xref: /linux/drivers/dma-buf/dma-buf.c (revision fba2689ee77e63b05e203b3f26079ef915e55660)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Framework for buffer objects that can be shared across devices/subsystems.
4  *
5  * Copyright(C) 2011 Linaro Limited. All rights reserved.
6  * Author: Sumit Semwal <sumit.semwal@ti.com>
7  *
8  * Many thanks to linaro-mm-sig list, and specially
9  * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10  * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11  * refining of this idea.
12  */
13 
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/anon_inodes.h>
19 #include <linux/export.h>
20 #include <linux/debugfs.h>
21 #include <linux/module.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/dma-resv.h>
25 #include <linux/mm.h>
26 #include <linux/mount.h>
27 #include <linux/pseudo_fs.h>
28 
29 #include <uapi/linux/dma-buf.h>
30 #include <uapi/linux/magic.h>
31 
32 #include "dma-buf-sysfs-stats.h"
33 
34 static inline int is_dma_buf_file(struct file *);
35 
36 struct dma_buf_list {
37 	struct list_head head;
38 	struct mutex lock;
39 };
40 
41 static struct dma_buf_list db_list;
42 
43 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
44 {
45 	struct dma_buf *dmabuf;
46 	char name[DMA_BUF_NAME_LEN];
47 	size_t ret = 0;
48 
49 	dmabuf = dentry->d_fsdata;
50 	spin_lock(&dmabuf->name_lock);
51 	if (dmabuf->name)
52 		ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
53 	spin_unlock(&dmabuf->name_lock);
54 
55 	return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
56 			     dentry->d_name.name, ret > 0 ? name : "");
57 }
58 
59 static void dma_buf_release(struct dentry *dentry)
60 {
61 	struct dma_buf *dmabuf;
62 
63 	dmabuf = dentry->d_fsdata;
64 	if (unlikely(!dmabuf))
65 		return;
66 
67 	BUG_ON(dmabuf->vmapping_counter);
68 
69 	/*
70 	 * If you hit this BUG() it could mean:
71 	 * * There's a file reference imbalance in dma_buf_poll / dma_buf_poll_cb or somewhere else
72 	 * * dmabuf->cb_in/out.active are non-0 despite no pending fence callback
73 	 */
74 	BUG_ON(dmabuf->cb_in.active || dmabuf->cb_out.active);
75 
76 	dma_buf_stats_teardown(dmabuf);
77 	dmabuf->ops->release(dmabuf);
78 
79 	if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
80 		dma_resv_fini(dmabuf->resv);
81 
82 	WARN_ON(!list_empty(&dmabuf->attachments));
83 	module_put(dmabuf->owner);
84 	kfree(dmabuf->name);
85 	kfree(dmabuf);
86 }
87 
88 static int dma_buf_file_release(struct inode *inode, struct file *file)
89 {
90 	struct dma_buf *dmabuf;
91 
92 	if (!is_dma_buf_file(file))
93 		return -EINVAL;
94 
95 	dmabuf = file->private_data;
96 
97 	mutex_lock(&db_list.lock);
98 	list_del(&dmabuf->list_node);
99 	mutex_unlock(&db_list.lock);
100 
101 	return 0;
102 }
103 
104 static const struct dentry_operations dma_buf_dentry_ops = {
105 	.d_dname = dmabuffs_dname,
106 	.d_release = dma_buf_release,
107 };
108 
109 static struct vfsmount *dma_buf_mnt;
110 
111 static int dma_buf_fs_init_context(struct fs_context *fc)
112 {
113 	struct pseudo_fs_context *ctx;
114 
115 	ctx = init_pseudo(fc, DMA_BUF_MAGIC);
116 	if (!ctx)
117 		return -ENOMEM;
118 	ctx->dops = &dma_buf_dentry_ops;
119 	return 0;
120 }
121 
122 static struct file_system_type dma_buf_fs_type = {
123 	.name = "dmabuf",
124 	.init_fs_context = dma_buf_fs_init_context,
125 	.kill_sb = kill_anon_super,
126 };
127 
128 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
129 {
130 	struct dma_buf *dmabuf;
131 
132 	if (!is_dma_buf_file(file))
133 		return -EINVAL;
134 
135 	dmabuf = file->private_data;
136 
137 	/* check if buffer supports mmap */
138 	if (!dmabuf->ops->mmap)
139 		return -EINVAL;
140 
141 	/* check for overflowing the buffer's size */
142 	if (vma->vm_pgoff + vma_pages(vma) >
143 	    dmabuf->size >> PAGE_SHIFT)
144 		return -EINVAL;
145 
146 	return dmabuf->ops->mmap(dmabuf, vma);
147 }
148 
149 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
150 {
151 	struct dma_buf *dmabuf;
152 	loff_t base;
153 
154 	if (!is_dma_buf_file(file))
155 		return -EBADF;
156 
157 	dmabuf = file->private_data;
158 
159 	/* only support discovering the end of the buffer,
160 	   but also allow SEEK_SET to maintain the idiomatic
161 	   SEEK_END(0), SEEK_CUR(0) pattern */
162 	if (whence == SEEK_END)
163 		base = dmabuf->size;
164 	else if (whence == SEEK_SET)
165 		base = 0;
166 	else
167 		return -EINVAL;
168 
169 	if (offset != 0)
170 		return -EINVAL;
171 
172 	return base + offset;
173 }
174 
175 /**
176  * DOC: implicit fence polling
177  *
178  * To support cross-device and cross-driver synchronization of buffer access
179  * implicit fences (represented internally in the kernel with &struct dma_fence)
180  * can be attached to a &dma_buf. The glue for that and a few related things are
181  * provided in the &dma_resv structure.
182  *
183  * Userspace can query the state of these implicitly tracked fences using poll()
184  * and related system calls:
185  *
186  * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
187  *   most recent write or exclusive fence.
188  *
189  * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
190  *   all attached fences, shared and exclusive ones.
191  *
192  * Note that this only signals the completion of the respective fences, i.e. the
193  * DMA transfers are complete. Cache flushing and any other necessary
194  * preparations before CPU access can begin still need to happen.
