1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Framework for buffer objects that can be shared across devices/subsystems. 4 * 5 * Copyright(C) 2011 Linaro Limited. All rights reserved. 6 * Author: Sumit Semwal <sumit.semwal@ti.com> 7 * 8 * Many thanks to linaro-mm-sig list, and specially 9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and 10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and 11 * refining of this idea. 12 */ 13 14 #include <linux/fs.h> 15 #include <linux/slab.h> 16 #include <linux/dma-buf.h> 17 #include <linux/dma-fence.h> 18 #include <linux/dma-fence-unwrap.h> 19 #include <linux/anon_inodes.h> 20 #include <linux/export.h> 21 #include <linux/debugfs.h> 22 #include <linux/module.h> 23 #include <linux/seq_file.h> 24 #include <linux/sync_file.h> 25 #include <linux/poll.h> 26 #include <linux/dma-resv.h> 27 #include <linux/mm.h> 28 #include <linux/mount.h> 29 #include <linux/pseudo_fs.h> 30 31 #include <uapi/linux/dma-buf.h> 32 #include <uapi/linux/magic.h> 33 34 #include "dma-buf-sysfs-stats.h" 35 36 static inline int is_dma_buf_file(struct file *); 37 38 #if IS_ENABLED(CONFIG_DEBUG_FS) 39 static DEFINE_MUTEX(debugfs_list_mutex); 40 static LIST_HEAD(debugfs_list); 41 42 static void __dma_buf_debugfs_list_add(struct dma_buf *dmabuf) 43 { 44 mutex_lock(&debugfs_list_mutex); 45 list_add(&dmabuf->list_node, &debugfs_list); 46 mutex_unlock(&debugfs_list_mutex); 47 } 48 49 static void __dma_buf_debugfs_list_del(struct dma_buf *dmabuf) 50 { 51 if (!dmabuf) 52 return; 53 54 mutex_lock(&debugfs_list_mutex); 55 list_del(&dmabuf->list_node); 56 mutex_unlock(&debugfs_list_mutex); 57 } 58 #else 59 static void __dma_buf_debugfs_list_add(struct dma_buf *dmabuf) 60 { 61 } 62 63 static void __dma_buf_debugfs_list_del(struct dma_buf *dmabuf) 64 { 65 } 66 #endif 67 68 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen) 69 { 70 struct dma_buf *dmabuf; 71 char name[DMA_BUF_NAME_LEN]; 72 ssize_t ret = 0; 73 74 dmabuf = dentry->d_fsdata; 75 spin_lock(&dmabuf->name_lock); 76 if (dmabuf->name) 77 ret = strscpy(name, dmabuf->name, sizeof(name)); 78 spin_unlock(&dmabuf->name_lock); 79 80 return dynamic_dname(buffer, buflen, "/%s:%s", 81 dentry->d_name.name, ret > 0 ? name : ""); 82 } 83 84 static void dma_buf_release(struct dentry *dentry) 85 { 86 struct dma_buf *dmabuf; 87 88 dmabuf = dentry->d_fsdata; 89 if (unlikely(!dmabuf)) 90 return; 91 92 BUG_ON(dmabuf->vmapping_counter); 93 94 /* 95 * If you hit this BUG() it could mean: 96 * * There's a file reference imbalance in dma_buf_poll / dma_buf_poll_cb or somewhere else 97 * * dmabuf->cb_in/out.active are non-0 despite no pending fence callback 98 */ 99 BUG_ON(dmabuf->cb_in.active || dmabuf->cb_out.active); 100 101 dma_buf_stats_teardown(dmabuf); 102 dmabuf->ops->release(dmabuf); 103 104 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1]) 105 dma_resv_fini(dmabuf->resv); 106 107 WARN_ON(!list_empty(&dmabuf->attachments)); 108 module_put(dmabuf->owner); 109 kfree(dmabuf->name); 110 kfree(dmabuf); 111 } 112 113 static int dma_buf_file_release(struct inode *inode, struct file *file) 114 { 115 if (!is_dma_buf_file(file)) 116 return -EINVAL; 117 118 __dma_buf_debugfs_list_del(file->private_data); 119 120 return 0; 121 } 122 123 static const struct dentry_operations dma_buf_dentry_ops = { 124 .d_dname = dmabuffs_dname, 125 .d_release = dma_buf_release, 126 }; 127 128 static struct vfsmount *dma_buf_mnt; 129 130 static int dma_buf_fs_init_context(struct fs_context *fc) 131 { 132 struct pseudo_fs_context *ctx; 133 134 ctx = init_pseudo(fc, DMA_BUF_MAGIC); 135 if (!ctx) 136 return -ENOMEM; 137 ctx->dops = &dma_buf_dentry_ops; 138 return 0; 139 } 140 141 static struct file_system_type dma_buf_fs_type = { 142 .name = "dmabuf", 143 .init_fs_context = dma_buf_fs_init_context, 144 .kill_sb = kill_anon_super, 145 }; 146 147 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma) 148 { 149 struct dma_buf *dmabuf; 150 151 if (!is_dma_buf_file(file)) 152 return -EINVAL; 153 154 dmabuf = file->private_data; 155 156 /* check if buffer supports mmap */ 157 if (!dmabuf->ops->mmap) 158 return -EINVAL; 159 160 /* check for overflowing the buffer's size */ 161 if (vma->vm_pgoff + vma_pages(vma) > 162 dmabuf->size >> PAGE_SHIFT) 163 return -EINVAL; 164 165 return dmabuf->ops->mmap(dmabuf, vma); 166 } 167 168 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence) 169 { 170 struct dma_buf *dmabuf; 171 loff_t base; 172 173 if (!is_dma_buf_file(file)) 174 return -EBADF; 175 176 dmabuf = file->private_data; 177 178 /* only support discovering the end of the buffer, 179 * but also allow SEEK_SET to maintain the idiomatic 180 * SEEK_END(0), SEEK_CUR(0) pattern. 181 */ 182 if (whence == SEEK_END) 183 base = dmabuf->size; 184 else if (whence == SEEK_SET) 185 base = 0; 186 else 187 return -EINVAL; 188 189 if (offset != 0) 190 return -EINVAL; 191 192 return base + offset; 193 } 194 195 /** 196 * DOC: implicit fence polling 197 * 198 * To support cross-device and cross-driver synchronization of buffer access 199 * implicit fences (represented internally in the kernel with &struct dma_fence) 200 * can be attached to a &dma_buf. The glue for that and a few related things are 201 * provided in the &dma_resv structure. 202 * 203 * Userspace can query the state of these implicitly tracked fences using poll() 204 * and related system calls: 205 * 206 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the 207 * most recent write or exclusive fence. 208 * 209 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of 210 * all attached fences, shared and exclusive ones. 211 * 212 * Note that this only signals the completion of the respective fences, i.e. the 213 * DMA transfers are complete. Cache flushing and any other necessary 214 * preparations before CPU access can begin still need to happen. 215 * 216 * As an alternative to poll(), the set of fences on DMA buffer can be 217 * exported as a &sync_file using &dma_buf_sync_file_export. 