1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Framework for buffer objects that can be shared across devices/subsystems. 4 * 5 * Copyright(C) 2011 Linaro Limited. All rights reserved. 6 * Author: Sumit Semwal <sumit.semwal@ti.com> 7 * 8 * Many thanks to linaro-mm-sig list, and specially 9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and 10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and 11 * refining of this idea. 12 */ 13 14 #include <linux/fs.h> 15 #include <linux/slab.h> 16 #include <linux/dma-buf.h> 17 #include <linux/dma-fence.h> 18 #include <linux/anon_inodes.h> 19 #include <linux/export.h> 20 #include <linux/debugfs.h> 21 #include <linux/module.h> 22 #include <linux/seq_file.h> 23 #include <linux/poll.h> 24 #include <linux/dma-resv.h> 25 #include <linux/mm.h> 26 #include <linux/mount.h> 27 #include <linux/pseudo_fs.h> 28 29 #include <uapi/linux/dma-buf.h> 30 #include <uapi/linux/magic.h> 31 32 #include "dma-buf-sysfs-stats.h" 33 34 static inline int is_dma_buf_file(struct file *); 35 36 struct dma_buf_list { 37 struct list_head head; 38 struct mutex lock; 39 }; 40 41 static struct dma_buf_list db_list; 42 43 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen) 44 { 45 struct dma_buf *dmabuf; 46 char name[DMA_BUF_NAME_LEN]; 47 size_t ret = 0; 48 49 dmabuf = dentry->d_fsdata; 50 spin_lock(&dmabuf->name_lock); 51 if (dmabuf->name) 52 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN); 53 spin_unlock(&dmabuf->name_lock); 54 55 return dynamic_dname(dentry, buffer, buflen, "/%s:%s", 56 dentry->d_name.name, ret > 0 ? name : ""); 57 } 58 59 static void dma_buf_release(struct dentry *dentry) 60 { 61 struct dma_buf *dmabuf; 62 63 dmabuf = dentry->d_fsdata; 64 if (unlikely(!dmabuf)) 65 return; 66 67 BUG_ON(dmabuf->vmapping_counter); 68 69 /* 70 * If you hit this BUG() it could mean: 71 * * There's a file reference imbalance in dma_buf_poll / dma_buf_poll_cb or somewhere else 72 * * dmabuf->cb_in/out.active are non-0 despite no pending fence callback 73 */ 74 BUG_ON(dmabuf->cb_in.active || dmabuf->cb_out.active); 75 76 dma_buf_stats_teardown(dmabuf); 77 dmabuf->ops->release(dmabuf); 78 79 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1]) 80 dma_resv_fini(dmabuf->resv); 81 82 WARN_ON(!list_empty(&dmabuf->attachments)); 83 module_put(dmabuf->owner); 84 kfree(dmabuf->name); 85 kfree(dmabuf); 86 } 87 88 static int dma_buf_file_release(struct inode *inode, struct file *file) 89 { 90 struct dma_buf *dmabuf; 91 92 if (!is_dma_buf_file(file)) 93 return -EINVAL; 94 95 dmabuf = file->private_data; 96 97 mutex_lock(&db_list.lock); 98 list_del(&dmabuf->list_node); 99 mutex_unlock(&db_list.lock); 100 101 return 0; 102 } 103 104 static const struct dentry_operations dma_buf_dentry_ops = { 105 .d_dname = dmabuffs_dname, 106 .d_release = dma_buf_release, 107 }; 108 109 static struct vfsmount *dma_buf_mnt; 110 111 static int dma_buf_fs_init_context(struct fs_context *fc) 112 { 113 struct pseudo_fs_context *ctx; 114 115 ctx = init_pseudo(fc, DMA_BUF_MAGIC); 116 if (!ctx) 117 return -ENOMEM; 118 ctx->dops = &dma_buf_dentry_ops; 119 return 0; 120 } 121 122 static struct file_system_type dma_buf_fs_type = { 123 .name = "dmabuf", 124 .init_fs_context = dma_buf_fs_init_context, 125 .kill_sb = kill_anon_super, 126 }; 127 128 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma) 129 { 130 struct dma_buf *dmabuf; 131 132 if (!is_dma_buf_file(file)) 133 return -EINVAL; 134 135 dmabuf = file->private_data; 136 137 /* check if buffer supports mmap */ 138 if (!dmabuf->ops->mmap) 139 return -EINVAL; 140 141 /* check for overflowing the buffer's size */ 142 if (vma->vm_pgoff + vma_pages(vma) > 143 dmabuf->size >> PAGE_SHIFT) 144 return -EINVAL; 145 146 return dmabuf->ops->mmap(dmabuf, vma); 147 } 148 149 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence) 150 { 151 struct dma_buf *dmabuf; 152 loff_t base; 153 154 if (!is_dma_buf_file(file)) 155 return -EBADF; 156 157 dmabuf = file->private_data; 158 159 /* only support discovering the end of the buffer, 160 but also allow SEEK_SET to maintain the idiomatic 161 SEEK_END(0), SEEK_CUR(0) pattern */ 162 if (whence == SEEK_END) 163 base = dmabuf->size; 164 else if (whence == SEEK_SET) 165 base = 0; 166 else 167 return -EINVAL; 168 169 if (offset != 0) 170 return -EINVAL; 171 172 return base + offset; 173 } 174 175 /** 176 * DOC: implicit fence polling 177 * 178 * To support cross-device and cross-driver synchronization of buffer access 179 * implicit fences (represented internally in the kernel with &struct dma_fence) 180 * can be attached to a &dma_buf. The glue for that and a few related things are 181 * provided in the &dma_resv structure. 182 * 183 * Userspace can query the state of these implicitly tracked fences using poll() 184 * and related system calls: 185 * 186 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the 187 * most recent write or exclusive fence. 188 * 189 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of 190 * all attached fences, shared and exclusive ones. 191 * 192 * Note that this only signals the completion of the respective fences, i.e. the 193 * DMA transfers are complete. Cache flushing and any other necessary 194 * preparations before CPU access can begin still need to happen. 