1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Framework for buffer objects that can be shared across devices/subsystems. 4 * 5 * Copyright(C) 2011 Linaro Limited. All rights reserved. 6 * Author: Sumit Semwal <sumit.semwal@ti.com> 7 * 8 * Many thanks to linaro-mm-sig list, and specially 9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and 10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and 11 * refining of this idea. 12 */ 13 14 #include <linux/fs.h> 15 #include <linux/slab.h> 16 #include <linux/dma-buf.h> 17 #include <linux/dma-fence.h> 18 #include <linux/anon_inodes.h> 19 #include <linux/export.h> 20 #include <linux/debugfs.h> 21 #include <linux/module.h> 22 #include <linux/seq_file.h> 23 #include <linux/poll.h> 24 #include <linux/dma-resv.h> 25 #include <linux/mm.h> 26 #include <linux/mount.h> 27 #include <linux/pseudo_fs.h> 28 29 #include <uapi/linux/dma-buf.h> 30 #include <uapi/linux/magic.h> 31 32 static inline int is_dma_buf_file(struct file *); 33 34 struct dma_buf_list { 35 struct list_head head; 36 struct mutex lock; 37 }; 38 39 static struct dma_buf_list db_list; 40 41 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen) 42 { 43 struct dma_buf *dmabuf; 44 char name[DMA_BUF_NAME_LEN]; 45 size_t ret = 0; 46 47 dmabuf = dentry->d_fsdata; 48 dma_resv_lock(dmabuf->resv, NULL); 49 if (dmabuf->name) 50 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN); 51 dma_resv_unlock(dmabuf->resv); 52 53 return dynamic_dname(dentry, buffer, buflen, "/%s:%s", 54 dentry->d_name.name, ret > 0 ? name : ""); 55 } 56 57 static void dma_buf_release(struct dentry *dentry) 58 { 59 struct dma_buf *dmabuf; 60 61 dmabuf = dentry->d_fsdata; 62 63 BUG_ON(dmabuf->vmapping_counter); 64 65 /* 66 * Any fences that a dma-buf poll can wait on should be signaled 67 * before releasing dma-buf. This is the responsibility of each 68 * driver that uses the reservation objects. 69 * 70 * If you hit this BUG() it means someone dropped their ref to the 71 * dma-buf while still having pending operation to the buffer. 72 */ 73 BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active); 74 75 dmabuf->ops->release(dmabuf); 76 77 mutex_lock(&db_list.lock); 78 list_del(&dmabuf->list_node); 79 mutex_unlock(&db_list.lock); 80 81 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1]) 82 dma_resv_fini(dmabuf->resv); 83 84 module_put(dmabuf->owner); 85 kfree(dmabuf->name); 86 kfree(dmabuf); 87 } 88 89 static const struct dentry_operations dma_buf_dentry_ops = { 90 .d_dname = dmabuffs_dname, 91 .d_release = dma_buf_release, 92 }; 93 94 static struct vfsmount *dma_buf_mnt; 95 96 static int dma_buf_fs_init_context(struct fs_context *fc) 97 { 98 struct pseudo_fs_context *ctx; 99 100 ctx = init_pseudo(fc, DMA_BUF_MAGIC); 101 if (!ctx) 102 return -ENOMEM; 103 ctx->dops = &dma_buf_dentry_ops; 104 return 0; 105 } 106 107 static struct file_system_type dma_buf_fs_type = { 108 .name = "dmabuf", 109 .init_fs_context = dma_buf_fs_init_context, 110 .kill_sb = kill_anon_super, 111 }; 112 113 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma) 114 { 115 struct dma_buf *dmabuf; 116 117 if (!is_dma_buf_file(file)) 118 return -EINVAL; 119 120 dmabuf = file->private_data; 121 122 /* check if buffer supports mmap */ 123 if (!dmabuf->ops->mmap) 124 return -EINVAL; 125 126 /* check for overflowing the buffer's size */ 127 if (vma->vm_pgoff + vma_pages(vma) > 128 dmabuf->size >> PAGE_SHIFT) 129 return -EINVAL; 130 131 return dmabuf->ops->mmap(dmabuf, vma); 132 } 133 134 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence) 135 { 136 struct dma_buf *dmabuf; 137 loff_t base; 138 139 if (!is_dma_buf_file(file)) 140 return -EBADF; 141 142 dmabuf = file->private_data; 143 144 /* only support discovering the end of the buffer, 145 but also allow SEEK_SET to maintain the idiomatic 146 SEEK_END(0), SEEK_CUR(0) pattern */ 147 if (whence == SEEK_END) 148 base = dmabuf->size; 149 else if (whence == SEEK_SET) 150 base = 0; 151 else 152 return -EINVAL; 153 154 if (offset != 0) 155 return -EINVAL; 156 157 return base + offset; 158 } 159 160 /** 161 * DOC: fence polling 162 * 163 * To support cross-device and cross-driver synchronization of buffer access 164 * implicit fences (represented internally in the kernel with &struct fence) can 165 * be attached to a &dma_buf. The glue for that and a few related things are 166 * provided in the &dma_resv structure. 167 * 168 * Userspace can query the state of these implicitly tracked fences using poll() 169 * and related system calls: 170 * 171 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the 172 * most recent write or exclusive fence. 173 * 174 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of 175 * all attached fences, shared and exclusive ones. 176 * 177 * Note that this only signals the completion of the respective fences, i.e. the 178 * DMA transfers are complete. Cache flushing and any other necessary 179 * preparations before CPU access can begin still need to happen. 