1 /* 2 * Framework for buffer objects that can be shared across devices/subsystems. 3 * 4 * Copyright(C) 2011 Linaro Limited. All rights reserved. 5 * Author: Sumit Semwal <sumit.semwal@ti.com> 6 * 7 * Many thanks to linaro-mm-sig list, and specially 8 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and 9 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and 10 * refining of this idea. 11 * 12 * This program is free software; you can redistribute it and/or modify it 13 * under the terms of the GNU General Public License version 2 as published by 14 * the Free Software Foundation. 15 * 16 * This program is distributed in the hope that it will be useful, but WITHOUT 17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 19 * more details. 20 * 21 * You should have received a copy of the GNU General Public License along with 22 * this program. If not, see <http://www.gnu.org/licenses/>. 23 */ 24 25 #include <linux/fs.h> 26 #include <linux/slab.h> 27 #include <linux/dma-buf.h> 28 #include <linux/dma-fence.h> 29 #include <linux/anon_inodes.h> 30 #include <linux/export.h> 31 #include <linux/debugfs.h> 32 #include <linux/module.h> 33 #include <linux/seq_file.h> 34 #include <linux/poll.h> 35 #include <linux/reservation.h> 36 #include <linux/mm.h> 37 38 #include <uapi/linux/dma-buf.h> 39 40 static inline int is_dma_buf_file(struct file *); 41 42 struct dma_buf_list { 43 struct list_head head; 44 struct mutex lock; 45 }; 46 47 static struct dma_buf_list db_list; 48 49 static int dma_buf_release(struct inode *inode, struct file *file) 50 { 51 struct dma_buf *dmabuf; 52 53 if (!is_dma_buf_file(file)) 54 return -EINVAL; 55 56 dmabuf = file->private_data; 57 58 BUG_ON(dmabuf->vmapping_counter); 59 60 /* 61 * Any fences that a dma-buf poll can wait on should be signaled 62 * before releasing dma-buf. This is the responsibility of each 63 * driver that uses the reservation objects. 64 * 65 * If you hit this BUG() it means someone dropped their ref to the 66 * dma-buf while still having pending operation to the buffer. 67 */ 68 BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active); 69 70 dmabuf->ops->release(dmabuf); 71 72 mutex_lock(&db_list.lock); 73 list_del(&dmabuf->list_node); 74 mutex_unlock(&db_list.lock); 75 76 if (dmabuf->resv == (struct reservation_object *)&dmabuf[1]) 77 reservation_object_fini(dmabuf->resv); 78 79 module_put(dmabuf->owner); 80 kfree(dmabuf); 81 return 0; 82 } 83 84 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma) 85 { 86 struct dma_buf *dmabuf; 87 88 if (!is_dma_buf_file(file)) 89 return -EINVAL; 90 91 dmabuf = file->private_data; 92 93 /* check for overflowing the buffer's size */ 94 if (vma->vm_pgoff + vma_pages(vma) > 95 dmabuf->size >> PAGE_SHIFT) 96 return -EINVAL; 97 98 return dmabuf->ops->mmap(dmabuf, vma); 99 } 100 101 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence) 102 { 103 struct dma_buf *dmabuf; 104 loff_t base; 105 106 if (!is_dma_buf_file(file)) 107 return -EBADF; 108 109 dmabuf = file->private_data; 110 111 /* only support discovering the end of the buffer, 112 but also allow SEEK_SET to maintain the idiomatic 113 SEEK_END(0), SEEK_CUR(0) pattern */ 114 if (whence == SEEK_END) 115 base = dmabuf->size; 116 else if (whence == SEEK_SET) 117 base = 0; 118 else 119 return -EINVAL; 120 121 if (offset != 0) 122 return -EINVAL; 123 124 return base + offset; 125 } 126 127 /** 128 * DOC: fence polling 129 * 130 * To support cross-device and cross-driver synchronization of buffer access 131 * implicit fences (represented internally in the kernel with &struct fence) can 132 * be attached to a &dma_buf. The glue for that and a few related things are 133 * provided in the &reservation_object structure. 134 * 135 * Userspace can query the state of these implicitly tracked fences using poll() 136 * and related system calls: 137 * 138 * - Checking for POLLIN, i.e. read access, can be use to query the state of the 139 * most recent write or exclusive fence. 140 * 141 * - Checking for POLLOUT, i.e. write access, can be used to query the state of 142 * all attached fences, shared and exclusive ones. 143 * 144 * Note that this only signals the completion of the respective fences, i.e. the 145 * DMA transfers are complete. Cache flushing and any other necessary 146 * preparations before CPU access can begin still need to happen. 