195  */
196 
197 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
198 {
199 	struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
200 	struct dma_buf *dmabuf = container_of(dcb->poll, struct dma_buf, poll);
201 	unsigned long flags;
202 
203 	spin_lock_irqsave(&dcb->poll->lock, flags);
204 	wake_up_locked_poll(dcb->poll, dcb->active);
205 	dcb->active = 0;
206 	spin_unlock_irqrestore(&dcb->poll->lock, flags);
207 	dma_fence_put(fence);
208 	/* Paired with get_file in dma_buf_poll */
209 	fput(dmabuf->file);
210 }
211 
212 static bool dma_buf_poll_add_cb(struct dma_resv *resv, bool write,
213 				struct dma_buf_poll_cb_t *dcb)
214 {
215 	struct dma_resv_iter cursor;
216 	struct dma_fence *fence;
217 	int r;
218 
219 	dma_resv_for_each_fence(&cursor, resv, write, fence) {
220 		dma_fence_get(fence);
221 		r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb);
222 		if (!r)
223 			return true;
224 		dma_fence_put(fence);
225 	}
226 
227 	return false;
228 }
229 
230 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
231 {
232 	struct dma_buf *dmabuf;
233 	struct dma_resv *resv;
234 	__poll_t events;
235 
236 	dmabuf = file->private_data;
237 	if (!dmabuf || !dmabuf->resv)
238 		return EPOLLERR;
239 
240 	resv = dmabuf->resv;
241 
242 	poll_wait(file, &dmabuf->poll, poll);
243 
244 	events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
245 	if (!events)
246 		return 0;
247 
248 	dma_resv_lock(resv, NULL);
249 
250 	if (events & EPOLLOUT) {
251 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_out;
252 
253 		/* Check that callback isn't busy */
254 		spin_lock_irq(&dmabuf->poll.lock);
255 		if (dcb->active)
256 			events &= ~EPOLLOUT;
257 		else
258 			dcb->active = EPOLLOUT;
259 		spin_unlock_irq(&dmabuf->poll.lock);
260 
261 		if (events & EPOLLOUT) {
262 			/* Paired with fput in dma_buf_poll_cb */
263 			get_file(dmabuf->file);
264 
265 			if (!dma_buf_poll_add_cb(resv, true, dcb))
266 				/* No callback queued, wake up any other waiters */
267 				dma_buf_poll_cb(NULL, &dcb->cb);
268 			else
269 				events &= ~EPOLLOUT;
270 		}
271 	}
272 
273 	if (events & EPOLLIN) {
274 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_in;
275 
276 		/* Check that callback isn't busy */
277 		spin_lock_irq(&dmabuf->poll.lock);
278 		if (dcb->active)
279 			events &= ~EPOLLIN;
280 		else
281 			dcb->active = EPOLLIN;
282 		spin_unlock_irq(&dmabuf->poll.lock);
283 
284 		if (events & EPOLLIN) {
285 			/* Paired with fput in dma_buf_poll_cb */
286 			get_file(dmabuf->file);
287 
288 			if (!dma_buf_poll_add_cb(resv, false, dcb))
289 				/* No callback queued, wake up any other waiters */
290 				dma_buf_poll_cb(NULL, &dcb->cb);
291 			else
292 				events &= ~EPOLLIN;
293 		}
294 	}
295 
296 	dma_resv_unlock(resv);
297 	return events;
298 }
299 
300 /**
301  * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
302  * It could support changing the name of the dma-buf if the same
303  * piece of memory is used for multiple purpose between different devices.
304  *
305  * @dmabuf: [in]     dmabuf buffer that will be renamed.
306  * @buf:    [in]     A piece of userspace memory that contains the name of
307  *                   the dma-buf.
308  *
309  * Returns 0 on success. If the dma-buf buffer is already attached to
310  * devices, return -EBUSY.
311  *
312  */
313 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
314 {
315 	char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
316 
317 	if (IS_ERR(name))
318 		return PTR_ERR(name);
319 
320 	spin_lock(&dmabuf->name_lock);
321 	kfree(dmabuf->name);
322 	dmabuf->name = name;
323 	spin_unlock(&dmabuf->name_lock);
324 
325 	return 0;
326 }
327 
328 static long dma_buf_ioctl(struct file *file,
329 			  unsigned int cmd, unsigned long arg)
330 {
331 	struct dma_buf *dmabuf;
332 	struct dma_buf_sync sync;
333 	enum dma_data_direction direction;
334 	int ret;
335 
336 	dmabuf = file->private_data;
337 
338 	switch (cmd) {
339 	case DMA_BUF_IOCTL_SYNC:
340 		if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
341 			return -EFAULT;
342 
343 		if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
344 			return -EINVAL;
345 
346 		switch (sync.flags & DMA_BUF_SYNC_RW) {
347 		case DMA_BUF_SYNC_READ:
348 			direction = DMA_FROM_DEVICE;
349 			break;
350 		case DMA_BUF_SYNC_WRITE:
351 			direction = DMA_TO_DEVICE;
352 			break;
353 		case DMA_BUF_SYNC_RW:
354 			direction = DMA_BIDIRECTIONAL;
355 			break;
356 		default:
357 			return -EINVAL;
358 		}
359 
360 		if (sync.flags & DMA_BUF_SYNC_END)
361 			ret = dma_buf_end_cpu_access(dmabuf, direction);
362 		else
363 			ret = dma_buf_begin_cpu_access(dmabuf, direction);
364 
365 		return ret;
366 
367 	case DMA_BUF_SET_NAME_A:
368 	case DMA_BUF_SET_NAME_B:
369 		return dma_buf_set_name(dmabuf, (const char __user *)arg);
370 
371 	default:
372 		return -ENOTTY;
373 	}
374 }
375 
376 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
377 {
378 	struct dma_buf *dmabuf = file->private_data;
379 
380 	seq_printf(m, "size:\t%zu\n", dmabuf->size);
381 	/* Don't count the temporary reference taken inside procfs seq_show */
382 	seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
383 	seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
384 	spin_lock(&dmabuf->name_lock);
385 	if (dmabuf->name)
386 		seq_printf(m, "name:\t%s\n", dmabuf->name);
387 	spin_unlock(&dmabuf->name_lock);
388 }
389 
390 static const struct file_operations dma_buf_fops = {
391 	.release	= dma_buf_file_release,
392 	.mmap		= dma_buf_mmap_internal,
393 	.llseek		= dma_buf_llseek,
394 	.poll		= dma_buf_poll,
395 	.unlocked_ioctl	= dma_buf_ioctl,
396 	.compat_ioctl	= compat_ptr_ioctl,
397 	.show_fdinfo	= dma_buf_show_fdinfo,
398 };
399 
400 /*
401  * is_dma_buf_file - Check if struct file* is associated with dma_buf
402  */
403 static inline int is_dma_buf_file(struct file *file)
404 {
405 	return file->f_op == &dma_buf_fops;
406 }
407 
408 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
409 {
410 	struct file *file;
411 	struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
412 
413 	if (IS_ERR(inode))
414 		return ERR_CAST(inode);
415 
416 	inode->i_size = dmabuf->size;
417 	inode_set_bytes(inode, dmabuf->size);
418 
419 	file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
420 				 flags, &dma_buf_fops);
421 	if (IS_ERR(file))
422 		goto err_alloc_file;
423 	file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
424 	file->private_data = dmabuf;
425 	file->f_path.dentry->d_fsdata = dmabuf;
426 
427 	return file;
428 
429 err_alloc_file:
430 	iput(inode);
431 	return file;
432 }
433 
434 /**
435  * DOC: dma buf device access
436  *
437  * For device DMA access to a shared DMA buffer the usual sequence of operations
438  * is fairly simple:
439  *
440  * 1. The exporter defines his exporter instance using
441  *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
442  *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
443  *    as a file descriptor by calling dma_buf_fd().
