xref: /linux/drivers/dma-buf/dma-buf.c (revision 69050f8d6d075dc01af7a5f2f550a8067510366f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Framework for buffer objects that can be shared across devices/subsystems.
4  *
5  * Copyright(C) 2011 Linaro Limited. All rights reserved.
6  * Author: Sumit Semwal <sumit.semwal@ti.com>
7  *
8  * Many thanks to linaro-mm-sig list, and specially
9  * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10  * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11  * refining of this idea.
12  */
13 
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/dma-fence-unwrap.h>
19 #include <linux/anon_inodes.h>
20 #include <linux/export.h>
21 #include <linux/debugfs.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/mutex.h>
25 #include <linux/seq_file.h>
26 #include <linux/sync_file.h>
27 #include <linux/poll.h>
28 #include <linux/dma-resv.h>
29 #include <linux/mm.h>
30 #include <linux/mount.h>
31 #include <linux/pseudo_fs.h>
32 
33 #include <uapi/linux/dma-buf.h>
34 #include <uapi/linux/magic.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/dma_buf.h>
38 
39 /*
40  * dmabuf->name must be accessed with holding dmabuf->name_lock.
41  * we need to take the lock around the tracepoint call itself where
42  * it is called in the code.
43  *
44  * Note: FUNC##_enabled() is a static branch that will only
45  *       be set when the trace event is enabled.
46  */
47 #define DMA_BUF_TRACE(FUNC, ...)					\
48 	do {								\
49 		/* Always expose lock if lockdep is enabled */		\
50 		if (IS_ENABLED(CONFIG_LOCKDEP) || FUNC##_enabled()) {	\
51 			guard(spinlock)(&dmabuf->name_lock);		\
52 			FUNC(__VA_ARGS__);				\
53 		}							\
54 	} while (0)
55 
56 /* Wrapper to hide the sg_table page link from the importer */
57 struct dma_buf_sg_table_wrapper {
58 	struct sg_table *original;
59 	struct sg_table wrapper;
60 };
61 
62 static inline int is_dma_buf_file(struct file *);
63 
64 static DEFINE_MUTEX(dmabuf_list_mutex);
65 static LIST_HEAD(dmabuf_list);
66 
67 static void __dma_buf_list_add(struct dma_buf *dmabuf)
68 {
69 	mutex_lock(&dmabuf_list_mutex);
70 	list_add(&dmabuf->list_node, &dmabuf_list);
71 	mutex_unlock(&dmabuf_list_mutex);
72 }
73 
74 static void __dma_buf_list_del(struct dma_buf *dmabuf)
75 {
76 	if (!dmabuf)
77 		return;
78 
79 	mutex_lock(&dmabuf_list_mutex);
80 	list_del(&dmabuf->list_node);
81 	mutex_unlock(&dmabuf_list_mutex);
82 }
83 
84 /**
85  * dma_buf_iter_begin - begin iteration through global list of all DMA buffers
86  *
87  * Returns the first buffer in the global list of DMA-bufs that's not in the
88  * process of being destroyed. Increments that buffer's reference count to
89  * prevent buffer destruction. Callers must release the reference, either by
90  * continuing iteration with dma_buf_iter_next(), or with dma_buf_put().
91  *
92  * Return:
93  * * First buffer from global list, with refcount elevated
94  * * NULL if no active buffers are present
95  */
96 struct dma_buf *dma_buf_iter_begin(void)
97 {
98 	struct dma_buf *ret = NULL, *dmabuf;
99 
100 	/*
101 	 * The list mutex does not protect a dmabuf's refcount, so it can be
102 	 * zeroed while we are iterating. We cannot call get_dma_buf() since the
103 	 * caller may not already own a reference to the buffer.
104 	 */
105 	mutex_lock(&dmabuf_list_mutex);
106 	list_for_each_entry(dmabuf, &dmabuf_list, list_node) {
107 		if (file_ref_get(&dmabuf->file->f_ref)) {
108 			ret = dmabuf;
109 			break;
110 		}
111 	}
112 	mutex_unlock(&dmabuf_list_mutex);
113 	return ret;
114 }
115 
116 /**
117  * dma_buf_iter_next - continue iteration through global list of all DMA buffers
118  * @dmabuf:	[in]	pointer to dma_buf
119  *
120  * Decrements the reference count on the provided buffer. Returns the next
121  * buffer from the remainder of the global list of DMA-bufs with its reference
122  * count incremented. Callers must release the reference, either by continuing
123  * iteration with dma_buf_iter_next(), or with dma_buf_put().
124  *
125  * Return:
126  * * Next buffer from global list, with refcount elevated
127  * * NULL if no additional active buffers are present
128  */
129 struct dma_buf *dma_buf_iter_next(struct dma_buf *dmabuf)
130 {
131 	struct dma_buf *ret = NULL;
132 
133 	/*
134 	 * The list mutex does not protect a dmabuf's refcount, so it can be
135 	 * zeroed while we are iterating. We cannot call get_dma_buf() since the
136 	 * caller may not already own a reference to the buffer.
137 	 */
138 	mutex_lock(&dmabuf_list_mutex);
139 	dma_buf_put(dmabuf);
140 	list_for_each_entry_continue(dmabuf, &dmabuf_list, list_node) {
141 		if (file_ref_get(&dmabuf->file->f_ref)) {
142 			ret = dmabuf;
143 			break;
144 		}
145 	}
146 	mutex_unlock(&dmabuf_list_mutex);
147 	return ret;
148 }
149 
150 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
151 {
152 	struct dma_buf *dmabuf;
153 	char name[DMA_BUF_NAME_LEN];
154 	ssize_t ret = 0;
155 
156 	dmabuf = dentry->d_fsdata;
157 	spin_lock(&dmabuf->name_lock);
158 	if (dmabuf->name)
159 		ret = strscpy(name, dmabuf->name, sizeof(name));
160 	spin_unlock(&dmabuf->name_lock);
161 
162 	return dynamic_dname(buffer, buflen, "/%s:%s",
163 			     dentry->d_name.name, ret > 0 ? name : "");
164 }
165 
166 static void dma_buf_release(struct dentry *dentry)
167 {
168 	struct dma_buf *dmabuf;
169 
170 	dmabuf = dentry->d_fsdata;
171 	if (unlikely(!dmabuf))
172 		return;
173 
174 	BUG_ON(dmabuf->vmapping_counter);
175 
176 	/*
177 	 * If you hit this BUG() it could mean:
178 	 * * There's a file reference imbalance in dma_buf_poll / dma_buf_poll_cb or somewhere else
179 	 * * dmabuf->cb_in/out.active are non-0 despite no pending fence callback
180 	 */
181 	BUG_ON(dmabuf->cb_in.active || dmabuf->cb_out.active);
182 
183 	dmabuf->ops->release(dmabuf);
184 
185 	if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
186 		dma_resv_fini(dmabuf->resv);
187 
188 	WARN_ON(!list_empty(&dmabuf->attachments));
189 	module_put(dmabuf->owner);
190 	kfree(dmabuf->name);
191 	kfree(dmabuf);
192 }
193 
194 static int dma_buf_file_release(struct inode *inode, struct file *file)
195 {
196 	if (!is_dma_buf_file(file))
197 		return -EINVAL;
198 
199 	__dma_buf_list_del(file->private_data);
200 
201 	return 0;
202 }
203 
204 static const struct dentry_operations dma_buf_dentry_ops = {
205 	.d_dname = dmabuffs_dname,
206 	.d_release = dma_buf_release,
207 };
208 
209 static struct vfsmount *dma_buf_mnt;
210 
211 static int dma_buf_fs_init_context(struct fs_context *fc)
212 {
213 	struct pseudo_fs_context *ctx;
214 
215 	ctx = init_pseudo(fc, DMA_BUF_MAGIC);
216 	if (!ctx)
217 		return -ENOMEM;
218 	ctx->dops = &dma_buf_dentry_ops;
219 	return 0;
220 }
221 
222 static struct file_system_type dma_buf_fs_type = {
223 	.name = "dmabuf",
224 	.init_fs_context = dma_buf_fs_init_context,
225 	.kill_sb = kill_anon_super,
226 };
227 
228 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
229 {
230 	struct dma_buf *dmabuf;
231 
232 	if (!is_dma_buf_file(file))
233 		return -EINVAL;
234 
235 	dmabuf = file->private_data;
236 
237 	/* check if buffer supports mmap */
238 	if (!dmabuf->ops->mmap)
239 		return -EINVAL;
240 
241 	/* check for overflowing the buffer's size */
242 	if (vma->vm_pgoff + vma_pages(vma) >
243 	    dmabuf->size >> PAGE_SHIFT)
244 		return -EINVAL;
245 
246 	DMA_BUF_TRACE(trace_dma_buf_mmap_internal, dmabuf);
247 
248 	return dmabuf->ops->mmap(dmabuf, vma);
249 }
250 
251 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
252 {
253 	struct dma_buf *dmabuf;
254 	loff_t base;
255 
256 	if (!is_dma_buf_file(file))
257 		return -EBADF;
258 
259 	dmabuf = file->private_data;
260 
261 	/* only support discovering the end of the buffer,
262 	 * but also allow SEEK_SET to maintain the idiomatic
263 	 * SEEK_END(0), SEEK_CUR(0) pattern.
