1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Framework for buffer objects that can be shared across devices/subsystems. 4 * 5 * Copyright(C) 2011 Linaro Limited. All rights reserved. 6 * Author: Sumit Semwal <sumit.semwal@ti.com> 7 * 8 * Many thanks to linaro-mm-sig list, and specially 9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and 10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and 11 * refining of this idea. 12 */ 13 14 #include <linux/fs.h> 15 #include <linux/slab.h> 16 #include <linux/dma-buf.h> 17 #include <linux/dma-fence.h> 18 #include <linux/anon_inodes.h> 19 #include <linux/export.h> 20 #include <linux/debugfs.h> 21 #include <linux/module.h> 22 #include <linux/seq_file.h> 23 #include <linux/sync_file.h> 24 #include <linux/poll.h> 25 #include <linux/dma-resv.h> 26 #include <linux/mm.h> 27 #include <linux/mount.h> 28 #include <linux/pseudo_fs.h> 29 30 #include <uapi/linux/dma-buf.h> 31 #include <uapi/linux/magic.h> 32 33 #include "dma-buf-sysfs-stats.h" 34 35 static inline int is_dma_buf_file(struct file *); 36 37 struct dma_buf_list { 38 struct list_head head; 39 struct mutex lock; 40 }; 41 42 static struct dma_buf_list db_list; 43 44 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen) 45 { 46 struct dma_buf *dmabuf; 47 char name[DMA_BUF_NAME_LEN]; 48 size_t ret = 0; 49 50 dmabuf = dentry->d_fsdata; 51 spin_lock(&dmabuf->name_lock); 52 if (dmabuf->name) 53 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN); 54 spin_unlock(&dmabuf->name_lock); 55 56 return dynamic_dname(dentry, buffer, buflen, "/%s:%s", 57 dentry->d_name.name, ret > 0 ? name : ""); 58 } 59 60 static void dma_buf_release(struct dentry *dentry) 61 { 62 struct dma_buf *dmabuf; 63 64 dmabuf = dentry->d_fsdata; 65 if (unlikely(!dmabuf)) 66 return; 67 68 BUG_ON(dmabuf->vmapping_counter); 69 70 /* 71 * If you hit this BUG() it could mean: 72 * * There's a file reference imbalance in dma_buf_poll / dma_buf_poll_cb or somewhere else 73 * * dmabuf->cb_in/out.active are non-0 despite no pending fence callback 74 */ 75 BUG_ON(dmabuf->cb_in.active || dmabuf->cb_out.active); 76 77 dma_buf_stats_teardown(dmabuf); 78 dmabuf->ops->release(dmabuf); 79 80 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1]) 81 dma_resv_fini(dmabuf->resv); 82 83 WARN_ON(!list_empty(&dmabuf->attachments)); 84 module_put(dmabuf->owner); 85 kfree(dmabuf->name); 86 kfree(dmabuf); 87 } 88 89 static int dma_buf_file_release(struct inode *inode, struct file *file) 90 { 91 struct dma_buf *dmabuf; 92 93 if (!is_dma_buf_file(file)) 94 return -EINVAL; 95 96 dmabuf = file->private_data; 97 98 mutex_lock(&db_list.lock); 99 list_del(&dmabuf->list_node); 100 mutex_unlock(&db_list.lock); 101 102 return 0; 103 } 104 105 static const struct dentry_operations dma_buf_dentry_ops = { 106 .d_dname = dmabuffs_dname, 107 .d_release = dma_buf_release, 108 }; 109 110 static struct vfsmount *dma_buf_mnt; 111 112 static int dma_buf_fs_init_context(struct fs_context *fc) 113 { 114 struct pseudo_fs_context *ctx; 115 116 ctx = init_pseudo(fc, DMA_BUF_MAGIC); 117 if (!ctx) 118 return -ENOMEM; 119 ctx->dops = &dma_buf_dentry_ops; 120 return 0; 121 } 122 123 static struct file_system_type dma_buf_fs_type = { 124 .name = "dmabuf", 125 .init_fs_context = dma_buf_fs_init_context, 126 .kill_sb = kill_anon_super, 127 }; 128 129 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma) 130 { 131 struct dma_buf *dmabuf; 132 133 if (!is_dma_buf_file(file)) 134 return -EINVAL; 135 136 dmabuf = file->private_data; 137 138 /* check if buffer supports mmap */ 139 if (!dmabuf->ops->mmap) 140 return -EINVAL; 141 142 /* check for overflowing the buffer's size */ 143 if (vma->vm_pgoff + vma_pages(vma) > 144 dmabuf->size >> PAGE_SHIFT) 145 return -EINVAL; 146 147 return dmabuf->ops->mmap(dmabuf, vma); 148 } 149 150 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence) 151 { 152 struct dma_buf *dmabuf; 153 loff_t base; 154 155 if (!is_dma_buf_file(file)) 156 return -EBADF; 157 158 dmabuf = file->private_data; 159 160 /* only support discovering the end of the buffer, 161 but also allow SEEK_SET to maintain the idiomatic 162 SEEK_END(0), SEEK_CUR(0) pattern */ 163 if (whence == SEEK_END) 164 base = dmabuf->size; 165 else if (whence == SEEK_SET) 166 base = 0; 167 else 168 return -EINVAL; 169 170 if (offset != 0) 171 return -EINVAL; 172 173 return base + offset; 174 } 175 176 /** 177 * DOC: implicit fence polling 178 * 179 * To support cross-device and cross-driver synchronization of buffer access 180 * implicit fences (represented internally in the kernel with &struct dma_fence) 181 * can be attached to a &dma_buf. The glue for that and a few related things are 182 * provided in the &dma_resv structure. 183 * 184 * Userspace can query the state of these implicitly tracked fences using poll() 185 * and related system calls: 186 * 187 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the 188 * most recent write or exclusive fence. 189 * 190 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of 191 * all attached fences, shared and exclusive ones. 192 * 193 * Note that this only signals the completion of the respective fences, i.e. the 194 * DMA transfers are complete. Cache flushing and any other necessary 195 * preparations before CPU access can begin still need to happen. 196 * 197 * As an alternative to poll(), the set of fences on DMA buffer can be 198 * exported as a &sync_file using &dma_buf_sync_file_export. 