444  *
445  * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
446  *    to share with: First the filedescriptor is converted to a &dma_buf using
447  *    dma_buf_get(). Then the buffer is attached to the device using
448  *    dma_buf_attach().
449  *
450  *    Up to this stage the exporter is still free to migrate or reallocate the
451  *    backing storage.
452  *
453  * 3. Once the buffer is attached to all devices userspace can initiate DMA
454  *    access to the shared buffer. In the kernel this is done by calling
455  *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
456  *
457  * 4. Once a driver is done with a shared buffer it needs to call
458  *    dma_buf_detach() (after cleaning up any mappings) and then release the
459  *    reference acquired with dma_buf_get() by calling dma_buf_put().
460  *
461  * For the detailed semantics exporters are expected to implement see
462  * &dma_buf_ops.
463  */
464 
465 /**
466  * dma_buf_export - Creates a new dma_buf, and associates an anon file
467  * with this buffer, so it can be exported.
468  * Also connect the allocator specific data and ops to the buffer.
469  * Additionally, provide a name string for exporter; useful in debugging.
470  *
471  * @exp_info:	[in]	holds all the export related information provided
472  *			by the exporter. see &struct dma_buf_export_info
473  *			for further details.
474  *
475  * Returns, on success, a newly created struct dma_buf object, which wraps the
476  * supplied private data and operations for struct dma_buf_ops. On either
477  * missing ops, or error in allocating struct dma_buf, will return negative
478  * error.
479  *
480  * For most cases the easiest way to create @exp_info is through the
481  * %DEFINE_DMA_BUF_EXPORT_INFO macro.
482  */
483 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
484 {
485 	struct dma_buf *dmabuf;
486 	struct dma_resv *resv = exp_info->resv;
487 	struct file *file;
488 	size_t alloc_size = sizeof(struct dma_buf);
489 	int ret;
490 
491 	if (!exp_info->resv)
492 		alloc_size += sizeof(struct dma_resv);
493 	else
494 		/* prevent &dma_buf[1] == dma_buf->resv */
495 		alloc_size += 1;
496 
497 	if (WARN_ON(!exp_info->priv
498 			  || !exp_info->ops
499 			  || !exp_info->ops->map_dma_buf
500 			  || !exp_info->ops->unmap_dma_buf
501 			  || !exp_info->ops->release)) {
502 		return ERR_PTR(-EINVAL);
503 	}
504 
505 	if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
506 		    (exp_info->ops->pin || exp_info->ops->unpin)))
507 		return ERR_PTR(-EINVAL);
508 
509 	if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
510 		return ERR_PTR(-EINVAL);
511 
512 	if (!try_module_get(exp_info->owner))
513 		return ERR_PTR(-ENOENT);
514 
515 	dmabuf = kzalloc(alloc_size, GFP_KERNEL);
516 	if (!dmabuf) {
517 		ret = -ENOMEM;
518 		goto err_module;
519 	}
520 
521 	dmabuf->priv = exp_info->priv;
522 	dmabuf->ops = exp_info->ops;
523 	dmabuf->size = exp_info->size;
524 	dmabuf->exp_name = exp_info->exp_name;
525 	dmabuf->owner = exp_info->owner;
526 	spin_lock_init(&dmabuf->name_lock);
527 	init_waitqueue_head(&dmabuf->poll);
528 	dmabuf->cb_in.poll = dmabuf->cb_out.poll = &dmabuf->poll;
529 	dmabuf->cb_in.active = dmabuf->cb_out.active = 0;
530 
531 	if (!resv) {
532 		resv = (struct dma_resv *)&dmabuf[1];
533 		dma_resv_init(resv);
534 	}
535 	dmabuf->resv = resv;
536 
537 	file = dma_buf_getfile(dmabuf, exp_info->flags);
538 	if (IS_ERR(file)) {
539 		ret = PTR_ERR(file);
540 		goto err_dmabuf;
541 	}
542 
543 	file->f_mode |= FMODE_LSEEK;
544 	dmabuf->file = file;
545 
546 	ret = dma_buf_stats_setup(dmabuf);
547 	if (ret)
548 		goto err_sysfs;
549 
550 	mutex_init(&dmabuf->lock);
551 	INIT_LIST_HEAD(&dmabuf->attachments);
552 
553 	mutex_lock(&db_list.lock);
554 	list_add(&dmabuf->list_node, &db_list.head);
555 	mutex_unlock(&db_list.lock);
556 
557 	return dmabuf;
558 
559 err_sysfs:
560 	/*
561 	 * Set file->f_path.dentry->d_fsdata to NULL so that when
562 	 * dma_buf_release() gets invoked by dentry_ops, it exits
563 	 * early before calling the release() dma_buf op.