218 */ 219 220 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 221 { 222 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb; 223 struct dma_buf *dmabuf = container_of(dcb->poll, struct dma_buf, poll); 224 unsigned long flags; 225 226 spin_lock_irqsave(&dcb->poll->lock, flags); 227 wake_up_locked_poll(dcb->poll, dcb->active); 228 dcb->active = 0; 229 spin_unlock_irqrestore(&dcb->poll->lock, flags); 230 dma_fence_put(fence); 231 /* Paired with get_file in dma_buf_poll */ 232 fput(dmabuf->file); 233 } 234 235 static bool dma_buf_poll_add_cb(struct dma_resv *resv, bool write, 236 struct dma_buf_poll_cb_t *dcb) 237 { 238 struct dma_resv_iter cursor; 239 struct dma_fence *fence; 240 int r; 241 242 dma_resv_for_each_fence(&cursor, resv, dma_resv_usage_rw(write), 243 fence) { 244 dma_fence_get(fence); 245 r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb); 246 if (!r) 247 return true; 248 dma_fence_put(fence); 249 } 250 251 return false; 252 } 253 254 static __poll_t dma_buf_poll(struct file *file, poll_table *poll) 255 { 256 struct dma_buf *dmabuf; 257 struct dma_resv *resv; 258 __poll_t events; 259 260 dmabuf = file->private_data; 261 if (!dmabuf || !dmabuf->resv) 262 return EPOLLERR; 263 264 resv = dmabuf->resv; 265 266 poll_wait(file, &dmabuf->poll, poll); 267 268 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT); 269 if (!events) 270 return 0; 271 272 dma_resv_lock(resv, NULL); 273 274 if (events & EPOLLOUT) { 275 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_out; 276 277 /* Check that callback isn't busy */ 278 spin_lock_irq(&dmabuf->poll.lock); 279 if (dcb->active) 280 events &= ~EPOLLOUT; 281 else 282 dcb->active = EPOLLOUT; 283 spin_unlock_irq(&dmabuf->poll.lock); 284 285 if (events & EPOLLOUT) { 286 /* Paired with fput in dma_buf_poll_cb */ 287 get_file(dmabuf->file); 288 289 if (!dma_buf_poll_add_cb(resv, true, dcb)) 290 /* No callback queued, wake up any other waiters */ 291 dma_buf_poll_cb(NULL, &dcb->cb); 292 else 293 events &= ~EPOLLOUT; 294 } 295 } 296 297 if (events & EPOLLIN) { 298 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_in; 299 300 /* Check that callback isn't busy */ 301 spin_lock_irq(&dmabuf->poll.lock); 302 if (dcb->active) 303 events &= ~EPOLLIN; 304 else 305 dcb->active = EPOLLIN; 306 spin_unlock_irq(&dmabuf->poll.lock); 307 308 if (events & EPOLLIN) { 309 /* Paired with fput in dma_buf_poll_cb */ 310 get_file(dmabuf->file); 311 312 if (!dma_buf_poll_add_cb(resv, false, dcb)) 313 /* No callback queued, wake up any other waiters */ 314 dma_buf_poll_cb(NULL, &dcb->cb); 315 else 316 events &= ~EPOLLIN; 317 } 318 } 319 320 dma_resv_unlock(resv); 321 return events; 322 } 323 324 /** 325 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage. 326 * It could support changing the name of the dma-buf if the same 327 * piece of memory is used for multiple purpose between different devices. 328 * 329 * @dmabuf: [in] dmabuf buffer that will be renamed. 330 * @buf: [in] A piece of userspace memory that contains the name of 331 * the dma-buf. 332 * 333 * Returns 0 on success. If the dma-buf buffer is already attached to 334 * devices, return -EBUSY. 335 * 336 */ 337 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf) 338 { 339 char *name = strndup_user(buf, DMA_BUF_NAME_LEN); 340 341 if (IS_ERR(name)) 342 return PTR_ERR(name); 343 344 spin_lock(&dmabuf->name_lock); 345 kfree(dmabuf->name); 346 dmabuf->name = name; 347 spin_unlock(&dmabuf->name_lock); 348 349 return 0; 350 } 351 352 #if IS_ENABLED(CONFIG_SYNC_FILE) 353 static long dma_buf_export_sync_file(struct dma_buf *dmabuf, 354 void __user *user_data) 355 { 356 struct dma_buf_export_sync_file arg; 357 enum dma_resv_usage usage; 358 struct dma_fence *fence = NULL; 359 struct sync_file *sync_file; 360 int fd, ret; 361 362 if (copy_from_user(&arg, user_data, sizeof(arg))) 363 return -EFAULT; 364 365 if (arg.flags & ~DMA_BUF_SYNC_RW) 366 return -EINVAL; 367 368 if ((arg.flags & DMA_BUF_SYNC_RW) == 0) 369 return -EINVAL; 370 371 fd = get_unused_fd_flags(O_CLOEXEC); 372 if (fd < 0) 373 return fd; 374 375 usage = dma_resv_usage_rw(arg.flags & DMA_BUF_SYNC_WRITE); 376 ret = dma_resv_get_singleton(dmabuf->resv, usage, &fence); 377 if (ret) 378 goto err_put_fd; 379 380 if (!fence) 381 fence = dma_fence_get_stub(); 382 383 sync_file = sync_file_create(fence); 384 385 dma_fence_put(fence); 386 387 if (!sync_file) { 388 ret = -ENOMEM; 389 goto err_put_fd; 390 } 391 392 arg.fd = fd; 393 if (copy_to_user(user_data, &arg, sizeof(arg))) { 394 ret = -EFAULT; 395 goto err_put_file; 396 } 397 398 fd_install(fd, sync_file->file); 399 400 return 0; 401 402 err_put_file: 403 fput(sync_file->file); 404 err_put_fd: 405 put_unused_fd(fd); 406 return ret; 407 } 408 409 static long dma_buf_import_sync_file(struct dma_buf *dmabuf, 410 const void __user *user_data) 411 { 412 struct dma_buf_import_sync_file arg; 413 struct dma_fence *fence, *f; 414 enum dma_resv_usage usage; 415 struct dma_fence_unwrap iter; 416 unsigned int num_fences; 417 int ret = 0; 418 419 if (copy_from_user(&arg, user_data, sizeof(arg))) 420 return -EFAULT; 421 422 if (arg.flags & ~DMA_BUF_SYNC_RW) 423 return -EINVAL; 424 425 if ((arg.flags & DMA_BUF_SYNC_RW) == 0) 426 return -EINVAL; 427 428 fence = sync_file_get_fence(arg.fd); 429 if (!fence) 430 return -EINVAL; 431 432 usage = (arg.flags & DMA_BUF_SYNC_WRITE) ? DMA_RESV_USAGE_WRITE : 433 DMA_RESV_USAGE_READ; 434 435 num_fences = 0; 436 dma_fence_unwrap_for_each(f, &iter, fence) 437 ++num_fences; 438 439 if (num_fences > 0) { 440 dma_resv_lock(dmabuf->resv, NULL); 441 442 ret = dma_resv_reserve_fences(dmabuf->resv, num_fences); 443 if (!ret) { 444 dma_fence_unwrap_for_each(f, &iter, fence) 445 dma_resv_add_fence(dmabuf->resv, f, usage); 446 } 447 448 dma_resv_unlock(dmabuf->resv); 449 } 450 451 dma_fence_put(fence); 452 453 return ret; 454 } 455 #endif 456 457 static long dma_buf_ioctl(struct file *file, 458 unsigned int cmd, unsigned long arg) 459 { 460 struct dma_buf *dmabuf; 461 struct dma_buf_sync sync; 462 enum dma_data_direction direction; 463 int ret; 464 465 dmabuf = file->private_data; 466 467 switch (cmd) { 468 case DMA_BUF_IOCTL_SYNC: 469 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync))) 470 return -EFAULT; 471 472 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK) 473 return -EINVAL; 474 475 switch (sync.flags & DMA_BUF_SYNC_RW) { 476 case DMA_BUF_SYNC_READ: 477 direction = DMA_FROM_DEVICE; 478 break; 479 case DMA_BUF_SYNC_WRITE: 480 direction = DMA_TO_DEVICE; 481 break; 482 case DMA_BUF_SYNC_RW: 483 direction = DMA_BIDIRECTIONAL; 484 break; 485 default: 486 return -EINVAL; 487 } 488 489 if (sync.flags & DMA_BUF_SYNC_END) 490 ret = dma_buf_end_cpu_access(dmabuf, direction); 491 else 492 ret = dma_buf_begin_cpu_access(dmabuf, direction); 493 494 return ret; 495 496 case DMA_BUF_SET_NAME_A: 497 case DMA_BUF_SET_NAME_B: 498 return dma_buf_set_name(dmabuf, (const char __user *)arg); 499 500 #if IS_ENABLED(CONFIG_SYNC_FILE) 501 case DMA_BUF_IOCTL_EXPORT_SYNC_FILE: 502 return dma_buf_export_sync_file(dmabuf, (void __user *)arg); 503 case DMA_BUF_IOCTL_IMPORT_SYNC_FILE: 504 return dma_buf_import_sync_file(dmabuf, (const