1 /* 2 * Framework for buffer objects that can be shared across devices/subsystems. 3 * 4 * Copyright(C) 2011 Linaro Limited. All rights reserved. 5 * Author: Sumit Semwal <sumit.semwal@ti.com> 6 * 7 * Many thanks to linaro-mm-sig list, and specially 8 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and 9 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and 10 * refining of this idea. 11 * 12 * This program is free software; you can redistribute it and/or modify it 13 * under the terms of the GNU General Public License version 2 as published by 14 * the Free Software Foundation. 15 * 16 * This program is distributed in the hope that it will be useful, but WITHOUT 17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 19 * more details. 20 * 21 * You should have received a copy of the GNU General Public License along with 22 * this program. If not, see <http://www.gnu.org/licenses/>. 23 */ 24 25 #include <linux/fs.h> 26 #include <linux/slab.h> 27 #include <linux/dma-buf.h> 28 #include <linux/dma-fence.h> 29 #include <linux/anon_inodes.h> 30 #include <linux/export.h> 31 #include <linux/debugfs.h> 32 #include <linux/module.h> 33 #include <linux/seq_file.h> 34 #include <linux/poll.h> 35 #include <linux/reservation.h> 36 #include <linux/mm.h> 37 #include <linux/mount.h> 38 39 #include <uapi/linux/dma-buf.h> 40 #include <uapi/linux/magic.h> 41 42 static inline int is_dma_buf_file(struct file *); 43 44 struct dma_buf_list { 45 struct list_head head; 46 struct mutex lock; 47 }; 48 49 static struct dma_buf_list db_list; 50 51 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen) 52 { 53 struct dma_buf *dmabuf; 54 char name[DMA_BUF_NAME_LEN]; 55 size_t ret = 0; 56 57 dmabuf = dentry->d_fsdata; 58 mutex_lock(&dmabuf->lock); 59 if (dmabuf->name) 60 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN); 61 mutex_unlock(&dmabuf->lock); 62 63 return dynamic_dname(dentry, buffer, buflen, "/%s:%s", 64 dentry->d_name.name, ret > 0 ? name : ""); 65 } 66 67 static const struct dentry_operations dma_buf_dentry_ops = { 68 .d_dname = dmabuffs_dname, 69 }; 70 71 static struct vfsmount *dma_buf_mnt; 72 73 static struct dentry *dma_buf_fs_mount(struct file_system_type *fs_type, 74 int flags, const char *name, void *data) 75 { 76 return mount_pseudo(fs_type, "dmabuf:", NULL, &dma_buf_dentry_ops, 77 DMA_BUF_MAGIC); 78 } 79 80 static struct file_system_type dma_buf_fs_type = { 81 .name = "dmabuf", 82 .mount = dma_buf_fs_mount, 83 .kill_sb = kill_anon_super, 84 }; 85 86 static int dma_buf_release(struct inode *inode, struct file *file) 87 { 88 struct dma_buf *dmabuf; 89 90 if (!is_dma_buf_file(file)) 91 return -EINVAL; 92 93 dmabuf = file->private_data; 94 95 BUG_ON(dmabuf->vmapping_counter); 96 97 /* 98 * Any fences that a dma-buf poll can wait on should be signaled 99 * before releasing dma-buf. This is the responsibility of each 100 * driver that uses the reservation objects. 101 * 102 * If you hit this BUG() it means someone dropped their ref to the 103 * dma-buf while still having pending operation to the buffer. 104 */ 105 BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active); 106 107 dmabuf->ops->release(dmabuf); 108 109 mutex_lock(&db_list.lock); 110 list_del(&dmabuf->list_node); 111 mutex_unlock(&db_list.lock); 112 113 if (dmabuf->resv == (struct reservation_object *)&dmabuf[1]) 114 reservation_object_fini(dmabuf->resv); 115 116 module_put(dmabuf->owner); 117 kfree(dmabuf); 118 return 0; 119 } 120 121 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma) 122 { 123 struct dma_buf *dmabuf; 124 125 if (!is_dma_buf_file(file)) 126 return -EINVAL; 127 128 dmabuf = file->private_data; 129 130 /* check if buffer supports mmap */ 131 if (!dmabuf->ops->mmap) 132 return -EINVAL; 133 134 /* check for overflowing the buffer's size */ 135 if (vma->vm_pgoff + vma_pages(vma) > 136 dmabuf->size >> PAGE_SHIFT) 137 return -EINVAL; 138 139 return dmabuf->ops->mmap(dmabuf, vma); 140 } 141 142 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence) 143 { 144 struct dma_buf *dmabuf; 145 loff_t base; 146 147 if (!is_dma_buf_file(file)) 148 return -EBADF; 149 150 dmabuf = file->private_data; 151 152 /* only support discovering the end of the buffer, 153 but also allow SEEK_SET to maintain the idiomatic 154 SEEK_END(0), SEEK_CUR(0) pattern */ 155 if (whence == SEEK_END) 156 base = dmabuf->size; 157 else if (whence == SEEK_SET) 158 base = 0; 159 else 160 return -EINVAL; 161 162 if (offset != 0) 163 return -EINVAL; 164 165 return base + offset; 166 } 167 168 /** 169 * DOC: fence polling 170 * 171 * To support cross-device and cross-driver synchronization of buffer access 172 * implicit fences (represented internally in the kernel with &struct fence) can 173 * be attached to a &dma_buf. The glue for that and a few related things are 174 * provided in the &reservation_object structure. 175 * 176 * Userspace can query the state of these implicitly tracked fences using poll() 177 * and related system calls: 178 * 179 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the 180 * most recent write or exclusive fence. 