199 */ 200 201 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 202 { 203 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb; 204 struct dma_buf *dmabuf = container_of(dcb->poll, struct dma_buf, poll); 205 unsigned long flags; 206 207 spin_lock_irqsave(&dcb->poll->lock, flags); 208 wake_up_locked_poll(dcb->poll, dcb->active); 209 dcb->active = 0; 210 spin_unlock_irqrestore(&dcb->poll->lock, flags); 211 dma_fence_put(fence); 212 /* Paired with get_file in dma_buf_poll */ 213 fput(dmabuf->file); 214 } 215 216 static bool dma_buf_poll_add_cb(struct dma_resv *resv, bool write, 217 struct dma_buf_poll_cb_t *dcb) 218 { 219 struct dma_resv_iter cursor; 220 struct dma_fence *fence; 221 int r; 222 223 dma_resv_for_each_fence(&cursor, resv, dma_resv_usage_rw(write), 224 fence) { 225 dma_fence_get(fence); 226 r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb); 227 if (!r) 228 return true; 229 dma_fence_put(fence); 230 } 231 232 return false; 233 } 234 235 static __poll_t dma_buf_poll(struct file *file, poll_table *poll) 236 { 237 struct dma_buf *dmabuf; 238 struct dma_resv *resv; 239 __poll_t events; 240 241 dmabuf = file->private_data; 242 if (!dmabuf || !dmabuf->resv) 243 return EPOLLERR; 244 245 resv = dmabuf->resv; 246 247 poll_wait(file, &dmabuf->poll, poll); 248 249 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT); 250 if (!events) 251 return 0; 252 253 dma_resv_lock(resv, NULL); 254 255 if (events & EPOLLOUT) { 256 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_out; 257 258 /* Check that callback isn't busy */ 259 spin_lock_irq(&dmabuf->poll.lock); 260 if (dcb->active) 261 events &= ~EPOLLOUT; 262 else 263 dcb->active = EPOLLOUT; 264 spin_unlock_irq(&dmabuf->poll.lock); 265 266 if (events & EPOLLOUT) { 267 /* Paired with fput in dma_buf_poll_cb */ 268 get_file(dmabuf->file); 269 270 if (!dma_buf_poll_add_cb(resv, true, dcb)) 271 /* No callback queued, wake up any other waiters */ 272 dma_buf_poll_cb(NULL, &dcb->cb); 273 else 274 events &= ~EPOLLOUT; 275 } 276 } 277 278 if (events & EPOLLIN) { 279 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_in; 280 281 /* Check that callback isn't busy */ 282 spin_lock_irq(&dmabuf->poll.lock); 283 if (dcb->active) 284 events &= ~EPOLLIN; 285 else 286 dcb->active = EPOLLIN; 287 spin_unlock_irq(&dmabuf->poll.lock); 288 289 if (events & EPOLLIN) { 290 /* Paired with fput in dma_buf_poll_cb */ 291 get_file(dmabuf->file); 292 293 if (!dma_buf_poll_add_cb(resv, false, dcb)) 294 /* No callback queued, wake up any other waiters */ 295 dma_buf_poll_cb(NULL, &dcb->cb); 296 else 297 events &= ~EPOLLIN; 298 } 299 } 300 301 dma_resv_unlock(resv); 302 return events; 303 } 304 305 /** 306 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage. 307 * It could support changing the name of the dma-buf if the same 308 * piece of memory is used for multiple purpose between different devices. 309 * 310 * @dmabuf: [in] dmabuf buffer that will be renamed. 311 * @buf: [in] A piece of userspace memory that contains the name of 312 * the dma-buf. 313 * 314 * Returns 0 on success. If the dma-buf buffer is already attached to 315 * devices, return -EBUSY. 316 * 317 */ 318 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf) 319 { 320 char *name = strndup_user(buf, DMA_BUF_NAME_LEN); 321 322 if (IS_ERR(name)) 323 return PTR_ERR(name); 324 325 spin_lock(&dmabuf->name_lock); 326 kfree(dmabuf->name); 327 dmabuf->name = name; 328 spin_unlock(&dmabuf->name_lock); 329 330 return 0; 331 } 332 333 #if IS_ENABLED(CONFIG_SYNC_FILE) 334 static long dma_buf_export_sync_file(struct dma_buf *dmabuf, 335 void __user *user_data) 336 { 337 struct dma_buf_export_sync_file arg; 338 enum dma_resv_usage usage; 339 struct dma_fence *fence = NULL; 340 struct sync_file *sync_file; 341 int fd, ret; 342 343 if (copy_from_user(&arg, user_data, sizeof(arg))) 344 return -EFAULT; 345 346 if (arg.flags & ~DMA_BUF_SYNC_RW) 347 return -EINVAL; 348 349 if ((arg.flags & DMA_BUF_SYNC_RW) == 0) 350 return -EINVAL; 351 352 fd = get_unused_fd_flags(O_CLOEXEC); 353 if (fd < 0) 354 return fd; 355 356 usage = dma_resv_usage_rw(arg.flags & DMA_BUF_SYNC_WRITE); 357 ret = dma_resv_get_singleton(dmabuf->resv, usage, &fence); 358 if (ret) 359 goto err_put_fd; 360 361 if (!fence) 362 fence = dma_fence_get_stub(); 363 364 sync_file = sync_file_create(fence); 365 366 dma_fence_put(fence); 367 368 if (!sync_file) { 369 ret = -ENOMEM; 370 goto err_put_fd; 371 } 372 373 arg.fd = fd; 374 if (copy_to_user(user_data, &arg, sizeof(arg))) { 375 ret = -EFAULT; 376 goto err_put_file; 377 } 378 379 fd_install(fd, sync_file->file); 380 381 return 0; 382 383 err_put_file: 384 fput(sync_file->file); 385 err_put_fd: 386 put_unused_fd(fd); 387 return ret; 388 } 389 390 static long dma_buf_import_sync_file(struct dma_buf *dmabuf, 391 const void __user *user_data) 392 { 393 struct dma_buf_import_sync_file arg; 394 struct dma_fence *fence; 395 enum dma_resv_usage usage; 396 int ret = 0; 397 398 if (copy_from_user(&arg, user_data, sizeof(arg))) 399 return -EFAULT; 400 401 if (arg.flags & ~DMA_BUF_SYNC_RW) 402 return -EINVAL; 403 404 if ((arg.flags & DMA_BUF_SYNC_RW) == 0) 405 return -EINVAL; 406 407 fence = sync_file_get_fence(arg.fd); 408 if (!fence) 409 return -EINVAL; 410 411 usage = (arg.flags & DMA_BUF_SYNC_WRITE) ? DMA_RESV_USAGE_WRITE : 412 DMA_RESV_USAGE_READ; 413 414 dma_resv_lock(dmabuf->resv, NULL); 415 416 ret = dma_resv_reserve_fences(dmabuf->resv, 1); 417 if (!ret) 418 dma_resv_add_fence(dmabuf->resv, fence, usage); 419 420 dma_resv_unlock(dmabuf->resv); 421 422 dma_fence_put(fence); 423 424 return ret; 425 } 426 #endif 427 428 static long dma_buf_ioctl(struct file *file, 429 unsigned int cmd, unsigned long arg) 430 { 431 struct dma_buf *dmabuf; 432 struct dma_buf_sync sync; 433 enum dma_data_direction direction; 434 int ret; 435 436 dmabuf = file->private_data; 437 438 switch (cmd) { 439 case DMA_BUF_IOCTL_SYNC: 440 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync))) 441 return -EFAULT; 442 443 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK) 444 return -EINVAL; 445 446 switch (sync.flags & DMA_BUF_SYNC_RW) { 447 case DMA_BUF_SYNC_READ: 448 direction = DMA_FROM_DEVICE; 449 break; 450 case DMA_BUF_SYNC_WRITE: 451 direction = DMA_TO_DEVICE; 452 break; 453 case DMA_BUF_SYNC_RW: 454 direction = DMA_BIDIRECTIONAL; 455 break; 456 default: 457 return -EINVAL; 458 } 459 460 if (sync.flags & DMA_BUF_SYNC_END) 461 ret = dma_buf_end_cpu_access(dmabuf, direction); 462 else 463 ret = dma_buf_begin_cpu_access(dmabuf, direction); 464 465 return ret; 466 467 case DMA_BUF_SET_NAME_A: 468 case DMA_BUF_SET_NAME_B: 469 return dma_buf_set_name(dmabuf, (const char __user *)arg); 470 471 #if IS_ENABLED(CONFIG_SYNC_FILE) 472 case DMA_BUF_IOCTL_EXPORT_SYNC_FILE: 473 return dma_buf_export_sync_file(dmabuf, (void __user *)arg); 474 case DMA_BUF_IOCTL_IMPORT_SYNC_FILE: 475 return dma_buf_import_sync_file(dmabuf, (const void __user *)arg); 476 #endif 477 478 default: 479 return -ENOTTY; 480 } 481 } 482 483 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file) 484 { 485 struct dma_buf *dmabuf = file->private_data; 486 487 seq_printf(m, "size:\t%zu\n", dmabuf->size); 488 /* Don't count the temporary reference taken inside procfs seq_show */ 489 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1); 490 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name); 491 spin_lock(&dmabuf->name_lock); 492 if (dmabuf->name) 493 seq_printf(m, "name:\t%s\n", dmabuf->name); 494 spin_unlock(&dmabuf->name_lock); 495 } 496 497 static const struct file_operations dma_buf_fops = { 498 .release = dma_buf_file_release, 499 .mmap = dma_buf_mmap_internal, 500 .llseek = dma_buf_llseek, 501 .poll = dma_buf_poll, 502 .unlocked_ioctl = dma_buf_ioctl, 503 .compat_ioctl = compat_ptr_ioctl, 504 .show_fdinfo = dma_buf_show_fdinfo, 505 }; 506 507 /* 508 * is_dma_buf_file - Check if struct file* is associated with dma_buf 509 */ 510 static inline int is_dma_buf_file(struct file *file) 511 { 512 return file->f_op == &dma_buf_fops; 513 } 514 515 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags) 516 { 517 static atomic64_t dmabuf_inode = ATOMIC64_INIT(0); 518 struct file *file; 519 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb); 520 521 if (IS_ERR(inode)) 522 return ERR_CAST(inode); 523 524 inode->i_size = dmabuf->size; 525 inode_set_bytes(inode, dmabuf->size); 526 527 /* 528 * The ->i_ino acquired from get_next_ino() is not unique thus 529 * not suitable for using it as dentry name by dmabuf stats. 530 * Override ->i_ino with the unique and dmabuffs specific 531 * value. 532 */ 533 inode->i_ino = atomic64_add_return(1, &dmabuf_inode); 534 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf", 535 flags, &dma_buf_fops); 536 if (IS_ERR(file)) 537 goto err_alloc_file; 538 file->f_flags = flags & (O_ACCMODE | O_NONBLOCK); 539 file->private_data = dmabuf; 540 file->f_path.dentry->d_fsdata = dmabuf; 541 542 return file; 543 544 err_alloc_file: 545 iput(inode); 546 return file; 547 } 548 549 /** 550 * DOC: dma buf device access 551 * 552 * For device DMA access to a shared DMA buffer the usual sequence of operations 553 * is fairly simple: 554 * 555 * 1. The exporter defines his exporter instance using 556 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private 557 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace 558 * as a file descriptor by calling dma_buf_fd(). 559 * 560 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer 561 * to share with: First the file descriptor is converted to a &dma_buf using 562 * dma_buf_get(). Then the buffer is attached to the device using 563 * dma_buf_attach(). 564 * 565 * Up to this stage the exporter is still free to migrate or reallocate the 566 * backing storage. 567 * 568 * 3. Once the buffer is attached to all devices userspace can initiate DMA 569 * access to the shared buffer. In the kernel this is done by calling 570 * dma_buf_map_attachment() and dma_buf_unmap_attachment(). 571 * 572 * 4. Once a driver is done with a shared buffer it needs to call 573 * dma_buf_detach() (after cleaning up any mappings) and then release the 574 * reference acquired with dma_buf_get() by calling dma_buf_put(). 575 * 576 * For the detailed semantics exporters are expected to implement see 577 * &dma_buf_ops. 578 */ 579 580 /** 581 * dma_buf_export - Creates a new dma_buf, and associates an anon file 582 * with this buffer, so it can be exported. 583 * Also connect the allocator specific data and ops to the buffer. 584 * Additionally, provide a name string for exporter; useful in debugging. 585 * 586 * @exp_info: [in] holds all the export related information provided 587 * by the exporter. see &struct dma_buf_export_info 588 * for further details. 589 * 590 * Returns, on success, a newly created struct dma_buf object, which wraps the 591 * supplied private data and operations for struct dma_buf_ops. On either 592 * missing ops, or error in allocating struct dma_buf, will return negative 593 * error. 594 * 595 * For most cases the easiest way to create @exp_info is through the 596 * %DEFINE_DMA_BUF_EXPORT_INFO macro. 597 */ 598 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info) 599 { 600 struct dma_buf *dmabuf; 601 struct dma_resv *resv = exp_info->resv; 602 struct file *file; 603 size_t alloc_size = sizeof(struct dma_buf); 604 int ret; 605 606 if (!exp_info->resv) 607 alloc_size += sizeof(struct dma_resv); 608 else 609 /* prevent &dma_buf[1] == dma_buf->resv */ 610 alloc_size += 1; 611 612 if (WARN_ON(!exp_info->priv 613 || !exp_info->ops 614 || !exp_info->ops->map_dma_buf 615 || !exp_info->ops->unmap_dma_buf 616 || !exp_info->ops->release)) { 617 return ERR_PTR(-EINVAL); 618 } 619 620 if (WARN_ON(exp_info->ops->cache_sgt_mapping && 621 (exp_info->ops->pin || exp_info->ops->unpin))) 622 return ERR_PTR(-EINVAL); 623 624 if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin)) 625 return ERR_PTR(-EINVAL); 626 627 if (!try_module_get(exp_info->owner)) 628 return ERR_PTR(-ENOENT); 629 630 dmabuf = kzalloc(alloc_size, GFP_KERNEL); 631 if (!dmabuf) { 632 ret = -ENOMEM; 633 goto err_module; 634 } 635 636 dmabuf->priv = exp_info->priv; 637 dmabuf->ops = exp_info->ops; 638 dmabuf->size = exp_info->size; 639 dmabuf->exp_name = exp_info->exp_name; 640 dmabuf->owner = exp_info->owner; 641 spin_lock_init(&dmabuf->name_lock); 