -ENOMEM;
80 
81 	ret = sg_alloc_table_from_pages(&a->table, buffer->pages,
82 					buffer->pagecount, 0,
83 					buffer->pagecount << PAGE_SHIFT,
84 					GFP_KERNEL);
85 	if (ret) {
86 		kfree(a);
87 		return ret;
88 	}
89 
90 	a->dev = attachment->dev;
91 	INIT_LIST_HEAD(&a->list);
92 	a->mapped = false;
93 
94 	attachment->priv = a;
95 
96 	mutex_lock(&buffer->lock);
97 	list_add(&a->list, &buffer->attachments);
98 	mutex_unlock(&buffer->lock);
99 
100 	return 0;
101 }
102 
103 static void cma_heap_detach(struct dma_buf *dmabuf,
104 			    struct dma_buf_attachment *attachment)
105 {
106 	struct cma_heap_buffer *buffer = dmabuf->priv;
107 	struct dma_heap_attachment *a = attachment->priv;
108 
109 	mutex_lock(&buffer->lock);
110 	list_del(&a->list);
111 	mutex_unlock(&buffer->lock);
112 
113 	sg_free_table(&a->table);
114 	kfree(a);
115 }
116 
117 static struct sg_table *cma_heap_map_dma_buf(struct dma_buf_attachment *attachment,
118 					     enum dma_data_direction direction)
119 {
120 	struct dma_heap_attachment *a = attachment->priv;
121 	struct sg_table *table = &a->table;
122 	int ret;
123 
124 	ret = dma_map_sgtable(attachment->dev, table, direction, 0);
125 	if (ret)
126 		return ERR_PTR(-ENOMEM);
127 	a->mapped = true;
128 	return table;
129 }
130 
131 static void cma_heap_unmap_dma_buf(struct dma_buf_attachment *attachment,
132 				   struct sg_table *table,
133 				   enum dma_data_direction direction)
134 {
135 	struct dma_heap_attachment *a = attachment->priv;
136 
137 	a->mapped = false;
138 	dma_unmap_sgtable(attachment->dev, table, direction, 0);
139 }
140 
141 static int cma_heap_dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
142 					     enum dma_data_direction direction)
143 {
144 	struct cma_heap_buffer *buffer = dmabuf->priv;
145 	struct dma_heap_attachment *a;
146 
147 	mutex_lock(&buffer->lock);
148 
149 	if (buffer->vmap_cnt)
150 		invalidate_kernel_vmap_range(buffer->vaddr, buffer->len);
151 
152 	list_for_each_entry(a, &buffer->attachments, list) {
153 		if (!a->mapped)
154 			continue;
155 		dma_sync_sgtable_for_cpu(a->dev, &a->table, direction);
156 	}
157 	mutex_unlock(&buffer->lock);
158 
159 	return 0;
160 }
161 
162 static int cma_heap_dma_buf_end_cpu_access(struct dma_buf *dmabuf,
163 					   enum dma_data_direction direction)
164 {
165 	struct cma_heap_buffer *buffer = dmabuf->priv;
166 	struct dma_heap_attachment *a;
167 
168 	mutex_lock(&buffer->lock);
169 
170 	if (buffer->vmap_cnt)
171 		flush_kernel_vmap_range(buffer->vaddr, buffer->len);
172 
173 	list_for_each_entry(a, &buffer->attachments, list) {
174 		if (!a->mapped)
175 			continue;
176 		dma_sync_sgtable_for_device(a->dev, &a->table, direction);
177 	}
178 	mutex_unlock(&buffer->lock);
179 
180 	return 0;
181 }
182 
183 static vm_fault_t cma_heap_vm_fault(struct vm_fault *vmf)
184 {
185 	struct vm_area_struct *vma = vmf->vma;
186 	struct cma_heap_buffer *buffer = vma->vm_private_data;
187 
188 	if (vmf->pgoff >= buffer->pagecount)
189 		return VM_FAULT_SIGBUS;
190 
191 	return vmf_insert_pfn(vma, vmf->address, page_to_pfn(buffer->pages[vmf->pgoff]));
192 }
193 
194 static const struct vm_operations_struct dma_heap_vm_ops = {
195 	.fault = cma_heap_vm_fault,
196 };
197 
198 static int cma_heap_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma)
199 {
200 	struct cma_heap_buffer *buffer = dmabuf->priv;
201 
202 	if ((vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) == 0)
203 		return -EINVAL;
204 
205 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
206 
207 	vma->vm_ops = &dma_heap_vm_ops;
208 	vma->vm_private_data = buffer;