181 * 182 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of 183 * all attached fences, shared and exclusive ones. 184 * 185 * Note that this only signals the completion of the respective fences, i.e. the 186 * DMA transfers are complete. Cache flushing and any other necessary 187 * preparations before CPU access can begin still need to happen. 188 */ 189 190 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 191 { 192 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb; 193 unsigned long flags; 194 195 spin_lock_irqsave(&dcb->poll->lock, flags); 196 wake_up_locked_poll(dcb->poll, dcb->active); 197 dcb->active = 0; 198 spin_unlock_irqrestore(&dcb->poll->lock, flags); 199 } 200 201 static __poll_t dma_buf_poll(struct file *file, poll_table *poll) 202 { 203 struct dma_buf *dmabuf; 204 struct reservation_object *resv; 205 struct reservation_object_list *fobj; 206 struct dma_fence *fence_excl; 207 __poll_t events; 208 unsigned shared_count, seq; 209 210 dmabuf = file->private_data; 211 if (!dmabuf || !dmabuf->resv) 212 return EPOLLERR; 213 214 resv = dmabuf->resv; 215 216 poll_wait(file, &dmabuf->poll, poll); 217 218 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT); 219 if (!events) 220 return 0; 221 222 retry: 223 seq = read_seqcount_begin(&resv->seq); 224 rcu_read_lock(); 225 226 fobj = rcu_dereference(resv->fence); 227 if (fobj) 228 shared_count = fobj->shared_count; 229 else 230 shared_count = 0; 231 fence_excl = rcu_dereference(resv->fence_excl); 232 if (read_seqcount_retry(&resv->seq, seq)) { 233 rcu_read_unlock(); 234 goto retry; 235 } 236 237 if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) { 238 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl; 239 __poll_t pevents = EPOLLIN; 240 241 if (shared_count == 0) 242 pevents |= EPOLLOUT; 243 244 spin_lock_irq(&dmabuf->poll.lock); 245 if (dcb->active) { 246 dcb->active |= pevents; 247 events &= ~pevents; 248 } else 249 dcb->active = pevents; 250 spin_unlock_irq(&dmabuf->poll.lock); 251 252 if (events & pevents) { 253 if (!dma_fence_get_rcu(fence_excl)) { 254 /* force a recheck */ 255 events &= ~pevents; 256 dma_buf_poll_cb(NULL, &dcb->cb); 257 } else if (!dma_fence_add_callback(fence_excl, &dcb->cb, 258 dma_buf_poll_cb)) { 259 events &= ~pevents; 260 dma_fence_put(fence_excl); 261 } else { 262 /* 263 * No callback queued, wake up any additional 264 * waiters. 265 */ 266 dma_fence_put(fence_excl); 267 dma_buf_poll_cb(NULL, &dcb->cb); 268 } 269 } 270 } 271 272 if ((events & EPOLLOUT) && shared_count > 0) { 273 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared; 274 int i; 275 276 /* Only queue a new callback if no event has fired yet */ 277 spin_lock_irq(&dmabuf->poll.lock); 278 if (dcb->active) 279 events &= ~EPOLLOUT; 280 else 281 dcb->active = EPOLLOUT; 282 spin_unlock_irq(&dmabuf->poll.lock); 283 284 if (!(events & EPOLLOUT)) 285 goto out; 286 287 for (i = 0; i < shared_count; ++i) { 288 struct dma_fence *fence = rcu_dereference(fobj->shared[i]); 289 290 if (!dma_fence_get_rcu(fence)) { 291 /* 292 * fence refcount dropped to zero, this means 293 * that fobj has been freed 294 * 295 * call dma_buf_poll_cb and force a recheck! 296 */ 297 events &= ~EPOLLOUT; 298 dma_buf_poll_cb(NULL, &dcb->cb); 299 break; 300 } 301 if (!dma_fence_add_callback(fence, &dcb->cb, 302 dma_buf_poll_cb)) { 303 dma_fence_put(fence); 304 events &= ~EPOLLOUT; 305 break; 306 } 307 dma_fence_put(fence); 308 } 309 310 /* No callback queued, wake up any additional waiters. */ 311 if (i == shared_count) 312 dma_buf_poll_cb(NULL, &dcb->cb); 313 } 314 315 out: 316 rcu_read_unlock(); 317 return events; 318 } 319 320 /** 321 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage. 322 * The name of the dma-buf buffer can only be set when the dma-buf is not 323 * attached to any devices. It could theoritically support changing the 324 * name of the dma-buf if the same piece of memory is used for multiple 325 * purpose between different devices. 326 * 327 * @dmabuf [in] dmabuf buffer that will be renamed. 328 * @buf: [in] A piece of userspace memory that contains the name of 329 * the dma-buf. 330 * 331 * Returns 0 on success. If the dma-buf buffer is already attached to 332 * devices, return -EBUSY. 