264 	 */
265 	if (whence == SEEK_END)
266 		base = dmabuf->size;
267 	else if (whence == SEEK_SET)
268 		base = 0;
269 	else
270 		return -EINVAL;
271 
272 	if (offset != 0)
273 		return -EINVAL;
274 
275 	return base + offset;
276 }
277 
278 /**
279  * DOC: implicit fence polling
280  *
281  * To support cross-device and cross-driver synchronization of buffer access
282  * implicit fences (represented internally in the kernel with &struct dma_fence)
283  * can be attached to a &dma_buf. The glue for that and a few related things are
284  * provided in the &dma_resv structure.
285  *
286  * Userspace can query the state of these implicitly tracked fences using poll()
287  * and related system calls:
288  *
289  * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
290  *   most recent write or exclusive fence.
291  *
292  * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
293  *   all attached fences, shared and exclusive ones.
294  *
295  * Note that this only signals the completion of the respective fences, i.e. the
296  * DMA transfers are complete. Cache flushing and any other necessary
297  * preparations before CPU access can begin still need to happen.
298  *
299  * As an alternative to poll(), the set of fences on DMA buffer can be
300  * exported as a &sync_file using &dma_buf_sync_file_export.
301  */
302 
303 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
304 {
305 	struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
306 	struct dma_buf *dmabuf = container_of(dcb->poll, struct dma_buf, poll);
307 	unsigned long flags;
308 
309 	spin_lock_irqsave(&dcb->poll->lock, flags);
310 	wake_up_locked_poll(dcb->poll, dcb->active);
311 	dcb->active = 0;
312 	spin_unlock_irqrestore(&dcb->poll->lock, flags);
313 	dma_fence_put(fence);
314 	/* Paired with get_file in dma_buf_poll */
315 	fput(dmabuf->file);
316 }
317 
318 static bool dma_buf_poll_add_cb(struct dma_resv *resv, bool write,
319 				struct dma_buf_poll_cb_t *dcb)
320 {
321 	struct dma_resv_iter cursor;
322 	struct dma_fence *fence;
323 	int r;
324 
325 	dma_resv_for_each_fence(&cursor, resv, dma_resv_usage_rw(write),
326 				fence) {
327 		dma_fence_get(fence);
328 		r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb);
329 		if (!r)
330 			return true;
331 		dma_fence_put(fence);
332 	}
333 
334 	return false;
335 }
336 
337 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
338 {
339 	struct dma_buf *dmabuf;
340 	struct dma_resv *resv;
341 	__poll_t events;
342 
343 	dmabuf = file->private_data;
344 	if (!dmabuf || !dmabuf->resv)
345 		return EPOLLERR;
346 
347 	resv = dmabuf->resv;
348 
349 	poll_wait(file, &dmabuf->poll, poll);
350 
351 	events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
352 	if (!events)
353 		return 0;
354 
355 	dma_resv_lock(resv, NULL);
356 
357 	if (events & EPOLLOUT) {
358 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_out;
359 
360 		/* Check that callback isn't busy */
361 		spin_lock_irq(&dmabuf->poll.lock);
362 		if (dcb->active)
363 			events &= ~EPOLLOUT;
364 		else
365 			dcb->active = EPOLLOUT;
366 		spin_unlock_irq(&dmabuf->poll.lock);
367 
368 		if (events & EPOLLOUT) {
369 			/* Paired with fput in dma_buf_poll_cb */
370 			get_file(dmabuf->file);
371 
372 			if (!dma_buf_poll_add_cb(resv, true, dcb))
373 				/* No callback queued, wake up any other waiters */
374 				dma_buf_poll_cb(NULL, &dcb->cb);
375 			else
376 				events &= ~EPOLLOUT;
377 		}
378 	}
379 
380 	if (events & EPOLLIN) {
381 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_in;
382 
383 		/* Check that callback isn't busy */
384 		spin_lock_irq(&dmabuf->poll.lock);
385 		if (dcb->active)
386 			events &= ~EPOLLIN;
387 		else
388 			dcb->active = EPOLLIN;
389 		spin_unlock_irq(&dmabuf->poll.lock);
390 
391 		if (events & EPOLLIN) {
392 			/* Paired with fput in dma_buf_poll_cb */
393 			get_file(dmabuf->file);
394 
395 			if (!dma_buf_poll_add_cb(resv, false, dcb))
396 				/* No callback queued, wake up any other waiters */
397 				dma_buf_poll_cb(NULL, &dcb->cb);
398 			else
399 				events &= ~EPOLLIN;
400 		}
401 	}
402 
403 	dma_resv_unlock(resv);
404 	return events;
405 }
406 
407 /**
408  * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
409  * It could support changing the name of the dma-buf if the same
410  * piece of memory is used for multiple purpose between different devices.
411  *
412  * @dmabuf: [in]     dmabuf buffer that will be renamed.
413  * @buf:    [in]     A piece of userspace memory that contains the name of
414  *                   the dma-buf.
415  *
416  * Returns 0 on success. If the dma-buf buffer is already attached to
417  * devices, return -EBUSY.