void __user *)arg); 505 #endif 506 507 default: 508 return -ENOTTY; 509 } 510 } 511 512 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file) 513 { 514 struct dma_buf *dmabuf = file->private_data; 515 516 seq_printf(m, "size:\t%zu\n", dmabuf->size); 517 /* Don't count the temporary reference taken inside procfs seq_show */ 518 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1); 519 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name); 520 spin_lock(&dmabuf->name_lock); 521 if (dmabuf->name) 522 seq_printf(m, "name:\t%s\n", dmabuf->name); 523 spin_unlock(&dmabuf->name_lock); 524 } 525 526 static const struct file_operations dma_buf_fops = { 527 .release = dma_buf_file_release, 528 .mmap = dma_buf_mmap_internal, 529 .llseek = dma_buf_llseek, 530 .poll = dma_buf_poll, 531 .unlocked_ioctl = dma_buf_ioctl, 532 .compat_ioctl = compat_ptr_ioctl, 533 .show_fdinfo = dma_buf_show_fdinfo, 534 }; 535 536 /* 537 * is_dma_buf_file - Check if struct file* is associated with dma_buf 538 */ 539 static inline int is_dma_buf_file(struct file *file) 540 { 541 return file->f_op == &dma_buf_fops; 542 } 543 544 static struct file *dma_buf_getfile(size_t size, int flags) 545 { 546 static atomic64_t dmabuf_inode = ATOMIC64_INIT(0); 547 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb); 548 struct file *file; 549 550 if (IS_ERR(inode)) 551 return ERR_CAST(inode); 552 553 inode->i_size = size; 554 inode_set_bytes(inode, size); 555 556 /* 557 * The ->i_ino acquired from get_next_ino() is not unique thus 558 * not suitable for using it as dentry name by dmabuf stats. 559 * Override ->i_ino with the unique and dmabuffs specific 560 * value. 561 */ 562 inode->i_ino = atomic64_inc_return(&dmabuf_inode); 563 flags &= O_ACCMODE | O_NONBLOCK; 564 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf", 565 flags, &dma_buf_fops); 566 if (IS_ERR(file)) 567 goto err_alloc_file; 568 569 return file; 570 571 err_alloc_file: 572 iput(inode); 573 return file; 574 } 575 576 /** 577 * DOC: dma buf device access 578 * 579 * For device DMA access to a shared DMA buffer the usual sequence of operations 580 * is fairly simple: 581 * 582 * 1. The exporter defines his exporter instance using 583 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private 584 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace 585 * as a file descriptor by calling dma_buf_fd(). 586 * 587 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer 588 * to share with: First the file descriptor is converted to a &dma_buf using 589 * dma_buf_get(). Then the buffer is attached to the device using 590 * dma_buf_attach(). 591 * 592 * Up to this stage the exporter is still free to migrate or reallocate the 593 * backing storage. 594 * 595 * 3. Once the buffer is attached to all devices userspace can initiate DMA 596 * access to the shared buffer. In the kernel this is done by calling 597 * dma_buf_map_attachment() and dma_buf_unmap_attachment(). 598 * 599 * 4. Once a driver is done with a shared buffer it needs to call 600 * dma_buf_detach() (after cleaning up any mappings) and then release the 601 * reference acquired with dma_buf_get() by calling dma_buf_put(). 602 * 603 * For the detailed semantics exporters are expected to implement see 604 * &dma_buf_ops. 605 */ 606 607 /** 608 * dma_buf_export - Creates a new dma_buf, and associates an anon file 609 * with this buffer, so it can be exported. 610 * Also connect the allocator specific data and ops to the buffer. 611 * Additionally, provide a name string for exporter; useful in debugging. 612 * 613 * @exp_info: [in] holds all the export related information provided 614 * by the exporter. see &struct dma_buf_export_info 615 * for further details. 616 * 617 * Returns, on success, a newly created struct dma_buf object, which wraps the 618 * supplied private data and operations for struct dma_buf_ops. On either 619 * missing ops, or error in allocating struct dma_buf, will return negative 620 * error. 621 * 622 * For most cases the easiest way to create @exp_info is through the 623 * %DEFINE_DMA_BUF_EXPORT_INFO macro. 624 */ 625 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info) 626 { 627 struct dma_buf *dmabuf; 628 struct dma_resv *resv = exp_info->resv; 629 struct file *file; 630 size_t alloc_size = sizeof(struct dma_buf); 631 int ret; 632 633 if (WARN_ON(!exp_info->priv || !exp_info->ops 634 || !exp_info->ops->map_dma_buf 635 || !exp_info->ops->unmap_dma_buf 636 || !exp_info->ops->release)) 637 return ERR_PTR(-EINVAL); 638 639 if (WARN_ON(exp_info->ops->cache_sgt_mapping && 640 (exp_info->ops->pin || exp_info->ops->unpin))) 641 return ERR_PTR(-EINVAL); 642 643 if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin)) 644 return ERR_PTR(-EINVAL); 645 646 if (!try_module_get(exp_info->owner)) 647 return ERR_PTR(-ENOENT); 648 649 file = dma_buf_getfile(exp_info->size, exp_info->flags); 650 if (IS_ERR(file)) { 651 ret = PTR_ERR(file); 652 goto err_module; 653 } 654 655 if (!exp_info->resv) 656 alloc_size += sizeof(struct dma_resv); 657 else 658 /* prevent &dma_buf[1] == dma_buf->resv */ 659 alloc_size += 1; 660 dmabuf = kzalloc(alloc_size, GFP_KERNEL); 661 if (!dmabuf) { 662 ret = -ENOMEM; 663 goto err_file; 664 } 665 666 dmabuf->priv = exp_info->priv; 667 dmabuf->ops = exp_info->ops; 668 dmabuf->size = exp_info->size; 669 dmabuf->exp_name = exp_info->exp_name; 670 dmabuf->owner = exp_info->owner; 671 spin_lock_init(&dmabuf->name_lock); 672 init_waitqueue_head(&dmabuf->poll); 673 dmabuf->cb_in.poll = dmabuf->cb_out.poll = &dmabuf->poll; 674 dmabuf->cb_in.active = dmabuf->cb_out.active = 0; 675 INIT_LIST_HEAD(&dmabuf->attachments); 676 677 if (!resv) { 678 dmabuf->resv = (struct dma_resv *)&dmabuf[1]; 679 dma_resv_init(dmabuf->resv); 680 } else { 681 dmabuf->resv = resv; 682 } 683 684 ret = dma_buf_stats_setup(dmabuf, file); 685 if (ret) 686 goto err_dmabuf; 687 688 file->private_data = dmabuf; 689 file->f_path.dentry->d_fsdata = dmabuf; 690 dmabuf->file = file; 691 692 __dma_buf_debugfs_list_add(dmabuf); 693 694 return dmabuf; 695 696 err_dmabuf: 697 if (!resv) 698 dma_resv_fini(dmabuf->resv); 699 kfree(dmabuf); 700 err_file: 701 fput(file); 702 err_module: 703 module_put(exp_info->owner); 704 return ERR_PTR(ret); 705 } 706 EXPORT_SYMBOL_NS_GPL(dma_buf_export, "DMA_BUF"); 707 708 /** 709 * dma_buf_fd - returns a file descriptor for the given struct dma_buf 710 * @dmabuf: [in] pointer to dma_buf for which fd is required. 711 * @flags: [in] flags to give to fd 712 * 713 * On success, returns an associated 'fd'. Else, returns error. 