180 */ 181 182 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 183 { 184 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb; 185 unsigned long flags; 186 187 spin_lock_irqsave(&dcb->poll->lock, flags); 188 wake_up_locked_poll(dcb->poll, dcb->active); 189 dcb->active = 0; 190 spin_unlock_irqrestore(&dcb->poll->lock, flags); 191 } 192 193 static __poll_t dma_buf_poll(struct file *file, poll_table *poll) 194 { 195 struct dma_buf *dmabuf; 196 struct dma_resv *resv; 197 struct dma_resv_list *fobj; 198 struct dma_fence *fence_excl; 199 __poll_t events; 200 unsigned shared_count, seq; 201 202 dmabuf = file->private_data; 203 if (!dmabuf || !dmabuf->resv) 204 return EPOLLERR; 205 206 resv = dmabuf->resv; 207 208 poll_wait(file, &dmabuf->poll, poll); 209 210 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT); 211 if (!events) 212 return 0; 213 214 retry: 215 seq = read_seqcount_begin(&resv->seq); 216 rcu_read_lock(); 217 218 fobj = rcu_dereference(resv->fence); 219 if (fobj) 220 shared_count = fobj->shared_count; 221 else 222 shared_count = 0; 223 fence_excl = rcu_dereference(resv->fence_excl); 224 if (read_seqcount_retry(&resv->seq, seq)) { 225 rcu_read_unlock(); 226 goto retry; 227 } 228 229 if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) { 230 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl; 231 __poll_t pevents = EPOLLIN; 232 233 if (shared_count == 0) 234 pevents |= EPOLLOUT; 235 236 spin_lock_irq(&dmabuf->poll.lock); 237 if (dcb->active) { 238 dcb->active |= pevents; 239 events &= ~pevents; 240 } else 241 dcb->active = pevents; 242 spin_unlock_irq(&dmabuf->poll.lock); 243 244 if (events & pevents) { 245 if (!dma_fence_get_rcu(fence_excl)) { 246 /* force a recheck */ 247 events &= ~pevents; 248 dma_buf_poll_cb(NULL, &dcb->cb); 249 } else if (!dma_fence_add_callback(fence_excl, &dcb->cb, 250 dma_buf_poll_cb)) { 251 events &= ~pevents; 252 dma_fence_put(fence_excl); 253 } else { 254 /* 255 * No callback queued, wake up any additional 256 * waiters. 257 */ 258 dma_fence_put(fence_excl); 259 dma_buf_poll_cb(NULL, &dcb->cb); 260 } 261 } 262 } 263 264 if ((events & EPOLLOUT) && shared_count > 0) { 265 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared; 266 int i; 267 268 /* Only queue a new callback if no event has fired yet */ 269 spin_lock_irq(&dmabuf->poll.lock); 270 if (dcb->active) 271 events &= ~EPOLLOUT; 272 else 273 dcb->active = EPOLLOUT; 274 spin_unlock_irq(&dmabuf->poll.lock); 275 276 if (!(events & EPOLLOUT)) 277 goto out; 278 279 for (i = 0; i < shared_count; ++i) { 280 struct dma_fence *fence = rcu_dereference(fobj->shared[i]); 281 282 if (!dma_fence_get_rcu(fence)) { 283 /* 284 * fence refcount dropped to zero, this means 285 * that fobj has been freed 286 * 287 * call dma_buf_poll_cb and force a recheck! 288 */ 289 events &= ~EPOLLOUT; 290 dma_buf_poll_cb(NULL, &dcb->cb); 291 break; 292 } 293 if (!dma_fence_add_callback(fence, &dcb->cb, 294 dma_buf_poll_cb)) { 295 dma_fence_put(fence); 296 events &= ~EPOLLOUT; 297 break; 298 } 299 dma_fence_put(fence); 300 } 301 302 /* No callback queued, wake up any additional waiters. */ 303 if (i == shared_count) 304 dma_buf_poll_cb(NULL, &dcb->cb); 305 } 306 307 out: 308 rcu_read_unlock(); 309 return events; 310 } 311 312 /** 313 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage. 314 * The name of the dma-buf buffer can only be set when the dma-buf is not 315 * attached to any devices. It could theoritically support changing the 316 * name of the dma-buf if the same piece of memory is used for multiple 317 * purpose between different devices. 318 * 319 * @dmabuf [in] dmabuf buffer that will be renamed. 320 * @buf: [in] A piece of userspace memory that contains the name of 321 * the dma-buf. 322 * 323 * Returns 0 on success. If the dma-buf buffer is already attached to 324 * devices, return -EBUSY. 325 * 326 */ 327 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf) 328 { 329 char *name = strndup_user(buf, DMA_BUF_NAME_LEN); 330 long ret = 0; 331 332 if (IS_ERR(name)) 333 return PTR_ERR(name); 334 335 dma_resv_lock(dmabuf->resv, NULL); 336 if (!list_empty(&dmabuf->attachments)) { 337 ret = -EBUSY; 338 kfree(name); 339 goto out_unlock; 340 } 341 kfree(dmabuf->name); 342 dmabuf->name = name; 343 344 out_unlock: 345 dma_resv_unlock(dmabuf->resv); 346 return ret; 347 } 348 349 static long dma_buf_ioctl(struct file *file, 350 unsigned int cmd, unsigned long arg) 351 { 352 struct dma_buf *dmabuf; 353 struct dma_buf_sync sync; 354 enum dma_data_direction direction; 355 int ret; 356 357 dmabuf = file->private_data; 358 359 switch (cmd) { 360 case DMA_BUF_IOCTL_SYNC: 361 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync))) 362 return -EFAULT; 363 364 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK) 365 return -EINVAL; 366 367 switch (sync.flags & DMA_BUF_SYNC_RW) { 368 case DMA_BUF_SYNC_READ: 369 direction = DMA_FROM_DEVICE; 370 break; 371 case DMA_BUF_SYNC_WRITE: 372 direction = DMA_TO_DEVICE; 373 break; 374 case DMA_BUF_SYNC_RW: 375 direction = DMA_BIDIRECTIONAL; 376 break; 377 default: 378 return -EINVAL; 379 } 380 381 if (sync.flags & DMA_BUF_SYNC_END) 382 ret = dma_buf_end_cpu_access(dmabuf, direction); 383 else 384 ret = dma_buf_begin_cpu_access(dmabuf, direction); 385 386 return ret; 387 388 case DMA_BUF_SET_NAME_A: 389 case DMA_BUF_SET_NAME_B: 390 return dma_buf_set_name(dmabuf, (const char __user *)arg); 391 392 default: 393 return -ENOTTY; 394 } 395 } 396 397 