195 */ 196 197 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 198 { 199 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb; 200 struct dma_buf *dmabuf = container_of(dcb->poll, struct dma_buf, poll); 201 unsigned long flags; 202 203 spin_lock_irqsave(&dcb->poll->lock, flags); 204 wake_up_locked_poll(dcb->poll, dcb->active); 205 dcb->active = 0; 206 spin_unlock_irqrestore(&dcb->poll->lock, flags); 207 dma_fence_put(fence); 208 /* Paired with get_file in dma_buf_poll */ 209 fput(dmabuf->file); 210 } 211 212 static bool dma_buf_poll_add_cb(struct dma_resv *resv, bool write, 213 struct dma_buf_poll_cb_t *dcb) 214 { 215 struct dma_resv_iter cursor; 216 struct dma_fence *fence; 217 int r; 218 219 dma_resv_for_each_fence(&cursor, resv, dma_resv_usage_rw(write), 220 fence) { 221 dma_fence_get(fence); 222 r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb); 223 if (!r) 224 return true; 225 dma_fence_put(fence); 226 } 227 228 return false; 229 } 230 231 static __poll_t dma_buf_poll(struct file *file, poll_table *poll) 232 { 233 struct dma_buf *dmabuf; 234 struct dma_resv *resv; 235 __poll_t events; 236 237 dmabuf = file->private_data; 238 if (!dmabuf || !dmabuf->resv) 239 return EPOLLERR; 240 241 resv = dmabuf->resv; 242 243 poll_wait(file, &dmabuf->poll, poll); 244 245 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT); 246 if (!events) 247 return 0; 248 249 dma_resv_lock(resv, NULL); 250 251 if (events & EPOLLOUT) { 252 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_out; 253 254 /* Check that callback isn't busy */ 255 spin_lock_irq(&dmabuf->poll.lock); 256 if (dcb->active) 257 events &= ~EPOLLOUT; 258 else 259 dcb->active = EPOLLOUT; 260 spin_unlock_irq(&dmabuf->poll.lock); 261 262 if (events & EPOLLOUT) { 263 /* Paired with fput in dma_buf_poll_cb */ 264 get_file(dmabuf->file); 265 266 if (!dma_buf_poll_add_cb(resv, true, dcb)) 267 /* No callback queued, wake up any other waiters */ 268 dma_buf_poll_cb(NULL, &dcb->cb); 269 else 270 events &= ~EPOLLOUT; 271 } 272 } 273 274 if (events & EPOLLIN) { 275 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_in; 276 277 /* Check that callback isn't busy */ 278 spin_lock_irq(&dmabuf->poll.lock); 279 if (dcb->active) 280 events &= ~EPOLLIN; 281 else 282 dcb->active = EPOLLIN; 283 spin_unlock_irq(&dmabuf->poll.lock); 284 285 if (events & EPOLLIN) { 286 /* Paired with fput in dma_buf_poll_cb */ 287 get_file(dmabuf->file); 288 289 if (!dma_buf_poll_add_cb(resv, false, dcb)) 290 /* No callback queued, wake up any other waiters */ 291 dma_buf_poll_cb(NULL, &dcb->cb); 292 else 293 events &= ~EPOLLIN; 294 } 295 } 296 297 dma_resv_unlock(resv); 298 return events; 299 } 300 301 /** 302 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage. 303 * It could support changing the name of the dma-buf if the same 304 * piece of memory is used for multiple purpose between different devices. 305 * 306 * @dmabuf: [in] dmabuf buffer that will be renamed. 307 * @buf: [in] A piece of userspace memory that contains the name of 308 * the dma-buf. 309 * 310 * Returns 0 on success. If the dma-buf buffer is already attached to 311 * devices, return -EBUSY. 312 * 313 */ 314 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf) 315 { 316 char *name = strndup_user(buf, DMA_BUF_NAME_LEN); 317 318 if (IS_ERR(name)) 319 return PTR_ERR(name); 320 321 spin_lock(&dmabuf->name_lock); 322 kfree(dmabuf->name); 323 dmabuf->name = name; 324 spin_unlock(&dmabuf->name_lock); 325 326 return 0; 327 } 328 329 static long dma_buf_ioctl(struct file *file, 330 unsigned int cmd, unsigned long arg) 331 { 332 struct dma_buf *dmabuf; 333 struct dma_buf_sync sync; 334 enum dma_data_direction direction; 335 int ret; 336 337 dmabuf = file->private_data; 338 339 switch (cmd) { 340 case DMA_BUF_IOCTL_SYNC: 341 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync))) 342 return -EFAULT; 343 344 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK) 345 return -EINVAL; 346 347 switch (sync.flags & DMA_BUF_SYNC_RW) { 348 case DMA_BUF_SYNC_READ: 349 direction = DMA_FROM_DEVICE; 350 break; 351 case DMA_BUF_SYNC_WRITE: 352 direction = DMA_TO_DEVICE; 353 break; 354 case DMA_BUF_SYNC_RW: 355 direction = DMA_BIDIRECTIONAL; 356 break; 357 default: 358 return -EINVAL; 359 } 360 361 if (sync.flags & DMA_BUF_SYNC_END) 362 ret = dma_buf_end_cpu_access(dmabuf, direction); 363 else 364 ret = dma_buf_begin_cpu_access(dmabuf, direction); 365 366 return ret; 367 368 case DMA_BUF_SET_NAME_A: 369 case DMA_BUF_SET_NAME_B: 370 return dma_buf_set_name(dmabuf, (const char __user *)arg); 371 372 default: 373 return -ENOTTY; 374 } 375 } 376 377 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file) 378 { 379 struct dma_buf *dmabuf = file->private_data; 380 381 seq_printf(m, "size:\t%zu\n", dmabuf->size); 382 /* Don't count the temporary reference taken inside procfs seq_show */ 383 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1); 384 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name); 385 spin_lock(&dmabuf->name_lock); 386 if (dmabuf->name) 387 seq_printf(m, "name:\t%s\n", dmabuf->name); 388 spin_unlock(&dmabuf->name_lock); 389 } 390 391 static const struct file_operations dma_buf_fops = { 392 .release = dma_buf_file_release, 393 .mmap = dma_buf_mmap_internal, 394 .llseek = dma_buf_llseek, 395 .poll = dma_buf_poll, 396 .unlocked_ioctl = dma_buf_ioctl, 397 .compat_ioctl = compat_ptr_ioctl, 398 .show_fdinfo = dma_buf_show_fdinfo, 399 }; 400 401 /* 402 * is_dma_buf_file - Check if struct file* is associated with dma_buf 403 */ 404 static inline int is_dma_buf_file(struct file *file) 405 { 406 return file->f_op == &dma_buf_fops; 407 } 408 409 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags) 410 { 411 static atomic64_t dmabuf_inode = ATOMIC64_INIT(0); 412 struct file *file; 413 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb); 414 415 if (IS_ERR(inode)) 416 return ERR_CAST(inode); 417 418 inode->i_size = dmabuf->size; 419 inode_set_bytes(inode, dmabuf->size); 420 421 /* 422 * The ->i_ino acquired from get_next_ino() is not unique thus 423 * not suitable for using it as dentry name by dmabuf stats. 