714 */ 715 int dma_buf_fd(struct dma_buf *dmabuf, int flags) 716 { 717 int fd; 718 719 if (!dmabuf || !dmabuf->file) 720 return -EINVAL; 721 722 fd = get_unused_fd_flags(flags); 723 if (fd < 0) 724 return fd; 725 726 fd_install(fd, dmabuf->file); 727 728 return fd; 729 } 730 EXPORT_SYMBOL_NS_GPL(dma_buf_fd, "DMA_BUF"); 731 732 /** 733 * dma_buf_get - returns the struct dma_buf related to an fd 734 * @fd: [in] fd associated with the struct dma_buf to be returned 735 * 736 * On success, returns the struct dma_buf associated with an fd; uses 737 * file's refcounting done by fget to increase refcount. returns ERR_PTR 738 * otherwise. 739 */ 740 struct dma_buf *dma_buf_get(int fd) 741 { 742 struct file *file; 743 744 file = fget(fd); 745 746 if (!file) 747 return ERR_PTR(-EBADF); 748 749 if (!is_dma_buf_file(file)) { 750 fput(file); 751 return ERR_PTR(-EINVAL); 752 } 753 754 return file->private_data; 755 } 756 EXPORT_SYMBOL_NS_GPL(dma_buf_get, "DMA_BUF"); 757 758 /** 759 * dma_buf_put - decreases refcount of the buffer 760 * @dmabuf: [in] buffer to reduce refcount of 761 * 762 * Uses file's refcounting done implicitly by fput(). 763 * 764 * If, as a result of this call, the refcount becomes 0, the 'release' file 765 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc 766 * in turn, and frees the memory allocated for dmabuf when exported. 767 */ 768 void dma_buf_put(struct dma_buf *dmabuf) 769 { 770 if (WARN_ON(!dmabuf || !dmabuf->file)) 771 return; 772 773 fput(dmabuf->file); 774 } 775 EXPORT_SYMBOL_NS_GPL(dma_buf_put, "DMA_BUF"); 776 777 static void mangle_sg_table(struct sg_table *sg_table) 778 { 779 #ifdef CONFIG_DMABUF_DEBUG 780 int i; 781 struct scatterlist *sg; 782 783 /* To catch abuse of the underlying struct page by importers mix 784 * up the bits, but take care to preserve the low SG_ bits to 785 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf 786 * before passing the sgt back to the exporter. 787 */ 788 for_each_sgtable_sg(sg_table, sg, i) 789 sg->page_link ^= ~0xffUL; 790 #endif 791 792 } 793 static struct sg_table *__map_dma_buf(struct dma_buf_attachment *attach, 794 enum dma_data_direction direction) 795 { 796 struct sg_table *sg_table; 797 signed long ret; 798 799 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction); 800 if (IS_ERR_OR_NULL(sg_table)) 801 return sg_table; 802 803 if (!dma_buf_attachment_is_dynamic(attach)) { 804 ret = dma_resv_wait_timeout(attach->dmabuf->resv, 805 DMA_RESV_USAGE_KERNEL, true, 806 MAX_SCHEDULE_TIMEOUT); 807 if (ret < 0) { 808 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, 809 direction); 810 return ERR_PTR(ret); 811 } 812 } 813 814 mangle_sg_table(sg_table); 815 return sg_table; 816 } 817 818 /** 819 * DOC: locking convention 820 * 821 * In order to avoid deadlock situations between dma-buf exports and importers, 822 * all dma-buf API users must follow the common dma-buf locking convention. 823 * 824 * Convention for importers 825 * 826 * 1. Importers must hold the dma-buf reservation lock when calling these 827 * functions: 828 * 829 * - dma_buf_pin() 830 * - dma_buf_unpin() 831 * - dma_buf_map_attachment() 832 * - dma_buf_unmap_attachment() 833 * - dma_buf_vmap() 834 * - dma_buf_vunmap() 835 * 836 * 2. Importers must not hold the dma-buf reservation lock when calling these 837 * functions: 838 * 839 * - dma_buf_attach() 840 * - dma_buf_dynamic_attach() 841 * - dma_buf_detach() 842 * - dma_buf_export() 843 * - dma_buf_fd() 844 * - dma_buf_get() 845 * - dma_buf_put() 846 * - dma_buf_mmap() 847 * - dma_buf_begin_cpu_access() 848 * - dma_buf_end_cpu_access() 849 * - dma_buf_map_attachment_unlocked() 850 * - dma_buf_unmap_attachment_unlocked() 851 * - dma_buf_vmap_unlocked() 852 * - dma_buf_vunmap_unlocked() 853 * 854 * Convention for exporters 855 * 856 * 1. These &dma_buf_ops callbacks are invoked with unlocked dma-buf 857 * reservation and exporter can take the lock: 858 * 859 * - &dma_buf_ops.attach() 860 * - &dma_buf_ops.detach() 861 * - &dma_buf_ops.release() 862 * - &dma_buf_ops.begin_cpu_access() 863 * - &dma_buf_ops.end_cpu_access() 864 * - &dma_buf_ops.mmap() 865 * 866 * 2. These &dma_buf_ops callbacks are invoked with locked dma-buf 867 * reservation and exporter can't take the lock: 868 * 869 * - &dma_buf_ops.pin() 870 * - &dma_buf_ops.unpin() 871 * - &dma_buf_ops.map_dma_buf() 872 * - &dma_buf_ops.unmap_dma_buf() 873 * - &dma_buf_ops.vmap() 874 * - &dma_buf_ops.vunmap() 875 * 876 * 3. Exporters must hold the dma-buf reservation lock when calling these 877 * functions: 878 * 879 * - dma_buf_move_notify() 880 */ 881 882 /** 883 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list 884 * @dmabuf: [in] buffer to attach device to. 885 * @dev: [in] device to be attached. 886 * @importer_ops: [in] importer operations for the attachment 887 * @importer_priv: [in] importer private pointer for the attachment 888 * 889 * Returns struct dma_buf_attachment pointer for this attachment. Attachments 890 * must be cleaned up by calling dma_buf_detach(). 891 * 892 * Optionally this calls &dma_buf_ops.attach to allow device-specific attach 893 * functionality. 894 * 895 * Returns: 896 * 897 * A pointer to newly created &dma_buf_attachment on success, or a negative 898 * error code wrapped into a pointer on failure. 899 * 900 * Note that this can fail if the backing storage of @dmabuf is in a place not 901 * accessible to @dev, and cannot be moved to a more suitable place. This is 902 * indicated with the error code -EBUSY. 903 */ 904 struct dma_buf_attachment * 905 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev, 906 const struct dma_buf_attach_ops *importer_ops, 907 void *importer_priv) 908 { 909 struct dma_buf_attachment *attach; 910 int ret; 911 912 if (WARN_ON(!dmabuf || !dev)) 913 return ERR_PTR(-EINVAL); 914 915 if (WARN_ON(importer_ops && !importer_ops->move_notify)) 916 return ERR_PTR(-EINVAL); 917 918 attach = kzalloc(sizeof(*attach), GFP_KERNEL); 919 if (!attach) 920 return ERR_PTR(-ENOMEM); 921 922 attach->dev = dev; 923 attach->dmabuf = dmabuf; 924 if (importer_ops) 925 attach->peer2peer = importer_ops->allow_peer2peer; 926 attach->importer_ops = importer_ops; 927 attach->importer_priv = importer_priv; 928 929 if (dmabuf->ops->attach) { 930 ret = dmabuf->ops->attach(dmabuf, attach); 931 if (ret) 932 goto err_attach; 933 } 934 dma_resv_lock(dmabuf->resv, NULL); 935 list_add(&attach->node, &dmabuf->attachments); 936 dma_resv_unlock(dmabuf->resv); 937 938 /* When either the importer or the exporter can't handle dynamic 939 * mappings we cache the mapping here to