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file) 398 { 399 struct dma_buf *dmabuf = file->private_data; 400 401 seq_printf(m, "size:\t%zu\n", dmabuf->size); 402 /* Don't count the temporary reference taken inside procfs seq_show */ 403 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1); 404 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name); 405 dma_resv_lock(dmabuf->resv, NULL); 406 if (dmabuf->name) 407 seq_printf(m, "name:\t%s\n", dmabuf->name); 408 dma_resv_unlock(dmabuf->resv); 409 } 410 411 static const struct file_operations dma_buf_fops = { 412 .mmap = dma_buf_mmap_internal, 413 .llseek = dma_buf_llseek, 414 .poll = dma_buf_poll, 415 .unlocked_ioctl = dma_buf_ioctl, 416 .compat_ioctl = compat_ptr_ioctl, 417 .show_fdinfo = dma_buf_show_fdinfo, 418 }; 419 420 /* 421 * is_dma_buf_file - Check if struct file* is associated with dma_buf 422 */ 423 static inline int is_dma_buf_file(struct file *file) 424 { 425 return file->f_op == &dma_buf_fops; 426 } 427 428 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags) 429 { 430 struct file *file; 431 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb); 432 433 if (IS_ERR(inode)) 434 return ERR_CAST(inode); 435 436 inode->i_size = dmabuf->size; 437 inode_set_bytes(inode, dmabuf->size); 438 439 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf", 440 flags, &dma_buf_fops); 441 if (IS_ERR(file)) 442 goto err_alloc_file; 443 file->f_flags = flags & (O_ACCMODE | O_NONBLOCK); 444 file->private_data = dmabuf; 445 file->f_path.dentry->d_fsdata = dmabuf; 446 447 return file; 448 449 err_alloc_file: 450 iput(inode); 451 return file; 452 } 453 454 /** 455 * DOC: dma buf device access 456 * 457 * For device DMA access to a shared DMA buffer the usual sequence of operations 458 * is fairly simple: 459 * 460 * 1. The exporter defines his exporter instance using 461 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private 462 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace 463 * as a file descriptor by calling dma_buf_fd(). 464 * 465 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer 466 * to share with: First the filedescriptor is converted to a &dma_buf using 467 * dma_buf_get(). Then the buffer is attached to the device using 468 * dma_buf_attach(). 469 * 470 * Up to this stage the exporter is still free to migrate or reallocate the 471 * backing storage. 472 * 473 * 3. Once the buffer is attached to all devices userspace can initiate DMA 474 * access to the shared buffer. In the kernel this is done by calling 475 * dma_buf_map_attachment() and dma_buf_unmap_attachment(). 476 * 477 * 4. Once a driver is done with a shared buffer it needs to call 478 * dma_buf_detach() (after cleaning up any mappings) and then release the 479 * reference acquired with dma_buf_get by calling dma_buf_put(). 480 * 481 * For the detailed semantics exporters are expected to implement see 482 * &dma_buf_ops. 483 */ 484 485 /** 486 * dma_buf_export - Creates a new dma_buf, and associates an anon file 487 * with this buffer, so it can be exported. 488 * Also connect the allocator specific data and ops to the buffer. 489 * Additionally, provide a name string for exporter; useful in debugging. 490 * 491 * @exp_info: [in] holds all the export related information provided 492 * by the exporter. see &struct dma_buf_export_info 493 * for further details. 494 * 495 * Returns, on success, a newly created dma_buf object, which wraps the 496 * supplied private data and operations for dma_buf_ops. On either missing 497 * ops, or error in allocating struct dma_buf, will return negative error. 498 * 499 * For most cases the easiest way to create @exp_info is through the 500 * %DEFINE_DMA_BUF_EXPORT_INFO macro. 501 */ 502 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info) 503 { 504 struct dma_buf *dmabuf; 505 struct dma_resv *resv = exp_info->resv; 506 struct file *file; 507 size_t alloc_size = sizeof(struct dma_buf); 508 int ret; 509 510 if (!exp_info->resv) 511 alloc_size += sizeof(struct dma_resv); 512 else 513 /* prevent &dma_buf[1] == dma_buf->resv */ 514 alloc_size += 1; 515 516 if (WARN_ON(!exp_info->priv 517 || !exp_info->ops 518 || !exp_info->ops->map_dma_buf 519 || !exp_info->ops->unmap_dma_buf 520 || !exp_info->ops->release)) { 521 return ERR_PTR(-EINVAL); 522 } 523 524 if (WARN_ON(exp_info->ops->cache_sgt_mapping && 525 (exp_info->ops->pin || exp_info->ops->unpin))) 526 return ERR_PTR(-EINVAL); 527 528 if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin)) 529 return ERR_PTR(-EINVAL); 530 531 if (!try_module_get(exp_info->owner)) 532 return ERR_PTR(-ENOENT); 533 534 dmabuf = kzalloc(alloc_size, GFP_KERNEL); 535 if (!dmabuf) { 536 ret = -ENOMEM; 537 goto err_module; 538 } 539 540 dmabuf->priv = exp_info->priv; 541 dmabuf->ops = exp_info->ops; 542 dmabuf->size = exp_info->size; 543 dmabuf->exp_name = exp_info->exp_name; 544 dmabuf->owner = exp_info->owner; 545 init_waitqueue_head(&dmabuf->poll); 546 dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll; 547 dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0; 548 549 if (!resv) { 550 resv = (struct dma_resv *)&dmabuf[1]; 551 dma_resv_init(resv); 552 } 553 dmabuf->resv = resv; 554 555 file = dma_buf_getfile(dmabuf, exp_info->flags); 556 if (IS_ERR(file)) { 557 ret = PTR_ERR(file); 558 goto err_dmabuf; 559 } 560 561 file->f_mode |= FMODE_LSEEK; 562 dmabuf->file = file; 563 564 mutex_init(&dmabuf->lock); 565 INIT_LIST_HEAD(&dmabuf->attachments); 566 567 mutex_lock(&db_list.lock); 568 list_add(&dmabuf->list_node, &db_list.head); 569 mutex_unlock(&db_list.lock); 570 571 return dmabuf; 572 573 err_dmabuf: 574 kfree(dmabuf); 575 err_module: 576 module_put(exp_info->owner); 577 return ERR_PTR(ret); 578 } 579 EXPORT_SYMBOL_GPL(dma_buf_export); 580 581 /** 582 * dma_buf_fd - returns a file descriptor for the given dma_buf 583 * @dmabuf: [in] pointer to dma_buf for which fd is required. 