424 * Override ->i_ino with the unique and dmabuffs specific 425 * value. 426 */ 427 inode->i_ino = atomic64_add_return(1, &dmabuf_inode); 428 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf", 429 flags, &dma_buf_fops); 430 if (IS_ERR(file)) 431 goto err_alloc_file; 432 file->f_flags = flags & (O_ACCMODE | O_NONBLOCK); 433 file->private_data = dmabuf; 434 file->f_path.dentry->d_fsdata = dmabuf; 435 436 return file; 437 438 err_alloc_file: 439 iput(inode); 440 return file; 441 } 442 443 /** 444 * DOC: dma buf device access 445 * 446 * For device DMA access to a shared DMA buffer the usual sequence of operations 447 * is fairly simple: 448 * 449 * 1. The exporter defines his exporter instance using 450 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private 451 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace 452 * as a file descriptor by calling dma_buf_fd(). 453 * 454 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer 455 * to share with: First the file descriptor is converted to a &dma_buf using 456 * dma_buf_get(). Then the buffer is attached to the device using 457 * dma_buf_attach(). 458 * 459 * Up to this stage the exporter is still free to migrate or reallocate the 460 * backing storage. 461 * 462 * 3. Once the buffer is attached to all devices userspace can initiate DMA 463 * access to the shared buffer. In the kernel this is done by calling 464 * dma_buf_map_attachment() and dma_buf_unmap_attachment(). 465 * 466 * 4. Once a driver is done with a shared buffer it needs to call 467 * dma_buf_detach() (after cleaning up any mappings) and then release the 468 * reference acquired with dma_buf_get() by calling dma_buf_put(). 469 * 470 * For the detailed semantics exporters are expected to implement see 471 * &dma_buf_ops. 472 */ 473 474 /** 475 * dma_buf_export - Creates a new dma_buf, and associates an anon file 476 * with this buffer, so it can be exported. 477 * Also connect the allocator specific data and ops to the buffer. 478 * Additionally, provide a name string for exporter; useful in debugging. 479 * 480 * @exp_info: [in] holds all the export related information provided 481 * by the exporter. see &struct dma_buf_export_info 482 * for further details. 483 * 484 * Returns, on success, a newly created struct dma_buf object, which wraps the 485 * supplied private data and operations for struct dma_buf_ops. On either 486 * missing ops, or error in allocating struct dma_buf, will return negative 487 * error. 488 * 489 * For most cases the easiest way to create @exp_info is through the 490 * %DEFINE_DMA_BUF_EXPORT_INFO macro. 491 */ 492 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info) 493 { 494 struct dma_buf *dmabuf; 495 struct dma_resv *resv = exp_info->resv; 496 struct file *file; 497 size_t alloc_size = sizeof(struct dma_buf); 498 int ret; 499 500 if (!exp_info->resv) 501 alloc_size += sizeof(struct dma_resv); 502 else 503 /* prevent &dma_buf[1] == dma_buf->resv */ 504 alloc_size += 1; 505 506 if (WARN_ON(!exp_info->priv 507 || !exp_info->ops 508 || !exp_info->ops->map_dma_buf 509 || !exp_info->ops->unmap_dma_buf 510 || !exp_info->ops->release)) { 511 return ERR_PTR(-EINVAL); 512 } 513 514 if (WARN_ON(exp_info->ops->cache_sgt_mapping && 515 (exp_info->ops->pin || exp_info->ops->unpin))) 516 return ERR_PTR(-EINVAL); 517 518 if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin)) 519 return ERR_PTR(-EINVAL); 520 521 if (!try_module_get(exp_info->owner)) 522 return ERR_PTR(-ENOENT); 523 524 dmabuf = kzalloc(alloc_size, GFP_KERNEL); 525 if (!dmabuf) { 526 ret = -ENOMEM; 527 goto err_module; 528 } 529 530 dmabuf->priv = exp_info->priv; 531 dmabuf->ops = exp_info->ops; 532 dmabuf->size = exp_info->size; 533 dmabuf->exp_name = exp_info->exp_name; 534 dmabuf->owner = exp_info->owner; 535 spin_lock_init(&dmabuf->name_lock); 536 init_waitqueue_head(&dmabuf->poll); 537 dmabuf->cb_in.poll = dmabuf->cb_out.poll = &dmabuf->poll; 538 dmabuf->cb_in.active = dmabuf->cb_out.active = 0; 539 540 if (!resv) { 541 resv = (struct dma_resv *)&dmabuf[1]; 542 dma_resv_init(resv); 543 } 544 dmabuf->resv = resv; 545 546 file = dma_buf_getfile(dmabuf, exp_info->flags); 547 if (IS_ERR(file)) { 548 ret = PTR_ERR(file); 549 goto err_dmabuf; 550 } 551 552 dmabuf->file = file; 553 554 mutex_init(&dmabuf->lock); 555 INIT_LIST_HEAD(&dmabuf->attachments); 556 557 mutex_lock(&db_list.lock); 558 list_add(&dmabuf->list_node, &db_list.head); 559 mutex_unlock(&db_list.lock); 560 561 ret = dma_buf_stats_setup(dmabuf); 562 if (ret) 563 goto err_sysfs; 564 565 return dmabuf; 566 567 err_sysfs: 568 /* 569 * Set file->f_path.dentry->d_fsdata to NULL so that when 570 * dma_buf_release() gets invoked by dentry_ops, it exits 571 * early before calling the release() dma_buf op. 572 */ 573 file->f_path.dentry->d_fsdata = NULL; 574 fput(file); 575 err_dmabuf: 576 kfree(dmabuf); 577 err_module: 578 module_put(exp_info->owner); 579 return ERR_PTR(ret); 580 } 581 EXPORT_SYMBOL_NS_GPL(dma_buf_export, DMA_BUF); 582 583 /** 584 * dma_buf_fd - returns a file descriptor for the given struct dma_buf 585 * @dmabuf: [in] pointer to dma_buf for which fd is required. 586 * @flags: [in] flags to give to fd 587 * 588 * On success, returns an associated 'fd'. Else, returns error. 