avoid issues with the 940 * reservation object lock. 941 */ 942 if (dma_buf_attachment_is_dynamic(attach) != 943 dma_buf_is_dynamic(dmabuf)) { 944 struct sg_table *sgt; 945 946 dma_resv_lock(attach->dmabuf->resv, NULL); 947 if (dma_buf_is_dynamic(attach->dmabuf)) { 948 ret = dmabuf->ops->pin(attach); 949 if (ret) 950 goto err_unlock; 951 } 952 953 sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL); 954 if (!sgt) 955 sgt = ERR_PTR(-ENOMEM); 956 if (IS_ERR(sgt)) { 957 ret = PTR_ERR(sgt); 958 goto err_unpin; 959 } 960 dma_resv_unlock(attach->dmabuf->resv); 961 attach->sgt = sgt; 962 attach->dir = DMA_BIDIRECTIONAL; 963 } 964 965 return attach; 966 967 err_attach: 968 kfree(attach); 969 return ERR_PTR(ret); 970 971 err_unpin: 972 if (dma_buf_is_dynamic(attach->dmabuf)) 973 dmabuf->ops->unpin(attach); 974 975 err_unlock: 976 dma_resv_unlock(attach->dmabuf->resv); 977 978 dma_buf_detach(dmabuf, attach); 979 return ERR_PTR(ret); 980 } 981 EXPORT_SYMBOL_NS_GPL(dma_buf_dynamic_attach, "DMA_BUF"); 982 983 /** 984 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach 985 * @dmabuf: [in] buffer to attach device to. 986 * @dev: [in] device to be attached. 987 * 988 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static 989 * mapping. 990 */ 991 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf, 992 struct device *dev) 993 { 994 return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL); 995 } 996 EXPORT_SYMBOL_NS_GPL(dma_buf_attach, "DMA_BUF"); 997 998 static void __unmap_dma_buf(struct dma_buf_attachment *attach, 999 struct sg_table *sg_table, 1000 enum dma_data_direction direction) 1001 { 1002 /* uses XOR, hence this unmangles */ 1003 mangle_sg_table(sg_table); 1004 1005 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction); 1006 } 1007 1008 /** 1009 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list 1010 * @dmabuf: [in] buffer to detach from. 1011 * @attach: [in] attachment to be detached; is free'd after this call. 1012 * 1013 * Clean up a device attachment obtained by calling dma_buf_attach(). 1014 * 1015 * Optionally this calls &dma_buf_ops.detach for device-specific detach. 1016 */ 1017 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach) 1018 { 1019 if (WARN_ON(!dmabuf || !attach || dmabuf != attach->dmabuf)) 1020 return; 1021 1022 dma_resv_lock(dmabuf->resv, NULL); 1023 1024 if (attach->sgt) { 1025 1026 __unmap_dma_buf(attach, attach->sgt, attach->dir); 1027 1028 if (dma_buf_is_dynamic(attach->dmabuf)) 1029 dmabuf->ops->unpin(attach); 1030 } 1031 list_del(&attach->node); 1032 1033 dma_resv_unlock(dmabuf->resv); 1034 1035 if (dmabuf->ops->detach) 1036 dmabuf->ops->detach(dmabuf, attach); 1037 1038 kfree(attach); 1039 } 1040 EXPORT_SYMBOL_NS_GPL(dma_buf_detach, "DMA_BUF"); 1041 1042 /** 1043 * dma_buf_pin - Lock down the DMA-buf 1044 * @attach: [in] attachment which should be pinned 1045 * 1046 * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may 1047 * call this, and only for limited use cases like scanout and not for temporary 1048 * pin operations. It is not permitted to allow userspace to pin arbitrary 1049 * amounts of buffers through this interface. 1050 * 1051 * Buffers must be unpinned by calling dma_buf_unpin(). 1052 * 1053 * Returns: 1054 * 0 on success, negative error code on failure. 1055 */ 1056 int dma_buf_pin(struct dma_buf_attachment *attach) 1057 { 1058 struct dma_buf *dmabuf = attach->dmabuf; 1059 int ret = 0; 1060 1061 WARN_ON(!dma_buf_attachment_is_dynamic(attach)); 1062 1063 dma_resv_assert_held(dmabuf->resv); 1064 1065 if (dmabuf->ops->pin) 1066 ret = dmabuf->ops->pin(attach); 1067 1068 return ret; 1069 } 1070 EXPORT_SYMBOL_NS_GPL(dma_buf_pin, "DMA_BUF"); 1071 1072 /** 1073 * dma_buf_unpin - Unpin a DMA-buf 1074 * @attach: [in] attachment which should be unpinned 1075 * 1076 * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move 1077 * any mapping of @attach again and inform the importer through 1078 * &dma_buf_attach_ops.move_notify. 1079 */ 1080 void dma_buf_unpin(struct dma_buf_attachment *attach) 1081 { 1082 struct dma_buf *dmabuf = attach->dmabuf; 1083 1084 WARN_ON(!dma_buf_attachment_is_dynamic(attach)); 1085 1086 dma_resv_assert_held(dmabuf->resv); 1087 1088 if (dmabuf->ops->unpin) 1089 dmabuf->ops->unpin(attach); 1090 } 1091 EXPORT_SYMBOL_NS_GPL(dma_buf_unpin, "DMA_BUF"); 1092 1093 /** 1094 * dma_buf_map_attachment - Returns the scatterlist table of the attachment; 1095 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the 1096 * dma_buf_ops. 1097 * @attach: [in] attachment whose scatterlist is to be returned 1098 * @direction: [in] direction of DMA transfer 1099 * 1100 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR 1101 * on error. May return -EINTR if it is interrupted by a signal. 1102 * 1103 * On success, the DMA addresses and lengths in the returned scatterlist are 1104 * PAGE_SIZE aligned. 1105 * 1106 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that 1107 * the underlying backing storage is pinned for as long as a mapping exists, 1108 * therefore users/importers should not hold onto a mapping for undue amounts of 1109 * time. 1110 * 1111 * Important: Dynamic importers must wait for the exclusive fence of the struct 1112 * dma_resv attached to the DMA-BUF first. 1113 */ 1114 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach, 1115 enum dma_data_direction direction) 1116 { 1117 struct sg_table *sg_table; 1118 int r; 1119 1120 might_sleep(); 1121 1122 if (WARN_ON(!attach || !attach->dmabuf)) 1123 return ERR_PTR(-EINVAL); 1124 1125 dma_resv_assert_held(attach->dmabuf->resv); 1126 1127 if (attach->sgt) { 1128 /* 1129 * Two mappings with different directions for the same 1130 * attachment are not allowed. 1131 */ 1132 if (attach->dir != direction && 1133 attach->dir != DMA_BIDIRECTIONAL) 1134 return ERR_PTR(-EBUSY); 1135 1136 return attach->sgt; 1137 } 1138 1139 if (dma_buf_is_dynamic(attach->dmabuf)) { 1140 if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) { 1141 r = attach->dmabuf->ops->pin(attach); 1142 if (r) 1143 return ERR_PTR(r); 1144 } 1145 } 1146 1147 sg_table = __map_dma_buf(attach, direction); 1148 if (!sg_table) 1149 sg_table = ERR_PTR(-ENOMEM); 1150 1151 if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) && 1152 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 1153 attach->dmabuf->ops->unpin(attach); 1154 1155 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) { 1156 attach->sgt = sg_table; 1157 attach->dir = direction; 1158 } 1159 1160 #ifdef CONFIG_DMA_API_DEBUG 1161 if (!IS_ERR(sg_table)) { 1162 struct scatterlist *sg; 1163 u64 addr; 1164 int len; 1165 int i; 1166 1167 for_each_sgtable_dma_sg(sg_table, sg, i) { 1168 addr = sg_dma_address(sg); 1169 len = sg_dma_len(sg); 1170 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) { 1171 pr_debug("%s: addr %llx or len %x is not page aligned!