642 init_waitqueue_head(&dmabuf->poll); 643 dmabuf->cb_in.poll = dmabuf->cb_out.poll = &dmabuf->poll; 644 dmabuf->cb_in.active = dmabuf->cb_out.active = 0; 645 646 if (!resv) { 647 resv = (struct dma_resv *)&dmabuf[1]; 648 dma_resv_init(resv); 649 } 650 dmabuf->resv = resv; 651 652 file = dma_buf_getfile(dmabuf, exp_info->flags); 653 if (IS_ERR(file)) { 654 ret = PTR_ERR(file); 655 goto err_dmabuf; 656 } 657 658 dmabuf->file = file; 659 660 mutex_init(&dmabuf->lock); 661 INIT_LIST_HEAD(&dmabuf->attachments); 662 663 mutex_lock(&db_list.lock); 664 list_add(&dmabuf->list_node, &db_list.head); 665 mutex_unlock(&db_list.lock); 666 667 ret = dma_buf_stats_setup(dmabuf); 668 if (ret) 669 goto err_sysfs; 670 671 return dmabuf; 672 673 err_sysfs: 674 /* 675 * Set file->f_path.dentry->d_fsdata to NULL so that when 676 * dma_buf_release() gets invoked by dentry_ops, it exits 677 * early before calling the release() dma_buf op. 678 */ 679 file->f_path.dentry->d_fsdata = NULL; 680 fput(file); 681 err_dmabuf: 682 kfree(dmabuf); 683 err_module: 684 module_put(exp_info->owner); 685 return ERR_PTR(ret); 686 } 687 EXPORT_SYMBOL_NS_GPL(dma_buf_export, DMA_BUF); 688 689 /** 690 * dma_buf_fd - returns a file descriptor for the given struct dma_buf 691 * @dmabuf: [in] pointer to dma_buf for which fd is required. 692 * @flags: [in] flags to give to fd 693 * 694 * On success, returns an associated 'fd'. Else, returns error. 695 */ 696 int dma_buf_fd(struct dma_buf *dmabuf, int flags) 697 { 698 int fd; 699 700 if (!dmabuf || !dmabuf->file) 701 return -EINVAL; 702 703 fd = get_unused_fd_flags(flags); 704 if (fd < 0) 705 return fd; 706 707 fd_install(fd, dmabuf->file); 708 709 return fd; 710 } 711 EXPORT_SYMBOL_NS_GPL(dma_buf_fd, DMA_BUF); 712 713 /** 714 * dma_buf_get - returns the struct dma_buf related to an fd 715 * @fd: [in] fd associated with the struct dma_buf to be returned 716 * 717 * On success, returns the struct dma_buf associated with an fd; uses 718 * file's refcounting done by fget to increase refcount. returns ERR_PTR 719 * otherwise. 720 */ 721 struct dma_buf *dma_buf_get(int fd) 722 { 723 struct file *file; 724 725 file = fget(fd); 726 727 if (!file) 728 return ERR_PTR(-EBADF); 729 730 if (!is_dma_buf_file(file)) { 731 fput(file); 732 return ERR_PTR(-EINVAL); 733 } 734 735 return file->private_data; 736 } 737 EXPORT_SYMBOL_NS_GPL(dma_buf_get, DMA_BUF); 738 739 /** 740 * dma_buf_put - decreases refcount of the buffer 741 * @dmabuf: [in] buffer to reduce refcount of 742 * 743 * Uses file's refcounting done implicitly by fput(). 744 * 745 * If, as a result of this call, the refcount becomes 0, the 'release' file 746 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc 747 * in turn, and frees the memory allocated for dmabuf when exported. 748 */ 749 void dma_buf_put(struct dma_buf *dmabuf) 750 { 751 if (WARN_ON(!dmabuf || !dmabuf->file)) 752 return; 753 754 fput(dmabuf->file); 755 } 756 EXPORT_SYMBOL_NS_GPL(dma_buf_put, DMA_BUF); 757 758 static void mangle_sg_table(struct sg_table *sg_table) 759 { 760 #ifdef CONFIG_DMABUF_DEBUG 761 int i; 762 struct scatterlist *sg; 763 764 /* To catch abuse of the underlying struct page by importers mix 765 * up the bits, but take care to preserve the low SG_ bits to 766 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf 767 * before passing the sgt back to the exporter. */ 768 for_each_sgtable_sg(sg_table, sg, i) 769 sg->page_link ^= ~0xffUL; 770 #endif 771 772 } 773 static struct sg_table * __map_dma_buf(struct dma_buf_attachment *attach, 774 enum dma_data_direction direction) 775 { 776 struct sg_table *sg_table; 777 signed long ret; 778 779 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction); 780 if (IS_ERR_OR_NULL(sg_table)) 781 return sg_table; 782 783 if (!dma_buf_attachment_is_dynamic(attach)) { 784 ret = dma_resv_wait_timeout(attach->dmabuf->resv, 785 DMA_RESV_USAGE_KERNEL, true, 786 MAX_SCHEDULE_TIMEOUT); 787 if (ret < 0) { 788 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, 789 direction); 790 return ERR_PTR(ret); 791 } 792 } 793 794 mangle_sg_table(sg_table); 795 return sg_table; 796 } 797 798 /** 799 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list 800 * @dmabuf: [in] buffer to attach device to. 801 * @dev: [in] device to be attached. 802 * @importer_ops: [in] importer operations for the attachment 803 * @importer_priv: [in] importer private pointer for the attachment 804 * 805 * Returns struct dma_buf_attachment pointer for this attachment. Attachments 806 * must be cleaned up by calling dma_buf_detach(). 807 * 808 * Optionally this calls &dma_buf_ops.attach to allow device-specific attach 809 * functionality. 810 * 811 * Returns: 812 * 813 * A pointer to newly created &dma_buf_attachment on success, or a negative 814 * error code wrapped into a pointer on failure. 815 * 816 * Note that this can fail if the backing storage of @dmabuf is in a place not 817 * accessible to @dev, and cannot be moved to a more suitable place. This is 818 * indicated with the error code -EBUSY. 