584 * @flags: [in] flags to give to fd 585 * 586 * On success, returns an associated 'fd'. Else, returns error. 587 */ 588 int dma_buf_fd(struct dma_buf *dmabuf, int flags) 589 { 590 int fd; 591 592 if (!dmabuf || !dmabuf->file) 593 return -EINVAL; 594 595 fd = get_unused_fd_flags(flags); 596 if (fd < 0) 597 return fd; 598 599 fd_install(fd, dmabuf->file); 600 601 return fd; 602 } 603 EXPORT_SYMBOL_GPL(dma_buf_fd); 604 605 /** 606 * dma_buf_get - returns the dma_buf structure related to an fd 607 * @fd: [in] fd associated with the dma_buf to be returned 608 * 609 * On success, returns the dma_buf structure associated with an fd; uses 610 * file's refcounting done by fget to increase refcount. returns ERR_PTR 611 * otherwise. 612 */ 613 struct dma_buf *dma_buf_get(int fd) 614 { 615 struct file *file; 616 617 file = fget(fd); 618 619 if (!file) 620 return ERR_PTR(-EBADF); 621 622 if (!is_dma_buf_file(file)) { 623 fput(file); 624 return ERR_PTR(-EINVAL); 625 } 626 627 return file->private_data; 628 } 629 EXPORT_SYMBOL_GPL(dma_buf_get); 630 631 /** 632 * dma_buf_put - decreases refcount of the buffer 633 * @dmabuf: [in] buffer to reduce refcount of 634 * 635 * Uses file's refcounting done implicitly by fput(). 636 * 637 * If, as a result of this call, the refcount becomes 0, the 'release' file 638 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc 639 * in turn, and frees the memory allocated for dmabuf when exported. 640 */ 641 void dma_buf_put(struct dma_buf *dmabuf) 642 { 643 if (WARN_ON(!dmabuf || !dmabuf->file)) 644 return; 645 646 fput(dmabuf->file); 647 } 648 EXPORT_SYMBOL_GPL(dma_buf_put); 649 650 /** 651 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list; optionally, 652 * calls attach() of dma_buf_ops to allow device-specific attach functionality 653 * @dmabuf: [in] buffer to attach device to. 654 * @dev: [in] device to be attached. 655 * @importer_ops: [in] importer operations for the attachment 656 * @importer_priv: [in] importer private pointer for the attachment 657 * 658 * Returns struct dma_buf_attachment pointer for this attachment. Attachments 659 * must be cleaned up by calling dma_buf_detach(). 660 * 661 * Returns: 662 * 663 * A pointer to newly created &dma_buf_attachment on success, or a negative 664 * error code wrapped into a pointer on failure. 665 * 666 * Note that this can fail if the backing storage of @dmabuf is in a place not 667 * accessible to @dev, and cannot be moved to a more suitable place. This is 668 * indicated with the error code -EBUSY. 669 */ 670 struct dma_buf_attachment * 671 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev, 672 const struct dma_buf_attach_ops *importer_ops, 673 void *importer_priv) 674 { 675 struct dma_buf_attachment *attach; 676 int ret; 677 678 if (WARN_ON(!dmabuf || !dev)) 679 return ERR_PTR(-EINVAL); 680 681 if (WARN_ON(importer_ops && !importer_ops->move_notify)) 682 return ERR_PTR(-EINVAL); 683 684 attach = kzalloc(sizeof(*attach), GFP_KERNEL); 685 if (!attach) 686 return ERR_PTR(-ENOMEM); 687 688 attach->dev = dev; 689 attach->dmabuf = dmabuf; 690 if (importer_ops) 691 attach->peer2peer = importer_ops->allow_peer2peer; 692 attach->importer_ops = importer_ops; 693 attach->importer_priv = importer_priv; 694 695 if (dmabuf->ops->attach) { 696 ret = dmabuf->ops->attach(dmabuf, attach); 697 if (ret) 698 goto err_attach; 699 } 700 dma_resv_lock(dmabuf->resv, NULL); 701 list_add(&attach->node, &dmabuf->attachments); 702 dma_resv_unlock(dmabuf->resv); 703 704 /* When either the importer or the exporter can't handle dynamic 705 * mappings we cache the mapping here to avoid issues with the 706 * reservation object lock. 707 */ 708 if (dma_buf_attachment_is_dynamic(attach) != 709 dma_buf_is_dynamic(dmabuf)) { 710 struct sg_table *sgt; 711 712 if (dma_buf_is_dynamic(attach->dmabuf)) { 713 dma_resv_lock(attach->dmabuf->resv, NULL); 714 ret = dma_buf_pin(attach); 715 if (ret) 716 goto err_unlock; 717 } 718 719 sgt = dmabuf->ops->map_dma_buf(attach, DMA_BIDIRECTIONAL); 720 if (!sgt) 721 sgt = ERR_PTR(-ENOMEM); 722 if (IS_ERR(sgt)) { 723 ret = PTR_ERR(sgt); 724 goto err_unpin; 725 } 726 if (dma_buf_is_dynamic(attach->dmabuf)) 727 dma_resv_unlock(attach->dmabuf->resv); 728 attach->sgt = sgt; 729 attach->dir = DMA_BIDIRECTIONAL; 730 } 731 732 return attach; 733 734 err_attach: 735 kfree(attach); 736 return ERR_PTR(ret); 737 738 err_unpin: 739 if (dma_buf_is_dynamic(attach->dmabuf)) 740 dma_buf_unpin(attach); 741 742 err_unlock: 743 if (dma_buf_is_dynamic(attach->dmabuf)) 744 dma_resv_unlock(attach->dmabuf->resv); 745 746 dma_buf_detach(dmabuf, attach); 747 return ERR_PTR(ret); 748 } 749 EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach); 750 751 /** 752 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach 753 * @dmabuf: [in] buffer to attach device to. 754 * @dev: [in] device to be attached. 