333 * 334 */ 335 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf) 336 { 337 char *name = strndup_user(buf, DMA_BUF_NAME_LEN); 338 long ret = 0; 339 340 if (IS_ERR(name)) 341 return PTR_ERR(name); 342 343 mutex_lock(&dmabuf->lock); 344 if (!list_empty(&dmabuf->attachments)) { 345 ret = -EBUSY; 346 kfree(name); 347 goto out_unlock; 348 } 349 kfree(dmabuf->name); 350 dmabuf->name = name; 351 352 out_unlock: 353 mutex_unlock(&dmabuf->lock); 354 return ret; 355 } 356 357 static long dma_buf_ioctl(struct file *file, 358 unsigned int cmd, unsigned long arg) 359 { 360 struct dma_buf *dmabuf; 361 struct dma_buf_sync sync; 362 enum dma_data_direction direction; 363 int ret; 364 365 dmabuf = file->private_data; 366 367 switch (cmd) { 368 case DMA_BUF_IOCTL_SYNC: 369 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync))) 370 return -EFAULT; 371 372 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK) 373 return -EINVAL; 374 375 switch (sync.flags & DMA_BUF_SYNC_RW) { 376 case DMA_BUF_SYNC_READ: 377 direction = DMA_FROM_DEVICE; 378 break; 379 case DMA_BUF_SYNC_WRITE: 380 direction = DMA_TO_DEVICE; 381 break; 382 case DMA_BUF_SYNC_RW: 383 direction = DMA_BIDIRECTIONAL; 384 break; 385 default: 386 return -EINVAL; 387 } 388 389 if (sync.flags & DMA_BUF_SYNC_END) 390 ret = dma_buf_end_cpu_access(dmabuf, direction); 391 else 392 ret = dma_buf_begin_cpu_access(dmabuf, direction); 393 394 return ret; 395 396 case DMA_BUF_SET_NAME: 397 return dma_buf_set_name(dmabuf, (const char __user *)arg); 398 399 default: 400 return -ENOTTY; 401 } 402 } 403 404 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file) 405 { 406 struct dma_buf *dmabuf = file->private_data; 407 408 seq_printf(m, "size:\t%zu\n", dmabuf->size); 409 /* Don't count the temporary reference taken inside procfs seq_show */ 410 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1); 411 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name); 412 mutex_lock(&dmabuf->lock); 413 if (dmabuf->name) 414 seq_printf(m, "name:\t%s\n", dmabuf->name); 415 mutex_unlock(&dmabuf->lock); 416 } 417 418 static const struct file_operations dma_buf_fops = { 419 .release = dma_buf_release, 420 .mmap = dma_buf_mmap_internal, 421 .llseek = dma_buf_llseek, 422 .poll = dma_buf_poll, 423 .unlocked_ioctl = dma_buf_ioctl, 424 #ifdef CONFIG_COMPAT 425 .compat_ioctl = dma_buf_ioctl, 426 #endif 427 .show_fdinfo = dma_buf_show_fdinfo, 428 }; 429 430 /* 431 * is_dma_buf_file - Check if struct file* is associated with dma_buf 432 */ 433 static inline int is_dma_buf_file(struct file *file) 434 { 435 return file->f_op == &dma_buf_fops; 436 } 437 438 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags) 439 { 440 struct file *file; 441 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb); 442 443 if (IS_ERR(inode)) 444 return ERR_CAST(inode); 445 446 inode->i_size = dmabuf->size; 447 inode_set_bytes(inode, dmabuf->size); 448 449 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf", 450 flags, &dma_buf_fops); 451 if (IS_ERR(file)) 452 goto err_alloc_file; 453 file->f_flags = flags & (O_ACCMODE | O_NONBLOCK); 454 file->private_data = dmabuf; 455 file->f_path.dentry->d_fsdata = dmabuf; 456 457 return file; 458 459 err_alloc_file: 460 iput(inode); 461 return file; 462 } 463 464 /** 465 * DOC: dma buf device access 466 * 467 * For device DMA access to a shared DMA buffer the usual sequence of operations 468 * is fairly simple: 469 * 470 * 1. The exporter defines his exporter instance using 471 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private 472 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace 473 * as a file descriptor by calling dma_buf_fd(). 474 * 475 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer 476 * to share with: First the filedescriptor is converted to a &dma_buf using 477 * dma_buf_get(). Then the buffer is attached to the device using 478 * dma_buf_attach(). 479 * 480 * Up to this stage the exporter is still free to migrate or reallocate the 481 * backing storage. 482 * 483 * 3. Once the buffer is attached to all devices userspace can initiate DMA 484 * access to the shared buffer. In the kernel this is done by calling 485 * dma_buf_map_attachment() and dma_buf_unmap_attachment(). 486 * 487 * 4. Once a driver is done with a shared buffer it needs to call 488 * dma_buf_detach() (after cleaning up any mappings) and then release the 489 * reference acquired with dma_buf_get by calling dma_buf_put(). 490 * 491 * For the detailed semantics exporters are expected to implement see 492 * &dma_buf_ops. 493 */ 494 495 /** 496 * dma_buf_export - Creates a new dma_buf, and associates an anon file 497 * with this buffer, so it can be exported. 498 * Also connect the allocator specific data and ops to the buffer. 499 * Additionally, provide a name string for exporter; useful in debugging. 500 * 501 * @exp_info: [in] holds all the export related information provided 502 * by the exporter. see &struct dma_buf_export_info 503 * for further details. 504 * 505 * Returns, on success, a newly created dma_buf object, which wraps the 506 * supplied private data and operations for dma_buf_ops. On either missing 507 * ops, or error in allocating struct dma_buf, will return negative error. 508 * 509 * For most cases the easiest way to create @exp_info is through the 510 * %DEFINE_DMA_BUF_EXPORT_INFO macro. 