819 */ 820 struct dma_buf_attachment * 821 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev, 822 const struct dma_buf_attach_ops *importer_ops, 823 void *importer_priv) 824 { 825 struct dma_buf_attachment *attach; 826 int ret; 827 828 if (WARN_ON(!dmabuf || !dev)) 829 return ERR_PTR(-EINVAL); 830 831 if (WARN_ON(importer_ops && !importer_ops->move_notify)) 832 return ERR_PTR(-EINVAL); 833 834 attach = kzalloc(sizeof(*attach), GFP_KERNEL); 835 if (!attach) 836 return ERR_PTR(-ENOMEM); 837 838 attach->dev = dev; 839 attach->dmabuf = dmabuf; 840 if (importer_ops) 841 attach->peer2peer = importer_ops->allow_peer2peer; 842 attach->importer_ops = importer_ops; 843 attach->importer_priv = importer_priv; 844 845 if (dmabuf->ops->attach) { 846 ret = dmabuf->ops->attach(dmabuf, attach); 847 if (ret) 848 goto err_attach; 849 } 850 dma_resv_lock(dmabuf->resv, NULL); 851 list_add(&attach->node, &dmabuf->attachments); 852 dma_resv_unlock(dmabuf->resv); 853 854 /* When either the importer or the exporter can't handle dynamic 855 * mappings we cache the mapping here to avoid issues with the 856 * reservation object lock. 857 */ 858 if (dma_buf_attachment_is_dynamic(attach) != 859 dma_buf_is_dynamic(dmabuf)) { 860 struct sg_table *sgt; 861 862 if (dma_buf_is_dynamic(attach->dmabuf)) { 863 dma_resv_lock(attach->dmabuf->resv, NULL); 864 ret = dmabuf->ops->pin(attach); 865 if (ret) 866 goto err_unlock; 867 } 868 869 sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL); 870 if (!sgt) 871 sgt = ERR_PTR(-ENOMEM); 872 if (IS_ERR(sgt)) { 873 ret = PTR_ERR(sgt); 874 goto err_unpin; 875 } 876 if (dma_buf_is_dynamic(attach->dmabuf)) 877 dma_resv_unlock(attach->dmabuf->resv); 878 attach->sgt = sgt; 879 attach->dir = DMA_BIDIRECTIONAL; 880 } 881 882 return attach; 883 884 err_attach: 885 kfree(attach); 886 return ERR_PTR(ret); 887 888 err_unpin: 889 if (dma_buf_is_dynamic(attach->dmabuf)) 890 dmabuf->ops->unpin(attach); 891 892 err_unlock: 893 if (dma_buf_is_dynamic(attach->dmabuf)) 894 dma_resv_unlock(attach->dmabuf->resv); 895 896 dma_buf_detach(dmabuf, attach); 897 return ERR_PTR(ret); 898 } 899 EXPORT_SYMBOL_NS_GPL(dma_buf_dynamic_attach, DMA_BUF); 900 901 /** 902 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach 903 * @dmabuf: [in] buffer to attach device to. 904 * @dev: [in] device to be attached. 905 * 906 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static 907 * mapping. 908 */ 909 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf, 910 struct device *dev) 911 { 912 return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL); 913 } 914 EXPORT_SYMBOL_NS_GPL(dma_buf_attach, DMA_BUF); 915 916 static void __unmap_dma_buf(struct dma_buf_attachment *attach, 917 struct sg_table *sg_table, 918 enum dma_data_direction direction) 919 { 920 /* uses XOR, hence this unmangles */ 921 mangle_sg_table(sg_table); 922 923 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction); 924 } 925 926 /** 927 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list 928 * @dmabuf: [in] buffer to detach from. 929 * @attach: [in] attachment to be detached; is free'd after this call. 930 * 931 * Clean up a device attachment obtained by calling dma_buf_attach(). 932 * 933 * Optionally this calls &dma_buf_ops.detach for device-specific detach. 934 */ 935 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach) 936 { 937 if (WARN_ON(!dmabuf || !attach)) 938 return; 939 940 if (attach->sgt) { 941 if (dma_buf_is_dynamic(attach->dmabuf)) 942 dma_resv_lock(attach->dmabuf->resv, NULL); 943 944 __unmap_dma_buf(attach, attach->sgt, attach->dir); 945 946 if (dma_buf_is_dynamic(attach->dmabuf)) { 947 dmabuf->ops->unpin(attach); 948 dma_resv_unlock(attach->dmabuf->resv); 949 } 950 } 951 952 dma_resv_lock(dmabuf->resv, NULL); 953 list_del(&attach->node); 954 dma_resv_unlock(dmabuf->resv); 955 if (dmabuf->ops->detach) 956 dmabuf->ops->detach(dmabuf, attach); 957 958 kfree(attach); 959 } 960 EXPORT_SYMBOL_NS_GPL(dma_buf_detach, DMA_BUF); 961 962 /** 963 * dma_buf_pin - Lock down the DMA-buf 964 * @attach: [in] attachment which should be pinned 965 * 966 * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may 967 * call this, and only for limited use cases like scanout and not for temporary 968 * pin operations. It is not permitted to allow userspace to pin arbitrary 969 * amounts of buffers through this interface. 970 * 971 * Buffers must be unpinned by calling dma_buf_unpin(). 972 * 973 * Returns: 974 * 0 on success, negative error code on failure. 975 */ 976 int dma_buf_pin(struct dma_buf_attachment *attach) 977 { 978 struct dma_buf *dmabuf = attach->dmabuf; 979 int ret = 0; 980 981 WARN_ON(!dma_buf_attachment_is_dynamic(attach)); 982 983 dma_resv_assert_held(dmabuf->resv); 984 985 if (dmabuf->ops->pin) 986 ret = dmabuf->ops->pin(attach); 987 988 return ret; 989 } 990 EXPORT_SYMBOL_NS_GPL(dma_buf_pin, DMA_BUF); 991 992 /** 993 * dma_buf_unpin - Unpin a DMA-buf 994 * @attach: [in] attachment which should be unpinned 995 * 996 * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move 997 * any mapping of @attach again and inform the importer through 998 * &dma_buf_attach_ops.move_notify. 999 */ 1000 void dma_buf_unpin(struct dma_buf_attachment *attach) 1001 { 1002 struct dma_buf *dmabuf = attach->dmabuf; 1003 1004 WARN_ON(!dma_buf_attachment_is_dynamic(attach)); 1005 1006 dma_resv_assert_held(dmabuf->resv); 1007 1008 if (dmabuf->ops->unpin) 1009 dmabuf->ops->unpin(attach); 1010 } 1011 EXPORT_SYMBOL_NS_GPL(dma_buf_unpin, DMA_BUF); 1012 1013 /** 1014 * dma_buf_map_attachment - Returns the scatterlist table of the attachment; 1015 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the 1016 * dma_buf_ops. 1017 * @attach: [in] attachment whose scatterlist is to be returned 1018 * @direction: [in] direction of DMA transfer 1019 * 1020 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR 1021 * on error. May return -EINTR if it is interrupted by a signal. 1022 * 1023 * On success, the DMA addresses and lengths in the returned scatterlist are 1024 * PAGE_SIZE aligned. 1025 * 1026 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that 1027 * the underlying backing storage is pinned for as long as a mapping exists, 1028 * therefore users/importers should not hold onto a mapping for undue amounts of 1029 * time. 1030 * 1031 * Important: Dynamic importers must wait for the exclusive fence of the struct 1032 * dma_resv attached to the DMA-BUF first. 1033 */ 1034 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach, 1035 enum dma_data_direction direction) 1036 { 1037 struct sg_table *sg_table; 1038 int r; 1039 1040 might_sleep(); 1041 1042 if (WARN_ON(!attach || !attach->dmabuf)) 1043 return ERR_PTR(-EINVAL); 1044 1045 if (dma_buf_attachment_is_dynamic(attach)) 1046 dma_resv_assert_held(attach->dmabuf->resv); 1047 1048 if (attach->sgt) { 1049 /* 1050 * Two mappings with different directions for the same 1051 * attachment are not allowed. 