418  *
419  */
420 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
421 {
422 	char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
423 
424 	if (IS_ERR(name))
425 		return PTR_ERR(name);
426 
427 	spin_lock(&dmabuf->name_lock);
428 	kfree(dmabuf->name);
429 	dmabuf->name = name;
430 	spin_unlock(&dmabuf->name_lock);
431 
432 	return 0;
433 }
434 
435 #if IS_ENABLED(CONFIG_SYNC_FILE)
436 static long dma_buf_export_sync_file(struct dma_buf *dmabuf,
437 				     void __user *user_data)
438 {
439 	struct dma_buf_export_sync_file arg;
440 	enum dma_resv_usage usage;
441 	struct dma_fence *fence = NULL;
442 	struct sync_file *sync_file;
443 	int fd, ret;
444 
445 	if (copy_from_user(&arg, user_data, sizeof(arg)))
446 		return -EFAULT;
447 
448 	if (arg.flags & ~DMA_BUF_SYNC_RW)
449 		return -EINVAL;
450 
451 	if ((arg.flags & DMA_BUF_SYNC_RW) == 0)
452 		return -EINVAL;
453 
454 	fd = get_unused_fd_flags(O_CLOEXEC);
455 	if (fd < 0)
456 		return fd;
457 
458 	usage = dma_resv_usage_rw(arg.flags & DMA_BUF_SYNC_WRITE);
459 	ret = dma_resv_get_singleton(dmabuf->resv, usage, &fence);
460 	if (ret)
461 		goto err_put_fd;
462 
463 	if (!fence)
464 		fence = dma_fence_get_stub();
465 
466 	sync_file = sync_file_create(fence);
467 
468 	dma_fence_put(fence);
469 
470 	if (!sync_file) {
471 		ret = -ENOMEM;
472 		goto err_put_fd;
473 	}
474 
475 	arg.fd = fd;
476 	if (copy_to_user(user_data, &arg, sizeof(arg))) {
477 		ret = -EFAULT;
478 		goto err_put_file;
479 	}
480 
481 	fd_install(fd, sync_file->file);
482 
483 	return 0;
484 
485 err_put_file:
486 	fput(sync_file->file);
487 err_put_fd:
488 	put_unused_fd(fd);
489 	return ret;
490 }
491 
492 static long dma_buf_import_sync_file(struct dma_buf *dmabuf,
493 				     const void __user *user_data)
494 {
495 	struct dma_buf_import_sync_file arg;
496 	struct dma_fence *fence, *f;
497 	enum dma_resv_usage usage;
498 	struct dma_fence_unwrap iter;
499 	unsigned int num_fences;
500 	int ret = 0;
501 
502 	if (copy_from_user(&arg, user_data, sizeof(arg)))
503 		return -EFAULT;
504 
505 	if (arg.flags & ~DMA_BUF_SYNC_RW)
506 		return -EINVAL;
507 
508 	if ((arg.flags & DMA_BUF_SYNC_RW) == 0)
509 		return -EINVAL;
510 
511 	fence = sync_file_get_fence(arg.fd);
512 	if (!fence)
513 		return -EINVAL;
514 
515 	usage = (arg.flags & DMA_BUF_SYNC_WRITE) ? DMA_RESV_USAGE_WRITE :
516 						   DMA_RESV_USAGE_READ;
517 
518 	num_fences = 0;
519 	dma_fence_unwrap_for_each(f, &iter, fence)
520 		++num_fences;
521 
522 	if (num_fences > 0) {
523 		dma_resv_lock(dmabuf->resv, NULL);
524 
525 		ret = dma_resv_reserve_fences(dmabuf->resv, num_fences);
526 		if (!ret) {
527 			dma_fence_unwrap_for_each(f, &iter, fence)
528 				dma_resv_add_fence(dmabuf->resv, f, usage);
529 		}
530 
531 		dma_resv_unlock(dmabuf->resv);
532 	}
533 
534 	dma_fence_put(fence);
535 
536 	return ret;
537 }
538 #endif
539 
540 static long dma_buf_ioctl(struct file *file,
541 			  unsigned int cmd, unsigned long arg)
542 {
543 	struct dma_buf *dmabuf;
544 	struct dma_buf_sync sync;
545 	enum dma_data_direction direction;
546 	int ret;
547 
548 	dmabuf = file->private_data;
549 
550 	switch (cmd) {
551 	case DMA_BUF_IOCTL_SYNC:
552 		if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
553 			return -EFAULT;
554 
555 		if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
556 			return -EINVAL;
557 
558 		switch (sync.flags & DMA_BUF_SYNC_RW) {
559 		case DMA_BUF_SYNC_READ:
560 			direction = DMA_FROM_DEVICE;
561 			break;
562 		case DMA_BUF_SYNC_WRITE:
563 			direction = DMA_TO_DEVICE;
564 			break;
565 		case DMA_BUF_SYNC_RW:
566 			direction = DMA_BIDIRECTIONAL;
567 			break;
568 		default:
569 			return -EINVAL;
570 		}
571 
572 		if (sync.flags & DMA_BUF_SYNC_END)
573 			ret = dma_buf_end_cpu_access(dmabuf, direction);
574 		else
575 			ret = dma_buf_begin_cpu_access(dmabuf, direction);
576 
577 		return ret;
578 
579 	case DMA_BUF_SET_NAME_A:
580 	case DMA_BUF_SET_NAME_B:
581 		return dma_buf_set_name(dmabuf, (const char __user *)arg);
582 
583 #if IS_ENABLED(CONFIG_SYNC_FILE)
584 	case DMA_BUF_IOCTL_EXPORT_SYNC_FILE:
585 		return dma_buf_export_sync_file(dmabuf, (void __user *)arg);
586 	case DMA_BUF_IOCTL_IMPORT_SYNC_FILE:
587 		return dma_buf_import_sync_file(dmabuf, (const void __user *)arg);
588 #endif
589 
590 	default:
591 		return -ENOTTY;
592 	}
593 }
594 
595 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
596 {
597 	struct dma_buf *dmabuf = file->private_data;
598 
599 	seq_printf(m, "size:\t%zu\n", dmabuf->size);
600 	/* Don't count the temporary reference taken inside procfs seq_show */
601 	seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
602 	seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
603 	spin_lock(&dmabuf->name_lock);
604 	if (dmabuf->name)
605 		seq_printf(m, "name:\t%s\n", dmabuf->name);
606 	spin_unlock(&dmabuf->name_lock);
607 }
608 
609 static const struct file_operations dma_buf_fops = {
610 	.release	= dma_buf_file_release,
611 	.mmap		= dma_buf_mmap_internal,
612 	.llseek		= dma_buf_llseek,
613 	.poll		= dma_buf_poll,
614 	.unlocked_ioctl	= dma_buf_ioctl,
615 	.compat_ioctl	= compat_ptr_ioctl,
616 	.show_fdinfo	= dma_buf_show_fdinfo,
617 };
618 
619 /*
620  * is_dma_buf_file - Check if struct file* is associated with dma_buf
621  */
622 static inline int is_dma_buf_file(struct file *file)
623 {
624 	return file->f_op == &dma_buf_fops;
625 }
626 
627 static struct file *dma_buf_getfile(size_t size, int flags)
628 {
629 	static atomic64_t dmabuf_inode = ATOMIC64_INIT(0);
630 	struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
631 	struct file *file;
632 
633 	if (IS_ERR(inode))
634 		return ERR_CAST(inode);
635 
636 	inode->i_size = size;
637 	inode_set_bytes(inode, size);
638 
639 	/*
640 	 * The ->i_ino acquired from get_next_ino() is not unique thus
641 	 * not suitable for using it as dentry name by dmabuf stats.
642 	 * Override ->i_ino with the unique and dmabuffs specific
643 	 * value.
644 	 */
645 	inode->i_ino = atomic64_inc_return(&dmabuf_inode);
646 	flags &= O_ACCMODE | O_NONBLOCK;
647 	file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
648 				 flags, &dma_buf_fops);
649 	if (IS_ERR(file))
650 		goto err_alloc_file;
651 
652 	return file;
653 
654 err_alloc_file:
655 	iput(inode);
656 	return file;
657 }
658 
659 /**
660  * DOC: dma buf device access
661  *
662  * For device DMA access to a shared DMA buffer the usual sequence of operations
663  * is fairly simple:
664  *
665  * 1. The exporter defines his exporter instance using
666  *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
667  *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
668  *    as a file descriptor by calling dma_buf_fd().
669  *
670  * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
671  *    to share with: First the file descriptor is converted to a &dma_buf using
672  *    dma_buf_get(). Then the buffer is attached to the device using
673  *    dma_buf_attach().
674  *
675  *    Up to this stage the exporter is still free to migrate or reallocate the
676  *    backing storage.
677  *
678  * 3. Once the buffer is attached to all devices userspace can initiate DMA
679  *    access to the shared buffer. In the kernel this is done by calling
680  *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
681  *
682  * 4. Once a driver is done with a shared buffer it needs to call
683  *    dma_buf_detach() (after cleaning up any mappings) and then release the
684  *    reference acquired with dma_buf_get() by calling dma_buf_put().
685  *
686  * For the detailed semantics exporters are expected to implement see
687  * &dma_buf_ops.
688  */
689 
690 /**
691  * dma_buf_export - Creates a new dma_buf, and associates an anon file
692  * with this buffer, so it can be exported.
693  * Also connect the allocator specific data and ops to the buffer.
694  * Additionally, provide a name string for exporter; useful in debugging.
695  *
696  * @exp_info:	[in]	holds all the export related information provided
697  *			by the exporter. see &struct dma_buf_export_info
698  *			for further details.
699  *
700  * Returns, on success, a newly created struct dma_buf object, which wraps the
701  * supplied private data and operations for struct dma_buf_ops. On either
702  * missing ops, or error in allocating struct dma_buf, will return negative
703  * error.
704  *
705  * For most cases the easiest way to create @exp_info is through the
706  * %DEFINE_DMA_BUF_EXPORT_INFO macro.