\n", 1172 __func__, addr, len); 1173 } 1174 } 1175 } 1176 #endif /* CONFIG_DMA_API_DEBUG */ 1177 return sg_table; 1178 } 1179 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment, "DMA_BUF"); 1180 1181 /** 1182 * dma_buf_map_attachment_unlocked - Returns the scatterlist table of the attachment; 1183 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the 1184 * dma_buf_ops. 1185 * @attach: [in] attachment whose scatterlist is to be returned 1186 * @direction: [in] direction of DMA transfer 1187 * 1188 * Unlocked variant of dma_buf_map_attachment(). 1189 */ 1190 struct sg_table * 1191 dma_buf_map_attachment_unlocked(struct dma_buf_attachment *attach, 1192 enum dma_data_direction direction) 1193 { 1194 struct sg_table *sg_table; 1195 1196 might_sleep(); 1197 1198 if (WARN_ON(!attach || !attach->dmabuf)) 1199 return ERR_PTR(-EINVAL); 1200 1201 dma_resv_lock(attach->dmabuf->resv, NULL); 1202 sg_table = dma_buf_map_attachment(attach, direction); 1203 dma_resv_unlock(attach->dmabuf->resv); 1204 1205 return sg_table; 1206 } 1207 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment_unlocked, "DMA_BUF"); 1208 1209 /** 1210 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might 1211 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of 1212 * dma_buf_ops. 1213 * @attach: [in] attachment to unmap buffer from 1214 * @sg_table: [in] scatterlist info of the buffer to unmap 1215 * @direction: [in] direction of DMA transfer 1216 * 1217 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment(). 1218 */ 1219 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach, 1220 struct sg_table *sg_table, 1221 enum dma_data_direction direction) 1222 { 1223 might_sleep(); 1224 1225 if (WARN_ON(!attach || !attach->dmabuf || !sg_table)) 1226 return; 1227 1228 dma_resv_assert_held(attach->dmabuf->resv); 1229 1230 if (attach->sgt == sg_table) 1231 return; 1232 1233 __unmap_dma_buf(attach, sg_table, direction); 1234 1235 if (dma_buf_is_dynamic(attach->dmabuf) && 1236 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 1237 dma_buf_unpin(attach); 1238 } 1239 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment, "DMA_BUF"); 1240 1241 /** 1242 * dma_buf_unmap_attachment_unlocked - unmaps and decreases usecount of the buffer;might 1243 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of 1244 * dma_buf_ops. 1245 * @attach: [in] attachment to unmap buffer from 1246 * @sg_table: [in] scatterlist info of the buffer to unmap 1247 * @direction: [in] direction of DMA transfer 1248 * 1249 * Unlocked variant of dma_buf_unmap_attachment(). 1250 */ 1251 void dma_buf_unmap_attachment_unlocked(struct dma_buf_attachment *attach, 1252 struct sg_table *sg_table, 1253 enum dma_data_direction direction) 1254 { 1255 might_sleep(); 1256 1257 if (WARN_ON(!attach || !attach->dmabuf || !sg_table)) 1258 return; 1259 1260 dma_resv_lock(attach->dmabuf->resv, NULL); 1261 dma_buf_unmap_attachment(attach, sg_table, direction); 1262 dma_resv_unlock(attach->dmabuf->resv); 1263 } 1264 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment_unlocked, "DMA_BUF"); 1265 1266 /** 1267 * dma_buf_move_notify - notify attachments that DMA-buf is moving 1268 * 1269 * @dmabuf: [in] buffer which is moving 1270 * 1271 * Informs all attachments that they need to destroy and recreate all their 1272 * mappings. 1273 */ 1274 void dma_buf_move_notify(struct dma_buf *dmabuf) 1275 { 1276 struct dma_buf_attachment *attach; 1277 1278 dma_resv_assert_held(dmabuf->resv); 1279 1280 list_for_each_entry(attach, &dmabuf->attachments, node) 1281 if (attach->importer_ops) 1282 attach->importer_ops->move_notify(attach); 1283 } 1284 EXPORT_SYMBOL_NS_GPL(dma_buf_move_notify, "DMA_BUF"); 1285 1286 /** 1287 * DOC: cpu access 1288 * 1289 * There are multiple reasons for supporting CPU access to a dma buffer object: 1290 * 1291 * - Fallback operations in the kernel, for example when a device is connected 1292 * over USB and the kernel needs to shuffle the data around first before 1293 * sending it away. Cache coherency is handled by bracketing any transactions 1294 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access() 1295 * access. 1296 * 1297 * Since for most kernel internal dma-buf accesses need the entire buffer, a 1298 * vmap interface is introduced. Note that on very old 32-bit architectures 1299 * vmalloc space might be limited and result in vmap calls failing. 1300 * 1301 * Interfaces: 1302 * 1303 * .. code-block:: c 1304 * 1305 * void *dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map) 1306 * void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map) 1307 * 1308 * The vmap call can fail if there is no vmap support in the exporter, or if 1309 * it runs out of vmalloc space. Note that the dma-buf layer keeps a reference 1310 * count for all vmap access and calls down into the exporter's vmap function 1311 * only when no vmapping exists, and only unmaps it once. Protection against 1312 * concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex. 1313 * 1314 * - For full compatibility on the importer side with existing userspace 1315 * interfaces, which might already support mmap'ing buffers. This is needed in 1316 * many processing pipelines (e.g. feeding a software rendered image into a 1317 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION 1318 * framework already supported this and for DMA buffer file descriptors to 1319 * replace ION buffers mmap support was needed. 1320 * 1321 * There is no special interfaces, userspace simply calls mmap on the dma-buf 1322 * fd. But like for CPU access there's a need to bracket the actual access, 1323 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that 1324 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must 1325 * be restarted. 1326 * 1327 * Some systems might need some sort of cache coherency management e.g. when 1328 * CPU and GPU domains are being accessed through dma-buf at the same time. 1329 * To circumvent this problem there are begin/end coherency markers, that 1330 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace 1331 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The 1332 * sequence would be used like following: 1333 * 1334 * - mmap dma-buf fd 1335 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write 1336 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you 1337 * want (with the new data being consumed by say the GPU or the scanout 1338 * device) 1339 * - munmap once you don't need the buffer any more 1340 * 1341 * For correctness and optimal performance, it is always required to use 1342 * SYNC_START and SYNC_END before and after, respectively, when accessing the 1343 * mapped address. Userspace cannot rely on coherent access, even when there 1344 * are systems where it just works without calling these ioctls. 