589 */ 590 int dma_buf_fd(struct dma_buf *dmabuf, int flags) 591 { 592 int fd; 593 594 if (!dmabuf || !dmabuf->file) 595 return -EINVAL; 596 597 fd = get_unused_fd_flags(flags); 598 if (fd < 0) 599 return fd; 600 601 fd_install(fd, dmabuf->file); 602 603 return fd; 604 } 605 EXPORT_SYMBOL_NS_GPL(dma_buf_fd, DMA_BUF); 606 607 /** 608 * dma_buf_get - returns the struct dma_buf related to an fd 609 * @fd: [in] fd associated with the struct dma_buf to be returned 610 * 611 * On success, returns the struct dma_buf associated with an fd; uses 612 * file's refcounting done by fget to increase refcount. returns ERR_PTR 613 * otherwise. 614 */ 615 struct dma_buf *dma_buf_get(int fd) 616 { 617 struct file *file; 618 619 file = fget(fd); 620 621 if (!file) 622 return ERR_PTR(-EBADF); 623 624 if (!is_dma_buf_file(file)) { 625 fput(file); 626 return ERR_PTR(-EINVAL); 627 } 628 629 return file->private_data; 630 } 631 EXPORT_SYMBOL_NS_GPL(dma_buf_get, DMA_BUF); 632 633 /** 634 * dma_buf_put - decreases refcount of the buffer 635 * @dmabuf: [in] buffer to reduce refcount of 636 * 637 * Uses file's refcounting done implicitly by fput(). 638 * 639 * If, as a result of this call, the refcount becomes 0, the 'release' file 640 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc 641 * in turn, and frees the memory allocated for dmabuf when exported. 642 */ 643 void dma_buf_put(struct dma_buf *dmabuf) 644 { 645 if (WARN_ON(!dmabuf || !dmabuf->file)) 646 return; 647 648 fput(dmabuf->file); 649 } 650 EXPORT_SYMBOL_NS_GPL(dma_buf_put, DMA_BUF); 651 652 static void mangle_sg_table(struct sg_table *sg_table) 653 { 654 #ifdef CONFIG_DMABUF_DEBUG 655 int i; 656 struct scatterlist *sg; 657 658 /* To catch abuse of the underlying struct page by importers mix 659 * up the bits, but take care to preserve the low SG_ bits to 660 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf 661 * before passing the sgt back to the exporter. */ 662 for_each_sgtable_sg(sg_table, sg, i) 663 sg->page_link ^= ~0xffUL; 664 #endif 665 666 } 667 static struct sg_table * __map_dma_buf(struct dma_buf_attachment *attach, 668 enum dma_data_direction direction) 669 { 670 struct sg_table *sg_table; 671 signed long ret; 672 673 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction); 674 if (IS_ERR_OR_NULL(sg_table)) 675 return sg_table; 676 677 if (!dma_buf_attachment_is_dynamic(attach)) { 678 ret = dma_resv_wait_timeout(attach->dmabuf->resv, 679 DMA_RESV_USAGE_KERNEL, true, 680 MAX_SCHEDULE_TIMEOUT); 681 if (ret < 0) { 682 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, 683 direction); 684 return ERR_PTR(ret); 685 } 686 } 687 688 mangle_sg_table(sg_table); 689 return sg_table; 690 } 691 692 /** 693 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list 694 * @dmabuf: [in] buffer to attach device to. 695 * @dev: [in] device to be attached. 696 * @importer_ops: [in] importer operations for the attachment 697 * @importer_priv: [in] importer private pointer for the attachment 698 * 699 * Returns struct dma_buf_attachment pointer for this attachment. Attachments 700 * must be cleaned up by calling dma_buf_detach(). 701 * 702 * Optionally this calls &dma_buf_ops.attach to allow device-specific attach 703 * functionality. 704 * 705 * Returns: 706 * 707 * A pointer to newly created &dma_buf_attachment on success, or a negative 708 * error code wrapped into a pointer on failure. 709 * 710 * Note that this can fail if the backing storage of @dmabuf is in a place not 711 * accessible to @dev, and cannot be moved to a more suitable place. This is 712 * indicated with the error code -EBUSY. 713 */ 714 struct dma_buf_attachment * 715 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev, 716 const struct dma_buf_attach_ops *importer_ops, 717 void *importer_priv) 718 { 719 struct dma_buf_attachment *attach; 720 int ret; 721 722 if (WARN_ON(!dmabuf || !dev)) 723 return ERR_PTR(-EINVAL); 724 725 if (WARN_ON(importer_ops && !importer_ops->move_notify)) 726 return ERR_PTR(-EINVAL); 727 728 attach = kzalloc(sizeof(*attach), GFP_KERNEL); 729 if (!attach) 730 return ERR_PTR(-ENOMEM); 731 732 attach->dev = dev; 733 attach->dmabuf = dmabuf; 734 if (importer_ops) 735 attach->peer2peer = importer_ops->allow_peer2peer; 736 attach->importer_ops = importer_ops; 737 attach->importer_priv = importer_priv; 738 739 if (dmabuf->ops->attach) { 740 ret = dmabuf->ops->attach(dmabuf, attach); 741 if (ret) 742 goto err_attach; 743 } 744 dma_resv_lock(dmabuf->resv, NULL); 745 list_add(&attach->node, &dmabuf->attachments); 746 dma_resv_unlock(dmabuf->resv); 747 748 /* When either the importer or the exporter can't handle dynamic 749 * mappings we cache the mapping here to avoid issues with the 750 * reservation object lock. 751 */ 752 if (dma_buf_attachment_is_dynamic(attach) != 753 dma_buf_is_dynamic(dmabuf)) { 754 struct sg_table *sgt; 755 756 if (dma_buf_is_dynamic(attach->dmabuf)) { 757 dma_resv_lock(attach->dmabuf->resv, NULL); 758 ret = dmabuf->ops->pin(attach); 759 if (ret) 760 goto err_unlock; 761 } 762 763 sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL); 764 if (!sgt) 765 sgt = ERR_PTR(-ENOMEM); 766 if (IS_ERR(sgt)) { 767 ret = PTR_ERR(sgt); 768 goto err_unpin; 769 } 770 if (dma_buf_is_dynamic(attach->dmabuf)) 771 dma_resv_unlock(attach->dmabuf->resv); 772 attach->sgt = sgt; 773 attach->dir = DMA_BIDIRECTIONAL; 774 } 775 776 return attach; 777 778 err_attach: 779 kfree(attach); 780 return ERR_PTR(ret); 781 782 err_unpin: 783 if (dma_buf_is_dynamic(attach->dmabuf)) 784 dmabuf->ops->unpin(attach); 785 786 err_unlock: 787 if (dma_buf_is_dynamic(attach->dmabuf)) 788 dma_resv_unlock(attach->dmabuf->resv); 789 790 dma_buf_detach(dmabuf, attach); 791 return ERR_PTR(ret); 792 } 793 EXPORT_SYMBOL_NS_GPL(dma_buf_dynamic_attach, DMA_BUF); 794 795 /** 796 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach 797 * @dmabuf: [in] buffer to attach device to. 798 * @dev: [in] device to be attached. 