1 /* 2 * Framework for buffer objects that can be shared across devices/subsystems. 3 * 4 * Copyright(C) 2011 Linaro Limited. All rights reserved. 5 * Author: Sumit Semwal <sumit.semwal@ti.com> 6 * 7 * Many thanks to linaro-mm-sig list, and specially 8 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and 9 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and 10 * refining of this idea. 11 * 12 * This program is free software; you can redistribute it and/or modify it 13 * under the terms of the GNU General Public License version 2 as published by 14 * the Free Software Foundation. 15 * 16 * This program is distributed in the hope that it will be useful, but WITHOUT 17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 19 * more details. 20 * 21 * You should have received a copy of the GNU General Public License along with 22 * this program. If not, see <http://www.gnu.org/licenses/>. 23 */ 24 25 #include <linux/fs.h> 26 #include <linux/slab.h> 27 #include <linux/dma-buf.h> 28 #include <linux/dma-fence.h> 29 #include <linux/anon_inodes.h> 30 #include <linux/export.h> 31 #include <linux/debugfs.h> 32 #include <linux/module.h> 33 #include <linux/seq_file.h> 34 #include <linux/poll.h> 35 #include <linux/reservation.h> 36 #include <linux/mm.h> 37 38 #include <uapi/linux/dma-buf.h> 39 40 static inline int is_dma_buf_file(struct file *); 41 42 struct dma_buf_list { 43 struct list_head head; 44 struct mutex lock; 45 }; 46 47 static struct dma_buf_list db_list; 48 49 static int dma_buf_release(struct inode *inode, struct file *file) 50 { 51 struct dma_buf *dmabuf; 52 53 if (!is_dma_buf_file(file)) 54 return -EINVAL; 55 56 dmabuf = file->private_data; 57 58 BUG_ON(dmabuf->vmapping_counter); 59 60 /* 61 * Any fences that a dma-buf poll can wait on should be signaled 62 * before releasing dma-buf. This is the responsibility of each 63 * driver that uses the reservation objects. 64 * 65 * If you hit this BUG() it means someone dropped their ref to the 66 * dma-buf while still having pending operation to the buffer. 67 */ 68 BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active); 69 70 dmabuf->ops->release(dmabuf); 71 72 mutex_lock(&db_list.lock); 73 list_del(&dmabuf->list_node); 74 mutex_unlock(&db_list.lock); 75 76 if (dmabuf->resv == (struct reservation_object *)&dmabuf[1]) 77 reservation_object_fini(dmabuf->resv); 78 79 module_put(dmabuf->owner); 80 kfree(dmabuf); 81 return 0; 82 } 83 84 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma) 85 { 86 struct dma_buf *dmabuf; 87 88 if (!is_dma_buf_file(file)) 89 return -EINVAL; 90 91 dmabuf = file->private_data; 92 93 /* check for overflowing the buffer's size */ 94 if (vma->vm_pgoff + vma_pages(vma) > 95 dmabuf->size >> PAGE_SHIFT) 96 return -EINVAL; 97 98 return dmabuf->ops->mmap(dmabuf, vma); 99 } 100 101 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence) 102 { 103 struct dma_buf *dmabuf; 104 loff_t base; 105 106 if (!is_dma_buf_file(file)) 107 return -EBADF; 108 109 dmabuf = file->private_data; 110 111 /* only support discovering the end of the buffer, 112 but also allow SEEK_SET to maintain the idiomatic 113 SEEK_END(0), SEEK_CUR(0) pattern */ 114 if (whence == SEEK_END) 115 base = dmabuf->size; 116 else if (whence == SEEK_SET) 117 base = 0; 118 else 119 return -EINVAL; 120 121 if (offset != 0) 122 return -EINVAL; 123 124 return base + offset; 125 } 126 127 /** 128 * DOC: fence polling 129 * 130 * To support cross-device and cross-driver synchronization of buffer access 131 * implicit fences (represented internally in the kernel with struct &fence) can 132 * be attached to a &dma_buf. The glue for that and a few related things are 133 * provided in the &reservation_object structure. 134 * 135 * Userspace can query the state of these implicitly tracked fences using poll() 136 * and related system calls: 137 * 138 * - Checking for POLLIN, i.e. read access, can be use to query the state of the 139 * most recent write or exclusive fence. 