755 * 756 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static 757 * mapping. 758 */ 759 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf, 760 struct device *dev) 761 { 762 return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL); 763 } 764 EXPORT_SYMBOL_GPL(dma_buf_attach); 765 766 /** 767 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list; 768 * optionally calls detach() of dma_buf_ops for device-specific detach 769 * @dmabuf: [in] buffer to detach from. 770 * @attach: [in] attachment to be detached; is free'd after this call. 771 * 772 * Clean up a device attachment obtained by calling dma_buf_attach(). 773 */ 774 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach) 775 { 776 if (WARN_ON(!dmabuf || !attach)) 777 return; 778 779 if (attach->sgt) { 780 if (dma_buf_is_dynamic(attach->dmabuf)) 781 dma_resv_lock(attach->dmabuf->resv, NULL); 782 783 dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir); 784 785 if (dma_buf_is_dynamic(attach->dmabuf)) { 786 dma_buf_unpin(attach); 787 dma_resv_unlock(attach->dmabuf->resv); 788 } 789 } 790 791 dma_resv_lock(dmabuf->resv, NULL); 792 list_del(&attach->node); 793 dma_resv_unlock(dmabuf->resv); 794 if (dmabuf->ops->detach) 795 dmabuf->ops->detach(dmabuf, attach); 796 797 kfree(attach); 798 } 799 EXPORT_SYMBOL_GPL(dma_buf_detach); 800 801 /** 802 * dma_buf_pin - Lock down the DMA-buf 803 * 804 * @attach: [in] attachment which should be pinned 805 * 806 * Returns: 807 * 0 on success, negative error code on failure. 808 */ 809 int dma_buf_pin(struct dma_buf_attachment *attach) 810 { 811 struct dma_buf *dmabuf = attach->dmabuf; 812 int ret = 0; 813 814 dma_resv_assert_held(dmabuf->resv); 815 816 if (dmabuf->ops->pin) 817 ret = dmabuf->ops->pin(attach); 818 819 return ret; 820 } 821 EXPORT_SYMBOL_GPL(dma_buf_pin); 822 823 /** 824 * dma_buf_unpin - Remove lock from DMA-buf 825 * 826 * @attach: [in] attachment which should be unpinned 827 */ 828 void dma_buf_unpin(struct dma_buf_attachment *attach) 829 { 830 struct dma_buf *dmabuf = attach->dmabuf; 831 832 dma_resv_assert_held(dmabuf->resv); 833 834 if (dmabuf->ops->unpin) 835 dmabuf->ops->unpin(attach); 836 } 837 EXPORT_SYMBOL_GPL(dma_buf_unpin); 838 839 /** 840 * dma_buf_map_attachment - Returns the scatterlist table of the attachment; 841 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the 842 * dma_buf_ops. 843 * @attach: [in] attachment whose scatterlist is to be returned 844 * @direction: [in] direction of DMA transfer 845 * 846 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR 847 * on error. May return -EINTR if it is interrupted by a signal. 848 * 849 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that 850 * the underlying backing storage is pinned for as long as a mapping exists, 851 * therefore users/importers should not hold onto a mapping for undue amounts of 852 * time. 853 */ 854 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach, 855 enum dma_data_direction direction) 856 { 857 struct sg_table *sg_table; 858 int r; 859 860 might_sleep(); 861 862 if (WARN_ON(!attach || !attach->dmabuf)) 863 return ERR_PTR(-EINVAL); 864 865 if (dma_buf_attachment_is_dynamic(attach)) 866 dma_resv_assert_held(attach->dmabuf->resv); 867 868 if (attach->sgt) { 869 /* 870 * Two mappings with different directions for the same 871 * attachment are not allowed. 872 */ 873 if (attach->dir != direction && 874 attach->dir != DMA_BIDIRECTIONAL) 875 return ERR_PTR(-EBUSY); 876 877 return attach->sgt; 878 } 879 880 if (dma_buf_is_dynamic(attach->dmabuf)) { 881 dma_resv_assert_held(attach->dmabuf->resv); 882 if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) { 883 r = dma_buf_pin(attach); 884 if (r) 885 return ERR_PTR(r); 886 } 887 } 888 889 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction); 890 if (!sg_table) 891 sg_table = ERR_PTR(-ENOMEM); 892 893 if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) && 894 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 895 dma_buf_unpin(attach); 896 897 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) { 898 attach->sgt = sg_table; 899 attach->dir = direction; 900 } 901 902 return sg_table; 903 } 904 EXPORT_SYMBOL_GPL(dma_buf_map_attachment); 905 906 /** 907 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might 908 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of 909 * dma_buf_ops. 910 * @attach: [in] attachment to unmap buffer from 911 * @sg_table: [in] scatterlist info of the buffer to unmap 912 * @direction: [in] direction of DMA transfer 913 * 914 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment(). 