147 */ 148 149 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 150 { 151 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb; 152 unsigned long flags; 153 154 spin_lock_irqsave(&dcb->poll->lock, flags); 155 wake_up_locked_poll(dcb->poll, dcb->active); 156 dcb->active = 0; 157 spin_unlock_irqrestore(&dcb->poll->lock, flags); 158 } 159 160 static unsigned int dma_buf_poll(struct file *file, poll_table *poll) 161 { 162 struct dma_buf *dmabuf; 163 struct reservation_object *resv; 164 struct reservation_object_list *fobj; 165 struct dma_fence *fence_excl; 166 unsigned long events; 167 unsigned shared_count, seq; 168 169 dmabuf = file->private_data; 170 if (!dmabuf || !dmabuf->resv) 171 return POLLERR; 172 173 resv = dmabuf->resv; 174 175 poll_wait(file, &dmabuf->poll, poll); 176 177 events = poll_requested_events(poll) & (POLLIN | POLLOUT); 178 if (!events) 179 return 0; 180 181 retry: 182 seq = read_seqcount_begin(&resv->seq); 183 rcu_read_lock(); 184 185 fobj = rcu_dereference(resv->fence); 186 if (fobj) 187 shared_count = fobj->shared_count; 188 else 189 shared_count = 0; 190 fence_excl = rcu_dereference(resv->fence_excl); 191 if (read_seqcount_retry(&resv->seq, seq)) { 192 rcu_read_unlock(); 193 goto retry; 194 } 195 196 if (fence_excl && (!(events & POLLOUT) || shared_count == 0)) { 197 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl; 198 unsigned long pevents = POLLIN; 199 200 if (shared_count == 0) 201 pevents |= POLLOUT; 202 203 spin_lock_irq(&dmabuf->poll.lock); 204 if (dcb->active) { 205 dcb->active |= pevents; 206 events &= ~pevents; 207 } else 208 dcb->active = pevents; 209 spin_unlock_irq(&dmabuf->poll.lock); 210 211 if (events & pevents) { 212 if (!dma_fence_get_rcu(fence_excl)) { 213 /* force a recheck */ 214 events &= ~pevents; 215 dma_buf_poll_cb(NULL, &dcb->cb); 216 } else if (!dma_fence_add_callback(fence_excl, &dcb->cb, 217 dma_buf_poll_cb)) { 218 events &= ~pevents; 219 dma_fence_put(fence_excl); 220 } else { 221 /* 222 * No callback queued, wake up any additional 223 * waiters. 224 */ 225 dma_fence_put(fence_excl); 226 dma_buf_poll_cb(NULL, &dcb->cb); 227 } 228 } 229 } 230 231 if ((events & POLLOUT) && shared_count > 0) { 232 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared; 233 int i; 234 235 /* Only queue a new callback if no event has fired yet */ 236 spin_lock_irq(&dmabuf->poll.lock); 237 if (dcb->active) 238 events &= ~POLLOUT; 239 else 240 dcb->active = POLLOUT; 241 spin_unlock_irq(&dmabuf->poll.lock); 242 243 if (!(events & POLLOUT)) 244 goto out; 245 246 for (i = 0; i < shared_count; ++i) { 247 struct dma_fence *fence = rcu_dereference(fobj->shared[i]); 248 249 if (!dma_fence_get_rcu(fence)) { 250 /* 251 * fence refcount dropped to zero, this means 252 * that fobj has been freed 253 * 254 * call dma_buf_poll_cb and force a recheck! 255 */ 256 events &= ~POLLOUT; 257 dma_buf_poll_cb(NULL, &dcb->cb); 258 break; 259 } 260 if (!dma_fence_add_callback(fence, &dcb->cb, 261 dma_buf_poll_cb)) { 262 dma_fence_put(fence); 263 events &= ~POLLOUT; 264 break; 265 } 266 dma_fence_put(fence); 267 } 268 269 /* No callback queued, wake up any additional waiters. */ 270 if (i == shared_count) 271 dma_buf_poll_cb(NULL, &dcb->cb); 272 } 273 274 out: 275 rcu_read_unlock(); 276 return events; 277 } 278 279 static long dma_buf_ioctl(struct file *file, 280 unsigned int cmd, unsigned long arg) 281 { 282 struct dma_buf *dmabuf; 283 struct dma_buf_sync sync; 284 enum dma_data_direction direction; 285 int ret; 286 287 dmabuf = file->private_data; 288 289 switch (cmd) { 290 case DMA_BUF_IOCTL_SYNC: 291 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync))) 292 return -EFAULT; 293 294 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK) 295 return -EINVAL; 296 297 switch (sync.flags & DMA_BUF_SYNC_RW) { 298 case DMA_BUF_SYNC_READ: 299 direction = DMA_FROM_DEVICE; 300 break; 301 case DMA_BUF_SYNC_WRITE: 302 direction = DMA_TO_DEVICE; 303 break; 304 case DMA_BUF_SYNC_RW: 305 direction = DMA_BIDIRECTIONAL; 306 break; 307 default: 308 return -EINVAL; 309 } 310 311 if (sync.flags & DMA_BUF_SYNC_END) 312 ret = dma_buf_end_cpu_access(dmabuf, direction); 313 else 314 ret = dma_buf_begin_cpu_access(dmabuf, direction); 315 316 return ret; 317 default: 318 return -ENOTTY; 319 } 320 } 321 322 static const struct file_operations dma_buf_fops = { 323 .release = dma_buf_release, 324 .mmap = dma_buf_mmap_internal, 325 .llseek = dma_buf_llseek, 326 .poll = dma_buf_poll, 327 .unlocked_ioctl = dma_buf_ioctl, 328 #ifdef CONFIG_COMPAT 329 .compat_ioctl = dma_buf_ioctl, 330 #endif 331 }; 332 333 /* 334 * is_dma_buf_file - Check if struct file* is associated with dma_buf 335 */ 336 static inline int is_dma_buf_file(struct file *file) 337 { 338 return file->f_op == &dma_buf_fops; 339 } 340 341 /** 342 * DOC: dma buf device access 343 * 344 * For device DMA access to a shared DMA buffer the usual sequence of operations 345 * is fairly simple: 346 * 347 * 1. The exporter defines his exporter instance using 348 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private 349 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace 350 * as a file descriptor by calling dma_buf_fd(). 