140 * 141 * - Checking for POLLOUT, i.e. write access, can be used to query the state of 142 * all attached fences, shared and exclusive ones. 143 * 144 * Note that this only signals the completion of the respective fences, i.e. the 145 * DMA transfers are complete. Cache flushing and any other necessary 146 * preparations before CPU access can begin still need to happen. 147 */ 148 149 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 150 { 151 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb; 152 unsigned long flags; 153 154 spin_lock_irqsave(&dcb->poll->lock, flags); 155 wake_up_locked_poll(dcb->poll, dcb->active); 156 dcb->active = 0; 157 spin_unlock_irqrestore(&dcb->poll->lock, flags); 158 } 159 160 static unsigned int dma_buf_poll(struct file *file, poll_table *poll) 161 { 162 struct dma_buf *dmabuf; 163 struct reservation_object *resv; 164 struct reservation_object_list *fobj; 165 struct dma_fence *fence_excl; 166 unsigned long events; 167 unsigned shared_count, seq; 168 169 dmabuf = file->private_data; 170 if (!dmabuf || !dmabuf->resv) 171 return POLLERR; 172 173 resv = dmabuf->resv; 174 175 poll_wait(file, &dmabuf->poll, poll); 176 177 events = poll_requested_events(poll) & (POLLIN | POLLOUT); 178 if (!events) 179 return 0; 180 181 retry: 182 seq = read_seqcount_begin(&resv->seq); 183 rcu_read_lock(); 184 185 fobj = rcu_dereference(resv->fence); 186 if (fobj) 187 shared_count = fobj->shared_count; 188 else 189 shared_count = 0; 190 fence_excl = rcu_dereference(resv->fence_excl); 191 if (read_seqcount_retry(&resv->seq, seq)) { 192 rcu_read_unlock(); 193 goto retry; 194 } 195 196 if (fence_excl && (!(events & POLLOUT) || shared_count == 0)) { 197 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl; 198 unsigned long pevents = POLLIN; 199 200 if (shared_count == 0) 201 pevents |= POLLOUT; 202 203 spin_lock_irq(&dmabuf->poll.lock); 204 if (dcb->active) { 205 dcb->active |= pevents; 206 events &= ~pevents; 207 } else 208 dcb->active = pevents; 209 spin_unlock_irq(&dmabuf->poll.lock); 210 211 if (events & pevents) { 212 if (!dma_fence_get_rcu(fence_excl)) { 213 /* force a recheck */ 214 events &= ~pevents; 215 dma_buf_poll_cb(NULL, &dcb->cb); 216 } else if (!dma_fence_add_callback(fence_excl, &dcb->cb, 217 dma_buf_poll_cb)) { 218 events &= ~pevents; 219 dma_fence_put(fence_excl); 220 } else { 221 /* 222 * No callback queued, wake up any additional 223 * waiters. 224 */ 225 dma_fence_put(fence_excl); 226 dma_buf_poll_cb(NULL, &dcb->cb); 227 } 228 } 229 } 230 231 if ((events & POLLOUT) && shared_count > 0) { 232 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared; 233 int i; 234 235 /* Only queue a new callback if no event has fired yet */ 236 spin_lock_irq(&dmabuf->poll.lock); 237 if (dcb->active) 238 events &= ~POLLOUT; 239 else 240 dcb->active = POLLOUT; 241 spin_unlock_irq(&dmabuf->poll.lock); 242 243 if (!(events & POLLOUT)) 244 goto out; 245 246 for (i = 0; i < shared_count; ++i) { 247 struct dma_fence *fence = rcu_dereference(fobj->shared[i]); 248 249 if (!dma_fence_get_rcu(fence)) { 250 /* 251 * fence refcount dropped to zero, this means 252 * that fobj has been freed 253 * 254 * call dma_buf_poll_cb and force a recheck! 255 */ 256 events &= ~POLLOUT; 257 dma_buf_poll_cb(NULL, &dcb->cb); 258 break; 259 } 260 if (!dma_fence_add_callback(fence, &dcb->cb, 261 dma_buf_poll_cb)) { 262 dma_fence_put(fence); 263 events &= ~POLLOUT; 264 break; 265 } 266 dma_fence_put(fence); 267 } 268 269 /* No callback queued, wake up any additional waiters. */ 270 if (i == shared_count) 271 dma_buf_poll_cb(NULL, &dcb->cb); 272 } 273 274 out: 275 rcu_read_unlock(); 276 return events; 277 } 278 279 static long dma_buf_ioctl(struct file *file, 280 unsigned int cmd, unsigned long arg) 281 { 282 struct dma_buf *dmabuf; 283 struct dma_buf_sync sync; 284 enum dma_data_direction direction; 285 int ret; 286 287 dmabuf = file->private_data; 288 289 switch (cmd) { 290 case DMA_BUF_IOCTL_SYNC: 291 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync))) 292 return -EFAULT; 293 294 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK) 295 return -EINVAL; 296 297 switch (sync.flags & DMA_BUF_SYNC_RW) { 298 case DMA_BUF_SYNC_READ: 299 direction = DMA_FROM_DEVICE; 300 break; 301 case DMA_BUF_SYNC_WRITE: 302 