511 */ 512 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info) 513 { 514 struct dma_buf *dmabuf; 515 struct reservation_object *resv = exp_info->resv; 516 struct file *file; 517 size_t alloc_size = sizeof(struct dma_buf); 518 int ret; 519 520 if (!exp_info->resv) 521 alloc_size += sizeof(struct reservation_object); 522 else 523 /* prevent &dma_buf[1] == dma_buf->resv */ 524 alloc_size += 1; 525 526 if (WARN_ON(!exp_info->priv 527 || !exp_info->ops 528 || !exp_info->ops->map_dma_buf 529 || !exp_info->ops->unmap_dma_buf 530 || !exp_info->ops->release)) { 531 return ERR_PTR(-EINVAL); 532 } 533 534 if (!try_module_get(exp_info->owner)) 535 return ERR_PTR(-ENOENT); 536 537 dmabuf = kzalloc(alloc_size, GFP_KERNEL); 538 if (!dmabuf) { 539 ret = -ENOMEM; 540 goto err_module; 541 } 542 543 dmabuf->priv = exp_info->priv; 544 dmabuf->ops = exp_info->ops; 545 dmabuf->size = exp_info->size; 546 dmabuf->exp_name = exp_info->exp_name; 547 dmabuf->owner = exp_info->owner; 548 init_waitqueue_head(&dmabuf->poll); 549 dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll; 550 dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0; 551 552 if (!resv) { 553 resv = (struct reservation_object *)&dmabuf[1]; 554 reservation_object_init(resv); 555 } 556 dmabuf->resv = resv; 557 558 file = dma_buf_getfile(dmabuf, exp_info->flags); 559 if (IS_ERR(file)) { 560 ret = PTR_ERR(file); 561 goto err_dmabuf; 562 } 563 564 file->f_mode |= FMODE_LSEEK; 565 dmabuf->file = file; 566 567 mutex_init(&dmabuf->lock); 568 INIT_LIST_HEAD(&dmabuf->attachments); 569 570 mutex_lock(&db_list.lock); 571 list_add(&dmabuf->list_node, &db_list.head); 572 mutex_unlock(&db_list.lock); 573 574 return dmabuf; 575 576 err_dmabuf: 577 kfree(dmabuf); 578 err_module: 579 module_put(exp_info->owner); 580 return ERR_PTR(ret); 581 } 582 EXPORT_SYMBOL_GPL(dma_buf_export); 583 584 /** 585 * dma_buf_fd - returns a file descriptor for the given dma_buf 586 * @dmabuf: [in] pointer to dma_buf for which fd is required. 587 * @flags: [in] flags to give to fd 588 * 589 * On success, returns an associated 'fd'. Else, returns error. 590 */ 591 int dma_buf_fd(struct dma_buf *dmabuf, int flags) 592 { 593 int fd; 594 595 if (!dmabuf || !dmabuf->file) 596 return -EINVAL; 597 598 fd = get_unused_fd_flags(flags); 599 if (fd < 0) 600 return fd; 601 602 fd_install(fd, dmabuf->file); 603 604 return fd; 605 } 606 EXPORT_SYMBOL_GPL(dma_buf_fd); 607 608 /** 609 * dma_buf_get - returns the dma_buf structure related to an fd 610 * @fd: [in] fd associated with the dma_buf to be returned 611 * 612 * On success, returns the dma_buf structure associated with an fd; uses 613 * file's refcounting done by fget to increase refcount. returns ERR_PTR 614 * otherwise. 615 */ 616 struct dma_buf *dma_buf_get(int fd) 617 { 618 struct file *file; 619 620 file = fget(fd); 621 622 if (!file) 623 return ERR_PTR(-EBADF); 624 625 if (!is_dma_buf_file(file)) { 626 fput(file); 627 return ERR_PTR(-EINVAL); 628 } 629 630 return file->private_data; 631 } 632 EXPORT_SYMBOL_GPL(dma_buf_get); 633 634 /** 635 * dma_buf_put - decreases refcount of the buffer 636 * @dmabuf: [in] buffer to reduce refcount of 637 * 638 * Uses file's refcounting done implicitly by fput(). 639 * 640 * If, as a result of this call, the refcount becomes 0, the 'release' file 641 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc 642 * in turn, and frees the memory allocated for dmabuf when exported. 643 */ 644 void dma_buf_put(struct dma_buf *dmabuf) 645 { 646 if (WARN_ON(!dmabuf || !dmabuf->file)) 647 return; 648 649 fput(dmabuf->file); 650 } 651 EXPORT_SYMBOL_GPL(dma_buf_put); 652 653 /** 654 * dma_buf_attach - Add the device to dma_buf's attachments list; optionally, 655 * calls attach() of dma_buf_ops to allow device-specific attach functionality 656 * @dmabuf: [in] buffer to attach device to. 657 * @dev: [in] device to be attached. 658 * 659 * Returns struct dma_buf_attachment pointer for this attachment. Attachments 660 * must be cleaned up by calling dma_buf_detach(). 661 * 662 * Returns: 663 * 664 * A pointer to newly created &dma_buf_attachment on success, or a negative 665 * error code wrapped into a pointer on failure. 666 * 667 * Note that this can fail if the backing storage of @dmabuf is in a place not 668 * accessible to @dev, and cannot be moved to a more suitable place. This is 669 * indicated with the error code -EBUSY. 670 */ 671 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf, 672 struct device *dev) 673 { 674 struct dma_buf_attachment *attach; 675 int ret; 676 677 if (WARN_ON(!dmabuf || !dev)) 678 return ERR_PTR(-EINVAL); 679 680 attach = kzalloc(sizeof(*attach), GFP_KERNEL); 681 if (!attach) 682 return ERR_PTR(-ENOMEM); 683 684 attach->dev = dev; 685 attach->dmabuf = dmabuf; 686 687 mutex_lock(&dmabuf->lock); 688 689 if (dmabuf->ops->attach) { 690 ret = dmabuf->ops->attach(dmabuf, attach); 691 if (ret) 692 goto err_attach; 693 } 694 list_add(&attach->node, &dmabuf->attachments); 695 696 mutex_unlock(&dmabuf->lock); 697 698 return attach; 699 700 err_attach: 701 kfree(attach); 702 mutex_unlock(&dmabuf->lock); 703 return ERR_PTR(ret); 704 } 705 EXPORT_SYMBOL_GPL(dma_buf_attach); 706 707 /** 708 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list; 709 * optionally calls detach() of dma_buf_ops for device-specific detach 710 * @dmabuf: [in] buffer to detach from. 711 * @attach: [in] attachment to be detached; is free'd after this call. 712 * 713 * Clean up a device attachment obtained by calling dma_buf_attach(). 