351 * 352 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer 353 * to share with: First the filedescriptor is converted to a &dma_buf using 354 * dma_buf_get(). The the buffer is attached to the device using 355 * dma_buf_attach(). 356 * 357 * Up to this stage the exporter is still free to migrate or reallocate the 358 * backing storage. 359 * 360 * 3. Once the buffer is attached to all devices userspace can inniate DMA 361 * access to the shared buffer. In the kernel this is done by calling 362 * dma_buf_map_attachment() and dma_buf_unmap_attachment(). 363 * 364 * 4. Once a driver is done with a shared buffer it needs to call 365 * dma_buf_detach() (after cleaning up any mappings) and then release the 366 * reference acquired with dma_buf_get by calling dma_buf_put(). 367 * 368 * For the detailed semantics exporters are expected to implement see 369 * &dma_buf_ops. 370 */ 371 372 /** 373 * dma_buf_export - Creates a new dma_buf, and associates an anon file 374 * with this buffer, so it can be exported. 375 * Also connect the allocator specific data and ops to the buffer. 376 * Additionally, provide a name string for exporter; useful in debugging. 377 * 378 * @exp_info: [in] holds all the export related information provided 379 * by the exporter. see &struct dma_buf_export_info 380 * for further details. 381 * 382 * Returns, on success, a newly created dma_buf object, which wraps the 383 * supplied private data and operations for dma_buf_ops. On either missing 384 * ops, or error in allocating struct dma_buf, will return negative error. 385 * 386 * For most cases the easiest way to create @exp_info is through the 387 * %DEFINE_DMA_BUF_EXPORT_INFO macro. 388 */ 389 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info) 390 { 391 struct dma_buf *dmabuf; 392 struct reservation_object *resv = exp_info->resv; 393 struct file *file; 394 size_t alloc_size = sizeof(struct dma_buf); 395 int ret; 396 397 if (!exp_info->resv) 398 alloc_size += sizeof(struct reservation_object); 399 else 400 /* prevent &dma_buf[1] == dma_buf->resv */ 401 alloc_size += 1; 402 403 if (WARN_ON(!exp_info->priv 404 || !exp_info->ops 405 || !exp_info->ops->map_dma_buf 406 || !exp_info->ops->unmap_dma_buf 407 || !exp_info->ops->release 408 || !exp_info->ops->map_atomic 409 || !exp_info->ops->map 410 || !exp_info->ops->mmap)) { 411 return ERR_PTR(-EINVAL); 412 } 413 414 if (!try_module_get(exp_info->owner)) 415 return ERR_PTR(-ENOENT); 416 417 dmabuf = kzalloc(alloc_size, GFP_KERNEL); 418 if (!dmabuf) { 419 ret = -ENOMEM; 420 goto err_module; 421 } 422 423 dmabuf->priv = exp_info->priv; 424 dmabuf->ops = exp_info->ops; 425 dmabuf->size = exp_info->size; 426 dmabuf->exp_name = exp_info->exp_name; 427 dmabuf->owner = exp_info->owner; 428 init_waitqueue_head(&dmabuf->poll); 429 dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll; 430 dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0; 431 432 if (!resv) { 433 resv = (struct reservation_object *)&dmabuf[1]; 434 reservation_object_init(resv); 435 } 436 dmabuf->resv = resv; 437 438 file = anon_inode_getfile("dmabuf", &dma_buf_fops, dmabuf, 439 exp_info->flags); 440 if (IS_ERR(file)) { 441 ret = PTR_ERR(file); 442 goto err_dmabuf; 443 } 444 445 file->f_mode |= FMODE_LSEEK; 446 dmabuf->file = file; 447 448 mutex_init(&dmabuf->lock); 449 INIT_LIST_HEAD(&dmabuf->attachments); 450 451 mutex_lock(&db_list.lock); 452 list_add(&dmabuf->list_node, &db_list.head); 453 mutex_unlock(&db_list.lock); 454 455 return dmabuf; 456 457 err_dmabuf: 458 kfree(dmabuf); 459 err_module: 460 module_put(exp_info->owner); 461 return ERR_PTR(ret); 462 } 463 EXPORT_SYMBOL_GPL(dma_buf_export); 464 465 /** 466 * dma_buf_fd - returns a file descriptor for the given dma_buf 467 * @dmabuf: [in] pointer to dma_buf for which fd is required. 468 * @flags: [in] flags to give to fd 469 * 470 * On success, returns an associated 'fd'. Else, returns error. 471 */ 472 int dma_buf_fd(struct dma_buf *dmabuf, int flags) 473 { 474 int fd; 475 476 if (!dmabuf || !dmabuf->file) 477 return -EINVAL; 478 479 fd = get_unused_fd_flags(flags); 480 if (fd < 0) 481 return fd; 482 483 fd_install(fd, dmabuf->file); 484 485 return fd; 486 } 487 EXPORT_SYMBOL_GPL(dma_buf_fd); 488 489 /** 490 * dma_buf_get - returns the dma_buf structure related to an fd 491 * @fd: [in] fd associated with the dma_buf to be returned 492 * 493 * On success, returns the dma_buf structure associated with an fd; uses 494 * file's refcounting done by fget to increase refcount. returns ERR_PTR 495 * otherwise. 