xref: /linux/drivers/dma-buf/dma-buf.c (revision bd628c1bed7902ec1f24ba0fe70758949146abbe)
1 /*
2  * Framework for buffer objects that can be shared across devices/subsystems.
3  *
4  * Copyright(C) 2011 Linaro Limited. All rights reserved.
5  * Author: Sumit Semwal <sumit.semwal@ti.com>
6  *
7  * Many thanks to linaro-mm-sig list, and specially
8  * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
9  * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
10  * refining of this idea.
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms of the GNU General Public License version 2 as published by
14  * the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful, but WITHOUT
17  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
19  * more details.
20  *
21  * You should have received a copy of the GNU General Public License along with
22  * this program.  If not, see <http://www.gnu.org/licenses/>.
23  */
24 
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/dma-buf.h>
28 #include <linux/dma-fence.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/export.h>
31 #include <linux/debugfs.h>
32 #include <linux/module.h>
33 #include <linux/seq_file.h>
34 #include <linux/poll.h>
35 #include <linux/reservation.h>
36 #include <linux/mm.h>
37 
38 #include <uapi/linux/dma-buf.h>
39 
40 static inline int is_dma_buf_file(struct file *);
41 
42 struct dma_buf_list {
43 	struct list_head head;
44 	struct mutex lock;
45 };
46 
47 static struct dma_buf_list db_list;
48 
49 static int dma_buf_release(struct inode *inode, struct file *file)
50 {
51 	struct dma_buf *dmabuf;
52 
53 	if (!is_dma_buf_file(file))
54 		return -EINVAL;
55 
56 	dmabuf = file->private_data;
57 
58 	BUG_ON(dmabuf->vmapping_counter);
59 
60 	/*
61 	 * Any fences that a dma-buf poll can wait on should be signaled
62 	 * before releasing dma-buf. This is the responsibility of each
63 	 * driver that uses the reservation objects.
64 	 *
65 	 * If you hit this BUG() it means someone dropped their ref to the
66 	 * dma-buf while still having pending operation to the buffer.
67 	 */
68 	BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
69 
70 	dmabuf->ops->release(dmabuf);
71 
72 	mutex_lock(&db_list.lock);
73 	list_del(&dmabuf->list_node);
74 	mutex_unlock(&db_list.lock);
75 
76 	if (dmabuf->resv == (struct reservation_object *)&dmabuf[1])
77 		reservation_object_fini(dmabuf->resv);
78 
79 	module_put(dmabuf->owner);
80 	kfree(dmabuf);
81 	return 0;
82 }
83 
84 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
85 {
86 	struct dma_buf *dmabuf;
87 
88 	if (!is_dma_buf_file(file))
89 		return -EINVAL;
90 
91 	dmabuf = file->private_data;
92 
93 	/* check for overflowing the buffer's size */
94 	if (vma->vm_pgoff + vma_pages(vma) >
95 	    dmabuf->size >> PAGE_SHIFT)
96 		return -EINVAL;
97 
98 	return dmabuf->ops->mmap(dmabuf, vma);
99 }
100 
101 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
102 {
103 	struct dma_buf *dmabuf;
104 	loff_t base;
105 
106 	if (!is_dma_buf_file(file))
107 		return -EBADF;
108 
109 	dmabuf = file->private_data;
110 
111 	/* only support discovering the end of the buffer,
112 	   but also allow SEEK_SET to maintain the idiomatic
113 	   SEEK_END(0), SEEK_CUR(0) pattern */
114 	if (whence == SEEK_END)
115 		base = dmabuf->size;
116 	else if (whence == SEEK_SET)
117 		base = 0;
118 	else
119 		return -EINVAL;
120 
121 	if (offset != 0)
122 		return -EINVAL;
123 
124 	return base + offset;
125 }
126 
127 /**
128  * DOC: fence polling
129  *
130  * To support cross-device and cross-driver synchronization of buffer access
131  * implicit fences (represented internally in the kernel with &struct fence) can
132  * be attached to a &dma_buf. The glue for that and a few related things are
133  * provided in the &reservation_object structure.
134  *
135  * Userspace can query the state of these implicitly tracked fences using poll()
136  * and related system calls:
137  *
138  * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
139  *   most recent write or exclusive fence.
140  *
141  * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
142  *   all attached fences, shared and exclusive ones.
143  *
144  * Note that this only signals the completion of the respective fences, i.e. the
145  * DMA transfers are complete. Cache flushing and any other necessary
146  * preparations before CPU access can begin still need to happen.