209 
210 	return 0;
211 }
212 
213 static void *cma_heap_do_vmap(struct cma_heap_buffer *buffer)
214 {
215 	void *vaddr;
216 
217 	vaddr = vmap(buffer->pages, buffer->pagecount, VM_MAP, PAGE_KERNEL);
218 	if (!vaddr)
219 		return ERR_PTR(-ENOMEM);
220 
221 	return vaddr;
222 }
223 
224 static int cma_heap_vmap(struct dma_buf *dmabuf, struct iosys_map *map)
225 {
226 	struct cma_heap_buffer *buffer = dmabuf->priv;
227 	void *vaddr;
228 	int ret = 0;
229 
230 	mutex_lock(&buffer->lock);
231 	if (buffer->vmap_cnt) {
232 		buffer->vmap_cnt++;
233 		iosys_map_set_vaddr(map, buffer->vaddr);
234 		goto out;
235 	}
236 
237 	vaddr = cma_heap_do_vmap(buffer);
238 	if (IS_ERR(vaddr)) {
239 		ret = PTR_ERR(vaddr);
240 		goto out;
241 	}
242 	buffer->vaddr = vaddr;
243 	buffer->vmap_cnt++;
244 	iosys_map_set_vaddr(map, buffer->vaddr);
245 out:
246 	mutex_unlock(&buffer->lock);
247 
248 	return ret;
249 }
250 
251 static void cma_heap_vunmap(struct dma_buf *dmabuf, struct iosys_map *map)
252 {
253 	struct cma_heap_buffer *buffer = dmabuf->priv;
254 
255 	mutex_lock(&buffer->lock);
256 	if (!--buffer->vmap_cnt) {
257 		vunmap(buffer->vaddr);
258 		buffer->vaddr = NULL;
259 	}
260 	mutex_unlock(&buffer->lock);
261 	iosys_map_clear(map);
262 }
263 
264 static void cma_heap_dma_buf_release(struct dma_buf *dmabuf)
265 {
266 	struct cma_heap_buffer *buffer = dmabuf->priv;
267 	struct cma_heap *cma_heap = buffer->heap;
268 
269 	if (buffer->vmap_cnt > 0) {
270 		WARN(1, "%s: buffer still mapped in the kernel\n", __func__);
271 		vunmap(buffer->vaddr);
272 		buffer->vaddr = NULL;
273 	}
274 
275 	/* free page list */
276 	kfree(buffer->pages);
277 	/* release memory */
278 	cma_release(cma_heap->cma, buffer->cma_pages, buffer->pagecount);
279 	kfree(buffer);
280 }
281 
282 static const struct dma_buf_ops cma_heap_buf_ops = {
283 	.attach = cma_heap_attach,
284 	.detach = cma_heap_detach,
285 	.map_dma_buf = cma_heap_map_dma_buf,
286 	.unmap_dma_buf = cma_heap_unmap_dma_buf,
287 	.begin_cpu_access = cma_heap_dma_buf_begin_cpu_access,
288 	.end_cpu_access = cma_heap_dma_buf_end_cpu_access,
289 	.mmap = cma_heap_mmap,
290 	.vmap = cma_heap_vmap,
291 	.vunmap = cma_heap_vunmap,
292 	.release = cma_heap_dma_buf_release,
293 };
294 
295 static struct dma_buf *cma_heap_allocate(struct dma_heap *heap,
296 					 unsigned long len,
297 					 u32 fd_flags,
298 					 u64 heap_flags)
299 {
300 	struct cma_heap *cma_heap = dma_heap_get_drvdata(heap);
301 	struct cma_heap_buffer *buffer;
302 	DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
303 	size_t size = PAGE_ALIGN(len);
304 	pgoff_t pagecount = size >> PAGE_SHIFT;
305 	unsigned long align = get_order(size);
306 	struct page *cma_pages;
307 	struct dma_buf *dmabuf;
308 	int ret = -ENOMEM;
309 	pgoff_t pg;
310 
311 	buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
312 	if (!buffer)
313 		return ERR_PTR(-ENOMEM);
314 
315 	INIT_LIST_HEAD(&buffer->attachments);
316 	mutex_init(&buffer->lock);
317 	buffer->len = size;
318 
319 	if (align > CONFIG_CMA_ALIGNMENT)
320 		align = CONFIG_CMA_ALIGNMENT;
321 
322 	cma_pages = cma_alloc(cma_heap->cma, pagecount, align, false);
323 	if (!cma_pages)
324 		goto free_buffer;
325 
326 	/* Clear the cma pages */
327 	if (PageHighMem(cma_pages)) {
328 		unsigned long nr_clear_pages = pagecount;
329 		struct page *page = cma_pages;
330 
331 		while (nr_clear_pages > 0) {
332 			void *vaddr = kmap_local_page(page);
333 
334 			memset(vaddr, 0, PAGE_SIZE);
335 			kunmap_local(vaddr);
336 			/*
337 			 * Avoid wasting time zeroing memory if the process
338 			 * has been killed by SIGKILL.