799 * 800 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static 801 * mapping. 802 */ 803 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf, 804 struct device *dev) 805 { 806 return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL); 807 } 808 EXPORT_SYMBOL_NS_GPL(dma_buf_attach, DMA_BUF); 809 810 static void __unmap_dma_buf(struct dma_buf_attachment *attach, 811 struct sg_table *sg_table, 812 enum dma_data_direction direction) 813 { 814 /* uses XOR, hence this unmangles */ 815 mangle_sg_table(sg_table); 816 817 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction); 818 } 819 820 /** 821 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list 822 * @dmabuf: [in] buffer to detach from. 823 * @attach: [in] attachment to be detached; is free'd after this call. 824 * 825 * Clean up a device attachment obtained by calling dma_buf_attach(). 826 * 827 * Optionally this calls &dma_buf_ops.detach for device-specific detach. 828 */ 829 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach) 830 { 831 if (WARN_ON(!dmabuf || !attach)) 832 return; 833 834 if (attach->sgt) { 835 if (dma_buf_is_dynamic(attach->dmabuf)) 836 dma_resv_lock(attach->dmabuf->resv, NULL); 837 838 __unmap_dma_buf(attach, attach->sgt, attach->dir); 839 840 if (dma_buf_is_dynamic(attach->dmabuf)) { 841 dmabuf->ops->unpin(attach); 842 dma_resv_unlock(attach->dmabuf->resv); 843 } 844 } 845 846 dma_resv_lock(dmabuf->resv, NULL); 847 list_del(&attach->node); 848 dma_resv_unlock(dmabuf->resv); 849 if (dmabuf->ops->detach) 850 dmabuf->ops->detach(dmabuf, attach); 851 852 kfree(attach); 853 } 854 EXPORT_SYMBOL_NS_GPL(dma_buf_detach, DMA_BUF); 855 856 /** 857 * dma_buf_pin - Lock down the DMA-buf 858 * @attach: [in] attachment which should be pinned 859 * 860 * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may 861 * call this, and only for limited use cases like scanout and not for temporary 862 * pin operations. It is not permitted to allow userspace to pin arbitrary 863 * amounts of buffers through this interface. 864 * 865 * Buffers must be unpinned by calling dma_buf_unpin(). 866 * 867 * Returns: 868 * 0 on success, negative error code on failure. 869 */ 870 int dma_buf_pin(struct dma_buf_attachment *attach) 871 { 872 struct dma_buf *dmabuf = attach->dmabuf; 873 int ret = 0; 874 875 WARN_ON(!dma_buf_attachment_is_dynamic(attach)); 876 877 dma_resv_assert_held(dmabuf->resv); 878 879 if (dmabuf->ops->pin) 880 ret = dmabuf->ops->pin(attach); 881 882 return ret; 883 } 884 EXPORT_SYMBOL_NS_GPL(dma_buf_pin, DMA_BUF); 885 886 /** 887 * dma_buf_unpin - Unpin a DMA-buf 888 * @attach: [in] attachment which should be unpinned 889 * 890 * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move 891 * any mapping of @attach again and inform the importer through 892 * &dma_buf_attach_ops.move_notify. 893 */ 894 void dma_buf_unpin(struct dma_buf_attachment *attach) 895 { 896 struct dma_buf *dmabuf = attach->dmabuf; 897 898 WARN_ON(!dma_buf_attachment_is_dynamic(attach)); 899 900 dma_resv_assert_held(dmabuf->resv); 901 902 if (dmabuf->ops->unpin) 903 dmabuf->ops->unpin(attach); 904 } 905 EXPORT_SYMBOL_NS_GPL(dma_buf_unpin, DMA_BUF); 906 907 /** 908 * dma_buf_map_attachment - Returns the scatterlist table of the attachment; 909 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the 910 * dma_buf_ops. 911 * @attach: [in] attachment whose scatterlist is to be returned 912 * @direction: [in] direction of DMA transfer 913 * 914 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR 915 * on error. May return -EINTR if it is interrupted by a signal. 916 * 917 * On success, the DMA addresses and lengths in the returned scatterlist are 918 * PAGE_SIZE aligned. 919 * 920 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that 921 * the underlying backing storage is pinned for as long as a mapping exists, 922 * therefore users/importers should not hold onto a mapping for undue amounts of 923 * time. 924 * 925 * Important: Dynamic importers must wait for the exclusive fence of the struct 926 * dma_resv attached to the DMA-BUF first. 927 */ 928 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach, 929 enum dma_data_direction direction) 930 { 931 struct sg_table *sg_table; 932 int r; 933 934 might_sleep(); 935 936 if (WARN_ON(!attach || !attach->dmabuf)) 937 return ERR_PTR(-EINVAL); 938 939 if (dma_buf_attachment_is_dynamic(attach)) 940 dma_resv_assert_held(attach->dmabuf->resv); 941 942 if (attach->sgt) { 943 /* 944 * Two mappings with different directions for the same 945 * attachment are not allowed. 946 */ 947 if (attach->dir != direction && 948 attach->dir != DMA_BIDIRECTIONAL) 949 return ERR_PTR(-EBUSY); 950 951 return attach->sgt; 952 } 953 954 if (dma_buf_is_dynamic(attach->dmabuf)) { 955 dma_resv_assert_held(attach->dmabuf->resv); 956 if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) { 957 r = attach->dmabuf->ops->pin(attach); 958 if (r) 959 return ERR_PTR(r); 960 } 961 } 962 963 sg_table = __map_dma_buf(attach, direction); 964 if (!sg_table) 965 sg_table = ERR_PTR(-ENOMEM); 966 967 if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) && 968 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 969 attach->dmabuf->ops->unpin(attach); 970 971 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) { 972 attach->sgt = sg_table; 973 attach->dir = direction; 974 } 975 976 #ifdef CONFIG_DMA_API_DEBUG 977 if (!IS_ERR(sg_table)) { 978 struct scatterlist *sg; 979 u64 addr; 980 int len; 981 int i; 982 983 for_each_sgtable_dma_sg(sg_table, sg, i) { 984 addr = sg_dma_address(sg); 985 len = sg_dma_len(sg); 986 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) { 987 pr_debug("%s: addr %llx or len %x is not page aligned!