496 */ 497 struct dma_buf *dma_buf_get(int fd) 498 { 499 struct file *file; 500 501 file = fget(fd); 502 503 if (!file) 504 return ERR_PTR(-EBADF); 505 506 if (!is_dma_buf_file(file)) { 507 fput(file); 508 return ERR_PTR(-EINVAL); 509 } 510 511 return file->private_data; 512 } 513 EXPORT_SYMBOL_GPL(dma_buf_get); 514 515 /** 516 * dma_buf_put - decreases refcount of the buffer 517 * @dmabuf: [in] buffer to reduce refcount of 518 * 519 * Uses file's refcounting done implicitly by fput(). 520 * 521 * If, as a result of this call, the refcount becomes 0, the 'release' file 522 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc 523 * in turn, and frees the memory allocated for dmabuf when exported. 524 */ 525 void dma_buf_put(struct dma_buf *dmabuf) 526 { 527 if (WARN_ON(!dmabuf || !dmabuf->file)) 528 return; 529 530 fput(dmabuf->file); 531 } 532 EXPORT_SYMBOL_GPL(dma_buf_put); 533 534 /** 535 * dma_buf_attach - Add the device to dma_buf's attachments list; optionally, 536 * calls attach() of dma_buf_ops to allow device-specific attach functionality 537 * @dmabuf: [in] buffer to attach device to. 538 * @dev: [in] device to be attached. 539 * 540 * Returns struct dma_buf_attachment pointer for this attachment. Attachments 541 * must be cleaned up by calling dma_buf_detach(). 542 * 543 * Returns: 544 * 545 * A pointer to newly created &dma_buf_attachment on success, or a negative 546 * error code wrapped into a pointer on failure. 547 * 548 * Note that this can fail if the backing storage of @dmabuf is in a place not 549 * accessible to @dev, and cannot be moved to a more suitable place. This is 550 * indicated with the error code -EBUSY. 551 */ 552 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf, 553 struct device *dev) 554 { 555 struct dma_buf_attachment *attach; 556 int ret; 557 558 if (WARN_ON(!dmabuf || !dev)) 559 return ERR_PTR(-EINVAL); 560 561 attach = kzalloc(sizeof(struct dma_buf_attachment), GFP_KERNEL); 562 if (attach == NULL) 563 return ERR_PTR(-ENOMEM); 564 565 attach->dev = dev; 566 attach->dmabuf = dmabuf; 567 568 mutex_lock(&dmabuf->lock); 569 570 if (dmabuf->ops->attach) { 571 ret = dmabuf->ops->attach(dmabuf, dev, attach); 572 if (ret) 573 goto err_attach; 574 } 575 list_add(&attach->node, &dmabuf->attachments); 576 577 mutex_unlock(&dmabuf->lock); 578 return attach; 579 580 err_attach: 581 kfree(attach); 582 mutex_unlock(&dmabuf->lock); 583 return ERR_PTR(ret); 584 } 585 EXPORT_SYMBOL_GPL(dma_buf_attach); 586 587 /** 588 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list; 589 * optionally calls detach() of dma_buf_ops for device-specific detach 590 * @dmabuf: [in] buffer to detach from. 591 * @attach: [in] attachment to be detached; is free'd after this call. 592 * 593 * Clean up a device attachment obtained by calling dma_buf_attach(). 594 */ 595 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach) 596 { 597 if (WARN_ON(!dmabuf || !attach)) 598 return; 599 600 mutex_lock(&dmabuf->lock); 601 list_del(&attach->node); 602 if (dmabuf->ops->detach) 603 dmabuf->ops->detach(dmabuf, attach); 604 605 mutex_unlock(&dmabuf->lock); 606 kfree(attach); 607 } 608 EXPORT_SYMBOL_GPL(dma_buf_detach); 609 610 /** 611 * dma_buf_map_attachment - Returns the scatterlist table of the attachment; 612 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the 613 * dma_buf_ops. 614 * @attach: [in] attachment whose scatterlist is to be returned 615 * @direction: [in] direction of DMA transfer 616 * 617 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR 618 * on error. May return -EINTR if it is interrupted by a signal. 619 * 620 * A mapping must be unmapped again using dma_buf_map_attachment(). Note that 621 * the underlying backing storage is pinned for as long as a mapping exists, 622 * therefore users/importers should not hold onto a mapping for undue amounts of 623 * time. 624 */ 625 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach, 626 enum dma_data_direction direction) 627 { 628 struct sg_table *sg_table = ERR_PTR(-EINVAL); 629 630 might_sleep(); 631 632 if (WARN_ON(!attach || !attach->dmabuf)) 633 return ERR_PTR(-EINVAL); 634 635 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction); 636 if (!sg_table) 637 sg_table = ERR_PTR(-ENOMEM); 638 639 return sg_table; 640 } 641 EXPORT_SYMBOL_GPL(dma_buf_map_attachment); 642 643 /** 644 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might 645 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of 646 * dma_buf_ops. 647 * @attach: [in] attachment to unmap buffer from 648 * @sg_table: [in] scatterlist info of the buffer to unmap 649 * @direction: [in] direction of DMA transfer 650 * 651 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment(). 