564 	 */
565 	file->f_path.dentry->d_fsdata = NULL;
566 	fput(file);
567 err_dmabuf:
568 	kfree(dmabuf);
569 err_module:
570 	module_put(exp_info->owner);
571 	return ERR_PTR(ret);
572 }
573 EXPORT_SYMBOL_NS_GPL(dma_buf_export, DMA_BUF);
574 
575 /**
576  * dma_buf_fd - returns a file descriptor for the given struct dma_buf
577  * @dmabuf:	[in]	pointer to dma_buf for which fd is required.
578  * @flags:      [in]    flags to give to fd
579  *
580  * On success, returns an associated 'fd'. Else, returns error.
581  */
582 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
583 {
584 	int fd;
585 
586 	if (!dmabuf || !dmabuf->file)
587 		return -EINVAL;
588 
589 	fd = get_unused_fd_flags(flags);
590 	if (fd < 0)
591 		return fd;
592 
593 	fd_install(fd, dmabuf->file);
594 
595 	return fd;
596 }
597 EXPORT_SYMBOL_NS_GPL(dma_buf_fd, DMA_BUF);
598 
599 /**
600  * dma_buf_get - returns the struct dma_buf related to an fd
601  * @fd:	[in]	fd associated with the struct dma_buf to be returned
602  *
603  * On success, returns the struct dma_buf associated with an fd; uses
604  * file's refcounting done by fget to increase refcount. returns ERR_PTR
605  * otherwise.
606  */
607 struct dma_buf *dma_buf_get(int fd)
608 {
609 	struct file *file;
610 
611 	file = fget(fd);
612 
613 	if (!file)
614 		return ERR_PTR(-EBADF);
615 
616 	if (!is_dma_buf_file(file)) {
617 		fput(file);
618 		return ERR_PTR(-EINVAL);
619 	}
620 
621 	return file->private_data;
622 }
623 EXPORT_SYMBOL_NS_GPL(dma_buf_get, DMA_BUF);
624 
625 /**
626  * dma_buf_put - decreases refcount of the buffer
627  * @dmabuf:	[in]	buffer to reduce refcount of
628  *
629  * Uses file's refcounting done implicitly by fput().
630  *
631  * If, as a result of this call, the refcount becomes 0, the 'release' file
632  * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
633  * in turn, and frees the memory allocated for dmabuf when exported.
634  */
635 void dma_buf_put(struct dma_buf *dmabuf)
636 {
637 	if (WARN_ON(!dmabuf || !dmabuf->file))
638 		return;
639 
640 	fput(dmabuf->file);
641 }
642 EXPORT_SYMBOL_NS_GPL(dma_buf_put, DMA_BUF);
643 
644 static void mangle_sg_table(struct sg_table *sg_table)
645 {
646 #ifdef CONFIG_DMABUF_DEBUG
647 	int i;
648 	struct scatterlist *sg;
649 
650 	/* To catch abuse of the underlying struct page by importers mix
651 	 * up the bits, but take care to preserve the low SG_ bits to
652 	 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf
653 	 * before passing the sgt back to the exporter. */
654 	for_each_sgtable_sg(sg_table, sg, i)
655 		sg->page_link ^= ~0xffUL;
656 #endif
657 
658 }
659 static struct sg_table * __map_dma_buf(struct dma_buf_attachment *attach,
660 				       enum dma_data_direction direction)
661 {
662 	struct sg_table *sg_table;
663 
664 	sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
665 
666 	if (!IS_ERR_OR_NULL(sg_table))
667 		mangle_sg_table(sg_table);
668 
669 	return sg_table;
670 }
671 
672 /**
673  * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list
674  * @dmabuf:		[in]	buffer to attach device to.
675  * @dev:		[in]	device to be attached.
676  * @importer_ops:	[in]	importer operations for the attachment
677  * @importer_priv:	[in]	importer private pointer for the attachment
678  *
679  * Returns struct dma_buf_attachment pointer for this attachment. Attachments
680  * must be cleaned up by calling dma_buf_detach().
681  *
682  * Optionally this calls &dma_buf_ops.attach to allow device-specific attach
683  * functionality.
684  *
685  * Returns:
686  *
687  * A pointer to newly created &dma_buf_attachment on success, or a negative
688  * error code wrapped into a pointer on failure.
689  *
690  * Note that this can fail if the backing storage of @dmabuf is in a place not
691  * accessible to @dev, and cannot be moved to a more suitable place. This is
692  * indicated with the error code -EBUSY.
693  */
694 struct dma_buf_attachment *
695 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
696 		       const struct dma_buf_attach_ops *importer_ops,
697 		       void *importer_priv)
698 {
699 	struct dma_buf_attachment *attach;
700 	int ret;
701 
702 	if (WARN_ON(!dmabuf || !dev))
703 		return ERR_PTR(-EINVAL);
704 
705 	if (WARN_ON(importer_ops && !importer_ops->move_notify))
706 		return ERR_PTR(-EINVAL);
707 
708 	attach = kzalloc(sizeof(*attach), GFP_KERNEL);
709 	if (!attach)
710 		return ERR_PTR(-ENOMEM);
711 
712 	attach->dev = dev;
713 	attach->dmabuf = dmabuf;
714 	if (importer_ops)
715 		attach->peer2peer = importer_ops->allow_peer2peer;
716 	attach->importer_ops = importer_ops;
717 	attach->importer_priv = importer_priv;
718 
719 	if (dmabuf->ops->attach) {
720 		ret = dmabuf->ops->attach(dmabuf, attach);
721 		if (ret)
722 			goto err_attach;
723 	}
724 	dma_resv_lock(dmabuf->resv, NULL);
725 	list_add(&attach->node, &dmabuf->attachments);
726 	dma_resv_unlock(dmabuf->resv);
727 
728 	/* When either the importer or the exporter can't handle dynamic
729 	 * mappings we cache the mapping here to avoid issues with the
730 	 * reservation object lock.