1052 */ 1053 if (attach->dir != direction && 1054 attach->dir != DMA_BIDIRECTIONAL) 1055 return ERR_PTR(-EBUSY); 1056 1057 return attach->sgt; 1058 } 1059 1060 if (dma_buf_is_dynamic(attach->dmabuf)) { 1061 dma_resv_assert_held(attach->dmabuf->resv); 1062 if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) { 1063 r = attach->dmabuf->ops->pin(attach); 1064 if (r) 1065 return ERR_PTR(r); 1066 } 1067 } 1068 1069 sg_table = __map_dma_buf(attach, direction); 1070 if (!sg_table) 1071 sg_table = ERR_PTR(-ENOMEM); 1072 1073 if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) && 1074 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 1075 attach->dmabuf->ops->unpin(attach); 1076 1077 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) { 1078 attach->sgt = sg_table; 1079 attach->dir = direction; 1080 } 1081 1082 #ifdef CONFIG_DMA_API_DEBUG 1083 if (!IS_ERR(sg_table)) { 1084 struct scatterlist *sg; 1085 u64 addr; 1086 int len; 1087 int i; 1088 1089 for_each_sgtable_dma_sg(sg_table, sg, i) { 1090 addr = sg_dma_address(sg); 1091 len = sg_dma_len(sg); 1092 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) { 1093 pr_debug("%s: addr %llx or len %x is not page aligned!\n", 1094 __func__, addr, len); 1095 } 1096 } 1097 } 1098 #endif /* CONFIG_DMA_API_DEBUG */ 1099 return sg_table; 1100 } 1101 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment, DMA_BUF); 1102 1103 /** 1104 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might 1105 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of 1106 * dma_buf_ops. 1107 * @attach: [in] attachment to unmap buffer from 1108 * @sg_table: [in] scatterlist info of the buffer to unmap 1109 * @direction: [in] direction of DMA transfer 1110 * 1111 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment(). 1112 */ 1113 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach, 1114 struct sg_table *sg_table, 1115 enum dma_data_direction direction) 1116 { 1117 might_sleep(); 1118 1119 if (WARN_ON(!attach || !attach->dmabuf || !sg_table)) 1120 return; 1121 1122 if (dma_buf_attachment_is_dynamic(attach)) 1123 dma_resv_assert_held(attach->dmabuf->resv); 1124 1125 if (attach->sgt == sg_table) 1126 return; 1127 1128 if (dma_buf_is_dynamic(attach->dmabuf)) 1129 dma_resv_assert_held(attach->dmabuf->resv); 1130 1131 __unmap_dma_buf(attach, sg_table, direction); 1132 1133 if (dma_buf_is_dynamic(attach->dmabuf) && 1134 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) 1135 dma_buf_unpin(attach); 1136 } 1137 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment, DMA_BUF); 1138 1139 /** 1140 * dma_buf_move_notify - notify attachments that DMA-buf is moving 1141 * 1142 * @dmabuf: [in] buffer which is moving 1143 * 1144 * Informs all attachmenst that they need to destroy and recreated all their 1145 * mappings. 1146 */ 1147 void dma_buf_move_notify(struct dma_buf *dmabuf) 1148 { 1149 struct dma_buf_attachment *attach; 1150 1151 dma_resv_assert_held(dmabuf->resv); 1152 1153 list_for_each_entry(attach, &dmabuf->attachments, node) 1154 if (attach->importer_ops) 1155 attach->importer_ops->move_notify(attach); 1156 } 1157 EXPORT_SYMBOL_NS_GPL(dma_buf_move_notify, DMA_BUF); 1158 1159 /** 1160 * DOC: cpu access 1161 * 1162 * There are mutliple reasons for supporting CPU access to a dma buffer object: 1163 * 1164 * - Fallback operations in the kernel, for example when a device is connected 1165 * over USB and the kernel needs to shuffle the data around first before 1166 * sending it away. Cache coherency is handled by braketing any transactions 1167 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access() 1168 * access. 1169 * 1170 * Since for most kernel internal dma-buf accesses need the entire buffer, a 1171 * vmap interface is introduced. Note that on very old 32-bit architectures 1172 * vmalloc space might be limited and result in vmap calls failing. 1173 * 1174 * Interfaces:: 1175 * 1176 * void \*dma_buf_vmap(struct dma_buf \*dmabuf, struct iosys_map \*map) 1177 * void dma_buf_vunmap(struct dma_buf \*dmabuf, struct iosys_map \*map) 1178 * 1179 * The vmap call can fail if there is no vmap support in the exporter, or if 1180 * it runs out of vmalloc space. Note that the dma-buf layer keeps a reference 1181 * count for all vmap access and calls down into the exporter's vmap function 1182 * only when no vmapping exists, and only unmaps it once. Protection against 1183 * concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex. 1184 * 1185 * - For full compatibility on the importer side with existing userspace 1186 * interfaces, which might already support mmap'ing buffers. This is needed in 1187 * many processing pipelines (e.g. feeding a software rendered image into a 1188 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION 1189 * framework already supported this and for DMA buffer file descriptors to 1190 * replace ION buffers mmap support was needed. 1191 * 1192 * There is no special interfaces, userspace simply calls mmap on the dma-buf 1193 * fd. But like for CPU access there's a need to braket the actual access, 1194 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that 1195 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must 1196 * be restarted. 1197 * 1198 * Some systems might need some sort of cache coherency management e.g. when 1199 * CPU and GPU domains are being accessed through dma-buf at the same time. 1200 * To circumvent this problem there are begin/end coherency markers, that 1201 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace 1202 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The 1203 * sequence would be used like following: 1204 * 1205 * - mmap dma-buf fd 1206 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write 1207 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you 1208 * want (with the new data being consumed by say the GPU or the scanout 1209 * device) 1210 * - munmap once you don't need the buffer any more 1211 * 1212 * For correctness and optimal performance, it is always required to use 1213 * SYNC_START and SYNC_END before and after, respectively, when accessing the 1214 * mapped address. Userspace cannot rely on coherent access, even when there 1215 * are systems where it just works without calling these ioctls. 