714 */ 715 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach) 716 { 717 if (WARN_ON(!dmabuf || !attach)) 718 return; 719 720 if (attach->sgt) 721 dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir); 722 723 mutex_lock(&dmabuf->lock); 724 list_del(&attach->node); 725 if (dmabuf->ops->detach) 726 dmabuf->ops->detach(dmabuf, attach); 727 728 mutex_unlock(&dmabuf->lock); 729 kfree(attach); 730 } 731 EXPORT_SYMBOL_GPL(dma_buf_detach); 732 733 /** 734 * dma_buf_map_attachment - Returns the scatterlist table of the attachment; 735 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the 736 * dma_buf_ops. 737 * @attach: [in] attachment whose scatterlist is to be returned 738 * @direction: [in] direction of DMA transfer 739 * 740 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR 741 * on error. May return -EINTR if it is interrupted by a signal. 742 * 743 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that 744 * the underlying backing storage is pinned for as long as a mapping exists, 745 * therefore users/importers should not hold onto a mapping for undue amounts of 746 * time. 747 */ 748 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach, 749 enum dma_data_direction direction) 750 { 751 struct sg_table *sg_table; 752 753 might_sleep(); 754 755 if (WARN_ON(!attach || !attach->dmabuf)) 756 return ERR_PTR(-EINVAL); 757 758 if (attach->sgt) { 759 /* 760 * Two mappings with different directions for the same 761 * attachment are not allowed. 762 */ 763 if (attach->dir != direction && 764 attach->dir != DMA_BIDIRECTIONAL) 765 return ERR_PTR(-EBUSY); 766 767 return attach->sgt; 768 } 769 770 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction); 771 if (!sg_table) 772 sg_table = ERR_PTR(-ENOMEM); 773 774 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) { 775 attach->sgt = sg_table; 776 attach->dir = direction; 777 } 778 779 return sg_table; 780 } 781 EXPORT_SYMBOL_GPL(dma_buf_map_attachment); 782 783 /** 784 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might 785 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of 786 * dma_buf_ops. 787 * @attach: [in] attachment to unmap buffer from 788 * @sg_table: [in] scatterlist info of the buffer to unmap 789 * @direction: [in] direction of DMA transfer 790 * 791 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment(). 792 */ 793 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach, 794 struct sg_table *sg_table, 795 enum dma_data_direction direction) 796 { 797 might_sleep(); 798 799 if (WARN_ON(!attach || !attach->dmabuf || !sg_table)) 800 return; 801 802 if (attach->sgt == sg_table) 803 return; 804 805 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction); 806 } 807 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment); 808 809 /** 810 * DOC: cpu access 811 * 812 * There are mutliple reasons for supporting CPU access to a dma buffer object: 813 * 814 * - Fallback operations in the kernel, for example when a device is connected 815 * over USB and the kernel needs to shuffle the data around first before 816 * sending it away. Cache coherency is handled by braketing any transactions 817 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access() 818 * access. 819 * 820 * To support dma_buf objects residing in highmem cpu access is page-based 821 * using an api similar to kmap. Accessing a dma_buf is done in aligned chunks 822 * of PAGE_SIZE size. Before accessing a chunk it needs to be mapped, which 823 * returns a pointer in kernel virtual address space. Afterwards the chunk 824 * needs to be unmapped again. There is no limit on how often a given chunk 825 * can be mapped and unmapped, i.e. the importer does not need to call 826 * begin_cpu_access again before mapping the same chunk again. 827 * 828 * Interfaces:: 829 * void \*dma_buf_kmap(struct dma_buf \*, unsigned long); 830 * void dma_buf_kunmap(struct dma_buf \*, unsigned long, void \*); 831 * 832 * Implementing the functions is optional for exporters and for importers all 833 * the restrictions of using kmap apply. 834 * 835 * dma_buf kmap calls outside of the range specified in begin_cpu_access are 836 * undefined. If the range is not PAGE_SIZE aligned, kmap needs to succeed on 837 * the partial chunks at the beginning and end but may return stale or bogus 838 * data outside of the range (in these partial chunks). 839 * 840 * For some cases the overhead of kmap can be too high, a vmap interface 841 * is introduced. This interface should be used very carefully, as vmalloc 842 * space is a limited resources on many architectures. 