731 	 */
732 	if (dma_buf_attachment_is_dynamic(attach) !=
733 	    dma_buf_is_dynamic(dmabuf)) {
734 		struct sg_table *sgt;
735 
736 		if (dma_buf_is_dynamic(attach->dmabuf)) {
737 			dma_resv_lock(attach->dmabuf->resv, NULL);
738 			ret = dmabuf->ops->pin(attach);
739 			if (ret)
740 				goto err_unlock;
741 		}
742 
743 		sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL);
744 		if (!sgt)
745 			sgt = ERR_PTR(-ENOMEM);
746 		if (IS_ERR(sgt)) {
747 			ret = PTR_ERR(sgt);
748 			goto err_unpin;
749 		}
750 		if (dma_buf_is_dynamic(attach->dmabuf))
751 			dma_resv_unlock(attach->dmabuf->resv);
752 		attach->sgt = sgt;
753 		attach->dir = DMA_BIDIRECTIONAL;
754 	}
755 
756 	return attach;
757 
758 err_attach:
759 	kfree(attach);
760 	return ERR_PTR(ret);
761 
762 err_unpin:
763 	if (dma_buf_is_dynamic(attach->dmabuf))
764 		dmabuf->ops->unpin(attach);
765 
766 err_unlock:
767 	if (dma_buf_is_dynamic(attach->dmabuf))
768 		dma_resv_unlock(attach->dmabuf->resv);
769 
770 	dma_buf_detach(dmabuf, attach);
771 	return ERR_PTR(ret);
772 }
773 EXPORT_SYMBOL_NS_GPL(dma_buf_dynamic_attach, DMA_BUF);
774 
775 /**
776  * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
777  * @dmabuf:	[in]	buffer to attach device to.
778  * @dev:	[in]	device to be attached.
779  *
780  * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
781  * mapping.
782  */
783 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
784 					  struct device *dev)
785 {
786 	return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
787 }
788 EXPORT_SYMBOL_NS_GPL(dma_buf_attach, DMA_BUF);
789 
790 static void __unmap_dma_buf(struct dma_buf_attachment *attach,
791 			    struct sg_table *sg_table,
792 			    enum dma_data_direction direction)
793 {
794 	/* uses XOR, hence this unmangles */
795 	mangle_sg_table(sg_table);
796 
797 	attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
798 }
799 
800 /**
801  * dma_buf_detach - Remove the given attachment from dmabuf's attachments list
802  * @dmabuf:	[in]	buffer to detach from.
803  * @attach:	[in]	attachment to be detached; is free'd after this call.
804  *
805  * Clean up a device attachment obtained by calling dma_buf_attach().
806  *
807  * Optionally this calls &dma_buf_ops.detach for device-specific detach.
808  */
809 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
810 {
811 	if (WARN_ON(!dmabuf || !attach))
812 		return;
813 
814 	if (attach->sgt) {
815 		if (dma_buf_is_dynamic(attach->dmabuf))
816 			dma_resv_lock(attach->dmabuf->resv, NULL);
817 
818 		__unmap_dma_buf(attach, attach->sgt, attach->dir);
819 
820 		if (dma_buf_is_dynamic(attach->dmabuf)) {
821 			dmabuf->ops->unpin(attach);
822 			dma_resv_unlock(attach->dmabuf->resv);
823 		}
824 	}
825 
826 	dma_resv_lock(dmabuf->resv, NULL);
827 	list_del(&attach->node);
828 	dma_resv_unlock(dmabuf->resv);
829 	if (dmabuf->ops->detach)
830 		dmabuf->ops->detach(dmabuf, attach);
831 
832 	kfree(attach);
833 }
834 EXPORT_SYMBOL_NS_GPL(dma_buf_detach, DMA_BUF);
835 
836 /**
837  * dma_buf_pin - Lock down the DMA-buf
838  * @attach:	[in]	attachment which should be pinned
839  *
840  * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may
841  * call this, and only for limited use cases like scanout and not for temporary
842  * pin operations. It is not permitted to allow userspace to pin arbitrary
843  * amounts of buffers through this interface.
844  *
845  * Buffers must be unpinned by calling dma_buf_unpin().
846  *
847  * Returns:
848  * 0 on success, negative error code on failure.
849  */
850 int dma_buf_pin(struct dma_buf_attachment *attach)
851 {
852 	struct dma_buf *dmabuf = attach->dmabuf;
853 	int ret = 0;
854 
855 	WARN_ON(!dma_buf_attachment_is_dynamic(attach));
856 
857 	dma_resv_assert_held(dmabuf->resv);
858 
859 	if (dmabuf->ops->pin)
860 		ret = dmabuf->ops->pin(attach);
861 
862 	return ret;
863 }
864 EXPORT_SYMBOL_NS_GPL(dma_buf_pin, DMA_BUF);
865 
866 /**
867  * dma_buf_unpin - Unpin a DMA-buf
868  * @attach:	[in]	attachment which should be unpinned
869  *
870  * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move
871  * any mapping of @attach again and inform the importer through
872  * &dma_buf_attach_ops.move_notify.
873  */
874 void dma_buf_unpin(struct dma_buf_attachment *attach)
875 {
876 	struct dma_buf *dmabuf = attach->dmabuf;
877 
878 	WARN_ON(!dma_buf_attachment_is_dynamic(attach));
879 
880 	dma_resv_assert_held(dmabuf->resv);
881 
882 	if (dmabuf->ops->unpin)
883 		dmabuf->ops->unpin(attach);
884 }
885 EXPORT_SYMBOL_NS_GPL(dma_buf_unpin, DMA_BUF);
886 
887 /**
888  * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
889  * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
890  * dma_buf_ops.
891  * @attach:	[in]	attachment whose scatterlist is to be returned
892  * @direction:	[in]	direction of DMA transfer
893  *
894  * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
895  * on error. May return -EINTR if it is interrupted by a signal.
896  *
897  * On success, the DMA addresses and lengths in the returned scatterlist are
898  * PAGE_SIZE aligned.
899  *
900  * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
901  * the underlying backing storage is pinned for as long as a mapping exists,
902  * therefore users/importers should not hold onto a mapping for undue amounts of
903  * time.
904  *
905  * Important: Dynamic importers must wait for the exclusive fence of the struct
906  * dma_resv attached to the DMA-BUF first.
907  */
908 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
909 					enum dma_data_direction direction)
910 {
911 	struct sg_table *sg_table;
912 	int r;
913 
914 	might_sleep();
915 
916 	if (WARN_ON(!attach || !attach->dmabuf))
917 		return ERR_PTR(-EINVAL);
918 
919 	if (dma_buf_attachment_is_dynamic(attach))
920 		dma_resv_assert_held(attach->dmabuf->resv);
921 
922 	if (attach->sgt) {
923 		/*
924 		 * Two mappings with different directions for the same
925 		 * attachment are not allowed.