direction = DMA_TO_DEVICE; 303 break; 304 case DMA_BUF_SYNC_RW: 305 direction = DMA_BIDIRECTIONAL; 306 break; 307 default: 308 return -EINVAL; 309 } 310 311 if (sync.flags & DMA_BUF_SYNC_END) 312 ret = dma_buf_end_cpu_access(dmabuf, direction); 313 else 314 ret = dma_buf_begin_cpu_access(dmabuf, direction); 315 316 return ret; 317 default: 318 return -ENOTTY; 319 } 320 } 321 322 static const struct file_operations dma_buf_fops = { 323 .release = dma_buf_release, 324 .mmap = dma_buf_mmap_internal, 325 .llseek = dma_buf_llseek, 326 .poll = dma_buf_poll, 327 .unlocked_ioctl = dma_buf_ioctl, 328 }; 329 330 /* 331 * is_dma_buf_file - Check if struct file* is associated with dma_buf 332 */ 333 static inline int is_dma_buf_file(struct file *file) 334 { 335 return file->f_op == &dma_buf_fops; 336 } 337 338 /** 339 * DOC: dma buf device access 340 * 341 * For device DMA access to a shared DMA buffer the usual sequence of operations 342 * is fairly simple: 343 * 344 * 1. The exporter defines his exporter instance using 345 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private 346 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace 347 * as a file descriptor by calling dma_buf_fd(). 348 * 349 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer 350 * to share with: First the filedescriptor is converted to a &dma_buf using 351 * dma_buf_get(). The the buffer is attached to the device using 352 * dma_buf_attach(). 353 * 354 * Up to this stage the exporter is still free to migrate or reallocate the 355 * backing storage. 356 * 357 * 3. Once the buffer is attached to all devices userspace can inniate DMA 358 * access to the shared buffer. In the kernel this is done by calling 359 * dma_buf_map_attachment() and dma_buf_unmap_attachment(). 360 * 361 * 4. Once a driver is done with a shared buffer it needs to call 362 * dma_buf_detach() (after cleaning up any mappings) and then release the 363 * reference acquired with dma_buf_get by calling dma_buf_put(). 364 * 365 * For the detailed semantics exporters are expected to implement see 366 * &dma_buf_ops. 367 */ 368 369 /** 370 * dma_buf_export - Creates a new dma_buf, and associates an anon file 371 * with this buffer, so it can be exported. 372 * Also connect the allocator specific data and ops to the buffer. 373 * Additionally, provide a name string for exporter; useful in debugging. 374 * 375 * @exp_info: [in] holds all the export related information provided 376 * by the exporter. see struct &dma_buf_export_info 377 * for further details. 378 * 379 * Returns, on success, a newly created dma_buf object, which wraps the 380 * supplied private data and operations for dma_buf_ops. On either missing 381 * ops, or error in allocating struct dma_buf, will return negative error. 382 * 383 * For most cases the easiest way to create @exp_info is through the 384 * %DEFINE_DMA_BUF_EXPORT_INFO macro. 385 */ 386 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info) 387 { 388 struct dma_buf *dmabuf; 389 struct reservation_object *resv = exp_info->resv; 390 struct file *file; 391 size_t alloc_size = sizeof(struct dma_buf); 392 int ret; 393 394 if (!exp_info->resv) 395 alloc_size += sizeof(struct reservation_object); 396 else 397 /* prevent &dma_buf[1] == dma_buf->resv */ 398 alloc_size += 1; 399 400 if (WARN_ON(!exp_info->priv 401 || !exp_info->ops 402 || !exp_info->ops->map_dma_buf 403 || !exp_info->ops->unmap_dma_buf 404 || !exp_info->ops->release 405 || !exp_info->ops->kmap_atomic 406 || !exp_info->ops->kmap 407 || !exp_info->ops->mmap)) { 408 return ERR_PTR(-EINVAL); 409 } 410 411 if (!try_module_get(exp_info->owner)) 412 return ERR_PTR(-ENOENT); 413 414 dmabuf = kzalloc(alloc_size, GFP_KERNEL); 415 if (!dmabuf) { 416 ret = -ENOMEM; 417 goto err_module; 418 } 419 420 dmabuf->priv = exp_info->priv; 421 dmabuf->ops = exp_info->ops; 422 dmabuf->size = exp_info->size; 423 dmabuf->exp_name = exp_info->exp_name; 424 dmabuf->owner = exp_info->owner; 425 init_waitqueue_head(&dmabuf->poll); 426 dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll; 427 dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0; 428 