707  */
708 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
709 {
710 	struct dma_buf *dmabuf;
711 	struct dma_resv *resv = exp_info->resv;
712 	struct file *file;
713 	size_t alloc_size = sizeof(struct dma_buf);
714 	int ret;
715 
716 	if (WARN_ON(!exp_info->priv || !exp_info->ops
717 		    || !exp_info->ops->map_dma_buf
718 		    || !exp_info->ops->unmap_dma_buf
719 		    || !exp_info->ops->release))
720 		return ERR_PTR(-EINVAL);
721 
722 	if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
723 		return ERR_PTR(-EINVAL);
724 
725 	if (!try_module_get(exp_info->owner))
726 		return ERR_PTR(-ENOENT);
727 
728 	file = dma_buf_getfile(exp_info->size, exp_info->flags);
729 	if (IS_ERR(file)) {
730 		ret = PTR_ERR(file);
731 		goto err_module;
732 	}
733 
734 	if (!exp_info->resv)
735 		alloc_size += sizeof(struct dma_resv);
736 	else
737 		/* prevent &dma_buf[1] == dma_buf->resv */
738 		alloc_size += 1;
739 	dmabuf = kzalloc(alloc_size, GFP_KERNEL);
740 	if (!dmabuf) {
741 		ret = -ENOMEM;
742 		goto err_file;
743 	}
744 
745 	dmabuf->priv = exp_info->priv;
746 	dmabuf->ops = exp_info->ops;
747 	dmabuf->size = exp_info->size;
748 	dmabuf->exp_name = exp_info->exp_name;
749 	dmabuf->owner = exp_info->owner;
750 	spin_lock_init(&dmabuf->name_lock);
751 	init_waitqueue_head(&dmabuf->poll);
752 	dmabuf->cb_in.poll = dmabuf->cb_out.poll = &dmabuf->poll;
753 	dmabuf->cb_in.active = dmabuf->cb_out.active = 0;
754 	INIT_LIST_HEAD(&dmabuf->attachments);
755 
756 	if (!resv) {
757 		dmabuf->resv = (struct dma_resv *)&dmabuf[1];
758 		dma_resv_init(dmabuf->resv);
759 	} else {
760 		dmabuf->resv = resv;
761 	}
762 
763 	file->private_data = dmabuf;
764 	file->f_path.dentry->d_fsdata = dmabuf;
765 	dmabuf->file = file;
766 
767 	__dma_buf_list_add(dmabuf);
768 
769 	DMA_BUF_TRACE(trace_dma_buf_export, dmabuf);
770 
771 	return dmabuf;
772 
773 err_file:
774 	fput(file);
775 err_module:
776 	module_put(exp_info->owner);
777 	return ERR_PTR(ret);
778 }
779 EXPORT_SYMBOL_NS_GPL(dma_buf_export, "DMA_BUF");
780 
781 /**
782  * dma_buf_fd - returns a file descriptor for the given struct dma_buf
783  * @dmabuf:	[in]	pointer to dma_buf for which fd is required.
784  * @flags:      [in]    flags to give to fd
785  *
786  * On success, returns an associated 'fd'. Else, returns error.
787  */
788 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
789 {
790 	int fd;
791 
792 	if (!dmabuf || !dmabuf->file)
793 		return -EINVAL;
794 
795 	fd = FD_ADD(flags, dmabuf->file);
796 	DMA_BUF_TRACE(trace_dma_buf_fd, dmabuf, fd);
797 
798 	return fd;
799 }
800 EXPORT_SYMBOL_NS_GPL(dma_buf_fd, "DMA_BUF");
801 
802 /**
803  * dma_buf_get - returns the struct dma_buf related to an fd
804  * @fd:	[in]	fd associated with the struct dma_buf to be returned
805  *
806  * On success, returns the struct dma_buf associated with an fd; uses
807  * file's refcounting done by fget to increase refcount. returns ERR_PTR
808  * otherwise.
809  */
810 struct dma_buf *dma_buf_get(int fd)
811 {
812 	struct file *file;
813 	struct dma_buf *dmabuf;
814 
815 	file = fget(fd);
816 
817 	if (!file)
818 		return ERR_PTR(-EBADF);
819 
820 	if (!is_dma_buf_file(file)) {
821 		fput(file);
822 		return ERR_PTR(-EINVAL);
823 	}
824 
825 	dmabuf = file->private_data;
826 
827 	DMA_BUF_TRACE(trace_dma_buf_get, dmabuf, fd);
828 
829 	return dmabuf;
830 }
831 EXPORT_SYMBOL_NS_GPL(dma_buf_get, "DMA_BUF");
832 
833 /**
834  * dma_buf_put - decreases refcount of the buffer
835  * @dmabuf:	[in]	buffer to reduce refcount of
836  *
837  * Uses file's refcounting done implicitly by fput().
838  *
839  * If, as a result of this call, the refcount becomes 0, the 'release' file
840  * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
841  * in turn, and frees the memory allocated for dmabuf when exported.
842  */
843 void dma_buf_put(struct dma_buf *dmabuf)
844 {
845 	if (WARN_ON(!dmabuf || !dmabuf->file))
846 		return;
847 
848 	fput(dmabuf->file);
849 
850 	DMA_BUF_TRACE(trace_dma_buf_put, dmabuf);
851 }
852 EXPORT_SYMBOL_NS_GPL(dma_buf_put, "DMA_BUF");
853 
854 static int dma_buf_wrap_sg_table(struct sg_table **sg_table)
855 {
856 	struct scatterlist *to_sg, *from_sg;
857 	struct sg_table *from = *sg_table;
858 	struct dma_buf_sg_table_wrapper *to;
859 	int i, ret;
860 
861 	if (!IS_ENABLED(CONFIG_DMABUF_DEBUG))
862 		return 0;
863 
864 	/*
865 	 * To catch abuse of the underlying struct page by importers copy the
866 	 * sg_table without copying the page_link and give only the copy back to
867 	 * the importer.
868 	 */
869 	to = kzalloc_obj(*to, GFP_KERNEL);
870 	if (!to)
871 		return -ENOMEM;
872 
873 	ret = sg_alloc_table(&to->wrapper, from->nents, GFP_KERNEL);
874 	if (ret)
875 		goto free_to;
876 
877 	to_sg = to->wrapper.sgl;
878 	for_each_sgtable_dma_sg(from, from_sg, i) {
879 		to_sg->offset = 0;
880 		to_sg->length = 0;
881 		sg_assign_page(to_sg, NULL);
882 		sg_dma_address(to_sg) = sg_dma_address(from_sg);
883 		sg_dma_len(to_sg) = sg_dma_len(from_sg);
884 		to_sg = sg_next(to_sg);
885 	}
886 
887 	to->original = from;
888 	*sg_table = &to->wrapper;
889 	return 0;
890 
891 free_to:
892 	kfree(to);
893 	return ret;
894 }
895 
896 static void dma_buf_unwrap_sg_table(struct sg_table **sg_table)
897 {
898 	struct dma_buf_sg_table_wrapper *copy;
899 
900 	if (!IS_ENABLED(CONFIG_DMABUF_DEBUG))
901 		return;
902 
903 	copy = container_of(*sg_table, typeof(*copy), wrapper);
904 	*sg_table = copy->original;
905 	sg_free_table(&copy->wrapper);
906 	kfree(copy);
907 }
908 
909 static inline bool
910 dma_buf_attachment_is_dynamic(struct dma_buf_attachment *attach)
911 {
912 	return !!attach->importer_ops;
913 }
914 
915 static bool
916 dma_buf_pin_on_map(struct dma_buf_attachment *attach)
917 {
918 	return attach->dmabuf->ops->pin &&
919 		(!dma_buf_attachment_is_dynamic(attach) ||
920 		 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY));
921 }
922 
923 /**
924  * DOC: locking convention
925  *
926  * In order to avoid deadlock situations between dma-buf exports and importers,
927  * all dma-buf API users must follow the common dma-buf locking convention.