915 */ 916 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach, 917 struct sg_table *sg_table, 918 enum dma_data_direction direction) 919 { 920 might_sleep(); 921 922 if (WARN_ON(!attach || !attach->dmabuf || !sg_table)) 923 return; 924 925 if (dma_buf_attachment_is_dynamic(attach)) 926 dma_resv_assert_held(attach->dmabuf->resv); 927 928 if (attach->sgt == sg_table) 929 return; 930 931 if (dma_buf_is_dynamic(attach->dmabuf)) 932 dma_resv_assert_held(attach->dmabuf->resv); 933 934 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction); 935 936 if (dma_buf_is_dynamic(attach->dmabuf) && 937 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 938 dma_buf_unpin(attach); 939 } 940 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment); 941 942 /** 943 * dma_buf_move_notify - notify attachments that DMA-buf is moving 944 * 945 * @dmabuf: [in] buffer which is moving 946 * 947 * Informs all attachmenst that they need to destroy and recreated all their 948 * mappings. 949 */ 950 void dma_buf_move_notify(struct dma_buf *dmabuf) 951 { 952 struct dma_buf_attachment *attach; 953 954 dma_resv_assert_held(dmabuf->resv); 955 956 list_for_each_entry(attach, &dmabuf->attachments, node) 957 if (attach->importer_ops) 958 attach->importer_ops->move_notify(attach); 959 } 960 EXPORT_SYMBOL_GPL(dma_buf_move_notify); 961 962 /** 963 * DOC: cpu access 964 * 965 * There are mutliple reasons for supporting CPU access to a dma buffer object: 966 * 967 * - Fallback operations in the kernel, for example when a device is connected 968 * over USB and the kernel needs to shuffle the data around first before 969 * sending it away. Cache coherency is handled by braketing any transactions 970 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access() 971 * access. 972 * 973 * Since for most kernel internal dma-buf accesses need the entire buffer, a 974 * vmap interface is introduced. Note that on very old 32-bit architectures 975 * vmalloc space might be limited and result in vmap calls failing. 976 * 977 * Interfaces:: 978 * void \*dma_buf_vmap(struct dma_buf \*dmabuf) 979 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr) 980 * 981 * The vmap call can fail if there is no vmap support in the exporter, or if 982 * it runs out of vmalloc space. Fallback to kmap should be implemented. Note 983 * that the dma-buf layer keeps a reference count for all vmap access and 984 * calls down into the exporter's vmap function only when no vmapping exists, 985 * and only unmaps it once. Protection against concurrent vmap/vunmap calls is 986 * provided by taking the dma_buf->lock mutex. 987 * 988 * - For full compatibility on the importer side with existing userspace 989 * interfaces, which might already support mmap'ing buffers. This is needed in 990 * many processing pipelines (e.g. feeding a software rendered image into a 991 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION 992 * framework already supported this and for DMA buffer file descriptors to 993 * replace ION buffers mmap support was needed. 994 * 995 * There is no special interfaces, userspace simply calls mmap on the dma-buf 996 * fd. But like for CPU access there's a need to braket the actual access, 997 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that 998 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must 999 * be restarted. 1000 * 1001 * Some systems might need some sort of cache coherency management e.g. when 1002 * CPU and GPU domains are being accessed through dma-buf at the same time. 1003 * To circumvent this problem there are begin/end coherency markers, that 1004 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace 1005 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The 1006 * sequence would be used like following: 1007 * 1008 * - mmap dma-buf fd 1009 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write 1010 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you 1011 * want (with the new data being consumed by say the GPU or the scanout 1012 * device) 1013 * - munmap once you don't need the buffer any more 1014 * 1015 * For correctness and optimal performance, it is always required to use 1016 * SYNC_START and SYNC_END before and after, respectively, when accessing the 1017 * mapped address. Userspace cannot rely on coherent access, even when there 1018 * are systems where it just works without calling these ioctls. 1019 * 1020 * - And as a CPU fallback in userspace processing pipelines. 1021 * 1022 * Similar to the motivation for kernel cpu access it is again important that 1023 * the userspace code of a given importing subsystem can use the same 1024 * interfaces with a imported dma-buf buffer object as with a native buffer 1025 * object. This is especially important for drm where the userspace part of 1026 * contemporary OpenGL, X, and other drivers is huge, and reworking them to 1027 * use a different way to mmap a buffer rather invasive. 1028 * 1029 * The assumption in the current dma-buf interfaces is that redirecting the 1030 * initial mmap is all that's needed. A survey of some of the existing 1031 * subsystems shows that no driver seems to do any nefarious thing like 1032 * syncing up with outstanding asynchronous processing on the device or 1033 * allocating special resources at fault time. So hopefully this is good 1034 * enough, since adding interfaces to intercept pagefaults and allow pte 1035 * shootdowns would increase the complexity quite a bit. 1036 * 1037 * Interface:: 1038 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*, 1039 * unsigned long); 1040 * 1041 * If the importing subsystem simply provides a special-purpose mmap call to 1042 * set up a mapping in userspace, calling do_mmap with dma_buf->file will 1043 * equally achieve that for a dma-buf object. 