652 */ 653 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach, 654 struct sg_table *sg_table, 655 enum dma_data_direction direction) 656 { 657 might_sleep(); 658 659 if (WARN_ON(!attach || !attach->dmabuf || !sg_table)) 660 return; 661 662 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, 663 direction); 664 } 665 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment); 666 667 /** 668 * DOC: cpu access 669 * 670 * There are mutliple reasons for supporting CPU access to a dma buffer object: 671 * 672 * - Fallback operations in the kernel, for example when a device is connected 673 * over USB and the kernel needs to shuffle the data around first before 674 * sending it away. Cache coherency is handled by braketing any transactions 675 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access() 676 * access. 677 * 678 * To support dma_buf objects residing in highmem cpu access is page-based 679 * using an api similar to kmap. Accessing a dma_buf is done in aligned chunks 680 * of PAGE_SIZE size. Before accessing a chunk it needs to be mapped, which 681 * returns a pointer in kernel virtual address space. Afterwards the chunk 682 * needs to be unmapped again. There is no limit on how often a given chunk 683 * can be mapped and unmapped, i.e. the importer does not need to call 684 * begin_cpu_access again before mapping the same chunk again. 685 * 686 * Interfaces:: 687 * void \*dma_buf_kmap(struct dma_buf \*, unsigned long); 688 * void dma_buf_kunmap(struct dma_buf \*, unsigned long, void \*); 689 * 690 * There are also atomic variants of these interfaces. Like for kmap they 691 * facilitate non-blocking fast-paths. Neither the importer nor the exporter 692 * (in the callback) is allowed to block when using these. 693 * 694 * Interfaces:: 695 * void \*dma_buf_kmap_atomic(struct dma_buf \*, unsigned long); 696 * void dma_buf_kunmap_atomic(struct dma_buf \*, unsigned long, void \*); 697 * 698 * For importers all the restrictions of using kmap apply, like the limited 699 * supply of kmap_atomic slots. Hence an importer shall only hold onto at 700 * max 2 atomic dma_buf kmaps at the same time (in any given process context). 701 * 702 * dma_buf kmap calls outside of the range specified in begin_cpu_access are 703 * undefined. If the range is not PAGE_SIZE aligned, kmap needs to succeed on 704 * the partial chunks at the beginning and end but may return stale or bogus 705 * data outside of the range (in these partial chunks). 706 * 707 * Note that these calls need to always succeed. The exporter needs to 708 * complete any preparations that might fail in begin_cpu_access. 709 * 710 * For some cases the overhead of kmap can be too high, a vmap interface 711 * is introduced. This interface should be used very carefully, as vmalloc 712 * space is a limited resources on many architectures. 713 * 714 * Interfaces:: 715 * void \*dma_buf_vmap(struct dma_buf \*dmabuf) 716 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr) 717 * 718 * The vmap call can fail if there is no vmap support in the exporter, or if 719 * it runs out of vmalloc space. Fallback to kmap should be implemented. Note 720 * that the dma-buf layer keeps a reference count for all vmap access and 721 * calls down into the exporter's vmap function only when no vmapping exists, 722 * and only unmaps it once. Protection against concurrent vmap/vunmap calls is 723 * provided by taking the dma_buf->lock mutex. 724 * 725 * - For full compatibility on the importer side with existing userspace 726 * interfaces, which might already support mmap'ing buffers. This is needed in 727 * many processing pipelines (e.g. feeding a software rendered image into a 728 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION 729 * framework already supported this and for DMA buffer file descriptors to 730 * replace ION buffers mmap support was needed. 731 * 732 * There is no special interfaces, userspace simply calls mmap on the dma-buf 733 * fd. But like for CPU access there's a need to braket the actual access, 734 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that 735 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must 736 * be restarted. 737 * 738 * Some systems might need some sort of cache coherency management e.g. when 739 * CPU and GPU domains are being accessed through dma-buf at the same time. 740 * To circumvent this problem there are begin/end coherency markers, that 741 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace 742 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The 743 * sequence would be used like following: 744 * 745 * - mmap dma-buf fd 746 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write 747 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you 748 * want (with the new data being consumed by say the GPU or the scanout 749 * device) 750 * - munmap once you don't need the buffer any more 751 * 752 * For correctness and optimal performance, it is always required to use 753 * SYNC_START and SYNC_END before and after, respectively, when accessing the 754 * mapped address. Userspace cannot rely on coherent access, even when there 755 * are systems where it just works without calling these ioctls. 