843 * 844 * Interfaces:: 845 * void \*dma_buf_vmap(struct dma_buf \*dmabuf) 846 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr) 847 * 848 * The vmap call can fail if there is no vmap support in the exporter, or if 849 * it runs out of vmalloc space. Fallback to kmap should be implemented. Note 850 * that the dma-buf layer keeps a reference count for all vmap access and 851 * calls down into the exporter's vmap function only when no vmapping exists, 852 * and only unmaps it once. Protection against concurrent vmap/vunmap calls is 853 * provided by taking the dma_buf->lock mutex. 854 * 855 * - For full compatibility on the importer side with existing userspace 856 * interfaces, which might already support mmap'ing buffers. This is needed in 857 * many processing pipelines (e.g. feeding a software rendered image into a 858 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION 859 * framework already supported this and for DMA buffer file descriptors to 860 * replace ION buffers mmap support was needed. 861 * 862 * There is no special interfaces, userspace simply calls mmap on the dma-buf 863 * fd. But like for CPU access there's a need to braket the actual access, 864 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that 865 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must 866 * be restarted. 867 * 868 * Some systems might need some sort of cache coherency management e.g. when 869 * CPU and GPU domains are being accessed through dma-buf at the same time. 870 * To circumvent this problem there are begin/end coherency markers, that 871 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace 872 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The 873 * sequence would be used like following: 874 * 875 * - mmap dma-buf fd 876 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write 877 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you 878 * want (with the new data being consumed by say the GPU or the scanout 879 * device) 880 * - munmap once you don't need the buffer any more 881 * 882 * For correctness and optimal performance, it is always required to use 883 * SYNC_START and SYNC_END before and after, respectively, when accessing the 884 * mapped address. Userspace cannot rely on coherent access, even when there 885 * are systems where it just works without calling these ioctls. 886 * 887 * - And as a CPU fallback in userspace processing pipelines. 888 * 889 * Similar to the motivation for kernel cpu access it is again important that 890 * the userspace code of a given importing subsystem can use the same 891 * interfaces with a imported dma-buf buffer object as with a native buffer 892 * object. This is especially important for drm where the userspace part of 893 * contemporary OpenGL, X, and other drivers is huge, and reworking them to 894 * use a different way to mmap a buffer rather invasive. 895 * 896 * The assumption in the current dma-buf interfaces is that redirecting the 897 * initial mmap is all that's needed. A survey of some of the existing 898 * subsystems shows that no driver seems to do any nefarious thing like 899 * syncing up with outstanding asynchronous processing on the device or 900 * allocating special resources at fault time. So hopefully this is good 901 * enough, since adding interfaces to intercept pagefaults and allow pte 902 * shootdowns would increase the complexity quite a bit. 903 * 904 * Interface:: 905 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*, 906 * unsigned long); 907 * 908 * If the importing subsystem simply provides a special-purpose mmap call to 909 * set up a mapping in userspace, calling do_mmap with dma_buf->file will 910 * equally achieve that for a dma-buf object. 911 */ 912 913 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 914 enum dma_data_direction direction) 915 { 916 bool write = (direction == DMA_BIDIRECTIONAL || 917 direction == DMA_TO_DEVICE); 918 struct reservation_object *resv = dmabuf->resv; 919 long ret; 920 921 /* Wait on any implicit rendering fences */ 922 ret = reservation_object_wait_timeout_rcu(resv, write, true, 923 MAX_SCHEDULE_TIMEOUT); 924 if (ret < 0) 925 return ret; 926 927 return 0; 928 } 929 930 /** 931 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the 932 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific 933 * preparations. Coherency is only guaranteed in the specified range for the 934 * specified access direction. 935 * @dmabuf: [in] buffer to prepare cpu access for. 936 * @direction: [in] length of range for cpu access. 937 * 938 * After the cpu access is complete the caller should call 939 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is 940 * it guaranteed to be coherent with other DMA access. 941 * 942 * Can return negative error values, returns 0 on success. 