\n", 988 __func__, addr, len); 989 } 990 } 991 } 992 #endif /* CONFIG_DMA_API_DEBUG */ 993 return sg_table; 994 } 995 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment, DMA_BUF); 996 997 /** 998 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might 999 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of 1000 * dma_buf_ops. 1001 * @attach: [in] attachment to unmap buffer from 1002 * @sg_table: [in] scatterlist info of the buffer to unmap 1003 * @direction: [in] direction of DMA transfer 1004 * 1005 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment(). 1006 */ 1007 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach, 1008 struct sg_table *sg_table, 1009 enum dma_data_direction direction) 1010 { 1011 might_sleep(); 1012 1013 if (WARN_ON(!attach || !attach->dmabuf || !sg_table)) 1014 return; 1015 1016 if (dma_buf_attachment_is_dynamic(attach)) 1017 dma_resv_assert_held(attach->dmabuf->resv); 1018 1019 if (attach->sgt == sg_table) 1020 return; 1021 1022 if (dma_buf_is_dynamic(attach->dmabuf)) 1023 dma_resv_assert_held(attach->dmabuf->resv); 1024 1025 __unmap_dma_buf(attach, sg_table, direction); 1026 1027 if (dma_buf_is_dynamic(attach->dmabuf) && 1028 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 1029 dma_buf_unpin(attach); 1030 } 1031 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment, DMA_BUF); 1032 1033 /** 1034 * dma_buf_move_notify - notify attachments that DMA-buf is moving 1035 * 1036 * @dmabuf: [in] buffer which is moving 1037 * 1038 * Informs all attachmenst that they need to destroy and recreated all their 1039 * mappings. 1040 */ 1041 void dma_buf_move_notify(struct dma_buf *dmabuf) 1042 { 1043 struct dma_buf_attachment *attach; 1044 1045 dma_resv_assert_held(dmabuf->resv); 1046 1047 list_for_each_entry(attach, &dmabuf->attachments, node) 1048 if (attach->importer_ops) 1049 attach->importer_ops->move_notify(attach); 1050 } 1051 EXPORT_SYMBOL_NS_GPL(dma_buf_move_notify, DMA_BUF); 1052 1053 /** 1054 * DOC: cpu access 1055 * 1056 * There are mutliple reasons for supporting CPU access to a dma buffer object: 1057 * 1058 * - Fallback operations in the kernel, for example when a device is connected 1059 * over USB and the kernel needs to shuffle the data around first before 1060 * sending it away. Cache coherency is handled by braketing any transactions 1061 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access() 1062 * access. 1063 * 1064 * Since for most kernel internal dma-buf accesses need the entire buffer, a 1065 * vmap interface is introduced. Note that on very old 32-bit architectures 1066 * vmalloc space might be limited and result in vmap calls failing. 1067 * 1068 * Interfaces:: 1069 * 1070 * void \*dma_buf_vmap(struct dma_buf \*dmabuf, struct iosys_map \*map) 1071 * void dma_buf_vunmap(struct dma_buf \*dmabuf, struct iosys_map \*map) 1072 * 1073 * The vmap call can fail if there is no vmap support in the exporter, or if 1074 * it runs out of vmalloc space. Note that the dma-buf layer keeps a reference 1075 * count for all vmap access and calls down into the exporter's vmap function 1076 * only when no vmapping exists, and only unmaps it once. Protection against 1077 * concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex. 1078 * 1079 * - For full compatibility on the importer side with existing userspace 1080 * interfaces, which might already support mmap'ing buffers. This is needed in 1081 * many processing pipelines (e.g. feeding a software rendered image into a 1082 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION 1083 * framework already supported this and for DMA buffer file descriptors to 1084 * replace ION buffers mmap support was needed. 1085 * 1086 * There is no special interfaces, userspace simply calls mmap on the dma-buf 1087 * fd. But like for CPU access there's a need to braket the actual access, 1088 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that 1089 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must 1090 * be restarted. 1091 * 1092 * Some systems might need some sort of cache coherency management e.g. when 1093 * CPU and GPU domains are being accessed through dma-buf at the same time. 1094 * To circumvent this problem there are begin/end coherency markers, that 1095 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace 1096 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The 1097 * sequence would be used like following: 1098 * 1099 * - mmap dma-buf fd 1100 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write 1101 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you 1102 * want (with the new data being consumed by say the GPU or the scanout 1103 * device) 1104 * - munmap once you don't need the buffer any more 1105 * 1106 * For correctness and optimal performance, it is always required to use 1107 * SYNC_START and SYNC_END before and after, respectively, when accessing the 1108 * mapped address. Userspace cannot rely on coherent access, even when there 1109 * are systems where it just works without calling these ioctls. 1110 * 1111 * - And as a CPU fallback in userspace processing pipelines. 