147  */
148 
149 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
150 {
151 	struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
152 	unsigned long flags;
153 
154 	spin_lock_irqsave(&dcb->poll->lock, flags);
155 	wake_up_locked_poll(dcb->poll, dcb->active);
156 	dcb->active = 0;
157 	spin_unlock_irqrestore(&dcb->poll->lock, flags);
158 }
159 
160 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
161 {
162 	struct dma_buf *dmabuf;
163 	struct reservation_object *resv;
164 	struct reservation_object_list *fobj;
165 	struct dma_fence *fence_excl;
166 	__poll_t events;
167 	unsigned shared_count, seq;
168 
169 	dmabuf = file->private_data;
170 	if (!dmabuf || !dmabuf->resv)
171 		return EPOLLERR;
172 
173 	resv = dmabuf->resv;
174 
175 	poll_wait(file, &dmabuf->poll, poll);
176 
177 	events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
178 	if (!events)
179 		return 0;
180 
181 retry:
182 	seq = read_seqcount_begin(&resv->seq);
183 	rcu_read_lock();
184 
185 	fobj = rcu_dereference(resv->fence);
186 	if (fobj)
187 		shared_count = fobj->shared_count;
188 	else
189 		shared_count = 0;
190 	fence_excl = rcu_dereference(resv->fence_excl);
191 	if (read_seqcount_retry(&resv->seq, seq)) {
192 		rcu_read_unlock();
193 		goto retry;
194 	}
195 
196 	if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
197 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
198 		__poll_t pevents = EPOLLIN;
199 
200 		if (shared_count == 0)
201 			pevents |= EPOLLOUT;
202 
203 		spin_lock_irq(&dmabuf->poll.lock);
204 		if (dcb->active) {
205 			dcb->active |= pevents;
206 			events &= ~pevents;
207 		} else
208 			dcb->active = pevents;
209 		spin_unlock_irq(&dmabuf->poll.lock);
210 
211 		if (events & pevents) {
212 			if (!dma_fence_get_rcu(fence_excl)) {
213 				/* force a recheck */
214 				events &= ~pevents;
215 				dma_buf_poll_cb(NULL, &dcb->cb);
216 			} else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
217 							   dma_buf_poll_cb)) {
218 				events &= ~pevents;
219 				dma_fence_put(fence_excl);
220 			} else {
221 				/*
222 				 * No callback queued, wake up any additional
223 				 * waiters.
224 				 */
225 				dma_fence_put(fence_excl);
226 				dma_buf_poll_cb(NULL, &dcb->cb);
227 			}
228 		}
229 	}
230 
231 	if ((events & EPOLLOUT) && shared_count > 0) {
232 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
233 		int i;
234 
235 		/* Only queue a new callback if no event has fired yet */
236 		spin_lock_irq(&dmabuf->poll.lock);
237 		if (dcb->active)
238 			events &= ~EPOLLOUT;
239 		else
240 			dcb->active = EPOLLOUT;
241 		spin_unlock_irq(&dmabuf->poll.lock);
242 
243 		if (!(events & EPOLLOUT))
244 			goto out;
245 
246 		for (i = 0; i < shared_count; ++i) {
247 			struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
248 
249 			if (!dma_fence_get_rcu(fence)) {
250 				/*
251 				 * fence refcount dropped to zero, this means
252 				 * that fobj has been freed
253 				 *
254 				 * call dma_buf_poll_cb and force a recheck!
255 				 */
256 				events &= ~EPOLLOUT;
257 				dma_buf_poll_cb(NULL, &dcb->cb);
258 				break;
259 			}
260 			if (!dma_fence_add_callback(fence, &dcb->cb,
261 						    dma_buf_poll_cb)) {
262 				dma_fence_put(fence);
263 				events &= ~EPOLLOUT;
264 				break;
265 			}
266 			dma_fence_put(fence);
267 		}
268 
269 		/* No callback queued, wake up any additional waiters. */
270 		if (i == shared_count)
271 			dma_buf_poll_cb(NULL, &dcb->cb);
272 	}
273 
274 out:
275 	rcu_read_unlock();
276 	return events;
277 }
278 
279 static long dma_buf_ioctl(struct file *file,
280 			  unsigned int cmd, unsigned long arg)
281 {
282 	struct dma_buf *dmabuf;
283 	struct dma_buf_sync sync;
284 	enum dma_data_direction direction;
285 	int ret;
286 
287 	dmabuf = file->private_data;
288 
289 	switch (cmd) {
290 	case DMA_BUF_IOCTL_SYNC:
291 		if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
292 			return -EFAULT;
293 
294 		if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
295 			return -EINVAL;
296 
297 		switch (sync.flags & DMA_BUF_SYNC_RW) {
298 		case DMA_BUF_SYNC_READ:
299 			direction = DMA_FROM_DEVICE;
300 			break;
301 		case DMA_BUF_SYNC_WRITE:
302 			direction = DMA_TO_DEVICE;
303 			break;
304 		case DMA_BUF_SYNC_RW:
305 			direction = DMA_BIDIRECTIONAL;
306 			break;
307 		default:
308 			return -EINVAL;
309 		}
310 
311 		if (sync.flags & DMA_BUF_SYNC_END)
312 			ret = dma_buf_end_cpu_access(dmabuf, direction);
313 		else
314 			ret = dma_buf_begin_cpu_access(dmabuf, direction);
315 
316 		return ret;
317 	default:
318 		return -ENOTTY;
319 	}
320 }
321 
322 static const struct file_operations dma_buf_fops = {
323 	.release	= dma_buf_release,
324 	.mmap		= dma_buf_mmap_internal,
325 	.llseek		= dma_buf_llseek,
326 	.poll		= dma_buf_poll,
327 	.unlocked_ioctl	= dma_buf_ioctl,
328 #ifdef CONFIG_COMPAT
329 	.compat_ioctl	= dma_buf_ioctl,
330 #endif
331 };
332 
333 /*
334  * is_dma_buf_file - Check if struct file* is associated with dma_buf
335  */
336 static inline int is_dma_buf_file(struct file *file)
337 {
338 	return file->f_op == &dma_buf_fops;
339 }
340 
341 /**
342  * DOC: dma buf device access
343  *
344  * For device DMA access to a shared DMA buffer the usual sequence of operations
345  * is fairly simple:
346  *
347  * 1. The exporter defines his exporter instance using
348  *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
349  *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
350  *    as a file descriptor by calling dma_buf_fd().