429 if (!resv) { 430 resv = (struct reservation_object *)&dmabuf[1]; 431 reservation_object_init(resv); 432 } 433 dmabuf->resv = resv; 434 435 file = anon_inode_getfile("dmabuf", &dma_buf_fops, dmabuf, 436 exp_info->flags); 437 if (IS_ERR(file)) { 438 ret = PTR_ERR(file); 439 goto err_dmabuf; 440 } 441 442 file->f_mode |= FMODE_LSEEK; 443 dmabuf->file = file; 444 445 mutex_init(&dmabuf->lock); 446 INIT_LIST_HEAD(&dmabuf->attachments); 447 448 mutex_lock(&db_list.lock); 449 list_add(&dmabuf->list_node, &db_list.head); 450 mutex_unlock(&db_list.lock); 451 452 return dmabuf; 453 454 err_dmabuf: 455 kfree(dmabuf); 456 err_module: 457 module_put(exp_info->owner); 458 return ERR_PTR(ret); 459 } 460 EXPORT_SYMBOL_GPL(dma_buf_export); 461 462 /** 463 * dma_buf_fd - returns a file descriptor for the given dma_buf 464 * @dmabuf: [in] pointer to dma_buf for which fd is required. 465 * @flags: [in] flags to give to fd 466 * 467 * On success, returns an associated 'fd'. Else, returns error. 468 */ 469 int dma_buf_fd(struct dma_buf *dmabuf, int flags) 470 { 471 int fd; 472 473 if (!dmabuf || !dmabuf->file) 474 return -EINVAL; 475 476 fd = get_unused_fd_flags(flags); 477 if (fd < 0) 478 return fd; 479 480 fd_install(fd, dmabuf->file); 481 482 return fd; 483 } 484 EXPORT_SYMBOL_GPL(dma_buf_fd); 485 486 /** 487 * dma_buf_get - returns the dma_buf structure related to an fd 488 * @fd: [in] fd associated with the dma_buf to be returned 489 * 490 * On success, returns the dma_buf structure associated with an fd; uses 491 * file's refcounting done by fget to increase refcount. returns ERR_PTR 492 * otherwise. 493 */ 494 struct dma_buf *dma_buf_get(int fd) 495 { 496 struct file *file; 497 498 file = fget(fd); 499 500 if (!file) 501 return ERR_PTR(-EBADF); 502 503 if (!is_dma_buf_file(file)) { 504 fput(file); 505 return ERR_PTR(-EINVAL); 506 } 507 508 return file->private_data; 509 } 510 EXPORT_SYMBOL_GPL(dma_buf_get); 511 512 /** 513 * dma_buf_put - decreases refcount of the buffer 514 * @dmabuf: [in] buffer to reduce refcount of 515 * 516 * Uses file's refcounting done implicitly by fput(). 517 * 518 * If, as a result of this call, the refcount becomes 0, the 'release' file 519 * operation related to this fd is called. It calls the release operation of 520 * struct &dma_buf_ops in turn, and frees the memory allocated for dmabuf when 521 * exported. 522 */ 523 void dma_buf_put(struct dma_buf *dmabuf) 524 { 525 if (WARN_ON(!dmabuf || !dmabuf->file)) 526 return; 527 528 fput(dmabuf->file); 529 } 530 EXPORT_SYMBOL_GPL(dma_buf_put); 531 532 /** 533 * dma_buf_attach - Add the device to dma_buf's attachments list; optionally, 534 * calls attach() of dma_buf_ops to allow device-specific attach functionality 535 * @dmabuf: [in] buffer to attach device to. 536 * @dev: [in] device to be attached. 537 * 538 * Returns struct dma_buf_attachment pointer for this attachment. Attachments 539 * must be cleaned up by calling dma_buf_detach(). 540 * 541 * Returns: 542 * 543 * A pointer to newly created &dma_buf_attachment on success, or a negative 544 * error code wrapped into a pointer on failure. 545 * 546 * Note that this can fail if the backing storage of @dmabuf is in a place not 547 * accessible to @dev, and cannot be moved to a more suitable place. This is 548 * indicated with the error code -EBUSY. 549 */ 550 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf, 551 struct device *dev) 552 { 553 struct dma_buf_attachment *attach; 554 int ret; 555 556 if (WARN_ON(!dmabuf || !dev)) 557 return ERR_PTR(-EINVAL); 558 559 attach = kzalloc(sizeof(struct dma_buf_attachment), GFP_KERNEL); 560 if (attach == NULL) 561 return ERR_PTR(-ENOMEM); 562 563 attach->dev = dev; 564 attach->dmabuf = dmabuf; 565 566 mutex_lock(&dmabuf->lock); 567 568 if (dmabuf->ops->attach) { 569 ret = dmabuf->ops->attach(dmabuf, dev, attach); 570 if (ret) 571 goto err_attach; 572 } 573 list_add(&attach->node, &dmabuf->attachments); 574 575 mutex_unlock(&dmabuf->lock); 576 return attach; 577 578 err_attach: 579 kfree(attach); 580 mutex_unlock(&dmabuf->lock); 581 return ERR_PTR(ret); 582 } 583 EXPORT_SYMBOL_GPL(dma_buf_attach); 584 585 /** 586 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list; 587 * optionally calls detach() of dma_buf_ops for device-specific detach 588 * @dmabuf: [in] buffer to detach from. 589 * @attach: [in] attachment to be detached; is free'd after this call. 590 * 591 * Clean up a device attachment obtained by calling dma_buf_attach(). 