1112 * 1113 * Similar to the motivation for kernel cpu access it is again important that 1114 * the userspace code of a given importing subsystem can use the same 1115 * interfaces with a imported dma-buf buffer object as with a native buffer 1116 * object. This is especially important for drm where the userspace part of 1117 * contemporary OpenGL, X, and other drivers is huge, and reworking them to 1118 * use a different way to mmap a buffer rather invasive. 1119 * 1120 * The assumption in the current dma-buf interfaces is that redirecting the 1121 * initial mmap is all that's needed. A survey of some of the existing 1122 * subsystems shows that no driver seems to do any nefarious thing like 1123 * syncing up with outstanding asynchronous processing on the device or 1124 * allocating special resources at fault time. So hopefully this is good 1125 * enough, since adding interfaces to intercept pagefaults and allow pte 1126 * shootdowns would increase the complexity quite a bit. 1127 * 1128 * Interface:: 1129 * 1130 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*, 1131 * unsigned long); 1132 * 1133 * If the importing subsystem simply provides a special-purpose mmap call to 1134 * set up a mapping in userspace, calling do_mmap with &dma_buf.file will 1135 * equally achieve that for a dma-buf object. 1136 */ 1137 1138 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1139 enum dma_data_direction direction) 1140 { 1141 bool write = (direction == DMA_BIDIRECTIONAL || 1142 direction == DMA_TO_DEVICE); 1143 struct dma_resv *resv = dmabuf->resv; 1144 long ret; 1145 1146 /* Wait on any implicit rendering fences */ 1147 ret = dma_resv_wait_timeout(resv, dma_resv_usage_rw(write), 1148 true, MAX_SCHEDULE_TIMEOUT); 1149 if (ret < 0) 1150 return ret; 1151 1152 return 0; 1153 } 1154 1155 /** 1156 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the 1157 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific 1158 * preparations. Coherency is only guaranteed in the specified range for the 1159 * specified access direction. 1160 * @dmabuf: [in] buffer to prepare cpu access for. 1161 * @direction: [in] length of range for cpu access. 1162 * 1163 * After the cpu access is complete the caller should call 1164 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is 1165 * it guaranteed to be coherent with other DMA access. 1166 * 1167 * This function will also wait for any DMA transactions tracked through 1168 * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit 1169 * synchronization this function will only ensure cache coherency, callers must 1170 * ensure synchronization with such DMA transactions on their own. 1171 * 1172 * Can return negative error values, returns 0 on success. 1173 */ 1174 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1175 enum dma_data_direction direction) 1176 { 1177 int ret = 0; 1178 1179 if (WARN_ON(!dmabuf)) 1180 return -EINVAL; 1181 1182 might_lock(&dmabuf->resv->lock.base); 1183 1184 if (dmabuf->ops->begin_cpu_access) 1185 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction); 1186 1187 /* Ensure that all fences are waited upon - but we first allow 1188 * the native handler the chance to do so more efficiently if it 1189 * chooses. A double invocation here will be reasonably cheap no-op. 1190 */ 1191 if (ret == 0) 1192 ret = __dma_buf_begin_cpu_access(dmabuf, direction); 1193 1194 return ret; 1195 } 1196 EXPORT_SYMBOL_NS_GPL(dma_buf_begin_cpu_access, DMA_BUF); 1197 1198 /** 1199 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the 1200 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific 1201 * actions. Coherency is only guaranteed in the specified range for the 1202 * specified access direction. 1203 * @dmabuf: [in] buffer to complete cpu access for. 1204 * @direction: [in] length of range for cpu access. 1205 * 1206 * This terminates CPU access started with dma_buf_begin_cpu_access(). 1207 * 1208 * Can return negative error values, returns 0 on success. 1209 */ 1210 int dma_buf_end_cpu_access(struct dma_buf *dmabuf, 1211 enum dma_data_direction direction) 1212 { 1213 int ret = 0; 1214 1215 WARN_ON(!dmabuf); 1216 1217 might_lock(&dmabuf->resv->lock.base); 1218 1219 if (dmabuf->ops->end_cpu_access) 1220 ret = dmabuf->ops->end_cpu_access(dmabuf, direction); 1221 1222 return ret; 1223 } 1224 EXPORT_SYMBOL_NS_GPL(dma_buf_end_cpu_access, DMA_BUF); 1225 1226 1227 /** 1228 * dma_buf_mmap - Setup up a userspace mmap with the given vma 1229 * @dmabuf: [in] buffer that should back the vma 1230 * @vma: [in] vma for the mmap 1231 * @pgoff: [in] offset in pages where this mmap should start within the 1232 * dma-buf buffer. 1233 * 1234 * This function adjusts the passed in vma so that it points at the file of the 1235 * dma_buf operation. It also adjusts the starting pgoff and does bounds 1236 * checking on the size of the vma. Then it calls the exporters mmap function to 1237 * set up the mapping. 1238 * 1239 * Can return negative error values, returns 0 on success. 1240 */ 1241 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma, 1242 unsigned long pgoff) 1243 { 1244 if (WARN_ON(!dmabuf || !vma)) 1245 return -EINVAL; 1246 1247 /* check if buffer supports mmap */ 1248 if (!dmabuf->ops->mmap) 1249 return -EINVAL; 1250 1251 /* check for offset overflow */ 1252 if (pgoff + vma_pages(vma) < pgoff) 1253 return -EOVERFLOW; 1254 1255 /* check for overflowing the buffer's size */ 1256 if (pgoff + vma_pages(vma) > 1257 dmabuf->size >> PAGE_SHIFT) 1258 return -EINVAL; 1259 1260 /* readjust the vma */ 1261 vma_set_file(vma, dmabuf->file); 1262 vma->vm_pgoff = pgoff; 1263 1264 return dmabuf->ops->mmap(dmabuf, vma); 1265 } 1266 EXPORT_SYMBOL_NS_GPL(dma_buf_mmap, DMA_BUF); 1267 1268 /** 1269 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel 1270 * address space. Same restrictions as for vmap and friends apply. 