351  *
352  * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
353  *    to share with: First the filedescriptor is converted to a &dma_buf using
354  *    dma_buf_get(). Then the buffer is attached to the device using
355  *    dma_buf_attach().
356  *
357  *    Up to this stage the exporter is still free to migrate or reallocate the
358  *    backing storage.
359  *
360  * 3. Once the buffer is attached to all devices userspace can initiate DMA
361  *    access to the shared buffer. In the kernel this is done by calling
362  *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
363  *
364  * 4. Once a driver is done with a shared buffer it needs to call
365  *    dma_buf_detach() (after cleaning up any mappings) and then release the
366  *    reference acquired with dma_buf_get by calling dma_buf_put().
367  *
368  * For the detailed semantics exporters are expected to implement see
369  * &dma_buf_ops.
370  */
371 
372 /**
373  * dma_buf_export - Creates a new dma_buf, and associates an anon file
374  * with this buffer, so it can be exported.
375  * Also connect the allocator specific data and ops to the buffer.
376  * Additionally, provide a name string for exporter; useful in debugging.
377  *
378  * @exp_info:	[in]	holds all the export related information provided
379  *			by the exporter. see &struct dma_buf_export_info
380  *			for further details.
381  *
382  * Returns, on success, a newly created dma_buf object, which wraps the
383  * supplied private data and operations for dma_buf_ops. On either missing
384  * ops, or error in allocating struct dma_buf, will return negative error.
385  *
386  * For most cases the easiest way to create @exp_info is through the
387  * %DEFINE_DMA_BUF_EXPORT_INFO macro.
388  */
389 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
390 {
391 	struct dma_buf *dmabuf;
392 	struct reservation_object *resv = exp_info->resv;
393 	struct file *file;
394 	size_t alloc_size = sizeof(struct dma_buf);
395 	int ret;
396 
397 	if (!exp_info->resv)
398 		alloc_size += sizeof(struct reservation_object);
399 	else
400 		/* prevent &dma_buf[1] == dma_buf->resv */
401 		alloc_size += 1;
402 
403 	if (WARN_ON(!exp_info->priv
404 			  || !exp_info->ops
405 			  || !exp_info->ops->map_dma_buf
406 			  || !exp_info->ops->unmap_dma_buf
407 			  || !exp_info->ops->release
408 			  || !exp_info->ops->mmap)) {
409 		return ERR_PTR(-EINVAL);
410 	}
411 
412 	if (!try_module_get(exp_info->owner))
413 		return ERR_PTR(-ENOENT);
414 
415 	dmabuf = kzalloc(alloc_size, GFP_KERNEL);
416 	if (!dmabuf) {
417 		ret = -ENOMEM;
418 		goto err_module;
419 	}
420 
421 	dmabuf->priv = exp_info->priv;
422 	dmabuf->ops = exp_info->ops;
423 	dmabuf->size = exp_info->size;
424 	dmabuf->exp_name = exp_info->exp_name;
425 	dmabuf->owner = exp_info->owner;
426 	init_waitqueue_head(&dmabuf->poll);
427 	dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
428 	dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
429 
430 	if (!resv) {
431 		resv = (struct reservation_object *)&dmabuf[1];
432 		reservation_object_init(resv);
433 	}
434 	dmabuf->resv = resv;
435 
436 	file = anon_inode_getfile("dmabuf", &dma_buf_fops, dmabuf,
437 					exp_info->flags);
438 	if (IS_ERR(file)) {
439 		ret = PTR_ERR(file);
440 		goto err_dmabuf;
441 	}
442 
443 	file->f_mode |= FMODE_LSEEK;
444 	dmabuf->file = file;
445 
446 	mutex_init(&dmabuf->lock);
447 	INIT_LIST_HEAD(&dmabuf->attachments);
448 
449 	mutex_lock(&db_list.lock);
450 	list_add(&dmabuf->list_node, &db_list.head);
451 	mutex_unlock(&db_list.lock);
452 
453 	return dmabuf;
454 
455 err_dmabuf:
456 	kfree(dmabuf);
457 err_module:
458 	module_put(exp_info->owner);
459 	return ERR_PTR(ret);
460 }
461 EXPORT_SYMBOL_GPL(dma_buf_export);
462 
463 /**
464  * dma_buf_fd - returns a file descriptor for the given dma_buf
465  * @dmabuf:	[in]	pointer to dma_buf for which fd is required.