1345 * 1346 * - And as a CPU fallback in userspace processing pipelines. 1347 * 1348 * Similar to the motivation for kernel cpu access it is again important that 1349 * the userspace code of a given importing subsystem can use the same 1350 * interfaces with a imported dma-buf buffer object as with a native buffer 1351 * object. This is especially important for drm where the userspace part of 1352 * contemporary OpenGL, X, and other drivers is huge, and reworking them to 1353 * use a different way to mmap a buffer rather invasive. 1354 * 1355 * The assumption in the current dma-buf interfaces is that redirecting the 1356 * initial mmap is all that's needed. A survey of some of the existing 1357 * subsystems shows that no driver seems to do any nefarious thing like 1358 * syncing up with outstanding asynchronous processing on the device or 1359 * allocating special resources at fault time. So hopefully this is good 1360 * enough, since adding interfaces to intercept pagefaults and allow pte 1361 * shootdowns would increase the complexity quite a bit. 1362 * 1363 * Interface: 1364 * 1365 * .. code-block:: c 1366 * 1367 * int dma_buf_mmap(struct dma_buf *, struct vm_area_struct *, unsigned long); 1368 * 1369 * If the importing subsystem simply provides a special-purpose mmap call to 1370 * set up a mapping in userspace, calling do_mmap with &dma_buf.file will 1371 * equally achieve that for a dma-buf object. 1372 */ 1373 1374 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1375 enum dma_data_direction direction) 1376 { 1377 bool write = (direction == DMA_BIDIRECTIONAL || 1378 direction == DMA_TO_DEVICE); 1379 struct dma_resv *resv = dmabuf->resv; 1380 long ret; 1381 1382 /* Wait on any implicit rendering fences */ 1383 ret = dma_resv_wait_timeout(resv, dma_resv_usage_rw(write), 1384 true, MAX_SCHEDULE_TIMEOUT); 1385 if (ret < 0) 1386 return ret; 1387 1388 return 0; 1389 } 1390 1391 /** 1392 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the 1393 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific 1394 * preparations. Coherency is only guaranteed in the specified range for the 1395 * specified access direction. 1396 * @dmabuf: [in] buffer to prepare cpu access for. 1397 * @direction: [in] direction of access. 1398 * 1399 * After the cpu access is complete the caller should call 1400 * dma_buf_end_cpu_access(). Only when cpu access is bracketed by both calls is 1401 * it guaranteed to be coherent with other DMA access. 1402 * 1403 * This function will also wait for any DMA transactions tracked through 1404 * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit 1405 * synchronization this function will only ensure cache coherency, callers must 1406 * ensure synchronization with such DMA transactions on their own. 1407 * 1408 * Can return negative error values, returns 0 on success. 1409 */ 1410 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1411 enum dma_data_direction direction) 1412 { 1413 int ret = 0; 1414 1415 if (WARN_ON(!dmabuf)) 1416 return -EINVAL; 1417 1418 might_lock(&dmabuf->resv->lock.base); 1419 1420 if (dmabuf->ops->begin_cpu_access) 1421 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction); 1422 1423 /* Ensure that all fences are waited upon - but we first allow 1424 * the native handler the chance to do so more efficiently if it 1425 * chooses. A double invocation here will be reasonably cheap no-op. 1426 */ 1427 if (ret == 0) 1428 ret = __dma_buf_begin_cpu_access(dmabuf, direction); 1429 1430 return ret; 1431 } 1432 EXPORT_SYMBOL_NS_GPL(dma_buf_begin_cpu_access, "DMA_BUF"); 1433 1434 /** 1435 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the 1436 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific 1437 * actions. Coherency is only guaranteed in the specified range for the 1438 * specified access direction. 1439 * @dmabuf: [in] buffer to complete cpu access for. 1440 * @direction: [in] direction of access. 1441 * 1442 * This terminates CPU access started with dma_buf_begin_cpu_access(). 1443 * 1444 * Can return negative error values, returns 0 on success. 1445 */ 1446 int dma_buf_end_cpu_access(struct dma_buf *dmabuf, 1447 enum dma_data_direction direction) 1448 { 1449 int ret = 0; 1450 1451 WARN_ON(!dmabuf); 1452 1453 might_lock(&dmabuf->resv->lock.base); 1454 1455 if (dmabuf->ops->end_cpu_access) 1456 ret = dmabuf->ops->end_cpu_access(dmabuf, direction); 1457 1458 return ret; 1459 } 1460 EXPORT_SYMBOL_NS_GPL(dma_buf_end_cpu_access, "DMA_BUF"); 1461 1462 1463 /** 1464 * dma_buf_mmap - Setup up a userspace mmap with the given vma 1465 * @dmabuf: [in] buffer that should back the vma 1466 * @vma: [in] vma for the mmap 1467 * @pgoff: [in] offset in pages where this mmap should start within the 1468 * dma-buf buffer. 1469 * 1470 * This function adjusts the passed in vma so that it points at the file of the 1471 * dma_buf operation. It also adjusts the starting pgoff and does bounds 1472 * checking on the size of the vma. Then it calls the exporters mmap function to 1473 * set up the mapping. 1474 * 1475 * Can return negative error values, returns 0 on success. 1476 */ 1477 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma, 1478 unsigned long pgoff) 1479 { 1480 if (WARN_ON(!dmabuf || !vma)) 1481 return -EINVAL; 1482 1483 /* check if buffer supports mmap */ 1484 if (!dmabuf->ops->mmap) 1485 return -EINVAL; 1486 1487 /* check for offset overflow */ 1488 if (pgoff + vma_pages(vma) < pgoff) 1489 return -EOVERFLOW; 1490 1491 /* check for overflowing the buffer's size */ 1492 if (pgoff + vma_pages(vma) > 1493 dmabuf->size >> PAGE_SHIFT) 1494 return -EINVAL; 1495 1496 /* readjust the vma */ 1497 vma_set_file(vma, dmabuf->file); 1498 vma->vm_pgoff = pgoff; 1499 1500 return dmabuf->ops->mmap(dmabuf, vma); 1501 } 1502 EXPORT_SYMBOL_NS_GPL(dma_buf_mmap, "DMA_BUF"); 1503 1504 /** 1505 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel 1506 * address space. Same restrictions as for vmap and friends apply. 1507 * @dmabuf: [in] buffer to vmap 1508 * @map: [out] returns the vmap pointer 1509 * 1510 * This call may fail due to lack of virtual mapping address space. 