928  *
929  * Convention for importers
930  *
931  * 1. Importers must hold the dma-buf reservation lock when calling these
932  *    functions:
933  *
934  *     - dma_buf_pin()
935  *     - dma_buf_unpin()
936  *     - dma_buf_map_attachment()
937  *     - dma_buf_unmap_attachment()
938  *     - dma_buf_vmap()
939  *     - dma_buf_vunmap()
940  *
941  * 2. Importers must not hold the dma-buf reservation lock when calling these
942  *    functions:
943  *
944  *     - dma_buf_attach()
945  *     - dma_buf_dynamic_attach()
946  *     - dma_buf_detach()
947  *     - dma_buf_export()
948  *     - dma_buf_fd()
949  *     - dma_buf_get()
950  *     - dma_buf_put()
951  *     - dma_buf_mmap()
952  *     - dma_buf_begin_cpu_access()
953  *     - dma_buf_end_cpu_access()
954  *     - dma_buf_map_attachment_unlocked()
955  *     - dma_buf_unmap_attachment_unlocked()
956  *     - dma_buf_vmap_unlocked()
957  *     - dma_buf_vunmap_unlocked()
958  *
959  * Convention for exporters
960  *
961  * 1. These &dma_buf_ops callbacks are invoked with unlocked dma-buf
962  *    reservation and exporter can take the lock:
963  *
964  *     - &dma_buf_ops.attach()
965  *     - &dma_buf_ops.detach()
966  *     - &dma_buf_ops.release()
967  *     - &dma_buf_ops.begin_cpu_access()
968  *     - &dma_buf_ops.end_cpu_access()
969  *     - &dma_buf_ops.mmap()
970  *
971  * 2. These &dma_buf_ops callbacks are invoked with locked dma-buf
972  *    reservation and exporter can't take the lock:
973  *
974  *     - &dma_buf_ops.pin()
975  *     - &dma_buf_ops.unpin()
976  *     - &dma_buf_ops.map_dma_buf()
977  *     - &dma_buf_ops.unmap_dma_buf()
978  *     - &dma_buf_ops.vmap()
979  *     - &dma_buf_ops.vunmap()
980  *
981  * 3. Exporters must hold the dma-buf reservation lock when calling these
982  *    functions:
983  *
984  *     - dma_buf_move_notify()
985  */
986 
987 /**
988  * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list
989  * @dmabuf:		[in]	buffer to attach device to.
990  * @dev:		[in]	device to be attached.
991  * @importer_ops:	[in]	importer operations for the attachment
992  * @importer_priv:	[in]	importer private pointer for the attachment
993  *
994  * Returns struct dma_buf_attachment pointer for this attachment. Attachments
995  * must be cleaned up by calling dma_buf_detach().
996  *
997  * Optionally this calls &dma_buf_ops.attach to allow device-specific attach
998  * functionality.
999  *
1000  * Returns:
1001  *
1002  * A pointer to newly created &dma_buf_attachment on success, or a negative
1003  * error code wrapped into a pointer on failure.
1004  *
1005  * Note that this can fail if the backing storage of @dmabuf is in a place not
1006  * accessible to @dev, and cannot be moved to a more suitable place. This is
1007  * indicated with the error code -EBUSY.
1008  */
1009 struct dma_buf_attachment *
1010 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
1011 		       const struct dma_buf_attach_ops *importer_ops,
1012 		       void *importer_priv)
1013 {
1014 	struct dma_buf_attachment *attach;
1015 	int ret;
1016 
1017 	if (WARN_ON(!dmabuf || !dev))
1018 		return ERR_PTR(-EINVAL);
1019 
1020 	if (WARN_ON(importer_ops && !importer_ops->move_notify))
1021 		return ERR_PTR(-EINVAL);
1022 
1023 	attach = kzalloc_obj(*attach, GFP_KERNEL);
1024 	if (!attach)
1025 		return ERR_PTR(-ENOMEM);
1026 
1027 	attach->dev = dev;
1028 	attach->dmabuf = dmabuf;
1029 	if (importer_ops)
1030 		attach->peer2peer = importer_ops->allow_peer2peer;
1031 	attach->importer_ops = importer_ops;
1032 	attach->importer_priv = importer_priv;
1033 
1034 	if (dmabuf->ops->attach) {
1035 		ret = dmabuf->ops->attach(dmabuf, attach);
1036 		if (ret)
1037 			goto err_attach;
1038 	}
1039 	dma_resv_lock(dmabuf->resv, NULL);
1040 	list_add(&attach->node, &dmabuf->attachments);
1041 	dma_resv_unlock(dmabuf->resv);
1042 
1043 	DMA_BUF_TRACE(trace_dma_buf_dynamic_attach, dmabuf, attach,
1044 		dma_buf_attachment_is_dynamic(attach), dev);
1045 
1046 	return attach;
1047 
1048 err_attach:
1049 	kfree(attach);
1050 	return ERR_PTR(ret);
1051 }
1052 EXPORT_SYMBOL_NS_GPL(dma_buf_dynamic_attach, "DMA_BUF");
1053 
1054 /**
1055  * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
1056  * @dmabuf:	[in]	buffer to attach device to.
1057  * @dev:	[in]	device to be attached.
1058  *
1059  * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
1060  * mapping.
1061  */
1062 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
1063 					  struct device *dev)
1064 {
1065 	return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
1066 }
1067 EXPORT_SYMBOL_NS_GPL(dma_buf_attach, "DMA_BUF");
1068 
1069 /**
1070  * dma_buf_detach - Remove the given attachment from dmabuf's attachments list
1071  * @dmabuf:	[in]	buffer to detach from.
1072  * @attach:	[in]	attachment to be detached; is free'd after this call.
1073  *
1074  * Clean up a device attachment obtained by calling dma_buf_attach().
1075  *
1076  * Optionally this calls &dma_buf_ops.detach for device-specific detach.
1077  */
1078 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
1079 {
1080 	if (WARN_ON(!dmabuf || !attach || dmabuf != attach->dmabuf))
1081 		return;
1082 
1083 	dma_resv_lock(dmabuf->resv, NULL);
1084 	list_del(&attach->node);
1085 	dma_resv_unlock(dmabuf->resv);
1086 
1087 	if (dmabuf->ops->detach)
1088 		dmabuf->ops->detach(dmabuf, attach);
1089 
1090 	DMA_BUF_TRACE(trace_dma_buf_detach, dmabuf, attach,
1091 		dma_buf_attachment_is_dynamic(attach), attach->dev);
1092 
1093 	kfree(attach);
1094 }
1095 EXPORT_SYMBOL_NS_GPL(dma_buf_detach, "DMA_BUF");
1096 
1097 /**
1098  * dma_buf_pin - Lock down the DMA-buf
1099  * @attach:	[in]	attachment which should be pinned
1100  *
1101  * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may
1102  * call this, and only for limited use cases like scanout and not for temporary
1103  * pin operations. It is not permitted to allow userspace to pin arbitrary
1104  * amounts of buffers through this interface.
1105  *
1106  * Buffers must be unpinned by calling dma_buf_unpin().
1107  *
1108  * Returns:
1109  * 0 on success, negative error code on failure.
1110  */
1111 int dma_buf_pin(struct dma_buf_attachment *attach)
1112 {
1113 	struct dma_buf *dmabuf = attach->dmabuf;
1114 	int ret = 0;
1115 
1116 	WARN_ON(!attach->importer_ops);
1117 
1118 	dma_resv_assert_held(dmabuf->resv);
1119 
1120 	if (dmabuf->ops->pin)
1121 		ret = dmabuf->ops->pin(attach);
1122 
1123 	return ret;
1124 }
1125 EXPORT_SYMBOL_NS_GPL(dma_buf_pin, "DMA_BUF");
1126 
1127 /**
1128  * dma_buf_unpin - Unpin a DMA-buf
1129  * @attach:	[in]	attachment which should be unpinned
1130  *
1131  * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move
1132  * any mapping of @attach again and inform the importer through
1133  * &dma_buf_attach_ops.move_notify.