466  * @flags:      [in]    flags to give to fd
467  *
468  * On success, returns an associated 'fd'. Else, returns error.
469  */
470 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
471 {
472 	int fd;
473 
474 	if (!dmabuf || !dmabuf->file)
475 		return -EINVAL;
476 
477 	fd = get_unused_fd_flags(flags);
478 	if (fd < 0)
479 		return fd;
480 
481 	fd_install(fd, dmabuf->file);
482 
483 	return fd;
484 }
485 EXPORT_SYMBOL_GPL(dma_buf_fd);
486 
487 /**
488  * dma_buf_get - returns the dma_buf structure related to an fd
489  * @fd:	[in]	fd associated with the dma_buf to be returned
490  *
491  * On success, returns the dma_buf structure associated with an fd; uses
492  * file's refcounting done by fget to increase refcount. returns ERR_PTR
493  * otherwise.
494  */
495 struct dma_buf *dma_buf_get(int fd)
496 {
497 	struct file *file;
498 
499 	file = fget(fd);
500 
501 	if (!file)
502 		return ERR_PTR(-EBADF);
503 
504 	if (!is_dma_buf_file(file)) {
505 		fput(file);
506 		return ERR_PTR(-EINVAL);
507 	}
508 
509 	return file->private_data;
510 }
511 EXPORT_SYMBOL_GPL(dma_buf_get);
512 
513 /**
514  * dma_buf_put - decreases refcount of the buffer
515  * @dmabuf:	[in]	buffer to reduce refcount of
516  *
517  * Uses file's refcounting done implicitly by fput().
518  *
519  * If, as a result of this call, the refcount becomes 0, the 'release' file
520  * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
521  * in turn, and frees the memory allocated for dmabuf when exported.
522  */
523 void dma_buf_put(struct dma_buf *dmabuf)
524 {
525 	if (WARN_ON(!dmabuf || !dmabuf->file))
526 		return;
527 
528 	fput(dmabuf->file);
529 }
530 EXPORT_SYMBOL_GPL(dma_buf_put);
531 
532 /**
533  * dma_buf_attach - Add the device to dma_buf's attachments list; optionally,
534  * calls attach() of dma_buf_ops to allow device-specific attach functionality
535  * @dmabuf:	[in]	buffer to attach device to.
536  * @dev:	[in]	device to be attached.
537  *
538  * Returns struct dma_buf_attachment pointer for this attachment. Attachments
539  * must be cleaned up by calling dma_buf_detach().
540  *
541  * Returns:
542  *
543  * A pointer to newly created &dma_buf_attachment on success, or a negative
544  * error code wrapped into a pointer on failure.
545  *
546  * Note that this can fail if the backing storage of @dmabuf is in a place not
547  * accessible to @dev, and cannot be moved to a more suitable place. This is
548  * indicated with the error code -EBUSY.
549  */
550 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
551 					  struct device *dev)
552 {
553 	struct dma_buf_attachment *attach;
554 	int ret;
555 
556 	if (WARN_ON(!dmabuf || !dev))
557 		return ERR_PTR(-EINVAL);
558 
559 	attach = kzalloc(sizeof(*attach), GFP_KERNEL);
560 	if (!attach)
561 		return ERR_PTR(-ENOMEM);
562 
563 	attach->dev = dev;
564 	attach->dmabuf = dmabuf;
565 
566 	mutex_lock(&dmabuf->lock);
567 
568 	if (dmabuf->ops->attach) {
569 		ret = dmabuf->ops->attach(dmabuf, attach);
570 		if (ret)
571 			goto err_attach;
572 	}
573 	list_add(&attach->node, &dmabuf->attachments);
574 
575 	mutex_unlock(&dmabuf->lock);
576 	return attach;
577 
578 err_attach:
579 	kfree(attach);
580 	mutex_unlock(&dmabuf->lock);
581 	return ERR_PTR(ret);
582 }
583 EXPORT_SYMBOL_GPL(dma_buf_attach);
584 
585 /**
586  * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
587  * optionally calls detach() of dma_buf_ops for device-specific detach
588  * @dmabuf:	[in]	buffer to detach from.
589  * @attach:	[in]	attachment to be detached; is free'd after this call.
590  *
591  * Clean up a device attachment obtained by calling dma_buf_attach().
592  */
593 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
594 {
595 	if (WARN_ON(!dmabuf || !attach))
596 		return;
597 
598 	mutex_lock(&dmabuf->lock);
599 	list_del(&attach->node);
600 	if (dmabuf->ops->detach)
601 		dmabuf->ops->detach(dmabuf, attach);
602 
603 	mutex_unlock(&dmabuf->lock);
604 	kfree(attach);
605 }
606 EXPORT_SYMBOL_GPL(dma_buf_detach);
607 
608 /**
609  * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
610  * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
611  * dma_buf_ops.