592 */ 593 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach) 594 { 595 if (WARN_ON(!dmabuf || !attach)) 596 return; 597 598 mutex_lock(&dmabuf->lock); 599 list_del(&attach->node); 600 if (dmabuf->ops->detach) 601 dmabuf->ops->detach(dmabuf, attach); 602 603 mutex_unlock(&dmabuf->lock); 604 kfree(attach); 605 } 606 EXPORT_SYMBOL_GPL(dma_buf_detach); 607 608 /** 609 * dma_buf_map_attachment - Returns the scatterlist table of the attachment; 610 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the 611 * dma_buf_ops. 612 * @attach: [in] attachment whose scatterlist is to be returned 613 * @direction: [in] direction of DMA transfer 614 * 615 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR 616 * on error. May return -EINTR if it is interrupted by a signal. 617 * 618 * A mapping must be unmapped again using dma_buf_map_attachment(). Note that 619 * the underlying backing storage is pinned for as long as a mapping exists, 620 * therefore users/importers should not hold onto a mapping for undue amounts of 621 * time. 622 */ 623 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach, 624 enum dma_data_direction direction) 625 { 626 struct sg_table *sg_table = ERR_PTR(-EINVAL); 627 628 might_sleep(); 629 630 if (WARN_ON(!attach || !attach->dmabuf)) 631 return ERR_PTR(-EINVAL); 632 633 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction); 634 if (!sg_table) 635 sg_table = ERR_PTR(-ENOMEM); 636 637 return sg_table; 638 } 639 EXPORT_SYMBOL_GPL(dma_buf_map_attachment); 640 641 /** 642 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might 643 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of 644 * dma_buf_ops. 645 * @attach: [in] attachment to unmap buffer from 646 * @sg_table: [in] scatterlist info of the buffer to unmap 647 * @direction: [in] direction of DMA transfer 648 * 649 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment(). 650 */ 651 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach, 652 struct sg_table *sg_table, 653 enum dma_data_direction direction) 654 { 655 might_sleep(); 656 657 if (WARN_ON(!attach || !attach->dmabuf || !sg_table)) 658 return; 659 660 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, 661 direction); 662 } 663 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment); 664 665 /** 666 * DOC: cpu access 667 * 668 * There are mutliple reasons for supporting CPU access to a dma buffer object: 669 * 670 * - Fallback operations in the kernel, for example when a device is connected 671 * over USB and the kernel needs to shuffle the data around first before 672 * sending it away. Cache coherency is handled by braketing any transactions 673 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access() 674 * access. 675 * 676 * To support dma_buf objects residing in highmem cpu access is page-based 677 * using an api similar to kmap. Accessing a dma_buf is done in aligned chunks 678 * of PAGE_SIZE size. Before accessing a chunk it needs to be mapped, which 679 * returns a pointer in kernel virtual address space. Afterwards the chunk 680 * needs to be unmapped again. There is no limit on how often a given chunk 681 * can be mapped and unmapped, i.e. the importer does not need to call 682 * begin_cpu_access again before mapping the same chunk again. 683 * 684 * Interfaces:: 685 * void \*dma_buf_kmap(struct dma_buf \*, unsigned long); 686 * void dma_buf_kunmap(struct dma_buf \*, unsigned long, void \*); 687 * 688 * There are also atomic variants of these interfaces. Like for kmap they 689 * facilitate non-blocking fast-paths. Neither the importer nor the exporter 690 * (in the callback) is allowed to block when using these. 