1044 */ 1045 1046 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1047 enum dma_data_direction direction) 1048 { 1049 bool write = (direction == DMA_BIDIRECTIONAL || 1050 direction == DMA_TO_DEVICE); 1051 struct dma_resv *resv = dmabuf->resv; 1052 long ret; 1053 1054 /* Wait on any implicit rendering fences */ 1055 ret = dma_resv_wait_timeout_rcu(resv, write, true, 1056 MAX_SCHEDULE_TIMEOUT); 1057 if (ret < 0) 1058 return ret; 1059 1060 return 0; 1061 } 1062 1063 /** 1064 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the 1065 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific 1066 * preparations. Coherency is only guaranteed in the specified range for the 1067 * specified access direction. 1068 * @dmabuf: [in] buffer to prepare cpu access for. 1069 * @direction: [in] length of range for cpu access. 1070 * 1071 * After the cpu access is complete the caller should call 1072 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is 1073 * it guaranteed to be coherent with other DMA access. 1074 * 1075 * Can return negative error values, returns 0 on success. 1076 */ 1077 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1078 enum dma_data_direction direction) 1079 { 1080 int ret = 0; 1081 1082 if (WARN_ON(!dmabuf)) 1083 return -EINVAL; 1084 1085 if (dmabuf->ops->begin_cpu_access) 1086 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction); 1087 1088 /* Ensure that all fences are waited upon - but we first allow 1089 * the native handler the chance to do so more efficiently if it 1090 * chooses. A double invocation here will be reasonably cheap no-op. 1091 */ 1092 if (ret == 0) 1093 ret = __dma_buf_begin_cpu_access(dmabuf, direction); 1094 1095 return ret; 1096 } 1097 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access); 1098 1099 /** 1100 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the 1101 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific 1102 * actions. Coherency is only guaranteed in the specified range for the 1103 * specified access direction. 1104 * @dmabuf: [in] buffer to complete cpu access for. 1105 * @direction: [in] length of range for cpu access. 1106 * 1107 * This terminates CPU access started with dma_buf_begin_cpu_access(). 1108 * 1109 * Can return negative error values, returns 0 on success. 1110 */ 1111 int dma_buf_end_cpu_access(struct dma_buf *dmabuf, 1112 enum dma_data_direction direction) 1113 { 1114 int ret = 0; 1115 1116 WARN_ON(!dmabuf); 1117 1118 if (dmabuf->ops->end_cpu_access) 1119 ret = dmabuf->ops->end_cpu_access(dmabuf, direction); 1120 1121 return ret; 1122 } 1123 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access); 1124 1125 1126 /** 1127 * dma_buf_mmap - Setup up a userspace mmap with the given vma 1128 * @dmabuf: [in] buffer that should back the vma 1129 * @vma: [in] vma for the mmap 1130 * @pgoff: [in] offset in pages where this mmap should start within the 1131 * dma-buf buffer. 1132 * 1133 * This function adjusts the passed in vma so that it points at the file of the 1134 * dma_buf operation. It also adjusts the starting pgoff and does bounds 1135 * checking on the size of the vma. Then it calls the exporters mmap function to 1136 * set up the mapping. 1137 * 1138 * Can return negative error values, returns 0 on success. 1139 */ 1140 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma, 1141 unsigned long pgoff) 1142 { 1143 struct file *oldfile; 1144 int ret; 1145 1146 if (WARN_ON(!dmabuf || !vma)) 1147 return -EINVAL; 1148 1149 /* check if buffer supports mmap */ 1150 if (!dmabuf->ops->mmap) 1151 return -EINVAL; 1152 1153 /* check for offset overflow */ 1154 if (pgoff + vma_pages(vma) < pgoff) 1155 return -EOVERFLOW; 1156 1157 /* check for overflowing the buffer's size */ 1158 if (pgoff + vma_pages(vma) > 1159 dmabuf->size >> PAGE_SHIFT) 1160 return -EINVAL; 1161 1162 /* readjust the vma */ 1163 get_file(dmabuf->file); 1164 oldfile = vma->vm_file; 1165 vma->vm_file = dmabuf->file; 1166 vma->vm_pgoff = pgoff; 1167 1168 ret = dmabuf->ops->mmap(dmabuf, vma); 1169 if (ret) { 1170 /* restore old parameters on failure */ 1171 vma->vm_file = oldfile; 1172 fput(dmabuf->file); 1173 } else { 1174 if (oldfile) 1175 fput(oldfile); 1176 } 1177 return ret; 1178 1179 } 1180 EXPORT_SYMBOL_GPL(dma_buf_mmap); 1181 1182 /** 1183 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel 1184 * address space. Same restrictions as for vmap and friends apply. 1185 * @dmabuf: [in] buffer to vmap 1186 * 1187 * This call may fail due to lack of virtual mapping address space. 1188 * These calls are optional in drivers. The intended use for them 1189 * is for mapping objects linear in kernel space for high use objects. 1190 * Please attempt to use kmap/kunmap before thinking about these interfaces. 1191 * 1192 * Returns NULL on error. 