612  * @attach:	[in]	attachment whose scatterlist is to be returned
613  * @direction:	[in]	direction of DMA transfer
614  *
615  * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
616  * on error. May return -EINTR if it is interrupted by a signal.
617  *
618  * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
619  * the underlying backing storage is pinned for as long as a mapping exists,
620  * therefore users/importers should not hold onto a mapping for undue amounts of
621  * time.
622  */
623 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
624 					enum dma_data_direction direction)
625 {
626 	struct sg_table *sg_table;
627 
628 	might_sleep();
629 
630 	if (WARN_ON(!attach || !attach->dmabuf))
631 		return ERR_PTR(-EINVAL);
632 
633 	sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
634 	if (!sg_table)
635 		sg_table = ERR_PTR(-ENOMEM);
636 
637 	return sg_table;
638 }
639 EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
640 
641 /**
642  * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
643  * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
644  * dma_buf_ops.
645  * @attach:	[in]	attachment to unmap buffer from
646  * @sg_table:	[in]	scatterlist info of the buffer to unmap
647  * @direction:  [in]    direction of DMA transfer
648  *
649  * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
650  */
651 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
652 				struct sg_table *sg_table,
653 				enum dma_data_direction direction)
654 {
655 	might_sleep();
656 
657 	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
658 		return;
659 
660 	attach->dmabuf->ops->unmap_dma_buf(attach, sg_table,
661 						direction);
662 }
663 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
664 
665 /**
666  * DOC: cpu access
667  *
668  * There are mutliple reasons for supporting CPU access to a dma buffer object:
669  *
670  * - Fallback operations in the kernel, for example when a device is connected
671  *   over USB and the kernel needs to shuffle the data around first before
672  *   sending it away. Cache coherency is handled by braketing any transactions
673  *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
674  *   access.
675  *
676  *   To support dma_buf objects residing in highmem cpu access is page-based
677  *   using an api similar to kmap. Accessing a dma_buf is done in aligned chunks
678  *   of PAGE_SIZE size. Before accessing a chunk it needs to be mapped, which
679  *   returns a pointer in kernel virtual address space. Afterwards the chunk
680  *   needs to be unmapped again. There is no limit on how often a given chunk
681  *   can be mapped and unmapped, i.e. the importer does not need to call
682  *   begin_cpu_access again before mapping the same chunk again.
683  *
684  *   Interfaces::
685  *      void \*dma_buf_kmap(struct dma_buf \*, unsigned long);
686  *      void dma_buf_kunmap(struct dma_buf \*, unsigned long, void \*);
687  *
688  *   Implementing the functions is optional for exporters and for importers all
689  *   the restrictions of using kmap apply.
690  *
691  *   dma_buf kmap calls outside of the range specified in begin_cpu_access are
692  *   undefined. If the range is not PAGE_SIZE aligned, kmap needs to succeed on
693  *   the partial chunks at the beginning and end but may return stale or bogus
694  *   data outside of the range (in these partial chunks).
695  *
696  *   For some cases the overhead of kmap can be too high, a vmap interface
697  *   is introduced. This interface should be used very carefully, as vmalloc
698  *   space is a limited resources on many architectures.
699  *
700  *   Interfaces::
701  *      void \*dma_buf_vmap(struct dma_buf \*dmabuf)
702  *      void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
703  *
704  *   The vmap call can fail if there is no vmap support in the exporter, or if
705  *   it runs out of vmalloc space. Fallback to kmap should be implemented. Note
706  *   that the dma-buf layer keeps a reference count for all vmap access and
707  *   calls down into the exporter's vmap function only when no vmapping exists,
708  *   and only unmaps it once. Protection against concurrent vmap/vunmap calls is
709  *   provided by taking the dma_buf->lock mutex.
710  *
711  * - For full compatibility on the importer side with existing userspace
712  *   interfaces, which might already support mmap'ing buffers. This is needed in
713  *   many processing pipelines (e.g. feeding a software rendered image into a
714  *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
715  *   framework already supported this and for DMA buffer file descriptors to
716  *   replace ION buffers mmap support was needed.
717  *
718  *   There is no special interfaces, userspace simply calls mmap on the dma-buf
719  *   fd. But like for CPU access there's a need to braket the actual access,
720  *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
721  *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
722  *   be restarted.
723  *
724  *   Some systems might need some sort of cache coherency management e.g. when
725  *   CPU and GPU domains are being accessed through dma-buf at the same time.
726  *   To circumvent this problem there are begin/end coherency markers, that
727  *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
728  *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
729  *   sequence would be used like following:
730  *
731  *     - mmap dma-buf fd
732  *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
733  *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
734  *       want (with the new data being consumed by say the GPU or the scanout
735  *       device)
736  *     - munmap once you don't need the buffer any more
737  *
738  *    For correctness and optimal performance, it is always required to use
739  *    SYNC_START and SYNC_END before and after, respectively, when accessing the
740  *    mapped address. Userspace cannot rely on coherent access, even when there
741  *    are systems where it just works without calling these ioctls.