1216 * 1217 * - And as a CPU fallback in userspace processing pipelines. 1218 * 1219 * Similar to the motivation for kernel cpu access it is again important that 1220 * the userspace code of a given importing subsystem can use the same 1221 * interfaces with a imported dma-buf buffer object as with a native buffer 1222 * object. This is especially important for drm where the userspace part of 1223 * contemporary OpenGL, X, and other drivers is huge, and reworking them to 1224 * use a different way to mmap a buffer rather invasive. 1225 * 1226 * The assumption in the current dma-buf interfaces is that redirecting the 1227 * initial mmap is all that's needed. A survey of some of the existing 1228 * subsystems shows that no driver seems to do any nefarious thing like 1229 * syncing up with outstanding asynchronous processing on the device or 1230 * allocating special resources at fault time. So hopefully this is good 1231 * enough, since adding interfaces to intercept pagefaults and allow pte 1232 * shootdowns would increase the complexity quite a bit. 1233 * 1234 * Interface:: 1235 * 1236 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*, 1237 * unsigned long); 1238 * 1239 * If the importing subsystem simply provides a special-purpose mmap call to 1240 * set up a mapping in userspace, calling do_mmap with &dma_buf.file will 1241 * equally achieve that for a dma-buf object. 1242 */ 1243 1244 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1245 enum dma_data_direction direction) 1246 { 1247 bool write = (direction == DMA_BIDIRECTIONAL || 1248 direction == DMA_TO_DEVICE); 1249 struct dma_resv *resv = dmabuf->resv; 1250 long ret; 1251 1252 /* Wait on any implicit rendering fences */ 1253 ret = dma_resv_wait_timeout(resv, dma_resv_usage_rw(write), 1254 true, MAX_SCHEDULE_TIMEOUT); 1255 if (ret < 0) 1256 return ret; 1257 1258 return 0; 1259 } 1260 1261 /** 1262 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the 1263 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific 1264 * preparations. Coherency is only guaranteed in the specified range for the 1265 * specified access direction. 1266 * @dmabuf: [in] buffer to prepare cpu access for. 1267 * @direction: [in] length of range for cpu access. 1268 * 1269 * After the cpu access is complete the caller should call 1270 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is 1271 * it guaranteed to be coherent with other DMA access. 1272 * 1273 * This function will also wait for any DMA transactions tracked through 1274 * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit 1275 * synchronization this function will only ensure cache coherency, callers must 1276 * ensure synchronization with such DMA transactions on their own. 1277 * 1278 * Can return negative error values, returns 0 on success. 1279 */ 1280 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1281 enum dma_data_direction direction) 1282 { 1283 int ret = 0; 1284 1285 if (WARN_ON(!dmabuf)) 1286 return -EINVAL; 1287 1288 might_lock(&dmabuf->resv->lock.base); 1289 1290 if (dmabuf->ops->begin_cpu_access) 1291 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction); 1292 1293 /* Ensure that all fences are waited upon - but we first allow 1294 * the native handler the chance to do so more efficiently if it 1295 * chooses. A double invocation here will be reasonably cheap no-op. 1296 */ 1297 if (ret == 0) 1298 ret = __dma_buf_begin_cpu_access(dmabuf, direction); 1299 1300 return ret; 1301 } 1302 EXPORT_SYMBOL_NS_GPL(dma_buf_begin_cpu_access, DMA_BUF); 1303 1304 /** 1305 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the 1306 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific 1307 * actions. Coherency is only guaranteed in the specified range for the 1308 * specified access direction. 1309 * @dmabuf: [in] buffer to complete cpu access for. 1310 * @direction: [in] length of range for cpu access. 1311 * 1312 * This terminates CPU access started with dma_buf_begin_cpu_access(). 1313 * 1314 * Can return negative error values, returns 0 on success. 1315 */ 1316 int dma_buf_end_cpu_access(struct dma_buf *dmabuf, 1317 enum dma_data_direction direction) 1318 { 1319 int ret = 0; 1320 1321 WARN_ON(!dmabuf); 1322 1323 might_lock(&dmabuf->resv->lock.base); 1324 1325 if (dmabuf->ops->end_cpu_access) 1326 ret = dmabuf->ops->end_cpu_access(dmabuf, direction); 1327 1328 return ret; 1329 } 1330 EXPORT_SYMBOL_NS_GPL(dma_buf_end_cpu_access, DMA_BUF); 1331 1332 1333 /** 1334 * dma_buf_mmap - Setup up a userspace mmap with the given vma 1335 * @dmabuf: [in] buffer that should back the vma 1336 * @vma: [in] vma for the mmap 1337 * @pgoff: [in] offset in pages where this mmap should start within the 1338 * dma-buf buffer. 1339 * 1340 * This function adjusts the passed in vma so that it points at the file of the 1341 * dma_buf operation. It also adjusts the starting pgoff and does bounds 1342 * checking on the size of the vma. Then it calls the exporters mmap function to 1343 * set up the mapping. 1344 * 1345 * Can return negative error values, returns 0 on success. 