756 * 757 * - And as a CPU fallback in userspace processing pipelines. 758 * 759 * Similar to the motivation for kernel cpu access it is again important that 760 * the userspace code of a given importing subsystem can use the same 761 * interfaces with a imported dma-buf buffer object as with a native buffer 762 * object. This is especially important for drm where the userspace part of 763 * contemporary OpenGL, X, and other drivers is huge, and reworking them to 764 * use a different way to mmap a buffer rather invasive. 765 * 766 * The assumption in the current dma-buf interfaces is that redirecting the 767 * initial mmap is all that's needed. A survey of some of the existing 768 * subsystems shows that no driver seems to do any nefarious thing like 769 * syncing up with outstanding asynchronous processing on the device or 770 * allocating special resources at fault time. So hopefully this is good 771 * enough, since adding interfaces to intercept pagefaults and allow pte 772 * shootdowns would increase the complexity quite a bit. 773 * 774 * Interface:: 775 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*, 776 * unsigned long); 777 * 778 * If the importing subsystem simply provides a special-purpose mmap call to 779 * set up a mapping in userspace, calling do_mmap with dma_buf->file will 780 * equally achieve that for a dma-buf object. 781 */ 782 783 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 784 enum dma_data_direction direction) 785 { 786 bool write = (direction == DMA_BIDIRECTIONAL || 787 direction == DMA_TO_DEVICE); 788 struct reservation_object *resv = dmabuf->resv; 789 long ret; 790 791 /* Wait on any implicit rendering fences */ 792 ret = reservation_object_wait_timeout_rcu(resv, write, true, 793 MAX_SCHEDULE_TIMEOUT); 794 if (ret < 0) 795 return ret; 796 797 return 0; 798 } 799 800 /** 801 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the 802 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific 803 * preparations. Coherency is only guaranteed in the specified range for the 804 * specified access direction. 805 * @dmabuf: [in] buffer to prepare cpu access for. 806 * @direction: [in] length of range for cpu access. 807 * 808 * After the cpu access is complete the caller should call 809 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is 810 * it guaranteed to be coherent with other DMA access. 811 * 812 * Can return negative error values, returns 0 on success. 813 */ 814 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 815 enum dma_data_direction direction) 816 { 817 int ret = 0; 818 819 if (WARN_ON(!dmabuf)) 820 return -EINVAL; 821 822 if (dmabuf->ops->begin_cpu_access) 823 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction); 824 825 /* Ensure that all fences are waited upon - but we first allow 826 * the native handler the chance to do so more efficiently if it 827 * chooses. A double invocation here will be reasonably cheap no-op. 828 */ 829 if (ret == 0) 830 ret = __dma_buf_begin_cpu_access(dmabuf, direction); 831 832 return ret; 833 } 834 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access); 835 836 /** 837 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the 838 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific 839 * actions. Coherency is only guaranteed in the specified range for the 840 * specified access direction. 841 * @dmabuf: [in] buffer to complete cpu access for. 842 * @direction: [in] length of range for cpu access. 843 * 844 * This terminates CPU access started with dma_buf_begin_cpu_access(). 845 * 846 * Can return negative error values, returns 0 on success. 847 */ 848 int dma_buf_end_cpu_access(struct dma_buf *dmabuf, 849 enum dma_data_direction direction) 850 { 851 int ret = 0; 852 853 WARN_ON(!dmabuf); 854 855 if (dmabuf->ops->end_cpu_access) 856 ret = dmabuf->ops->end_cpu_access(dmabuf, direction); 857 858 return ret; 859 } 860 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access); 861 862 /** 863 * dma_buf_kmap_atomic - Map a page of the buffer object into kernel address 864 * space. The same restrictions as for kmap_atomic and friends apply. 865 * @dmabuf: [in] buffer to map page from. 866 * @page_num: [in] page in PAGE_SIZE units to map. 867 * 868 * This call must always succeed, any necessary preparations that might fail 869 * need to be done in begin_cpu_access. 