1134  */
1135 void dma_buf_unpin(struct dma_buf_attachment *attach)
1136 {
1137 	struct dma_buf *dmabuf = attach->dmabuf;
1138 
1139 	WARN_ON(!attach->importer_ops);
1140 
1141 	dma_resv_assert_held(dmabuf->resv);
1142 
1143 	if (dmabuf->ops->unpin)
1144 		dmabuf->ops->unpin(attach);
1145 }
1146 EXPORT_SYMBOL_NS_GPL(dma_buf_unpin, "DMA_BUF");
1147 
1148 /**
1149  * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
1150  * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
1151  * dma_buf_ops.
1152  * @attach:	[in]	attachment whose scatterlist is to be returned
1153  * @direction:	[in]	direction of DMA transfer
1154  *
1155  * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
1156  * on error. May return -EINTR if it is interrupted by a signal.
1157  *
1158  * On success, the DMA addresses and lengths in the returned scatterlist are
1159  * PAGE_SIZE aligned.
1160  *
1161  * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
1162  * the underlying backing storage is pinned for as long as a mapping exists,
1163  * therefore users/importers should not hold onto a mapping for undue amounts of
1164  * time.
1165  *
1166  * Important: Dynamic importers must wait for the exclusive fence of the struct
1167  * dma_resv attached to the DMA-BUF first.
1168  */
1169 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
1170 					enum dma_data_direction direction)
1171 {
1172 	struct sg_table *sg_table;
1173 	signed long ret;
1174 
1175 	might_sleep();
1176 
1177 	if (WARN_ON(!attach || !attach->dmabuf))
1178 		return ERR_PTR(-EINVAL);
1179 
1180 	dma_resv_assert_held(attach->dmabuf->resv);
1181 
1182 	if (dma_buf_pin_on_map(attach)) {
1183 		ret = attach->dmabuf->ops->pin(attach);
1184 		/*
1185 		 * Catch exporters making buffers inaccessible even when
1186 		 * attachments preventing that exist.
1187 		 */
1188 		WARN_ON_ONCE(ret == -EBUSY);
1189 		if (ret)
1190 			return ERR_PTR(ret);
1191 	}
1192 
1193 	sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
1194 	if (!sg_table)
1195 		sg_table = ERR_PTR(-ENOMEM);
1196 	if (IS_ERR(sg_table))
1197 		goto error_unpin;
1198 
1199 	/*
1200 	 * Importers with static attachments don't wait for fences.
1201 	 */
1202 	if (!dma_buf_attachment_is_dynamic(attach)) {
1203 		ret = dma_resv_wait_timeout(attach->dmabuf->resv,
1204 					    DMA_RESV_USAGE_KERNEL, true,
1205 					    MAX_SCHEDULE_TIMEOUT);
1206 		if (ret < 0)
1207 			goto error_unmap;
1208 	}
1209 	ret = dma_buf_wrap_sg_table(&sg_table);
1210 	if (ret)
1211 		goto error_unmap;
1212 
1213 	if (IS_ENABLED(CONFIG_DMA_API_DEBUG)) {
1214 		struct scatterlist *sg;
1215 		u64 addr;
1216 		int len;
1217 		int i;
1218 
1219 		for_each_sgtable_dma_sg(sg_table, sg, i) {
1220 			addr = sg_dma_address(sg);
1221 			len = sg_dma_len(sg);
1222 			if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) {
1223 				pr_debug("%s: addr %llx or len %x is not page aligned!\n",
1224 					 __func__, addr, len);
1225 				break;
1226 			}
1227 		}
1228 	}
1229 	return sg_table;
1230 
1231 error_unmap:
1232 	attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
1233 	sg_table = ERR_PTR(ret);
1234 
1235 error_unpin:
1236 	if (dma_buf_pin_on_map(attach))
1237 		attach->dmabuf->ops->unpin(attach);
1238 
1239 	return sg_table;
1240 }
1241 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment, "DMA_BUF");
1242 
1243 /**
1244  * dma_buf_map_attachment_unlocked - Returns the scatterlist table of the attachment;
1245  * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
1246  * dma_buf_ops.
1247  * @attach:	[in]	attachment whose scatterlist is to be returned
1248  * @direction:	[in]	direction of DMA transfer
1249  *
1250  * Unlocked variant of dma_buf_map_attachment().
1251  */
1252 struct sg_table *
1253 dma_buf_map_attachment_unlocked(struct dma_buf_attachment *attach,
1254 				enum dma_data_direction direction)
1255 {
1256 	struct sg_table *sg_table;
1257 
1258 	might_sleep();
1259 
1260 	if (WARN_ON(!attach || !attach->dmabuf))
1261 		return ERR_PTR(-EINVAL);
1262 
1263 	dma_resv_lock(attach->dmabuf->resv, NULL);
1264 	sg_table = dma_buf_map_attachment(attach, direction);
1265 	dma_resv_unlock(attach->dmabuf->resv);
1266 
1267 	return sg_table;
1268 }
1269 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment_unlocked, "DMA_BUF");
1270 
1271 /**
1272  * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
1273  * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1274  * dma_buf_ops.
1275  * @attach:	[in]	attachment to unmap buffer from
1276  * @sg_table:	[in]	scatterlist info of the buffer to unmap
1277  * @direction:  [in]    direction of DMA transfer
1278  *
1279  * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
1280  */
1281 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
1282 				struct sg_table *sg_table,
1283 				enum dma_data_direction direction)
1284 {
1285 	might_sleep();
1286 
1287 	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1288 		return;
1289 
1290 	dma_resv_assert_held(attach->dmabuf->resv);
1291 
1292 	dma_buf_unwrap_sg_table(&sg_table);
1293 	attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
1294 
1295 	if (dma_buf_pin_on_map(attach))
1296 		attach->dmabuf->ops->unpin(attach);
1297 }
1298 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment, "DMA_BUF");
1299 
1300 /**
1301  * dma_buf_unmap_attachment_unlocked - unmaps and decreases usecount of the buffer;might
1302  * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
1303  * dma_buf_ops.
1304  * @attach:	[in]	attachment to unmap buffer from
1305  * @sg_table:	[in]	scatterlist info of the buffer to unmap
1306  * @direction:	[in]	direction of DMA transfer
1307  *
1308  * Unlocked variant of dma_buf_unmap_attachment().
1309  */
1310 void dma_buf_unmap_attachment_unlocked(struct dma_buf_attachment *attach,
1311 				       struct sg_table *sg_table,
1312 				       enum dma_data_direction direction)
1313 {
1314 	might_sleep();
1315 
1316 	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1317 		return;
1318 
1319 	dma_resv_lock(attach->dmabuf->resv, NULL);
1320 	dma_buf_unmap_attachment(attach, sg_table, direction);
1321 	dma_resv_unlock(attach->dmabuf->resv);
1322 }
1323 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment_unlocked, "DMA_BUF");
1324 
1325 /**
1326  * dma_buf_move_notify - notify attachments that DMA-buf is moving
1327  *
1328  * @dmabuf:	[in]	buffer which is moving
1329  *
1330  * Informs all attachments that they need to destroy and recreate all their
1331  * mappings.
1332  */
1333 void dma_buf_move_notify(struct dma_buf *dmabuf)
1334 {
1335 	struct dma_buf_attachment *attach;
1336 
1337 	dma_resv_assert_held(dmabuf->resv);
1338 
1339 	list_for_each_entry(attach, &dmabuf->attachments, node)
1340 		if (attach->importer_ops)
1341 			attach->importer_ops->move_notify(attach);
1342 }
1343 EXPORT_SYMBOL_NS_GPL(dma_buf_move_notify, "DMA_BUF");
1344 
1345 /**
1346  * DOC: cpu access
1347  *
1348  * There are multiple reasons for supporting CPU access to a dma buffer object:
1349  *
1350  * - Fallback operations in the kernel, for example when a device is connected
1351  *   over USB and the kernel needs to shuffle the data around first before
1352  *   sending it away. Cache coherency is handled by bracketing any transactions
1353  *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
1354  *   access.
1355  *
1356  *   Since for most kernel internal dma-buf accesses need the entire buffer, a
1357  *   vmap interface is introduced. Note that on very old 32-bit architectures
1358  *   vmalloc space might be limited and result in vmap calls failing.