691 * 692 * Interfaces:: 693 * void \*dma_buf_kmap_atomic(struct dma_buf \*, unsigned long); 694 * void dma_buf_kunmap_atomic(struct dma_buf \*, unsigned long, void \*); 695 * 696 * For importers all the restrictions of using kmap apply, like the limited 697 * supply of kmap_atomic slots. Hence an importer shall only hold onto at 698 * max 2 atomic dma_buf kmaps at the same time (in any given process context). 699 * 700 * dma_buf kmap calls outside of the range specified in begin_cpu_access are 701 * undefined. If the range is not PAGE_SIZE aligned, kmap needs to succeed on 702 * the partial chunks at the beginning and end but may return stale or bogus 703 * data outside of the range (in these partial chunks). 704 * 705 * Note that these calls need to always succeed. The exporter needs to 706 * complete any preparations that might fail in begin_cpu_access. 707 * 708 * For some cases the overhead of kmap can be too high, a vmap interface 709 * is introduced. This interface should be used very carefully, as vmalloc 710 * space is a limited resources on many architectures. 711 * 712 * Interfaces:: 713 * void \*dma_buf_vmap(struct dma_buf \*dmabuf) 714 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr) 715 * 716 * The vmap call can fail if there is no vmap support in the exporter, or if 717 * it runs out of vmalloc space. Fallback to kmap should be implemented. Note 718 * that the dma-buf layer keeps a reference count for all vmap access and 719 * calls down into the exporter's vmap function only when no vmapping exists, 720 * and only unmaps it once. Protection against concurrent vmap/vunmap calls is 721 * provided by taking the dma_buf->lock mutex. 722 * 723 * - For full compatibility on the importer side with existing userspace 724 * interfaces, which might already support mmap'ing buffers. This is needed in 725 * many processing pipelines (e.g. feeding a software rendered image into a 726 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION 727 * framework already supported this and for DMA buffer file descriptors to 728 * replace ION buffers mmap support was needed. 729 * 730 * There is no special interfaces, userspace simply calls mmap on the dma-buf 731 * fd. But like for CPU access there's a need to braket the actual access, 732 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that 733 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must 734 * be restarted. 735 * 736 * Some systems might need some sort of cache coherency management e.g. when 737 * CPU and GPU domains are being accessed through dma-buf at the same time. 738 * To circumvent this problem there are begin/end coherency markers, that 739 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace 740 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The 741 * sequence would be used like following: 742 * 743 * - mmap dma-buf fd 744 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write 745 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you 746 * want (with the new data being consumed by say the GPU or the scanout 747 * device) 748 * - munmap once you don't need the buffer any more 749 * 750 * For correctness and optimal performance, it is always required to use 751 * SYNC_START and SYNC_END before and after, respectively, when accessing the 752 * mapped address. Userspace cannot rely on coherent access, even when there 753 * are systems where it just works without calling these ioctls. 754 * 755 * - And as a CPU fallback in userspace processing pipelines. 756 * 757 * Similar to the motivation for kernel cpu access it is again important that 758 * the userspace code of a given importing subsystem can use the same 759 * interfaces with a imported dma-buf buffer object as with a native buffer 760 * object. This is especially important for drm where the userspace part of 761 * contemporary OpenGL, X, and other drivers is huge, and reworking them to 762 * use a different way to mmap a buffer rather invasive. 