xref: /linux/drivers/dma-buf/dma-heap.c (revision 0b8061c340b643e01da431dd60c75a41bb1d31ec)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Framework for userspace DMA-BUF allocations
4  *
5  * Copyright (C) 2011 Google, Inc.
6  * Copyright (C) 2019 Linaro Ltd.
7  */
8 
9 #include <linux/cdev.h>
10 #include <linux/debugfs.h>
11 #include <linux/device.h>
12 #include <linux/dma-buf.h>
13 #include <linux/err.h>
14 #include <linux/xarray.h>
15 #include <linux/list.h>
16 #include <linux/slab.h>
17 #include <linux/uaccess.h>
18 #include <linux/syscalls.h>
19 #include <linux/dma-heap.h>
20 #include <uapi/linux/dma-heap.h>
21 
22 #define DEVNAME "dma_heap"
23 
24 #define NUM_HEAP_MINORS 128
25 
26 /**
27  * struct dma_heap - represents a dmabuf heap in the system
28  * @name:		used for debugging/device-node name
29  * @ops:		ops struct for this heap
30  * @heap_devt		heap device node
31  * @list		list head connecting to list of heaps
32  * @heap_cdev		heap char device
33  *
34  * Represents a heap of memory from which buffers can be made.
35  */
36 struct dma_heap {
37 	const char *name;
38 	const struct dma_heap_ops *ops;
39 	void *priv;
40 	dev_t heap_devt;
41 	struct list_head list;
42 	struct cdev heap_cdev;
43 };
44 
45 static LIST_HEAD(heap_list);
46 static DEFINE_MUTEX(heap_list_lock);
47 static dev_t dma_heap_devt;
48 static struct class *dma_heap_class;
49 static DEFINE_XARRAY_ALLOC(dma_heap_minors);
50 
51 static int dma_heap_buffer_alloc(struct dma_heap *heap, size_t len,
52 				 unsigned int fd_flags,
53 				 unsigned int heap_flags)
54 {
55 	struct dma_buf *dmabuf;
56 	int fd;
57 
58 	/*
59 	 * Allocations from all heaps have to begin
60 	 * and end on page boundaries.
61 	 */
62 	len = PAGE_ALIGN(len);
63 	if (!len)
64 		return -EINVAL;
65 
66 	dmabuf = heap->ops->allocate(heap, len, fd_flags, heap_flags);
67 	if (IS_ERR(dmabuf))
68 		return PTR_ERR(dmabuf);
69 
70 	fd = dma_buf_fd(dmabuf, fd_flags);
71 	if (fd < 0) {
72 		dma_buf_put(dmabuf);
73 		/* just return, as put will call release and that will free */
74 	}
75 	return fd;
76 }
77 
78 static int dma_heap_open(struct inode *inode, struct file *file)
79 {
80 	struct dma_heap *heap;
81 
82 	heap = xa_load(&dma_heap_minors, iminor(inode));
83 	if (!heap) {
84 		pr_err("dma_heap: minor %d unknown.\n", iminor(inode));
85 		return -ENODEV;
86 	}
87 
88 	/* instance data as context */
89 	file->private_data = heap;
90 	nonseekable_open(inode, file);
91 
92 	return 0;
93 }
94 
95 static long dma_heap_ioctl_allocate(struct file *file, void *data)
96 {
97 	struct dma_heap_allocation_data *heap_allocation = data;
98 	struct dma_heap *heap = file->private_data;
99 	int fd;
100 
101 	if (heap_allocation->fd)
102 		return -EINVAL;
103 
104 	if (heap_allocation->fd_flags & ~DMA_HEAP_VALID_FD_FLAGS)
105 		return -EINVAL;
106 
107 	if (heap_allocation->heap_flags & ~DMA_HEAP_VALID_HEAP_FLAGS)
108 		return -EINVAL;
109 
110 	fd = dma_heap_buffer_alloc(heap, heap_allocation->len,
111 				   heap_allocation->fd_flags,
112 				   heap_allocation->heap_flags);
113 	if (fd < 0)
114 		return fd;
115 
116 	heap_allocation->fd = fd;
117 
118 	return 0;
119 }
120 
121 static unsigned int dma_heap_ioctl_cmds[] = {
122 	DMA_HEAP_IOCTL_ALLOC,
123 };
124 
125 static long dma_heap_ioctl(struct file *file, unsigned int ucmd,
126 			   unsigned long arg)
127 {
128 	char stack_kdata[128];
129 	char *kdata = stack_kdata;
130 	unsigned int kcmd;
131 	unsigned int in_size, out_size, drv_size, ksize;
132 	int nr = _IOC_NR(ucmd);
133 	int ret = 0;
134 
135 	if (nr >= ARRAY_SIZE(dma_heap_ioctl_cmds))
136 		return -EINVAL;
137 
138 	/* Get the kernel ioctl cmd that matches */
139 	kcmd = dma_heap_ioctl_cmds[nr];
140 
141 	/* Figure out the delta between user cmd size and kernel cmd size */
142 	drv_size = _IOC_SIZE(kcmd);
143 	out_size = _IOC_SIZE(ucmd);
144 	in_size = out_size;
145 	if ((ucmd & kcmd & IOC_IN) == 0)
146 		in_size = 0;
147 	if ((ucmd & kcmd & IOC_OUT) == 0)
148 		out_size = 0;
149 	ksize = max(max(in_size, out_size), drv_size);
150 
151 	/* If necessary, allocate buffer for ioctl argument */
152 	if (ksize > sizeof(stack_kdata)) {
153 		kdata = kmalloc(ksize, GFP_KERNEL);
154 		if (!kdata)
155 			return -ENOMEM;
156 	}
157 
158 	if (copy_from_user(kdata, (void __user *)arg, in_size) != 0) {
159 		ret = -EFAULT;
160 		goto err;
161 	}
162 
163 	/* zero out any difference between the kernel/user structure size */
164 	if (ksize > in_size)
165 		memset(kdata + in_size, 0, ksize - in_size);
166 
167 	switch (kcmd) {
168 	case DMA_HEAP_IOCTL_ALLOC:
169 		ret = dma_heap_ioctl_allocate(file, kdata);
170 		break;
171 	default:
172 		ret = -ENOTTY;
173 		goto err;
174 	}
175 
176 	if (copy_to_user((void __user *)arg, kdata, out_size) != 0)
177 		ret = -EFAULT;
178 err:
179 	if (kdata != stack_kdata)
180 		kfree(kdata);
181 	return ret;
182 }
183 
184 static const struct file_operations dma_heap_fops = {
185 	.owner          = THIS_MODULE,
186 	.open		= dma_heap_open,
187 	.unlocked_ioctl = dma_heap_ioctl,
188 #ifdef CONFIG_COMPAT
189 	.compat_ioctl	= dma_heap_ioctl,
190 #endif
191 };
192 
193 /**
194  * dma_heap_get_drvdata() - get per-subdriver data for the heap
195  * @heap: DMA-Heap to retrieve private data for
196  *
197  * Returns:
198  * The per-subdriver data for the heap.