742  *
743  * - And as a CPU fallback in userspace processing pipelines.
744  *
745  *   Similar to the motivation for kernel cpu access it is again important that
746  *   the userspace code of a given importing subsystem can use the same
747  *   interfaces with a imported dma-buf buffer object as with a native buffer
748  *   object. This is especially important for drm where the userspace part of
749  *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
750  *   use a different way to mmap a buffer rather invasive.
751  *
752  *   The assumption in the current dma-buf interfaces is that redirecting the
753  *   initial mmap is all that's needed. A survey of some of the existing
754  *   subsystems shows that no driver seems to do any nefarious thing like
755  *   syncing up with outstanding asynchronous processing on the device or
756  *   allocating special resources at fault time. So hopefully this is good
757  *   enough, since adding interfaces to intercept pagefaults and allow pte
758  *   shootdowns would increase the complexity quite a bit.
759  *
760  *   Interface::
761  *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
762  *		       unsigned long);
763  *
764  *   If the importing subsystem simply provides a special-purpose mmap call to
765  *   set up a mapping in userspace, calling do_mmap with dma_buf->file will
766  *   equally achieve that for a dma-buf object.
767  */
768 
769 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
770 				      enum dma_data_direction direction)
771 {
772 	bool write = (direction == DMA_BIDIRECTIONAL ||
773 		      direction == DMA_TO_DEVICE);
774 	struct reservation_object *resv = dmabuf->resv;
775 	long ret;
776 
777 	/* Wait on any implicit rendering fences */
778 	ret = reservation_object_wait_timeout_rcu(resv, write, true,
779 						  MAX_SCHEDULE_TIMEOUT);
780 	if (ret < 0)
781 		return ret;
782 
783 	return 0;
784 }
785 
786 /**
787  * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
788  * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
789  * preparations. Coherency is only guaranteed in the specified range for the
790  * specified access direction.
791  * @dmabuf:	[in]	buffer to prepare cpu access for.
792  * @direction:	[in]	length of range for cpu access.
793  *
794  * After the cpu access is complete the caller should call
795  * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
796  * it guaranteed to be coherent with other DMA access.
797  *
798  * Can return negative error values, returns 0 on success.
799  */
800 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
801 			     enum dma_data_direction direction)
802 {
803 	int ret = 0;
804 
805 	if (WARN_ON(!dmabuf))
806 		return -EINVAL;
807 
808 	if (dmabuf->ops->begin_cpu_access)
809 		ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
810 
811 	/* Ensure that all fences are waited upon - but we first allow
812 	 * the native handler the chance to do so more efficiently if it
813 	 * chooses. A double invocation here will be reasonably cheap no-op.
814 	 */
815 	if (ret == 0)
816 		ret = __dma_buf_begin_cpu_access(dmabuf, direction);
817 
818 	return ret;
819 }
820 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
821 
822 /**
823  * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
824  * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
825  * actions. Coherency is only guaranteed in the specified range for the
826  * specified access direction.
827  * @dmabuf:	[in]	buffer to complete cpu access for.
828  * @direction:	[in]	length of range for cpu access.
829  *
830  * This terminates CPU access started with dma_buf_begin_cpu_access().
831  *
832  * Can return negative error values, returns 0 on success.
833  */
834 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
835 			   enum dma_data_direction direction)
836 {
837 	int ret = 0;
838 
839 	WARN_ON(!dmabuf);
840 
841 	if (dmabuf->ops->end_cpu_access)
842 		ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
843 
844 	return ret;
845 }
846 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
847 
848 /**
849  * dma_buf_kmap - Map a page of the buffer object into kernel address space. The
850  * same restrictions as for kmap and friends apply.
851  * @dmabuf:	[in]	buffer to map page from.
852  * @page_num:	[in]	page in PAGE_SIZE units to map.
853  *
854  * This call must always succeed, any necessary preparations that might fail
855  * need to be done in begin_cpu_access.
856  */
857 void *dma_buf_kmap(struct dma_buf *dmabuf, unsigned long page_num)
858 {
859 	WARN_ON(!dmabuf);
860 
861 	if (!dmabuf->ops->map)
862 		return NULL;
863 	return dmabuf->ops->map(dmabuf, page_num);
864 }
865 EXPORT_SYMBOL_GPL(dma_buf_kmap);
866 
867 /**
868  * dma_buf_kunmap - Unmap a page obtained by dma_buf_kmap.
869  * @dmabuf:	[in]	buffer to unmap page from.
870  * @page_num:	[in]	page in PAGE_SIZE units to unmap.
871  * @vaddr:	[in]	kernel space pointer obtained from dma_buf_kmap.
872  *
873  * This call must always succeed.