339 			 */
340 			if (fatal_signal_pending(current))
341 				goto free_cma;
342 			page++;
343 			nr_clear_pages--;
344 		}
345 	} else {
346 		memset(page_address(cma_pages), 0, size);
347 	}
348 
349 	buffer->pages = kmalloc_array(pagecount, sizeof(*buffer->pages), GFP_KERNEL);
350 	if (!buffer->pages) {
351 		ret = -ENOMEM;
352 		goto free_cma;
353 	}
354 
355 	for (pg = 0; pg < pagecount; pg++)
356 		buffer->pages[pg] = &cma_pages[pg];
357 
358 	buffer->cma_pages = cma_pages;
359 	buffer->heap = cma_heap;
360 	buffer->pagecount = pagecount;
361 
362 	/* create the dmabuf */
363 	exp_info.exp_name = dma_heap_get_name(heap);
364 	exp_info.ops = &cma_heap_buf_ops;
365 	exp_info.size = buffer->len;
366 	exp_info.flags = fd_flags;
367 	exp_info.priv = buffer;
368 	dmabuf = dma_buf_export(&exp_info);
369 	if (IS_ERR(dmabuf)) {
370 		ret = PTR_ERR(dmabuf);
371 		goto free_pages;
372 	}
373 	return dmabuf;
374 
375 free_pages:
376 	kfree(buffer->pages);
377 free_cma:
378 	cma_release(cma_heap->cma, cma_pages, pagecount);
379 free_buffer:
380 	kfree(buffer);
381 
382 	return ERR_PTR(ret);
383 }
384 
385 static const struct dma_heap_ops cma_heap_ops = {
386 	.allocate = cma_heap_allocate,
387 };
388 
389 static int __init __add_cma_heap(struct cma *cma, const char *name)
390 {
391 	struct dma_heap_export_info exp_info;
392 	struct cma_heap *cma_heap;
393 
394 	cma_heap = kzalloc(sizeof(*cma_heap), GFP_KERNEL);
395 	if (!cma_heap)
396 		return -ENOMEM;
397 	cma_heap->cma = cma;
398 
399 	exp_info.name = name;
400 	exp_info.ops = &cma_heap_ops;
401 	exp_info.priv = cma_heap;
402 
403 	cma_heap->heap = dma_heap_add(&exp_info);
404 	if (IS_ERR(cma_heap->heap)) {
405 		int ret = PTR_ERR(cma_heap->heap);
406 
407 		kfree(cma_heap);
408 		return ret;
409 	}
410 
411 	return 0;
412 }
413 
414 static int __init add_cma_heaps(void)
415 {
416 	struct cma *default_cma = dev_get_cma_area(NULL);
417 	unsigned int i;
418 	int ret;
419 
420 	if (default_cma) {
421 		ret = __add_cma_heap(default_cma, DEFAULT_CMA_NAME);
422 		if (ret)
423 			return ret;
424 	}
425 
426 	for (i = 0; i < dma_areas_num; i++) {
427 		struct cma *cma = dma_areas[i];
428 
429 		ret = __add_cma_heap(cma, cma_get_name(cma));
430 		if (ret) {
431 			pr_warn("Failed to add CMA heap %s", cma_get_name(cma));
432 			continue;
433 		}
434 
435 	}
436 
437 	return 0;
438 }
439 module_init(add_cma_heaps);
440 MODULE_DESCRIPTION("DMA-BUF CMA Heap");
441