763 * 764 * The assumption in the current dma-buf interfaces is that redirecting the 765 * initial mmap is all that's needed. A survey of some of the existing 766 * subsystems shows that no driver seems to do any nefarious thing like 767 * syncing up with outstanding asynchronous processing on the device or 768 * allocating special resources at fault time. So hopefully this is good 769 * enough, since adding interfaces to intercept pagefaults and allow pte 770 * shootdowns would increase the complexity quite a bit. 771 * 772 * Interface:: 773 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*, 774 * unsigned long); 775 * 776 * If the importing subsystem simply provides a special-purpose mmap call to 777 * set up a mapping in userspace, calling do_mmap with dma_buf->file will 778 * equally achieve that for a dma-buf object. 779 */ 780 781 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 782 enum dma_data_direction direction) 783 { 784 bool write = (direction == DMA_BIDIRECTIONAL || 785 direction == DMA_TO_DEVICE); 786 struct reservation_object *resv = dmabuf->resv; 787 long ret; 788 789 /* Wait on any implicit rendering fences */ 790 ret = reservation_object_wait_timeout_rcu(resv, write, true, 791 MAX_SCHEDULE_TIMEOUT); 792 if (ret < 0) 793 return ret; 794 795 return 0; 796 } 797 798 /** 799 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the 800 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific 801 * preparations. Coherency is only guaranteed in the specified range for the 802 * specified access direction. 803 * @dmabuf: [in] buffer to prepare cpu access for. 804 * @direction: [in] length of range for cpu access. 805 * 806 * After the cpu access is complete the caller should call 807 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is 808 * it guaranteed to be coherent with other DMA access. 809 * 810 * Can return negative error values, returns 0 on success. 811 */ 812 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 813 enum dma_data_direction direction) 814 { 815 int ret = 0; 816 817 if (WARN_ON(!dmabuf)) 818 return -EINVAL; 819 820 if (dmabuf->ops->begin_cpu_access) 821 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction); 822 823 /* Ensure that all fences are waited upon - but we first allow 824 * the native handler the chance to do so more efficiently if it 825 * chooses. A double invocation here will be reasonably cheap no-op. 826 */ 827 if (ret == 0) 828 ret = __dma_buf_begin_cpu_access(dmabuf, direction); 829 830 return ret; 831 } 832 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access); 833 834 /** 835 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the 836 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific 837 * actions. Coherency is only guaranteed in the specified range for the 838 * specified access direction. 839 * @dmabuf: [in] buffer to complete cpu access for. 840 * @direction: [in] length of range for cpu access. 841 * 842 * This terminates CPU access started with dma_buf_begin_cpu_access(). 843 * 844 * Can return negative error values, returns 0 on success. 845 */ 846 int dma_buf_end_cpu_access(struct dma_buf *dmabuf, 847 enum dma_data_direction direction) 848 { 849 int ret = 0; 850 851 WARN_ON(!dmabuf); 852 853 if (dmabuf->ops->end_cpu_access) 854 ret = dmabuf->ops->end_cpu_access(dmabuf, direction); 855 856 return ret; 857 } 858 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access); 859 860 /** 861 * dma_buf_kmap_atomic - Map a page of the buffer object into kernel address 862 * space. The same restrictions as for kmap_atomic and friends apply. 863 * @dmabuf: [in] buffer to map page from. 864 * @page_num: [in] page in PAGE_SIZE units to map. 865 * 866 * This call must always succeed, any necessary preparations that might fail 867 * need to be done in begin_cpu_access. 868 */ 869 void *dma_buf_kmap_atomic(struct dma_buf *dmabuf, unsigned long page_num) 870 { 871 WARN_ON(!dmabuf); 872 873 return dmabuf->ops->kmap_atomic(dmabuf, page_num); 874 } 875 EXPORT_SYMBOL_GPL(dma_buf_kmap_atomic); 876 877 /** 878 * dma_buf_kunmap_atomic - Unmap a page obtained by dma_buf_kmap_atomic. 879 * @dmabuf: [in] buffer to unmap page from. 880 * @page_num: [in] page in PAGE_SIZE units to unmap. 881 * @vaddr: [in] kernel space pointer obtained from dma_buf_kmap_atomic. 882 * 883 * This call must always succeed. 