874  */
875 void dma_buf_kunmap(struct dma_buf *dmabuf, unsigned long page_num,
876 		    void *vaddr)
877 {
878 	WARN_ON(!dmabuf);
879 
880 	if (dmabuf->ops->unmap)
881 		dmabuf->ops->unmap(dmabuf, page_num, vaddr);
882 }
883 EXPORT_SYMBOL_GPL(dma_buf_kunmap);
884 
885 
886 /**
887  * dma_buf_mmap - Setup up a userspace mmap with the given vma
888  * @dmabuf:	[in]	buffer that should back the vma
889  * @vma:	[in]	vma for the mmap
890  * @pgoff:	[in]	offset in pages where this mmap should start within the
891  *			dma-buf buffer.
892  *
893  * This function adjusts the passed in vma so that it points at the file of the
894  * dma_buf operation. It also adjusts the starting pgoff and does bounds
895  * checking on the size of the vma. Then it calls the exporters mmap function to
896  * set up the mapping.
897  *
898  * Can return negative error values, returns 0 on success.
899  */
900 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
901 		 unsigned long pgoff)
902 {
903 	struct file *oldfile;
904 	int ret;
905 
906 	if (WARN_ON(!dmabuf || !vma))
907 		return -EINVAL;
908 
909 	/* check for offset overflow */
910 	if (pgoff + vma_pages(vma) < pgoff)
911 		return -EOVERFLOW;
912 
913 	/* check for overflowing the buffer's size */
914 	if (pgoff + vma_pages(vma) >
915 	    dmabuf->size >> PAGE_SHIFT)
916 		return -EINVAL;
917 
918 	/* readjust the vma */
919 	get_file(dmabuf->file);
920 	oldfile = vma->vm_file;
921 	vma->vm_file = dmabuf->file;
922 	vma->vm_pgoff = pgoff;
923 
924 	ret = dmabuf->ops->mmap(dmabuf, vma);
925 	if (ret) {
926 		/* restore old parameters on failure */
927 		vma->vm_file = oldfile;
928 		fput(dmabuf->file);
929 	} else {
930 		if (oldfile)
931 			fput(oldfile);
932 	}
933 	return ret;
934 
935 }
936 EXPORT_SYMBOL_GPL(dma_buf_mmap);
937 
938 /**
939  * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
940  * address space. Same restrictions as for vmap and friends apply.
941  * @dmabuf:	[in]	buffer to vmap
942  *
943  * This call may fail due to lack of virtual mapping address space.
944  * These calls are optional in drivers. The intended use for them
945  * is for mapping objects linear in kernel space for high use objects.
946  * Please attempt to use kmap/kunmap before thinking about these interfaces.
947  *
948  * Returns NULL on error.
949  */
950 void *dma_buf_vmap(struct dma_buf *dmabuf)
951 {
952 	void *ptr;
953 
954 	if (WARN_ON(!dmabuf))
955 		return NULL;
956 
957 	if (!dmabuf->ops->vmap)
958 		return NULL;
959 
960 	mutex_lock(&dmabuf->lock);
961 	if (dmabuf->vmapping_counter) {
962 		dmabuf->vmapping_counter++;
963 		BUG_ON(!dmabuf->vmap_ptr);
964 		ptr = dmabuf->vmap_ptr;
965 		goto out_unlock;
966 	}
967 
968 	BUG_ON(dmabuf->vmap_ptr);
969 
970 	ptr = dmabuf->ops->vmap(dmabuf);
971 	if (WARN_ON_ONCE(IS_ERR(ptr)))
972 		ptr = NULL;
973 	if (!ptr)
974 		goto out_unlock;
975 
976 	dmabuf->vmap_ptr = ptr;
977 	dmabuf->vmapping_counter = 1;
978 
979 out_unlock:
980 	mutex_unlock(&dmabuf->lock);
981 	return ptr;
982 }
983 EXPORT_SYMBOL_GPL(dma_buf_vmap);
984 
985 /**
986  * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
987  * @dmabuf:	[in]	buffer to vunmap
988  * @vaddr:	[in]	vmap to vunmap
989  */
990 void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr)
991 {
992 	if (WARN_ON(!dmabuf))
993 		return;
994 
995 	BUG_ON(!dmabuf->vmap_ptr);
996 	BUG_ON(dmabuf->vmapping_counter == 0);
997 	BUG_ON(dmabuf->vmap_ptr != vaddr);
998 
999 	mutex_lock(&dmabuf->lock);
1000 	if (--dmabuf->vmapping_counter == 0) {
1001 		if (dmabuf->ops->vunmap)
1002 			dmabuf->ops->vunmap(dmabuf, vaddr);
1003 		dmabuf->vmap_ptr = NULL;
1004 	}
1005 	mutex_unlock(&dmabuf->lock);
1006 }
1007 EXPORT_SYMBOL_GPL(dma_buf_vunmap);
1008 
1009 #ifdef CONFIG_DEBUG_FS
1010 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1011 {
1012 	int ret;
1013 	struct dma_buf *buf_obj;
1014 	struct dma_buf_attachment *attach_obj;
1015 	struct reservation_object *robj;
1016 	struct reservation_object_list *fobj;
1017 	struct dma_fence *fence;
1018 	unsigned seq;