943 */ 944 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 945 enum dma_data_direction direction) 946 { 947 int ret = 0; 948 949 if (WARN_ON(!dmabuf)) 950 return -EINVAL; 951 952 if (dmabuf->ops->begin_cpu_access) 953 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction); 954 955 /* Ensure that all fences are waited upon - but we first allow 956 * the native handler the chance to do so more efficiently if it 957 * chooses. A double invocation here will be reasonably cheap no-op. 958 */ 959 if (ret == 0) 960 ret = __dma_buf_begin_cpu_access(dmabuf, direction); 961 962 return ret; 963 } 964 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access); 965 966 /** 967 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the 968 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific 969 * actions. Coherency is only guaranteed in the specified range for the 970 * specified access direction. 971 * @dmabuf: [in] buffer to complete cpu access for. 972 * @direction: [in] length of range for cpu access. 973 * 974 * This terminates CPU access started with dma_buf_begin_cpu_access(). 975 * 976 * Can return negative error values, returns 0 on success. 977 */ 978 int dma_buf_end_cpu_access(struct dma_buf *dmabuf, 979 enum dma_data_direction direction) 980 { 981 int ret = 0; 982 983 WARN_ON(!dmabuf); 984 985 if (dmabuf->ops->end_cpu_access) 986 ret = dmabuf->ops->end_cpu_access(dmabuf, direction); 987 988 return ret; 989 } 990 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access); 991 992 /** 993 * dma_buf_kmap - Map a page of the buffer object into kernel address space. The 994 * same restrictions as for kmap and friends apply. 995 * @dmabuf: [in] buffer to map page from. 996 * @page_num: [in] page in PAGE_SIZE units to map. 997 * 998 * This call must always succeed, any necessary preparations that might fail 999 * need to be done in begin_cpu_access. 1000 */ 1001 void *dma_buf_kmap(struct dma_buf *dmabuf, unsigned long page_num) 1002 { 1003 WARN_ON(!dmabuf); 1004 1005 if (!dmabuf->ops->map) 1006 return NULL; 1007 return dmabuf->ops->map(dmabuf, page_num); 1008 } 1009 EXPORT_SYMBOL_GPL(dma_buf_kmap); 1010 1011 /** 1012 * dma_buf_kunmap - Unmap a page obtained by dma_buf_kmap. 1013 * @dmabuf: [in] buffer to unmap page from. 1014 * @page_num: [in] page in PAGE_SIZE units to unmap. 1015 * @vaddr: [in] kernel space pointer obtained from dma_buf_kmap. 1016 * 1017 * This call must always succeed. 1018 */ 1019 void dma_buf_kunmap(struct dma_buf *dmabuf, unsigned long page_num, 1020 void *vaddr) 1021 { 1022 WARN_ON(!dmabuf); 1023 1024 if (dmabuf->ops->unmap) 1025 dmabuf->ops->unmap(dmabuf, page_num, vaddr); 1026 } 1027 EXPORT_SYMBOL_GPL(dma_buf_kunmap); 1028 1029 1030 /** 1031 * dma_buf_mmap - Setup up a userspace mmap with the given vma 1032 * @dmabuf: [in] buffer that should back the vma 1033 * @vma: [in] vma for the mmap 1034 * @pgoff: [in] offset in pages where this mmap should start within the 1035 * dma-buf buffer. 1036 * 1037 * This function adjusts the passed in vma so that it points at the file of the 1038 * dma_buf operation. It also adjusts the starting pgoff and does bounds 1039 * checking on the size of the vma. Then it calls the exporters mmap function to 1040 * set up the mapping. 1041 * 1042 * Can return negative error values, returns 0 on success. 1043 */ 1044 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma, 1045 unsigned long pgoff) 1046 { 1047 struct file *oldfile; 1048 int ret; 1049 1050 if (WARN_ON(!dmabuf || !vma)) 1051 return -EINVAL; 1052 1053 /* check if buffer supports mmap */ 1054 if (!dmabuf->ops->mmap) 1055 return -EINVAL; 1056 1057 /* check for offset overflow */ 1058 if (pgoff + vma_pages(vma) < pgoff) 1059 return -EOVERFLOW; 1060 1061 /* check for overflowing the buffer's size */ 1062 if (pgoff + vma_pages(vma) > 1063 dmabuf->size >> PAGE_SHIFT) 1064 return -EINVAL; 1065 1066 /* readjust the vma */ 1067 get_file(dmabuf->file); 1068 oldfile = vma->vm_file; 1069 vma->vm_file = dmabuf->file; 1070 vma->vm_pgoff = pgoff; 1071 1072 ret = dmabuf->ops->mmap(dmabuf, vma); 1073 if (ret) { 1074 /* restore old parameters on failure */ 1075 vma->vm_file = oldfile; 1076 fput(dmabuf->file); 1077 } else { 1078 if (oldfile) 1079 fput(oldfile); 1080 } 1081 return ret; 1082 1083 } 1084 EXPORT_SYMBOL_GPL(dma_buf_mmap); 1085 1086 /** 1087 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel 1088 * address space. Same restrictions as for vmap and friends apply. 1089 * @dmabuf: [in] buffer to vmap 1090 * 1091 * This call may fail due to lack of virtual mapping address space. 1092 * These calls are optional in drivers. The intended use for them 1093 * is for mapping objects linear in kernel space for high use objects. 1094 * Please attempt to use kmap/kunmap before thinking about these interfaces. 1095 * 1096 * Returns NULL on error. 