1346 */ 1347 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma, 1348 unsigned long pgoff) 1349 { 1350 if (WARN_ON(!dmabuf || !vma)) 1351 return -EINVAL; 1352 1353 /* check if buffer supports mmap */ 1354 if (!dmabuf->ops->mmap) 1355 return -EINVAL; 1356 1357 /* check for offset overflow */ 1358 if (pgoff + vma_pages(vma) < pgoff) 1359 return -EOVERFLOW; 1360 1361 /* check for overflowing the buffer's size */ 1362 if (pgoff + vma_pages(vma) > 1363 dmabuf->size >> PAGE_SHIFT) 1364 return -EINVAL; 1365 1366 /* readjust the vma */ 1367 vma_set_file(vma, dmabuf->file); 1368 vma->vm_pgoff = pgoff; 1369 1370 return dmabuf->ops->mmap(dmabuf, vma); 1371 } 1372 EXPORT_SYMBOL_NS_GPL(dma_buf_mmap, DMA_BUF); 1373 1374 /** 1375 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel 1376 * address space. Same restrictions as for vmap and friends apply. 1377 * @dmabuf: [in] buffer to vmap 1378 * @map: [out] returns the vmap pointer 1379 * 1380 * This call may fail due to lack of virtual mapping address space. 1381 * These calls are optional in drivers. The intended use for them 1382 * is for mapping objects linear in kernel space for high use objects. 1383 * 1384 * To ensure coherency users must call dma_buf_begin_cpu_access() and 1385 * dma_buf_end_cpu_access() around any cpu access performed through this 1386 * mapping. 1387 * 1388 * Returns 0 on success, or a negative errno code otherwise. 1389 */ 1390 int dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map) 1391 { 1392 struct iosys_map ptr; 1393 int ret = 0; 1394 1395 iosys_map_clear(map); 1396 1397 if (WARN_ON(!dmabuf)) 1398 return -EINVAL; 1399 1400 if (!dmabuf->ops->vmap) 1401 return -EINVAL; 1402 1403 mutex_lock(&dmabuf->lock); 1404 if (dmabuf->vmapping_counter) { 1405 dmabuf->vmapping_counter++; 1406 BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr)); 1407 *map = dmabuf->vmap_ptr; 1408 goto out_unlock; 1409 } 1410 1411 BUG_ON(iosys_map_is_set(&dmabuf->vmap_ptr)); 1412 1413 ret = dmabuf->ops->vmap(dmabuf, &ptr); 1414 if (WARN_ON_ONCE(ret)) 1415 goto out_unlock; 1416 1417 dmabuf->vmap_ptr = ptr; 1418 dmabuf->vmapping_counter = 1; 1419 1420 *map = dmabuf->vmap_ptr; 1421 1422 out_unlock: 1423 mutex_unlock(&dmabuf->lock); 1424 return ret; 1425 } 1426 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap, DMA_BUF); 1427 1428 /** 1429 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap. 1430 * @dmabuf: [in] buffer to vunmap 1431 * @map: [in] vmap pointer to vunmap 1432 */ 1433 void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map) 1434 { 1435 if (WARN_ON(!dmabuf)) 1436 return; 1437 1438 BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr)); 1439 BUG_ON(dmabuf->vmapping_counter == 0); 1440 BUG_ON(!iosys_map_is_equal(&dmabuf->vmap_ptr, map)); 1441 1442 mutex_lock(&dmabuf->lock); 1443 if (--dmabuf->vmapping_counter == 0) { 1444 if (dmabuf->ops->vunmap) 1445 dmabuf->ops->vunmap(dmabuf, map); 1446 iosys_map_clear(&dmabuf->vmap_ptr); 1447 } 1448 mutex_unlock(&dmabuf->lock); 1449 } 1450 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap, DMA_BUF); 1451 1452 #ifdef CONFIG_DEBUG_FS 1453 static int dma_buf_debug_show(struct seq_file *s, void *unused) 1454 { 1455 struct dma_buf *buf_obj; 1456 struct dma_buf_attachment *attach_obj; 1457 int count = 0, attach_count; 1458 size_t size = 0; 1459 int ret; 1460 1461 ret = mutex_lock_interruptible(&db_list.lock); 1462 1463 if (ret) 1464 return ret; 1465 1466 seq_puts(s, "\nDma-buf Objects:\n"); 1467 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\tname\n", 1468 "size", "flags", "mode", "count", "ino"); 1469 1470 list_for_each_entry(buf_obj, &db_list.head, list_node) { 1471 1472 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL); 1473 if (ret) 1474 goto error_unlock; 1475 1476 1477 spin_lock(&buf_obj->name_lock); 1478 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n", 1479 buf_obj->size, 1480 buf_obj->file->f_flags, buf_obj->file->f_mode, 1481 file_count(buf_obj->file), 1482 buf_obj->exp_name, 1483 file_inode(buf_obj->file)->i_ino, 1484 buf_obj->name ?: "<none>"); 1485 spin_unlock(&buf_obj->name_lock); 1486 1487 dma_resv_describe(buf_obj->resv, s); 1488 1489 seq_puts(s, "\tAttached Devices:\n"); 1490 attach_count = 0; 1491 1492 list_for_each_entry(attach_obj, &buf_obj->attachments, node) { 1493 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev)); 1494 attach_count++; 1495 } 1496 dma_resv_unlock(buf_obj->resv); 1497 1498 seq_printf(s, "Total %d devices attached\n\n", 1499 attach_count); 1500 1501 count++; 1502 size += buf_obj->size; 1503 } 1504 1505 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size); 1506 1507 mutex_unlock(&db_list.lock); 1508 return 0; 1509 1510 error_unlock: 1511 mutex_unlock(&db_list.lock); 1512 return ret; 1513 } 1514 1515 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug); 1516 1517 static struct dentry *dma_buf_debugfs_dir; 1518 1519 static int dma_buf_init_debugfs(void) 1520 { 1521 struct dentry *d; 1522 int err = 0; 1523 1524 d = debugfs_create_dir("dma_buf", NULL); 1525 if (IS_ERR(d)) 1526 return PTR_ERR(d); 1527 1528 dma_buf_debugfs_dir = d; 1529 1530 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir, 1531 NULL, &dma_buf_debug_fops); 1532 if (IS_ERR(d)) { 1533 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n"); 1534 debugfs_remove_recursive(dma_buf_debugfs_dir); 1535 dma_buf_debugfs_dir = NULL; 1536 err = PTR_ERR(d); 1537 } 1538 1539 return err; 1540 } 1541 1542 static void dma_buf_uninit_debugfs(void) 1543 { 1544 debugfs_remove_recursive(dma_buf_debugfs_dir); 1545 } 1546 #else 1547 static inline int dma_buf_init_debugfs(void) 1548 { 1549 return 0; 1550 } 1551 static inline void dma_buf_uninit_debugfs(void) 1552 { 1553 } 1554 #endif 1555 1556 static int __init dma_buf_init(void) 1557 { 1558 int ret; 1559 1560 ret = dma_buf_init_sysfs_statistics(); 1561 if (ret) 1562 return ret; 1563 1564 dma_buf_mnt = kern_mount(&dma_buf_fs_type); 1565 if (IS_ERR(dma_buf_mnt)) 1566 return PTR_ERR(dma_buf_mnt); 1567 1568 mutex_init(&db_list.lock); 1569 INIT_LIST_HEAD(&db_list.head); 1570 dma_buf_init_debugfs(); 1571 return 0; 1572 } 1573 subsys_initcall(dma_buf_init); 1574 1575 static void __exit dma_buf_deinit(void) 1576 { 1577 dma_buf_uninit_debugfs(); 1578 kern_unmount(dma_buf_mnt); 1579 dma_buf_uninit_sysfs_statistics(); 1580 } 1581 __exitcall(dma_buf_deinit); 1582