1019 	int count = 0, attach_count, shared_count, i;
1020 	size_t size = 0;
1021 
1022 	ret = mutex_lock_interruptible(&db_list.lock);
1023 
1024 	if (ret)
1025 		return ret;
1026 
1027 	seq_puts(s, "\nDma-buf Objects:\n");
1028 	seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\n",
1029 		   "size", "flags", "mode", "count");
1030 
1031 	list_for_each_entry(buf_obj, &db_list.head, list_node) {
1032 		ret = mutex_lock_interruptible(&buf_obj->lock);
1033 
1034 		if (ret) {
1035 			seq_puts(s,
1036 				 "\tERROR locking buffer object: skipping\n");
1037 			continue;
1038 		}
1039 
1040 		seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\n",
1041 				buf_obj->size,
1042 				buf_obj->file->f_flags, buf_obj->file->f_mode,
1043 				file_count(buf_obj->file),
1044 				buf_obj->exp_name);
1045 
1046 		robj = buf_obj->resv;
1047 		while (true) {
1048 			seq = read_seqcount_begin(&robj->seq);
1049 			rcu_read_lock();
1050 			fobj = rcu_dereference(robj->fence);
1051 			shared_count = fobj ? fobj->shared_count : 0;
1052 			fence = rcu_dereference(robj->fence_excl);
1053 			if (!read_seqcount_retry(&robj->seq, seq))
1054 				break;
1055 			rcu_read_unlock();
1056 		}
1057 
1058 		if (fence)
1059 			seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1060 				   fence->ops->get_driver_name(fence),
1061 				   fence->ops->get_timeline_name(fence),
1062 				   dma_fence_is_signaled(fence) ? "" : "un");
1063 		for (i = 0; i < shared_count; i++) {
1064 			fence = rcu_dereference(fobj->shared[i]);
1065 			if (!dma_fence_get_rcu(fence))
1066 				continue;
1067 			seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1068 				   fence->ops->get_driver_name(fence),
1069 				   fence->ops->get_timeline_name(fence),
1070 				   dma_fence_is_signaled(fence) ? "" : "un");
1071 		}
1072 		rcu_read_unlock();
1073 
1074 		seq_puts(s, "\tAttached Devices:\n");
1075 		attach_count = 0;
1076 
1077 		list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1078 			seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1079 			attach_count++;
1080 		}
1081 
1082 		seq_printf(s, "Total %d devices attached\n\n",
1083 				attach_count);
1084 
1085 		count++;
1086 		size += buf_obj->size;
1087 		mutex_unlock(&buf_obj->lock);
1088 	}
1089 
1090 	seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1091 
1092 	mutex_unlock(&db_list.lock);
1093 	return 0;
1094 }
1095 
1096 static int dma_buf_debug_open(struct inode *inode, struct file *file)
1097 {
1098 	return single_open(file, dma_buf_debug_show, NULL);
1099 }
1100 
1101 static const struct file_operations dma_buf_debug_fops = {
1102 	.open           = dma_buf_debug_open,
1103 	.read           = seq_read,
1104 	.llseek         = seq_lseek,
1105 	.release        = single_release,
1106 };
1107 
1108 static struct dentry *dma_buf_debugfs_dir;
1109 
1110 static int dma_buf_init_debugfs(void)
1111 {
1112 	struct dentry *d;
1113 	int err = 0;
1114 
1115 	d = debugfs_create_dir("dma_buf", NULL);
1116 	if (IS_ERR(d))
1117 		return PTR_ERR(d);
1118 
1119 	dma_buf_debugfs_dir = d;
1120 
1121 	d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1122 				NULL, &dma_buf_debug_fops);
1123 	if (IS_ERR(d)) {
1124 		pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1125 		debugfs_remove_recursive(dma_buf_debugfs_dir);
1126 		dma_buf_debugfs_dir = NULL;
1127 		err = PTR_ERR(d);
1128 	}
1129 
1130 	return err;
1131 }
1132 
1133 static void dma_buf_uninit_debugfs(void)
1134 {
1135 	debugfs_remove_recursive(dma_buf_debugfs_dir);
1136 }
1137 #else
1138 static inline int dma_buf_init_debugfs(void)
1139 {
1140 	return 0;
1141 }
1142 static inline void dma_buf_uninit_debugfs(void)
1143 {
1144 }
1145 #endif
1146 
1147 static int __init dma_buf_init(void)
1148 {
1149 	mutex_init(&db_list.lock);
1150 	INIT_LIST_HEAD(&db_list.head);
1151 	dma_buf_init_debugfs();
1152 	return 0;
1153 }
1154 subsys_initcall(dma_buf_init);
1155 
1156 static void __exit dma_buf_deinit(void)
1157 {
1158 	dma_buf_uninit_debugfs();
1159 }
1160 __exitcall(dma_buf_deinit);
1161