1193 */ 1194 void *dma_buf_vmap(struct dma_buf *dmabuf) 1195 { 1196 void *ptr; 1197 1198 if (WARN_ON(!dmabuf)) 1199 return NULL; 1200 1201 if (!dmabuf->ops->vmap) 1202 return NULL; 1203 1204 mutex_lock(&dmabuf->lock); 1205 if (dmabuf->vmapping_counter) { 1206 dmabuf->vmapping_counter++; 1207 BUG_ON(!dmabuf->vmap_ptr); 1208 ptr = dmabuf->vmap_ptr; 1209 goto out_unlock; 1210 } 1211 1212 BUG_ON(dmabuf->vmap_ptr); 1213 1214 ptr = dmabuf->ops->vmap(dmabuf); 1215 if (WARN_ON_ONCE(IS_ERR(ptr))) 1216 ptr = NULL; 1217 if (!ptr) 1218 goto out_unlock; 1219 1220 dmabuf->vmap_ptr = ptr; 1221 dmabuf->vmapping_counter = 1; 1222 1223 out_unlock: 1224 mutex_unlock(&dmabuf->lock); 1225 return ptr; 1226 } 1227 EXPORT_SYMBOL_GPL(dma_buf_vmap); 1228 1229 /** 1230 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap. 1231 * @dmabuf: [in] buffer to vunmap 1232 * @vaddr: [in] vmap to vunmap 1233 */ 1234 void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr) 1235 { 1236 if (WARN_ON(!dmabuf)) 1237 return; 1238 1239 BUG_ON(!dmabuf->vmap_ptr); 1240 BUG_ON(dmabuf->vmapping_counter == 0); 1241 BUG_ON(dmabuf->vmap_ptr != vaddr); 1242 1243 mutex_lock(&dmabuf->lock); 1244 if (--dmabuf->vmapping_counter == 0) { 1245 if (dmabuf->ops->vunmap) 1246 dmabuf->ops->vunmap(dmabuf, vaddr); 1247 dmabuf->vmap_ptr = NULL; 1248 } 1249 mutex_unlock(&dmabuf->lock); 1250 } 1251 EXPORT_SYMBOL_GPL(dma_buf_vunmap); 1252 1253 #ifdef CONFIG_DEBUG_FS 1254 static int dma_buf_debug_show(struct seq_file *s, void *unused) 1255 { 1256 int ret; 1257 struct dma_buf *buf_obj; 1258 struct dma_buf_attachment *attach_obj; 1259 struct dma_resv *robj; 1260 struct dma_resv_list *fobj; 1261 struct dma_fence *fence; 1262 unsigned seq; 1263 int count = 0, attach_count, shared_count, i; 1264 size_t size = 0; 1265 1266 ret = mutex_lock_interruptible(&db_list.lock); 1267 1268 if (ret) 1269 return ret; 1270 1271 seq_puts(s, "\nDma-buf Objects:\n"); 1272 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n", 1273 "size", "flags", "mode", "count", "ino"); 1274 1275 list_for_each_entry(buf_obj, &db_list.head, list_node) { 1276 1277 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL); 1278 if (ret) 1279 goto error_unlock; 1280 1281 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n", 1282 buf_obj->size, 1283 buf_obj->file->f_flags, buf_obj->file->f_mode, 1284 file_count(buf_obj->file), 1285 buf_obj->exp_name, 1286 file_inode(buf_obj->file)->i_ino, 1287 buf_obj->name ?: ""); 1288 1289 robj = buf_obj->resv; 1290 while (true) { 1291 seq = read_seqcount_begin(&robj->seq); 1292 rcu_read_lock(); 1293 fobj = rcu_dereference(robj->fence); 1294 shared_count = fobj ? fobj->shared_count : 0; 1295 fence = rcu_dereference(robj->fence_excl); 1296 if (!read_seqcount_retry(&robj->seq, seq)) 1297 break; 1298 rcu_read_unlock(); 1299 } 1300 1301 if (fence) 1302 seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n", 1303 fence->ops->get_driver_name(fence), 1304 fence->ops->get_timeline_name(fence), 1305 dma_fence_is_signaled(fence) ? "" : "un"); 1306 for (i = 0; i < shared_count; i++) { 1307 fence = rcu_dereference(fobj->shared[i]); 1308 if (!dma_fence_get_rcu(fence)) 1309 continue; 1310 seq_printf(s, "\tShared fence: %s %s %ssignalled\n", 1311 fence->ops->get_driver_name(fence), 1312 fence->ops->get_timeline_name(fence), 1313 dma_fence_is_signaled(fence) ? "" : "un"); 1314 dma_fence_put(fence); 1315 } 1316 rcu_read_unlock(); 1317 1318 seq_puts(s, "\tAttached Devices:\n"); 1319 attach_count = 0; 1320 1321 list_for_each_entry(attach_obj, &buf_obj->attachments, node) { 1322 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev)); 1323 attach_count++; 1324 } 1325 dma_resv_unlock(buf_obj->resv); 1326 1327 seq_printf(s, "Total %d devices attached\n\n", 1328 attach_count); 1329 1330 count++; 1331 size += buf_obj->size; 1332 } 1333 1334 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size); 1335 1336 mutex_unlock(&db_list.lock); 1337 return 0; 1338 1339 error_unlock: 1340 mutex_unlock(&db_list.lock); 1341 return ret; 1342 } 1343 1344 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug); 1345 1346 static struct dentry *dma_buf_debugfs_dir; 1347 1348 static int dma_buf_init_debugfs(void) 1349 { 1350 struct dentry *d; 1351 int err = 0; 1352 1353 d = debugfs_create_dir("dma_buf", NULL); 1354 if (IS_ERR(d)) 1355 return PTR_ERR(d); 1356 1357 dma_buf_debugfs_dir = d; 1358 1359 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir, 1360 NULL, &dma_buf_debug_fops); 1361 if (IS_ERR(d)) { 1362 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n"); 1363 debugfs_remove_recursive(dma_buf_debugfs_dir); 1364 dma_buf_debugfs_dir = NULL; 1365 err = PTR_ERR(d); 1366 } 1367 1368 return err; 1369 } 1370 1371 static void dma_buf_uninit_debugfs(void) 1372 { 1373 debugfs_remove_recursive(dma_buf_debugfs_dir); 1374 } 1375 #else 1376 static inline int dma_buf_init_debugfs(void) 1377 { 1378 return 0; 1379 } 1380 static inline void dma_buf_uninit_debugfs(void) 1381 { 1382 } 1383 #endif 1384 1385 static int __init dma_buf_init(void) 1386 { 1387 dma_buf_mnt = kern_mount(&dma_buf_fs_type); 1388 if (IS_ERR(dma_buf_mnt)) 1389 return PTR_ERR(dma_buf_mnt); 1390 1391 mutex_init(&db_list.lock); 1392 INIT_LIST_HEAD(&db_list.head); 1393 dma_buf_init_debugfs(); 1394 return 0; 1395 } 1396 subsys_initcall(dma_buf_init); 1397 1398 static void __exit dma_buf_deinit(void) 1399 { 1400 dma_buf_uninit_debugfs(); 1401 kern_unmount(dma_buf_mnt); 1402 } 1403 __exitcall(dma_buf_deinit); 1404