1271 * @dmabuf: [in] buffer to vmap 1272 * @map: [out] returns the vmap pointer 1273 * 1274 * This call may fail due to lack of virtual mapping address space. 1275 * These calls are optional in drivers. The intended use for them 1276 * is for mapping objects linear in kernel space for high use objects. 1277 * 1278 * To ensure coherency users must call dma_buf_begin_cpu_access() and 1279 * dma_buf_end_cpu_access() around any cpu access performed through this 1280 * mapping. 1281 * 1282 * Returns 0 on success, or a negative errno code otherwise. 1283 */ 1284 int dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map) 1285 { 1286 struct iosys_map ptr; 1287 int ret = 0; 1288 1289 iosys_map_clear(map); 1290 1291 if (WARN_ON(!dmabuf)) 1292 return -EINVAL; 1293 1294 if (!dmabuf->ops->vmap) 1295 return -EINVAL; 1296 1297 mutex_lock(&dmabuf->lock); 1298 if (dmabuf->vmapping_counter) { 1299 dmabuf->vmapping_counter++; 1300 BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr)); 1301 *map = dmabuf->vmap_ptr; 1302 goto out_unlock; 1303 } 1304 1305 BUG_ON(iosys_map_is_set(&dmabuf->vmap_ptr)); 1306 1307 ret = dmabuf->ops->vmap(dmabuf, &ptr); 1308 if (WARN_ON_ONCE(ret)) 1309 goto out_unlock; 1310 1311 dmabuf->vmap_ptr = ptr; 1312 dmabuf->vmapping_counter = 1; 1313 1314 *map = dmabuf->vmap_ptr; 1315 1316 out_unlock: 1317 mutex_unlock(&dmabuf->lock); 1318 return ret; 1319 } 1320 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap, DMA_BUF); 1321 1322 /** 1323 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap. 1324 * @dmabuf: [in] buffer to vunmap 1325 * @map: [in] vmap pointer to vunmap 1326 */ 1327 void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map) 1328 { 1329 if (WARN_ON(!dmabuf)) 1330 return; 1331 1332 BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr)); 1333 BUG_ON(dmabuf->vmapping_counter == 0); 1334 BUG_ON(!iosys_map_is_equal(&dmabuf->vmap_ptr, map)); 1335 1336 mutex_lock(&dmabuf->lock); 1337 if (--dmabuf->vmapping_counter == 0) { 1338 if (dmabuf->ops->vunmap) 1339 dmabuf->ops->vunmap(dmabuf, map); 1340 iosys_map_clear(&dmabuf->vmap_ptr); 1341 } 1342 mutex_unlock(&dmabuf->lock); 1343 } 1344 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap, DMA_BUF); 1345 1346 #ifdef CONFIG_DEBUG_FS 1347 static int dma_buf_debug_show(struct seq_file *s, void *unused) 1348 { 1349 struct dma_buf *buf_obj; 1350 struct dma_buf_attachment *attach_obj; 1351 int count = 0, attach_count; 1352 size_t size = 0; 1353 int ret; 1354 1355 ret = mutex_lock_interruptible(&db_list.lock); 1356 1357 if (ret) 1358 return ret; 1359 1360 seq_puts(s, "\nDma-buf Objects:\n"); 1361 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n", 1362 "size", "flags", "mode", "count", "ino"); 1363 1364 list_for_each_entry(buf_obj, &db_list.head, list_node) { 1365 1366 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL); 1367 if (ret) 1368 goto error_unlock; 1369 1370 1371 spin_lock(&buf_obj->name_lock); 1372 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n", 1373 buf_obj->size, 1374 buf_obj->file->f_flags, buf_obj->file->f_mode, 1375 file_count(buf_obj->file), 1376 buf_obj->exp_name, 1377 file_inode(buf_obj->file)->i_ino, 1378 buf_obj->name ?: ""); 1379 spin_unlock(&buf_obj->name_lock); 1380 1381 dma_resv_describe(buf_obj->resv, s); 1382 1383 seq_puts(s, "\tAttached Devices:\n"); 1384 attach_count = 0; 1385 1386 list_for_each_entry(attach_obj, &buf_obj->attachments, node) { 1387 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev)); 1388 attach_count++; 1389 } 1390 dma_resv_unlock(buf_obj->resv); 1391 1392 seq_printf(s, "Total %d devices attached\n\n", 1393 attach_count); 1394 1395 count++; 1396 size += buf_obj->size; 1397 } 1398 1399 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size); 1400 1401 mutex_unlock(&db_list.lock); 1402 return 0; 1403 1404 error_unlock: 1405 mutex_unlock(&db_list.lock); 1406 return ret; 1407 } 1408 1409 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug); 1410 1411 static struct dentry *dma_buf_debugfs_dir; 1412 1413 static int dma_buf_init_debugfs(void) 1414 { 1415 struct dentry *d; 1416 int err = 0; 1417 1418 d = debugfs_create_dir("dma_buf", NULL); 1419 if (IS_ERR(d)) 1420 return PTR_ERR(d); 1421 1422 dma_buf_debugfs_dir = d; 1423 1424 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir, 1425 NULL, &dma_buf_debug_fops); 1426 if (IS_ERR(d)) { 1427 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n"); 1428 debugfs_remove_recursive(dma_buf_debugfs_dir); 1429 dma_buf_debugfs_dir = NULL; 1430 err = PTR_ERR(d); 1431 } 1432 1433 return err; 1434 } 1435 1436 static void dma_buf_uninit_debugfs(void) 1437 { 1438 debugfs_remove_recursive(dma_buf_debugfs_dir); 1439 } 1440 #else 1441 static inline int dma_buf_init_debugfs(void) 1442 { 1443 return 0; 1444 } 1445 static inline void dma_buf_uninit_debugfs(void) 1446 { 1447 } 1448 #endif 1449 1450 static int __init dma_buf_init(void) 1451 { 1452 int ret; 1453 1454 ret = dma_buf_init_sysfs_statistics(); 1455 if (ret) 1456 return ret; 1457 1458 dma_buf_mnt = kern_mount(&dma_buf_fs_type); 1459 if (IS_ERR(dma_buf_mnt)) 1460 return PTR_ERR(dma_buf_mnt); 1461 1462 mutex_init(&db_list.lock); 1463 INIT_LIST_HEAD(&db_list.head); 1464 dma_buf_init_debugfs(); 1465 return 0; 1466 } 1467 subsys_initcall(dma_buf_init); 1468 1469 static void __exit dma_buf_deinit(void) 1470 { 1471 dma_buf_uninit_debugfs(); 1472 kern_unmount(dma_buf_mnt); 1473 dma_buf_uninit_sysfs_statistics(); 1474 } 1475 __exitcall(dma_buf_deinit); 1476