1359  *
1360  *   Interfaces:
1361  *
1362  *   .. code-block:: c
1363  *
1364  *     void *dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map)
1365  *     void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map)
1366  *
1367  *   The vmap call can fail if there is no vmap support in the exporter, or if
1368  *   it runs out of vmalloc space. Note that the dma-buf layer keeps a reference
1369  *   count for all vmap access and calls down into the exporter's vmap function
1370  *   only when no vmapping exists, and only unmaps it once. Protection against
1371  *   concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex.
1372  *
1373  * - For full compatibility on the importer side with existing userspace
1374  *   interfaces, which might already support mmap'ing buffers. This is needed in
1375  *   many processing pipelines (e.g. feeding a software rendered image into a
1376  *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1377  *   framework already supported this and for DMA buffer file descriptors to
1378  *   replace ION buffers mmap support was needed.
1379  *
1380  *   There is no special interfaces, userspace simply calls mmap on the dma-buf
1381  *   fd. But like for CPU access there's a need to bracket the actual access,
1382  *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1383  *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1384  *   be restarted.
1385  *
1386  *   Some systems might need some sort of cache coherency management e.g. when
1387  *   CPU and GPU domains are being accessed through dma-buf at the same time.
1388  *   To circumvent this problem there are begin/end coherency markers, that
1389  *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1390  *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1391  *   sequence would be used like following:
1392  *
1393  *     - mmap dma-buf fd
1394  *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1395  *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1396  *       want (with the new data being consumed by say the GPU or the scanout
1397  *       device)
1398  *     - munmap once you don't need the buffer any more
1399  *
1400  *    For correctness and optimal performance, it is always required to use
1401  *    SYNC_START and SYNC_END before and after, respectively, when accessing the
1402  *    mapped address. Userspace cannot rely on coherent access, even when there
1403  *    are systems where it just works without calling these ioctls.
1404  *
1405  * - And as a CPU fallback in userspace processing pipelines.
1406  *
1407  *   Similar to the motivation for kernel cpu access it is again important that
1408  *   the userspace code of a given importing subsystem can use the same
1409  *   interfaces with a imported dma-buf buffer object as with a native buffer
1410  *   object. This is especially important for drm where the userspace part of
1411  *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
1412  *   use a different way to mmap a buffer rather invasive.
1413  *
1414  *   The assumption in the current dma-buf interfaces is that redirecting the
1415  *   initial mmap is all that's needed. A survey of some of the existing
1416  *   subsystems shows that no driver seems to do any nefarious thing like
1417  *   syncing up with outstanding asynchronous processing on the device or
1418  *   allocating special resources at fault time. So hopefully this is good
1419  *   enough, since adding interfaces to intercept pagefaults and allow pte
1420  *   shootdowns would increase the complexity quite a bit.
1421  *
1422  *   Interface:
1423  *
1424  *   .. code-block:: c
1425  *
1426  *     int dma_buf_mmap(struct dma_buf *, struct vm_area_struct *, unsigned long);
1427  *
1428  *   If the importing subsystem simply provides a special-purpose mmap call to
1429  *   set up a mapping in userspace, calling do_mmap with &dma_buf.file will
1430  *   equally achieve that for a dma-buf object.
1431  */
1432 
1433 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1434 				      enum dma_data_direction direction)
1435 {
1436 	bool write = (direction == DMA_BIDIRECTIONAL ||
1437 		      direction == DMA_TO_DEVICE);
1438 	struct dma_resv *resv = dmabuf->resv;
1439 	long ret;
1440 
1441 	/* Wait on any implicit rendering fences */
1442 	ret = dma_resv_wait_timeout(resv, dma_resv_usage_rw(write),
1443 				    true, MAX_SCHEDULE_TIMEOUT);
1444 	if (ret < 0)
1445 		return ret;
1446 
1447 	return 0;
1448 }
1449 
1450 /**
1451  * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1452  * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1453  * preparations. Coherency is only guaranteed in the specified range for the
1454  * specified access direction.
1455  * @dmabuf:	[in]	buffer to prepare cpu access for.
1456  * @direction:	[in]	direction of access.
1457  *
1458  * After the cpu access is complete the caller should call
1459  * dma_buf_end_cpu_access(). Only when cpu access is bracketed by both calls is
1460  * it guaranteed to be coherent with other DMA access.
1461  *
1462  * This function will also wait for any DMA transactions tracked through
1463  * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit
1464  * synchronization this function will only ensure cache coherency, callers must
1465  * ensure synchronization with such DMA transactions on their own.
1466  *
1467  * Can return negative error values, returns 0 on success.
1468  */
1469 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1470 			     enum dma_data_direction direction)
1471 {
1472 	int ret = 0;
1473 
1474 	if (WARN_ON(!dmabuf))
1475 		return -EINVAL;
1476 
1477 	might_lock(&dmabuf->resv->lock.base);
1478 
1479 	if (dmabuf->ops->begin_cpu_access)
1480 		ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1481 
1482 	/* Ensure that all fences are waited upon - but we first allow
1483 	 * the native handler the chance to do so more efficiently if it
1484 	 * chooses. A double invocation here will be reasonably cheap no-op.
1485 	 */
1486 	if (ret == 0)
1487 		ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1488 
1489 	return ret;
1490 }
1491 EXPORT_SYMBOL_NS_GPL(dma_buf_begin_cpu_access, "DMA_BUF");
1492 
1493 /**
1494  * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1495  * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1496  * actions. Coherency is only guaranteed in the specified range for the
1497  * specified access direction.
1498  * @dmabuf:	[in]	buffer to complete cpu access for.
1499  * @direction:	[in]	direction of access.
1500  *
1501  * This terminates CPU access started with dma_buf_begin_cpu_access().
1502  *
1503  * Can return negative error values, returns 0 on success.
1504  */
1505 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1506 			   enum dma_data_direction direction)
1507 {
1508 	int ret = 0;
1509 
1510 	WARN_ON(!dmabuf);
1511 
1512 	might_lock(&dmabuf->resv->lock.base);
1513 
1514 	if (dmabuf->ops->end_cpu_access)
1515 		ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1516 
1517 	return ret;
1518 }
1519 EXPORT_SYMBOL_NS_GPL(dma_buf_end_cpu_access, "DMA_BUF");
1520 
1521 
1522 /**
1523  * dma_buf_mmap - Setup up a userspace mmap with the given vma
1524  * @dmabuf:	[in]	buffer that should back the vma
1525  * @vma:	[in]	vma for the mmap
1526  * @pgoff:	[in]	offset in pages where this mmap should start within the
1527  *			dma-buf buffer.
1528  *
1529  * This function adjusts the passed in vma so that it points at the file of the
1530  * dma_buf operation. It also adjusts the starting pgoff and does bounds
1531  * checking on the size of the vma. Then it calls the exporters mmap function to
1532  * set up the mapping.
1533  *
1534  * Can return negative error values, returns 0 on success.
1535  */
1536 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1537 		 unsigned long pgoff)
1538 {
1539 	if (WARN_ON(!dmabuf || !vma))
1540 		return -EINVAL;
1541 
1542 	/* check if buffer supports mmap */
1543 	if (!dmabuf->ops->mmap)
1544 		return -EINVAL;
1545 
1546 	/* check for offset overflow */
1547 	if (pgoff + vma_pages(vma) < pgoff)
1548 		return -EOVERFLOW;
1549 
1550 	/* check for overflowing the buffer's size */
1551 	if (pgoff + vma_pages(vma) >
1552 	    dmabuf->size >> PAGE_SHIFT)
1553 		return -EINVAL;
1554 
1555 	/* readjust the vma */
1556 	vma_set_file(vma, dmabuf->file);
1557 	vma->vm_pgoff = pgoff;
1558 
1559 	DMA_BUF_TRACE(trace_dma_buf_mmap, dmabuf);
1560 
1561 	return dmabuf->ops->mmap(dmabuf, vma);
1562 }
1563 EXPORT_SYMBOL_NS_GPL(dma_buf_mmap, "DMA_BUF");
1564 
1565 /**
1566  * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1567  * address space. Same restrictions as for vmap and friends apply.