1097 */ 1098 void *dma_buf_vmap(struct dma_buf *dmabuf) 1099 { 1100 void *ptr; 1101 1102 if (WARN_ON(!dmabuf)) 1103 return NULL; 1104 1105 if (!dmabuf->ops->vmap) 1106 return NULL; 1107 1108 mutex_lock(&dmabuf->lock); 1109 if (dmabuf->vmapping_counter) { 1110 dmabuf->vmapping_counter++; 1111 BUG_ON(!dmabuf->vmap_ptr); 1112 ptr = dmabuf->vmap_ptr; 1113 goto out_unlock; 1114 } 1115 1116 BUG_ON(dmabuf->vmap_ptr); 1117 1118 ptr = dmabuf->ops->vmap(dmabuf); 1119 if (WARN_ON_ONCE(IS_ERR(ptr))) 1120 ptr = NULL; 1121 if (!ptr) 1122 goto out_unlock; 1123 1124 dmabuf->vmap_ptr = ptr; 1125 dmabuf->vmapping_counter = 1; 1126 1127 out_unlock: 1128 mutex_unlock(&dmabuf->lock); 1129 return ptr; 1130 } 1131 EXPORT_SYMBOL_GPL(dma_buf_vmap); 1132 1133 /** 1134 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap. 1135 * @dmabuf: [in] buffer to vunmap 1136 * @vaddr: [in] vmap to vunmap 1137 */ 1138 void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr) 1139 { 1140 if (WARN_ON(!dmabuf)) 1141 return; 1142 1143 BUG_ON(!dmabuf->vmap_ptr); 1144 BUG_ON(dmabuf->vmapping_counter == 0); 1145 BUG_ON(dmabuf->vmap_ptr != vaddr); 1146 1147 mutex_lock(&dmabuf->lock); 1148 if (--dmabuf->vmapping_counter == 0) { 1149 if (dmabuf->ops->vunmap) 1150 dmabuf->ops->vunmap(dmabuf, vaddr); 1151 dmabuf->vmap_ptr = NULL; 1152 } 1153 mutex_unlock(&dmabuf->lock); 1154 } 1155 EXPORT_SYMBOL_GPL(dma_buf_vunmap); 1156 1157 #ifdef CONFIG_DEBUG_FS 1158 static int dma_buf_debug_show(struct seq_file *s, void *unused) 1159 { 1160 int ret; 1161 struct dma_buf *buf_obj; 1162 struct dma_buf_attachment *attach_obj; 1163 struct reservation_object *robj; 1164 struct reservation_object_list *fobj; 1165 struct dma_fence *fence; 1166 unsigned seq; 1167 int count = 0, attach_count, shared_count, i; 1168 size_t size = 0; 1169 1170 ret = mutex_lock_interruptible(&db_list.lock); 1171 1172 if (ret) 1173 return ret; 1174 1175 seq_puts(s, "\nDma-buf Objects:\n"); 1176 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n", 1177 "size", "flags", "mode", "count", "ino"); 1178 1179 list_for_each_entry(buf_obj, &db_list.head, list_node) { 1180 ret = mutex_lock_interruptible(&buf_obj->lock); 1181 1182 if (ret) { 1183 seq_puts(s, 1184 "\tERROR locking buffer object: skipping\n"); 1185 continue; 1186 } 1187 1188 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n", 1189 buf_obj->size, 1190 buf_obj->file->f_flags, buf_obj->file->f_mode, 1191 file_count(buf_obj->file), 1192 buf_obj->exp_name, 1193 file_inode(buf_obj->file)->i_ino, 1194 buf_obj->name ?: ""); 1195 1196 robj = buf_obj->resv; 1197 while (true) { 1198 seq = read_seqcount_begin(&robj->seq); 1199 rcu_read_lock(); 1200 fobj = rcu_dereference(robj->fence); 1201 shared_count = fobj ? fobj->shared_count : 0; 1202 fence = rcu_dereference(robj->fence_excl); 1203 if (!read_seqcount_retry(&robj->seq, seq)) 1204 break; 1205 rcu_read_unlock(); 1206 } 1207 1208 if (fence) 1209 seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n", 1210 fence->ops->get_driver_name(fence), 1211 fence->ops->get_timeline_name(fence), 1212 dma_fence_is_signaled(fence) ? "" : "un"); 1213 for (i = 0; i < shared_count; i++) { 1214 fence = rcu_dereference(fobj->shared[i]); 1215 if (!dma_fence_get_rcu(fence)) 1216 continue; 1217 seq_printf(s, "\tShared fence: %s %s %ssignalled\n", 1218 fence->ops->get_driver_name(fence), 1219 fence->ops->get_timeline_name(fence), 1220 dma_fence_is_signaled(fence) ? "" : "un"); 1221 dma_fence_put(fence); 1222 } 1223 rcu_read_unlock(); 1224 1225 seq_puts(s, "\tAttached Devices:\n"); 1226 attach_count = 0; 1227 1228 list_for_each_entry(attach_obj, &buf_obj->attachments, node) { 1229 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev)); 1230 attach_count++; 1231 } 1232 1233 seq_printf(s, "Total %d devices attached\n\n", 1234 attach_count); 1235 1236 count++; 1237 size += buf_obj->size; 1238 mutex_unlock(&buf_obj->lock); 1239 } 1240 1241 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size); 1242 1243 mutex_unlock(&db_list.lock); 1244 return 0; 1245 } 1246 1247 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug); 1248 1249 static struct dentry *dma_buf_debugfs_dir; 1250 1251 static int dma_buf_init_debugfs(void) 1252 { 1253 struct dentry *d; 1254 int err = 0; 1255 1256 d = debugfs_create_dir("dma_buf", NULL); 1257 if (IS_ERR(d)) 1258 return PTR_ERR(d); 1259 1260 dma_buf_debugfs_dir = d; 1261 1262 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir, 1263 NULL, &dma_buf_debug_fops); 1264 if (IS_ERR(d)) { 1265 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n"); 1266 debugfs_remove_recursive(dma_buf_debugfs_dir); 1267 dma_buf_debugfs_dir = NULL; 1268 err = PTR_ERR(d); 1269 } 1270 1271 return err; 1272 } 1273 1274 static void dma_buf_uninit_debugfs(void) 1275 { 1276 debugfs_remove_recursive(dma_buf_debugfs_dir); 1277 } 1278 #else 1279 static inline int dma_buf_init_debugfs(void) 1280 { 1281 return 0; 1282 } 1283 static inline void dma_buf_uninit_debugfs(void) 1284 { 1285 } 1286 #endif 1287 1288 static int __init dma_buf_init(void) 1289 { 1290 dma_buf_mnt = kern_mount(&dma_buf_fs_type); 1291 if (IS_ERR(dma_buf_mnt)) 1292 return PTR_ERR(dma_buf_mnt); 1293 1294 mutex_init(&db_list.lock); 1295 INIT_LIST_HEAD(&db_list.head); 1296 dma_buf_init_debugfs(); 1297 return 0; 1298 } 1299 subsys_initcall(dma_buf_init); 1300 1301 static void __exit dma_buf_deinit(void) 1302 { 1303 dma_buf_uninit_debugfs(); 1304 kern_unmount(dma_buf_mnt); 1305 } 1306 __exitcall(dma_buf_deinit); 1307