1511 * These calls are optional in drivers. The intended use for them 1512 * is for mapping objects linear in kernel space for high use objects. 1513 * 1514 * To ensure coherency users must call dma_buf_begin_cpu_access() and 1515 * dma_buf_end_cpu_access() around any cpu access performed through this 1516 * mapping. 1517 * 1518 * Returns 0 on success, or a negative errno code otherwise. 1519 */ 1520 int dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map) 1521 { 1522 struct iosys_map ptr; 1523 int ret; 1524 1525 iosys_map_clear(map); 1526 1527 if (WARN_ON(!dmabuf)) 1528 return -EINVAL; 1529 1530 dma_resv_assert_held(dmabuf->resv); 1531 1532 if (!dmabuf->ops->vmap) 1533 return -EINVAL; 1534 1535 if (dmabuf->vmapping_counter) { 1536 dmabuf->vmapping_counter++; 1537 BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr)); 1538 *map = dmabuf->vmap_ptr; 1539 return 0; 1540 } 1541 1542 BUG_ON(iosys_map_is_set(&dmabuf->vmap_ptr)); 1543 1544 ret = dmabuf->ops->vmap(dmabuf, &ptr); 1545 if (WARN_ON_ONCE(ret)) 1546 return ret; 1547 1548 dmabuf->vmap_ptr = ptr; 1549 dmabuf->vmapping_counter = 1; 1550 1551 *map = dmabuf->vmap_ptr; 1552 1553 return 0; 1554 } 1555 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap, "DMA_BUF"); 1556 1557 /** 1558 * dma_buf_vmap_unlocked - Create virtual mapping for the buffer object into kernel 1559 * address space. Same restrictions as for vmap and friends apply. 1560 * @dmabuf: [in] buffer to vmap 1561 * @map: [out] returns the vmap pointer 1562 * 1563 * Unlocked version of dma_buf_vmap() 1564 * 1565 * Returns 0 on success, or a negative errno code otherwise. 1566 */ 1567 int dma_buf_vmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map) 1568 { 1569 int ret; 1570 1571 iosys_map_clear(map); 1572 1573 if (WARN_ON(!dmabuf)) 1574 return -EINVAL; 1575 1576 dma_resv_lock(dmabuf->resv, NULL); 1577 ret = dma_buf_vmap(dmabuf, map); 1578 dma_resv_unlock(dmabuf->resv); 1579 1580 return ret; 1581 } 1582 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap_unlocked, "DMA_BUF"); 1583 1584 /** 1585 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap. 1586 * @dmabuf: [in] buffer to vunmap 1587 * @map: [in] vmap pointer to vunmap 1588 */ 1589 void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map) 1590 { 1591 if (WARN_ON(!dmabuf)) 1592 return; 1593 1594 dma_resv_assert_held(dmabuf->resv); 1595 1596 BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr)); 1597 BUG_ON(dmabuf->vmapping_counter == 0); 1598 BUG_ON(!iosys_map_is_equal(&dmabuf->vmap_ptr, map)); 1599 1600 if (--dmabuf->vmapping_counter == 0) { 1601 if (dmabuf->ops->vunmap) 1602 dmabuf->ops->vunmap(dmabuf, map); 1603 iosys_map_clear(&dmabuf->vmap_ptr); 1604 } 1605 } 1606 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap, "DMA_BUF"); 1607 1608 /** 1609 * dma_buf_vunmap_unlocked - Unmap a vmap obtained by dma_buf_vmap. 1610 * @dmabuf: [in] buffer to vunmap 1611 * @map: [in] vmap pointer to vunmap 1612 */ 1613 void dma_buf_vunmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map) 1614 { 1615 if (WARN_ON(!dmabuf)) 1616 return; 1617 1618 dma_resv_lock(dmabuf->resv, NULL); 1619 dma_buf_vunmap(dmabuf, map); 1620 dma_resv_unlock(dmabuf->resv); 1621 } 1622 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap_unlocked, "DMA_BUF"); 1623 1624 #ifdef CONFIG_DEBUG_FS 1625 static int dma_buf_debug_show(struct seq_file *s, void *unused) 1626 { 1627 struct dma_buf *buf_obj; 1628 struct dma_buf_attachment *attach_obj; 1629 int count = 0, attach_count; 1630 size_t size = 0; 1631 int ret; 1632 1633 ret = mutex_lock_interruptible(&debugfs_list_mutex); 1634 1635 if (ret) 1636 return ret; 1637 1638 seq_puts(s, "\nDma-buf Objects:\n"); 1639 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\tname\n", 1640 "size", "flags", "mode", "count", "ino"); 1641 1642 list_for_each_entry(buf_obj, &debugfs_list, list_node) { 1643 1644 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL); 1645 if (ret) 1646 goto error_unlock; 1647 1648 1649 spin_lock(&buf_obj->name_lock); 1650 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n", 1651 buf_obj->size, 1652 buf_obj->file->f_flags, buf_obj->file->f_mode, 1653 file_count(buf_obj->file), 1654 buf_obj->exp_name, 1655 file_inode(buf_obj->file)->i_ino, 1656 buf_obj->name ?: "<none>"); 1657 spin_unlock(&buf_obj->name_lock); 1658 1659 dma_resv_describe(buf_obj->resv, s); 1660 1661 seq_puts(s, "\tAttached Devices:\n"); 1662 attach_count = 0; 1663 1664 list_for_each_entry(attach_obj, &buf_obj->attachments, node) { 1665 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev)); 1666 attach_count++; 1667 } 1668 dma_resv_unlock(buf_obj->resv); 1669 1670 seq_printf(s, "Total %d devices attached\n\n", 1671 attach_count); 1672 1673 count++; 1674 size += buf_obj->size; 1675 } 1676 1677 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size); 1678 1679 mutex_unlock(&debugfs_list_mutex); 1680 return 0; 1681 1682 error_unlock: 1683 mutex_unlock(&debugfs_list_mutex); 1684 return ret; 1685 } 1686 1687 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug); 1688 1689 static struct dentry *dma_buf_debugfs_dir; 1690 1691 static int dma_buf_init_debugfs(void) 1692 { 1693 struct dentry *d; 1694 int err = 0; 1695 1696 d = debugfs_create_dir("dma_buf", NULL); 1697 if (IS_ERR(d)) 1698 return PTR_ERR(d); 1699 1700 dma_buf_debugfs_dir = d; 1701 1702 d = debugfs_create_file("bufinfo", 0444, dma_buf_debugfs_dir, 1703 NULL, &dma_buf_debug_fops); 1704 if (IS_ERR(d)) { 1705 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n"); 1706 debugfs_remove_recursive(dma_buf_debugfs_dir); 1707 dma_buf_debugfs_dir = NULL; 1708 err = PTR_ERR(d); 1709 } 1710 1711 return err; 1712 } 1713 1714 static void dma_buf_uninit_debugfs(void) 1715 { 1716 debugfs_remove_recursive(dma_buf_debugfs_dir); 1717 } 1718 #else 1719 static inline int dma_buf_init_debugfs(void) 1720 { 1721 return 0; 1722 } 1723 static inline void dma_buf_uninit_debugfs(void) 1724 { 1725 } 1726 #endif 1727 1728 static int __init dma_buf_init(void) 1729 { 1730 int ret; 1731 1732 ret = dma_buf_init_sysfs_statistics(); 1733 if (ret) 1734 return ret; 1735 1736 dma_buf_mnt = kern_mount(&dma_buf_fs_type); 1737 if (IS_ERR(dma_buf_mnt)) 1738 return PTR_ERR(dma_buf_mnt); 1739 1740 dma_buf_init_debugfs(); 1741 return 0; 1742 } 1743 subsys_initcall(dma_buf_init); 1744 1745 static void __exit dma_buf_deinit(void) 1746 { 1747 dma_buf_uninit_debugfs(); 1748 kern_unmount(dma_buf_mnt); 1749 dma_buf_uninit_sysfs_statistics(); 1750 } 1751 __exitcall(dma_buf_deinit); 1752