199  */
200 void *dma_heap_get_drvdata(struct dma_heap *heap)
201 {
202 	return heap->priv;
203 }
204 
205 struct dma_heap *dma_heap_add(const struct dma_heap_export_info *exp_info)
206 {
207 	struct dma_heap *heap, *h, *err_ret;
208 	struct device *dev_ret;
209 	unsigned int minor;
210 	int ret;
211 
212 	if (!exp_info->name || !strcmp(exp_info->name, "")) {
213 		pr_err("dma_heap: Cannot add heap without a name\n");
214 		return ERR_PTR(-EINVAL);
215 	}
216 
217 	if (!exp_info->ops || !exp_info->ops->allocate) {
218 		pr_err("dma_heap: Cannot add heap with invalid ops struct\n");
219 		return ERR_PTR(-EINVAL);
220 	}
221 
222 	/* check the name is unique */
223 	mutex_lock(&heap_list_lock);
224 	list_for_each_entry(h, &heap_list, list) {
225 		if (!strcmp(h->name, exp_info->name)) {
226 			mutex_unlock(&heap_list_lock);
227 			pr_err("dma_heap: Already registered heap named %s\n",
228 			       exp_info->name);
229 			return ERR_PTR(-EINVAL);
230 		}
231 	}
232 	mutex_unlock(&heap_list_lock);
233 
234 	heap = kzalloc(sizeof(*heap), GFP_KERNEL);
235 	if (!heap)
236 		return ERR_PTR(-ENOMEM);
237 
238 	heap->name = exp_info->name;
239 	heap->ops = exp_info->ops;
240 	heap->priv = exp_info->priv;
241 
242 	/* Find unused minor number */
243 	ret = xa_alloc(&dma_heap_minors, &minor, heap,
244 		       XA_LIMIT(0, NUM_HEAP_MINORS - 1), GFP_KERNEL);
245 	if (ret < 0) {
246 		pr_err("dma_heap: Unable to get minor number for heap\n");
247 		err_ret = ERR_PTR(ret);
248 		goto err0;
249 	}
250 
251 	/* Create device */
252 	heap->heap_devt = MKDEV(MAJOR(dma_heap_devt), minor);
253 
254 	cdev_init(&heap->heap_cdev, &dma_heap_fops);
255 	ret = cdev_add(&heap->heap_cdev, heap->heap_devt, 1);
256 	if (ret < 0) {
257 		pr_err("dma_heap: Unable to add char device\n");
258 		err_ret = ERR_PTR(ret);
259 		goto err1;
260 	}
261 
262 	dev_ret = device_create(dma_heap_class,
263 				NULL,
264 				heap->heap_devt,
265 				NULL,
266 				heap->name);
267 	if (IS_ERR(dev_ret)) {
268 		pr_err("dma_heap: Unable to create device\n");
269 		err_ret = ERR_CAST(dev_ret);
270 		goto err2;
271 	}
272 	/* Add heap to the list */
273 	mutex_lock(&heap_list_lock);
274 	list_add(&heap->list, &heap_list);
275 	mutex_unlock(&heap_list_lock);
276 
277 	return heap;
278 
279 err2:
280 	cdev_del(&heap->heap_cdev);
281 err1:
282 	xa_erase(&dma_heap_minors, minor);
283 err0:
284 	kfree(heap);
285 	return err_ret;
286 }
287 
288 static char *dma_heap_devnode(struct device *dev, umode_t *mode)
289 {
290 	return kasprintf(GFP_KERNEL, "dma_heap/%s", dev_name(dev));
291 }
292 
293 static int dma_heap_init(void)
294 {
295 	int ret;
296 
297 	ret = alloc_chrdev_region(&dma_heap_devt, 0, NUM_HEAP_MINORS, DEVNAME);
298 	if (ret)
299 		return ret;
300 
301 	dma_heap_class = class_create(THIS_MODULE, DEVNAME);
302 	if (IS_ERR(dma_heap_class)) {
303 		unregister_chrdev_region(dma_heap_devt, NUM_HEAP_MINORS);
304 		return PTR_ERR(dma_heap_class);
305 	}
306 	dma_heap_class->devnode = dma_heap_devnode;
307 
308 	return 0;
309 }
310 subsys_initcall(dma_heap_init);
311