926 		 */
927 		if (attach->dir != direction &&
928 		    attach->dir != DMA_BIDIRECTIONAL)
929 			return ERR_PTR(-EBUSY);
930 
931 		return attach->sgt;
932 	}
933 
934 	if (dma_buf_is_dynamic(attach->dmabuf)) {
935 		dma_resv_assert_held(attach->dmabuf->resv);
936 		if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
937 			r = attach->dmabuf->ops->pin(attach);
938 			if (r)
939 				return ERR_PTR(r);
940 		}
941 	}
942 
943 	sg_table = __map_dma_buf(attach, direction);
944 	if (!sg_table)
945 		sg_table = ERR_PTR(-ENOMEM);
946 
947 	if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) &&
948 	     !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
949 		attach->dmabuf->ops->unpin(attach);
950 
951 	if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
952 		attach->sgt = sg_table;
953 		attach->dir = direction;
954 	}
955 
956 #ifdef CONFIG_DMA_API_DEBUG
957 	if (!IS_ERR(sg_table)) {
958 		struct scatterlist *sg;
959 		u64 addr;
960 		int len;
961 		int i;
962 
963 		for_each_sgtable_dma_sg(sg_table, sg, i) {
964 			addr = sg_dma_address(sg);
965 			len = sg_dma_len(sg);
966 			if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) {
967 				pr_debug("%s: addr %llx or len %x is not page aligned!\n",
968 					 __func__, addr, len);
969 			}
970 		}
971 	}
972 #endif /* CONFIG_DMA_API_DEBUG */
973 	return sg_table;
974 }
975 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment, DMA_BUF);
976 
977 /**
978  * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
979  * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
980  * dma_buf_ops.
981  * @attach:	[in]	attachment to unmap buffer from
982  * @sg_table:	[in]	scatterlist info of the buffer to unmap
983  * @direction:  [in]    direction of DMA transfer
984  *
985  * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
986  */
987 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
988 				struct sg_table *sg_table,
989 				enum dma_data_direction direction)
990 {
991 	might_sleep();
992 
993 	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
994 		return;
995 
996 	if (dma_buf_attachment_is_dynamic(attach))
997 		dma_resv_assert_held(attach->dmabuf->resv);
998 
999 	if (attach->sgt == sg_table)
1000 		return;
1001 
1002 	if (dma_buf_is_dynamic(attach->dmabuf))
1003 		dma_resv_assert_held(attach->dmabuf->resv);
1004 
1005 	__unmap_dma_buf(attach, sg_table, direction);
1006 
1007 	if (dma_buf_is_dynamic(attach->dmabuf) &&
1008 	    !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1009 		dma_buf_unpin(attach);
1010 }
1011 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment, DMA_BUF);
1012 
1013 /**
1014  * dma_buf_move_notify - notify attachments that DMA-buf is moving
1015  *
1016  * @dmabuf:	[in]	buffer which is moving
1017  *
1018  * Informs all attachmenst that they need to destroy and recreated all their
1019  * mappings.
1020  */
1021 void dma_buf_move_notify(struct dma_buf *dmabuf)
1022 {
1023 	struct dma_buf_attachment *attach;
1024 
1025 	dma_resv_assert_held(dmabuf->resv);
1026 
1027 	list_for_each_entry(attach, &dmabuf->attachments, node)
1028 		if (attach->importer_ops)
1029 			attach->importer_ops->move_notify(attach);
1030 }
1031 EXPORT_SYMBOL_NS_GPL(dma_buf_move_notify, DMA_BUF);
1032 
1033 /**
1034  * DOC: cpu access
1035  *
1036  * There are mutliple reasons for supporting CPU access to a dma buffer object:
1037  *
1038  * - Fallback operations in the kernel, for example when a device is connected
1039  *   over USB and the kernel needs to shuffle the data around first before
1040  *   sending it away. Cache coherency is handled by braketing any transactions
1041  *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
1042  *   access.
1043  *
1044  *   Since for most kernel internal dma-buf accesses need the entire buffer, a
1045  *   vmap interface is introduced. Note that on very old 32-bit architectures
1046  *   vmalloc space might be limited and result in vmap calls failing.
1047  *
1048  *   Interfaces::
1049  *
1050  *      void \*dma_buf_vmap(struct dma_buf \*dmabuf, struct iosys_map \*map)
1051  *      void dma_buf_vunmap(struct dma_buf \*dmabuf, struct iosys_map \*map)
1052  *
1053  *   The vmap call can fail if there is no vmap support in the exporter, or if
1054  *   it runs out of vmalloc space. Note that the dma-buf layer keeps a reference
1055  *   count for all vmap access and calls down into the exporter's vmap function
1056  *   only when no vmapping exists, and only unmaps it once. Protection against
1057  *   concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex.
1058  *
1059  * - For full compatibility on the importer side with existing userspace
1060  *   interfaces, which might already support mmap'ing buffers. This is needed in
1061  *   many processing pipelines (e.g. feeding a software rendered image into a
1062  *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1063  *   framework already supported this and for DMA buffer file descriptors to
1064  *   replace ION buffers mmap support was needed.
1065  *
1066  *   There is no special interfaces, userspace simply calls mmap on the dma-buf
1067  *   fd. But like for CPU access there's a need to braket the actual access,
1068  *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1069  *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1070  *   be restarted.
1071  *
1072  *   Some systems might need some sort of cache coherency management e.g. when
1073  *   CPU and GPU domains are being accessed through dma-buf at the same time.
1074  *   To circumvent this problem there are begin/end coherency markers, that
1075  *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1076  *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1077  *   sequence would be used like following:
1078  *
1079  *     - mmap dma-buf fd
1080  *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1081  *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1082  *       want (with the new data being consumed by say the GPU or the scanout
1083  *       device)
1084  *     - munmap once you don't need the buffer any more
1085  *
1086  *    For correctness and optimal performance, it is always required to use
1087  *    SYNC_START and SYNC_END before and after, respectively, when accessing the
1088  *    mapped address. Userspace cannot rely on coherent access, even when there
1089  *    are systems where it just works without calling these ioctls.
1090  *
1091  * - And as a CPU fallback in userspace processing pipelines.