870 */ 871 void *dma_buf_kmap_atomic(struct dma_buf *dmabuf, unsigned long page_num) 872 { 873 WARN_ON(!dmabuf); 874 875 return dmabuf->ops->map_atomic(dmabuf, page_num); 876 } 877 EXPORT_SYMBOL_GPL(dma_buf_kmap_atomic); 878 879 /** 880 * dma_buf_kunmap_atomic - Unmap a page obtained by dma_buf_kmap_atomic. 881 * @dmabuf: [in] buffer to unmap page from. 882 * @page_num: [in] page in PAGE_SIZE units to unmap. 883 * @vaddr: [in] kernel space pointer obtained from dma_buf_kmap_atomic. 884 * 885 * This call must always succeed. 886 */ 887 void dma_buf_kunmap_atomic(struct dma_buf *dmabuf, unsigned long page_num, 888 void *vaddr) 889 { 890 WARN_ON(!dmabuf); 891 892 if (dmabuf->ops->unmap_atomic) 893 dmabuf->ops->unmap_atomic(dmabuf, page_num, vaddr); 894 } 895 EXPORT_SYMBOL_GPL(dma_buf_kunmap_atomic); 896 897 /** 898 * dma_buf_kmap - Map a page of the buffer object into kernel address space. The 899 * same restrictions as for kmap and friends apply. 900 * @dmabuf: [in] buffer to map page from. 901 * @page_num: [in] page in PAGE_SIZE units to map. 902 * 903 * This call must always succeed, any necessary preparations that might fail 904 * need to be done in begin_cpu_access. 905 */ 906 void *dma_buf_kmap(struct dma_buf *dmabuf, unsigned long page_num) 907 { 908 WARN_ON(!dmabuf); 909 910 return dmabuf->ops->map(dmabuf, page_num); 911 } 912 EXPORT_SYMBOL_GPL(dma_buf_kmap); 913 914 /** 915 * dma_buf_kunmap - Unmap a page obtained by dma_buf_kmap. 916 * @dmabuf: [in] buffer to unmap page from. 917 * @page_num: [in] page in PAGE_SIZE units to unmap. 918 * @vaddr: [in] kernel space pointer obtained from dma_buf_kmap. 919 * 920 * This call must always succeed. 921 */ 922 void dma_buf_kunmap(struct dma_buf *dmabuf, unsigned long page_num, 923 void *vaddr) 924 { 925 WARN_ON(!dmabuf); 926 927 if (dmabuf->ops->unmap) 928 dmabuf->ops->unmap(dmabuf, page_num, vaddr); 929 } 930 EXPORT_SYMBOL_GPL(dma_buf_kunmap); 931 932 933 /** 934 * dma_buf_mmap - Setup up a userspace mmap with the given vma 935 * @dmabuf: [in] buffer that should back the vma 936 * @vma: [in] vma for the mmap 937 * @pgoff: [in] offset in pages where this mmap should start within the 938 * dma-buf buffer. 939 * 940 * This function adjusts the passed in vma so that it points at the file of the 941 * dma_buf operation. It also adjusts the starting pgoff and does bounds 942 * checking on the size of the vma. Then it calls the exporters mmap function to 943 * set up the mapping. 944 * 945 * Can return negative error values, returns 0 on success. 946 */ 947 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma, 948 unsigned long pgoff) 949 { 950 struct file *oldfile; 951 int ret; 952 953 if (WARN_ON(!dmabuf || !vma)) 954 return -EINVAL; 955 956 /* check for offset overflow */ 957 if (pgoff + vma_pages(vma) < pgoff) 958 return -EOVERFLOW; 959 960 /* check for overflowing the buffer's size */ 961 if (pgoff + vma_pages(vma) > 962 dmabuf->size >> PAGE_SHIFT) 963 return -EINVAL; 964 965 /* readjust the vma */ 966 get_file(dmabuf->file); 967 oldfile = vma->vm_file; 968 vma->vm_file = dmabuf->file; 969 vma->vm_pgoff = pgoff; 970 971 ret = dmabuf->ops->mmap(dmabuf, vma); 972 if (ret) { 973 /* restore old parameters on failure */ 974 vma->vm_file = oldfile; 975 fput(dmabuf->file); 976 } else { 977 if (oldfile) 978 fput(oldfile); 979 } 980 return ret; 981 982 } 983 EXPORT_SYMBOL_GPL(dma_buf_mmap); 984 985 /** 986 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel 987 * address space. Same restrictions as for vmap and friends apply. 988 * @dmabuf: [in] buffer to vmap 989 * 990 * This call may fail due to lack of virtual mapping address space. 991 * These calls are optional in drivers. The intended use for them 992 * is for mapping objects linear in kernel space for high use objects. 993 * Please attempt to use kmap/kunmap before thinking about these interfaces. 994 * 995 * Returns NULL on error. 996 */ 997 void *dma_buf_vmap(struct dma_buf *dmabuf) 998 { 999 void *ptr; 1000 1001 if (WARN_ON(!dmabuf)) 1002 return NULL; 1003 1004 if (!dmabuf->ops->vmap) 1005 return NULL; 1006 1007 mutex_lock(&dmabuf->lock); 1008 if (dmabuf->vmapping_counter) { 1009 dmabuf->vmapping_counter++; 1010 BUG_ON(!dmabuf->vmap_ptr); 1011 ptr = dmabuf->vmap_ptr; 1012 goto out_unlock; 1013 } 1014 1015 BUG_ON(dmabuf->vmap_ptr); 1016 1017 ptr = dmabuf->ops->vmap(dmabuf); 1018 if (WARN_ON_ONCE(IS_ERR(ptr))) 1019 ptr = NULL; 1020 if (!ptr) 1021 goto out_unlock; 1022 1023 dmabuf->vmap_ptr = ptr; 1024 dmabuf->vmapping_counter = 1; 1025 1026 out_unlock: 1027 mutex_unlock(&dmabuf->lock); 1028 return ptr; 1029 } 1030 EXPORT_SYMBOL_GPL(dma_buf_vmap); 1031 1032 /** 1033 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap. 1034 * @dmabuf: [in] buffer to vunmap 1035 * @vaddr: [in] vmap to vunmap 1036 */ 1037 void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr) 1038 { 1039 if (WARN_ON(!dmabuf)) 1040 return; 1041 1042 BUG_ON(!dmabuf->vmap_ptr); 1043 BUG_ON(dmabuf->vmapping_counter == 0); 1044 BUG_ON(dmabuf->vmap_ptr != vaddr); 1045 1046 mutex_lock(&dmabuf->lock); 1047 if (--dmabuf->vmapping_counter == 0) { 1048 if (dmabuf->ops->vunmap) 1049 dmabuf->ops->vunmap(dmabuf, vaddr); 1050 dmabuf->vmap_ptr = NULL; 1051 } 1052 mutex_unlock(&dmabuf->lock); 1053 } 1054 EXPORT_SYMBOL_GPL(dma_buf_vunmap); 1055 1056 #ifdef CONFIG_DEBUG_FS 1057 static int dma_buf_debug_show(struct seq_file *s, void *unused) 1058 { 1059 int ret; 1060 struct dma_buf *buf_obj; 1061 struct dma_buf_attachment *attach_obj; 1062 struct reservation_object *robj; 1063 struct reservation_object_list *fobj; 1064 struct dma_fence *fence; 1065 unsigned seq; 1066 int count = 0, attach_count, shared_count, i; 1067 size_t size = 0; 1068 1069 ret = mutex_lock_interruptible(&db_list.lock); 1070 1071 if (ret) 1072 return ret; 1073 1074 seq_puts(s, "\nDma-buf Objects:\n"); 1075 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\n", 1076 "size", "flags", "mode", "count"); 1077 1078 list_for_each_entry(buf_obj, &db_list.head, list_node) { 1079 ret = mutex_lock_interruptible(&buf_obj->lock); 1080 1081 if (ret) { 1082 seq_puts(s, 1083 "\tERROR locking buffer object: skipping\n"); 1084 continue; 1085 } 1086 1087 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\n", 1088 buf_obj->size, 1089 buf_obj->file->f_flags, buf_obj->file->f_mode, 1090 file_count(buf_obj->file), 1091 buf_obj->exp_name); 1092 1093 robj = buf_obj->resv; 1094 while (true) { 1095 seq = read_seqcount_begin(&robj->seq); 1096 rcu_read_lock(); 1097 fobj = rcu_dereference(robj->fence); 1098 shared_count = fobj ? fobj->shared_count : 0; 1099 fence = rcu_dereference(robj->fence_excl); 1100 if (!read_seqcount_retry(&robj->seq, seq)) 1101 break; 1102 rcu_read_unlock(); 1103 } 1104 1105 if (fence) 1106 seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n", 1107 fence->ops->get_driver_name(fence), 1108 fence->ops->get_timeline_name(fence), 1109 dma_fence_is_signaled(fence) ? "" : "un"); 1110 for (i = 0; i < shared_count; i++) { 1111 fence = rcu_dereference(fobj->shared[i]); 1112 if (!dma_fence_get_rcu(fence)) 1113 continue; 1114 seq_printf(s, "\tShared fence: %s %s %ssignalled\n", 1115 fence->ops->get_driver_name(fence), 1116 fence->ops->get_timeline_name(fence), 1117 dma_fence_is_signaled(fence) ? "" : "un"); 1118 } 1119 rcu_read_unlock(); 1120 1121 seq_puts(s, "\tAttached Devices:\n"); 1122 attach_count = 0; 1123 1124 list_for_each_entry(attach_obj, &buf_obj->attachments, node) { 1125 seq_puts(s, "\t"); 1126 1127 seq_printf(s, "%s\n", dev_name(attach_obj->dev)); 1128 attach_count++; 1129 } 1130 1131 seq_printf(s, "Total %d devices attached\n\n", 1132 attach_count); 1133 1134 count++; 1135 size += buf_obj->size; 1136 mutex_unlock(&buf_obj->lock); 1137 } 1138 1139 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size); 1140 1141 mutex_unlock(&db_list.lock); 1142 return 0; 1143 } 1144 1145 static int dma_buf_debug_open(struct inode *inode, struct file *file) 1146 { 1147 return single_open(file, dma_buf_debug_show, NULL); 1148 } 1149 1150 static const struct file_operations dma_buf_debug_fops = { 1151 .open = dma_buf_debug_open, 1152 .read = seq_read, 1153 .llseek = seq_lseek, 1154 .release = single_release, 1155 }; 1156 1157 static struct dentry *dma_buf_debugfs_dir; 1158 1159 static int dma_buf_init_debugfs(void) 1160 { 1161 struct dentry *d; 1162 int err = 0; 1163 1164 d = debugfs_create_dir("dma_buf", NULL); 1165 if (IS_ERR(d)) 1166 return PTR_ERR(d); 1167 1168 dma_buf_debugfs_dir = d; 1169 1170 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir, 1171 NULL, &dma_buf_debug_fops); 1172 if (IS_ERR(d)) { 1173 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n"); 1174 debugfs_remove_recursive(dma_buf_debugfs_dir); 1175 dma_buf_debugfs_dir = NULL; 1176 err = PTR_ERR(d); 1177 } 1178 1179 return err; 1180 } 1181 1182 static void dma_buf_uninit_debugfs(void) 1183 { 1184 if (dma_buf_debugfs_dir) 1185 debugfs_remove_recursive(dma_buf_debugfs_dir); 1186 } 1187 #else 1188 static inline int dma_buf_init_debugfs(void) 1189 { 1190 return 0; 1191 } 1192 static inline void dma_buf_uninit_debugfs(void) 1193 { 1194 } 1195 #endif 1196 1197 static int __init dma_buf_init(void) 1198 { 1199 mutex_init(&db_list.lock); 1200 INIT_LIST_HEAD(&db_list.head); 1201 dma_buf_init_debugfs(); 1202 return 0; 1203 } 1204 subsys_initcall(dma_buf_init); 1205 1206 static void __exit dma_buf_deinit(void) 1207 { 1208 dma_buf_uninit_debugfs(); 1209 } 1210 __exitcall(dma_buf_deinit); 1211