1568  * @dmabuf:	[in]	buffer to vmap
1569  * @map:	[out]	returns the vmap pointer
1570  *
1571  * This call may fail due to lack of virtual mapping address space.
1572  * These calls are optional in drivers. The intended use for them
1573  * is for mapping objects linear in kernel space for high use objects.
1574  *
1575  * To ensure coherency users must call dma_buf_begin_cpu_access() and
1576  * dma_buf_end_cpu_access() around any cpu access performed through this
1577  * mapping.
1578  *
1579  * Returns 0 on success, or a negative errno code otherwise.
1580  */
1581 int dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map)
1582 {
1583 	struct iosys_map ptr;
1584 	int ret;
1585 
1586 	iosys_map_clear(map);
1587 
1588 	if (WARN_ON(!dmabuf))
1589 		return -EINVAL;
1590 
1591 	dma_resv_assert_held(dmabuf->resv);
1592 
1593 	if (!dmabuf->ops->vmap)
1594 		return -EINVAL;
1595 
1596 	if (dmabuf->vmapping_counter) {
1597 		dmabuf->vmapping_counter++;
1598 		BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1599 		*map = dmabuf->vmap_ptr;
1600 		return 0;
1601 	}
1602 
1603 	BUG_ON(iosys_map_is_set(&dmabuf->vmap_ptr));
1604 
1605 	ret = dmabuf->ops->vmap(dmabuf, &ptr);
1606 	if (WARN_ON_ONCE(ret))
1607 		return ret;
1608 
1609 	dmabuf->vmap_ptr = ptr;
1610 	dmabuf->vmapping_counter = 1;
1611 
1612 	*map = dmabuf->vmap_ptr;
1613 
1614 	return 0;
1615 }
1616 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap, "DMA_BUF");
1617 
1618 /**
1619  * dma_buf_vmap_unlocked - Create virtual mapping for the buffer object into kernel
1620  * address space. Same restrictions as for vmap and friends apply.
1621  * @dmabuf:	[in]	buffer to vmap
1622  * @map:	[out]	returns the vmap pointer
1623  *
1624  * Unlocked version of dma_buf_vmap()
1625  *
1626  * Returns 0 on success, or a negative errno code otherwise.
1627  */
1628 int dma_buf_vmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map)
1629 {
1630 	int ret;
1631 
1632 	iosys_map_clear(map);
1633 
1634 	if (WARN_ON(!dmabuf))
1635 		return -EINVAL;
1636 
1637 	dma_resv_lock(dmabuf->resv, NULL);
1638 	ret = dma_buf_vmap(dmabuf, map);
1639 	dma_resv_unlock(dmabuf->resv);
1640 
1641 	return ret;
1642 }
1643 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap_unlocked, "DMA_BUF");
1644 
1645 /**
1646  * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1647  * @dmabuf:	[in]	buffer to vunmap
1648  * @map:	[in]	vmap pointer to vunmap
1649  */
1650 void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map)
1651 {
1652 	if (WARN_ON(!dmabuf))
1653 		return;
1654 
1655 	dma_resv_assert_held(dmabuf->resv);
1656 
1657 	BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr));
1658 	BUG_ON(dmabuf->vmapping_counter == 0);
1659 	BUG_ON(!iosys_map_is_equal(&dmabuf->vmap_ptr, map));
1660 
1661 	if (--dmabuf->vmapping_counter == 0) {
1662 		if (dmabuf->ops->vunmap)
1663 			dmabuf->ops->vunmap(dmabuf, map);
1664 		iosys_map_clear(&dmabuf->vmap_ptr);
1665 	}
1666 }
1667 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap, "DMA_BUF");
1668 
1669 /**
1670  * dma_buf_vunmap_unlocked - Unmap a vmap obtained by dma_buf_vmap.
1671  * @dmabuf:	[in]	buffer to vunmap
1672  * @map:	[in]	vmap pointer to vunmap
1673  */
1674 void dma_buf_vunmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map)
1675 {
1676 	if (WARN_ON(!dmabuf))
1677 		return;
1678 
1679 	dma_resv_lock(dmabuf->resv, NULL);
1680 	dma_buf_vunmap(dmabuf, map);
1681 	dma_resv_unlock(dmabuf->resv);
1682 }
1683 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap_unlocked, "DMA_BUF");
1684 
1685 #ifdef CONFIG_DEBUG_FS
1686 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1687 {
1688 	struct dma_buf *buf_obj;
1689 	struct dma_buf_attachment *attach_obj;
1690 	int count = 0, attach_count;
1691 	size_t size = 0;
1692 	int ret;
1693 
1694 	ret = mutex_lock_interruptible(&dmabuf_list_mutex);
1695 
1696 	if (ret)
1697 		return ret;
1698 
1699 	seq_puts(s, "\nDma-buf Objects:\n");
1700 	seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\tname\n",
1701 		   "size", "flags", "mode", "count", "ino");
1702 
1703 	list_for_each_entry(buf_obj, &dmabuf_list, list_node) {
1704 
1705 		ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1706 		if (ret)
1707 			goto error_unlock;
1708 
1709 
1710 		spin_lock(&buf_obj->name_lock);
1711 		seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1712 				buf_obj->size,
1713 				buf_obj->file->f_flags, buf_obj->file->f_mode,
1714 				file_count(buf_obj->file),
1715 				buf_obj->exp_name,
1716 				file_inode(buf_obj->file)->i_ino,
1717 				buf_obj->name ?: "<none>");
1718 		spin_unlock(&buf_obj->name_lock);
1719 
1720 		dma_resv_describe(buf_obj->resv, s);
1721 
1722 		seq_puts(s, "\tAttached Devices:\n");
1723 		attach_count = 0;
1724 
1725 		list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1726 			seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1727 			attach_count++;
1728 		}
1729 		dma_resv_unlock(buf_obj->resv);
1730 
1731 		seq_printf(s, "Total %d devices attached\n\n",
1732 				attach_count);
1733 
1734 		count++;
1735 		size += buf_obj->size;
1736 	}
1737 
1738 	seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1739 
1740 	mutex_unlock(&dmabuf_list_mutex);
1741 	return 0;
1742 
1743 error_unlock:
1744 	mutex_unlock(&dmabuf_list_mutex);
1745 	return ret;
1746 }
1747 
1748 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1749 
1750 static struct dentry *dma_buf_debugfs_dir;
1751 
1752 static int dma_buf_init_debugfs(void)
1753 {
1754 	struct dentry *d;
1755 	int err = 0;
1756 
1757 	d = debugfs_create_dir("dma_buf", NULL);
1758 	if (IS_ERR(d))
1759 		return PTR_ERR(d);
1760 
1761 	dma_buf_debugfs_dir = d;
1762 
1763 	d = debugfs_create_file("bufinfo", 0444, dma_buf_debugfs_dir,
1764 				NULL, &dma_buf_debug_fops);
1765 	if (IS_ERR(d)) {
1766 		pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1767 		debugfs_remove_recursive(dma_buf_debugfs_dir);
1768 		dma_buf_debugfs_dir = NULL;
1769 		err = PTR_ERR(d);
1770 	}
1771 
1772 	return err;
1773 }
1774 
1775 static void dma_buf_uninit_debugfs(void)
1776 {
1777 	debugfs_remove_recursive(dma_buf_debugfs_dir);
1778 }
1779 #else
1780 static inline int dma_buf_init_debugfs(void)
1781 {
1782 	return 0;
1783 }
1784 static inline void dma_buf_uninit_debugfs(void)
1785 {
1786 }
1787 #endif
1788 
1789 static int __init dma_buf_init(void)
1790 {
1791 	dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1792 	if (IS_ERR(dma_buf_mnt))
1793 		return PTR_ERR(dma_buf_mnt);
1794 
1795 	dma_buf_init_debugfs();
1796 	return 0;
1797 }
1798 subsys_initcall(dma_buf_init);
1799 
1800 static void __exit dma_buf_deinit(void)
1801 {
1802 	dma_buf_uninit_debugfs();
1803 	kern_unmount(dma_buf_mnt);
1804 }
1805 __exitcall(dma_buf_deinit);
1806