1092  *
1093  *   Similar to the motivation for kernel cpu access it is again important that
1094  *   the userspace code of a given importing subsystem can use the same
1095  *   interfaces with a imported dma-buf buffer object as with a native buffer
1096  *   object. This is especially important for drm where the userspace part of
1097  *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
1098  *   use a different way to mmap a buffer rather invasive.
1099  *
1100  *   The assumption in the current dma-buf interfaces is that redirecting the
1101  *   initial mmap is all that's needed. A survey of some of the existing
1102  *   subsystems shows that no driver seems to do any nefarious thing like
1103  *   syncing up with outstanding asynchronous processing on the device or
1104  *   allocating special resources at fault time. So hopefully this is good
1105  *   enough, since adding interfaces to intercept pagefaults and allow pte
1106  *   shootdowns would increase the complexity quite a bit.
1107  *
1108  *   Interface::
1109  *
1110  *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1111  *		       unsigned long);
1112  *
1113  *   If the importing subsystem simply provides a special-purpose mmap call to
1114  *   set up a mapping in userspace, calling do_mmap with &dma_buf.file will
1115  *   equally achieve that for a dma-buf object.
1116  */
1117 
1118 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1119 				      enum dma_data_direction direction)
1120 {
1121 	bool write = (direction == DMA_BIDIRECTIONAL ||
1122 		      direction == DMA_TO_DEVICE);
1123 	struct dma_resv *resv = dmabuf->resv;
1124 	long ret;
1125 
1126 	/* Wait on any implicit rendering fences */
1127 	ret = dma_resv_wait_timeout(resv, write, true, MAX_SCHEDULE_TIMEOUT);
1128 	if (ret < 0)
1129 		return ret;
1130 
1131 	return 0;
1132 }
1133 
1134 /**
1135  * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1136  * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1137  * preparations. Coherency is only guaranteed in the specified range for the
1138  * specified access direction.
1139  * @dmabuf:	[in]	buffer to prepare cpu access for.
1140  * @direction:	[in]	length of range for cpu access.
1141  *
1142  * After the cpu access is complete the caller should call
1143  * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1144  * it guaranteed to be coherent with other DMA access.
1145  *
1146  * This function will also wait for any DMA transactions tracked through
1147  * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit
1148  * synchronization this function will only ensure cache coherency, callers must
1149  * ensure synchronization with such DMA transactions on their own.
1150  *
1151  * Can return negative error values, returns 0 on success.
1152  */
1153 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1154 			     enum dma_data_direction direction)
1155 {
1156 	int ret = 0;
1157 
1158 	if (WARN_ON(!dmabuf))
1159 		return -EINVAL;
1160 
1161 	might_lock(&dmabuf->resv->lock.base);
1162 
1163 	if (dmabuf->ops->begin_cpu_access)
1164 		ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1165 
1166 	/* Ensure that all fences are waited upon - but we first allow
1167 	 * the native handler the chance to do so more efficiently if it
1168 	 * chooses. A double invocation here will be reasonably cheap no-op.
1169 	 */
1170 	if (ret == 0)
1171 		ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1172 
1173 	return ret;
1174 }
1175 EXPORT_SYMBOL_NS_GPL(dma_buf_begin_cpu_access, DMA_BUF);
1176 
1177 /**
1178  * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1179  * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1180  * actions. Coherency is only guaranteed in the specified range for the
1181  * specified access direction.
1182  * @dmabuf:	[in]	buffer to complete cpu access for.
1183  * @direction:	[in]	length of range for cpu access.
1184  *
1185  * This terminates CPU access started with dma_buf_begin_cpu_access().
1186  *
1187  * Can return negative error values, returns 0 on success.
1188  */
1189 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1190 			   enum dma_data_direction direction)
1191 {
1192 	int ret = 0;
1193 
1194 	WARN_ON(!dmabuf);
1195 
1196 	might_lock(&dmabuf->resv->lock.base);
1197 
1198 	if (dmabuf->ops->end_cpu_access)
1199 		ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1200 
1201 	return ret;
1202 }
1203 EXPORT_SYMBOL_NS_GPL(dma_buf_end_cpu_access, DMA_BUF);
1204 
1205 
1206 /**
1207  * dma_buf_mmap - Setup up a userspace mmap with the given vma
1208  * @dmabuf:	[in]	buffer that should back the vma
1209  * @vma:	[in]	vma for the mmap
1210  * @pgoff:	[in]	offset in pages where this mmap should start within the
1211  *			dma-buf buffer.
1212  *
1213  * This function adjusts the passed in vma so that it points at the file of the
1214  * dma_buf operation. It also adjusts the starting pgoff and does bounds
1215  * checking on the size of the vma. Then it calls the exporters mmap function to
1216  * set up the mapping.
1217  *
1218  * Can return negative error values, returns 0 on success.
1219  */
1220 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1221 		 unsigned long pgoff)
1222 {
1223 	if (WARN_ON(!dmabuf || !vma))
1224 		return -EINVAL;
1225 
1226 	/* check if buffer supports mmap */
1227 	if (!dmabuf->ops->mmap)
1228 		return -EINVAL;
1229 
1230 	/* check for offset overflow */
1231 	if (pgoff + vma_pages(vma) < pgoff)
1232 		return -EOVERFLOW;
1233 
1234 	/* check for overflowing the buffer's size */
1235 	if (pgoff + vma_pages(vma) >
1236 	    dmabuf->size >> PAGE_SHIFT)
1237 		return -EINVAL;
1238 
1239 	/* readjust the vma */
1240 	vma_set_file(vma, dmabuf->file);
1241 	vma->vm_pgoff = pgoff;
1242 
1243 	return dmabuf->ops->mmap(dmabuf, vma);
1244 }
1245 EXPORT_SYMBOL_NS_GPL(dma_buf_mmap, DMA_BUF);
1246 
1247 /**
1248  * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1249  * address space. Same restrictions as for vmap and friends apply.
1250  * @dmabuf:	[in]	buffer to vmap
1251  * @map:	[out]	returns the vmap pointer
1252  *
1253  * This call may fail due to lack of virtual mapping address space.
1254  * These calls are optional in drivers. The intended use for them
1255  * is for mapping objects linear in kernel space for high use objects.
1256  *
1257  * To ensure coherency users must call dma_buf_begin_cpu_access() and
1258  * dma_buf_end_cpu_access() around any cpu access performed through this
1259  * mapping.
1260  *
1261  * Returns 0 on success, or a negative errno code otherwise.
1262  */
1263 int dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map)
1264 {
1265 	struct iosys_map ptr;
1266 	int ret = 0;
1267 
1268 	iosys_map_clear(map);
1269 
1270 	if (WARN_ON(!dmabuf))
1271 		return -EINVAL;
1272 
1273 	if (!dmabuf->ops->vmap)
1274 		return -EINVAL;
1275 
1276 	mutex_lock(&dmabuf->lock);
1277 	if (dmabuf->vmapping_counter) {
1278 		dmabuf->vmapping_counter++;
1279 		BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1280 		*map = dmabuf->vmap_ptr;
1281 		goto out_unlock;
1282 	}
1283 
1284 	BUG_ON(iosys_map_is_set(&dmabuf->vmap_ptr));
1285 
1286 	ret = dmabuf->ops->vmap(dmabuf, &ptr);
1287 	if (WARN_ON_ONCE(ret))
1288 		goto out_unlock;
1289 
1290 	dmabuf->vmap_ptr = ptr;
1291 	dmabuf->vmapping_counter = 1;
1292 
1293 	*map = dmabuf->vmap_ptr;
1294 
1295 out_unlock:
1296 	mutex_unlock(&dmabuf->lock);
1297 	return ret;
1298 }
1299 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap, DMA_BUF);
1300 
1301 /**
1302  * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1303  * @dmabuf:	[in]	buffer to vunmap
1304  * @map:	[in]	vmap pointer to vunmap
1305  */
1306 void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map)
1307 {
1308 	if (WARN_ON(!dmabuf))
1309 		return;
1310 
1311 	BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1312 	BUG_ON(dmabuf->vmapping_counter == 0);
1313 	BUG_ON(!iosys_map_is_equal(&dmabuf->vmap_ptr, map));
1314 
1315 	mutex_lock(&dmabuf->lock);
1316 	if (--dmabuf->vmapping_counter == 0) {
1317 		if (dmabuf->ops->vunmap)
1318 			dmabuf->ops->vunmap(dmabuf, map);
1319 		iosys_map_clear(&dmabuf->vmap_ptr);
1320 	}
1321 	mutex_unlock(&dmabuf->lock);
1322 }
1323 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap, DMA_BUF);
1324 
1325 #ifdef CONFIG_DEBUG_FS
1326 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1327 {
1328 	struct dma_buf *buf_obj;
1329 	struct dma_buf_attachment *attach_obj;
1330 	int count = 0, attach_count;
1331 	size_t size = 0;
1332 	int ret;
1333 
1334 	ret = mutex_lock_interruptible(&db_list.lock);
1335 
1336 	if (ret)
1337 		return ret;
1338 
1339 	seq_puts(s, "\nDma-buf Objects:\n");
1340 	seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1341 		   "size", "flags", "mode", "count", "ino");
1342 
1343 	list_for_each_entry(buf_obj, &db_list.head, list_node) {
1344 
1345 		ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1346 		if (ret)
1347 			goto error_unlock;
1348 
1349 
1350 		spin_lock(&buf_obj->name_lock);
1351 		seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1352 				buf_obj->size,
1353 				buf_obj->file->f_flags, buf_obj->file->f_mode,
1354 				file_count(buf_obj->file),
1355 				buf_obj->exp_name,
1356 				file_inode(buf_obj->file)->i_ino,
1357 				buf_obj->name ?: "");
1358 		spin_unlock(&buf_obj->name_lock);
1359 
1360 		dma_resv_describe(buf_obj->resv, s);
1361 
1362 		seq_puts(s, "\tAttached Devices:\n");
1363 		attach_count = 0;
1364 
1365 		list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1366 			seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1367 			attach_count++;
1368 		}
1369 		dma_resv_unlock(buf_obj->resv);
1370 
1371 		seq_printf(s, "Total %d devices attached\n\n",
1372 				attach_count);
1373 
1374 		count++;
1375 		size += buf_obj->size;
1376 	}
1377 
1378 	seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1379 
1380 	mutex_unlock(&db_list.lock);
1381 	return 0;
1382 
1383 error_unlock:
1384 	mutex_unlock(&db_list.lock);
1385 	return ret;
1386 }
1387 
1388 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1389 
1390 static struct dentry *dma_buf_debugfs_dir;
1391 
1392 static int dma_buf_init_debugfs(void)
1393 {
1394 	struct dentry *d;
1395 	int err = 0;
1396 
1397 	d = debugfs_create_dir("dma_buf", NULL);
1398 	if (IS_ERR(d))
1399 		return PTR_ERR(d);
1400 
1401 	dma_buf_debugfs_dir = d;
1402 
1403 	d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1404 				NULL, &dma_buf_debug_fops);
1405 	if (IS_ERR(d)) {
1406 		pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1407 		debugfs_remove_recursive(dma_buf_debugfs_dir);
1408 		dma_buf_debugfs_dir = NULL;
1409 		err = PTR_ERR(d);
1410 	}
1411 
1412 	return err;
1413 }
1414 
1415 static void dma_buf_uninit_debugfs(void)
1416 {
1417 	debugfs_remove_recursive(dma_buf_debugfs_dir);
1418 }
1419 #else
1420 static inline int dma_buf_init_debugfs(void)
1421 {
1422 	return 0;
1423 }
1424 static inline void dma_buf_uninit_debugfs(void)
1425 {
1426 }
1427 #endif
1428 
1429 static int __init dma_buf_init(void)
1430 {
1431 	int ret;
1432 
1433 	ret = dma_buf_init_sysfs_statistics();
1434 	if (ret)
1435 		return ret;
1436 
1437 	dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1438 	if (IS_ERR(dma_buf_mnt))
1439 		return PTR_ERR(dma_buf_mnt);
1440 
1441 	mutex_init(&db_list.lock);
1442 	INIT_LIST_HEAD(&db_list.head);
1443 	dma_buf_init_debugfs();
1444 	return 0;
1445 }
1446 subsys_initcall(dma_buf_init);
1447 
1448 static void __exit dma_buf_deinit(void)
1449 {
1450 	dma_buf_uninit_debugfs();
1451 	kern_unmount(dma_buf_mnt);
1452 	dma_buf_uninit_sysfs_statistics();
1453 }
1454 __exitcall(dma_buf_deinit);
1455