884 */ 885 void dma_buf_kunmap_atomic(struct dma_buf *dmabuf, unsigned long page_num, 886 void *vaddr) 887 { 888 WARN_ON(!dmabuf); 889 890 if (dmabuf->ops->kunmap_atomic) 891 dmabuf->ops->kunmap_atomic(dmabuf, page_num, vaddr); 892 } 893 EXPORT_SYMBOL_GPL(dma_buf_kunmap_atomic); 894 895 /** 896 * dma_buf_kmap - Map a page of the buffer object into kernel address space. The 897 * same restrictions as for kmap and friends apply. 898 * @dmabuf: [in] buffer to map page from. 899 * @page_num: [in] page in PAGE_SIZE units to map. 900 * 901 * This call must always succeed, any necessary preparations that might fail 902 * need to be done in begin_cpu_access. 903 */ 904 void *dma_buf_kmap(struct dma_buf *dmabuf, unsigned long page_num) 905 { 906 WARN_ON(!dmabuf); 907 908 return dmabuf->ops->kmap(dmabuf, page_num); 909 } 910 EXPORT_SYMBOL_GPL(dma_buf_kmap); 911 912 /** 913 * dma_buf_kunmap - Unmap a page obtained by dma_buf_kmap. 914 * @dmabuf: [in] buffer to unmap page from. 915 * @page_num: [in] page in PAGE_SIZE units to unmap. 916 * @vaddr: [in] kernel space pointer obtained from dma_buf_kmap. 917 * 918 * This call must always succeed. 919 */ 920 void dma_buf_kunmap(struct dma_buf *dmabuf, unsigned long page_num, 921 void *vaddr) 922 { 923 WARN_ON(!dmabuf); 924 925 if (dmabuf->ops->kunmap) 926 dmabuf->ops->kunmap(dmabuf, page_num, vaddr); 927 } 928 EXPORT_SYMBOL_GPL(dma_buf_kunmap); 929 930 931 /** 932 * dma_buf_mmap - Setup up a userspace mmap with the given vma 933 * @dmabuf: [in] buffer that should back the vma 934 * @vma: [in] vma for the mmap 935 * @pgoff: [in] offset in pages where this mmap should start within the 936 * dma-buf buffer. 937 * 938 * This function adjusts the passed in vma so that it points at the file of the 939 * dma_buf operation. It also adjusts the starting pgoff and does bounds 940 * checking on the size of the vma. Then it calls the exporters mmap function to 941 * set up the mapping. 942 * 943 * Can return negative error values, returns 0 on success. 944 */ 945 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma, 946 unsigned long pgoff) 947 { 948 struct file *oldfile; 949 int ret; 950 951 if (WARN_ON(!dmabuf || !vma)) 952 return -EINVAL; 953 954 /* check for offset overflow */ 955 if (pgoff + vma_pages(vma) < pgoff) 956 return -EOVERFLOW; 957 958 /* check for overflowing the buffer's size */ 959 if (pgoff + vma_pages(vma) > 960 dmabuf->size >> PAGE_SHIFT) 961 return -EINVAL; 962 963 /* readjust the vma */ 964 get_file(dmabuf->file); 965 oldfile = vma->vm_file; 966 vma->vm_file = dmabuf->file; 967 vma->vm_pgoff = pgoff; 968 969 ret = dmabuf->ops->mmap(dmabuf, vma); 970 if (ret) { 971 /* restore old parameters on failure */ 972 vma->vm_file = oldfile; 973 fput(dmabuf->file); 974 } else { 975 if (oldfile) 976 fput(oldfile); 977 } 978 return ret; 979 980 } 981 EXPORT_SYMBOL_GPL(dma_buf_mmap); 982 983 /** 984 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel 985 * address space. Same restrictions as for vmap and friends apply. 986 * @dmabuf: [in] buffer to vmap 987 * 988 * This call may fail due to lack of virtual mapping address space. 989 * These calls are optional in drivers. The intended use for them 990 * is for mapping objects linear in kernel space for high use objects. 991 * Please attempt to use kmap/kunmap before thinking about these interfaces. 992 * 993 * Returns NULL on error. 994 */ 995 void *dma_buf_vmap(struct dma_buf *dmabuf) 996 { 997 void *ptr; 998 999 if (WARN_ON(!dmabuf)) 1000 return NULL; 1001 1002 if (!dmabuf->ops->vmap) 1003 return NULL; 1004 1005 mutex_lock(&dmabuf->lock); 1006 if (dmabuf->vmapping_counter) { 1007 dmabuf->vmapping_counter++; 1008 BUG_ON(!dmabuf->vmap_ptr); 1009 ptr = dmabuf->vmap_ptr; 1010 goto out_unlock; 1011 } 1012 1013 BUG_ON(dmabuf->vmap_ptr); 1014 1015 ptr = dmabuf->ops->vmap(dmabuf); 1016 if (WARN_ON_ONCE(IS_ERR(ptr))) 1017 ptr = NULL; 1018 if (!ptr) 1019 goto out_unlock; 1020 1021 dmabuf->vmap_ptr = ptr; 1022 dmabuf->vmapping_counter = 1; 1023 1024 out_unlock: 1025 mutex_unlock(&dmabuf->lock); 1026 return ptr; 1027 } 1028 EXPORT_SYMBOL_GPL(dma_buf_vmap); 1029 1030 /** 1031 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap. 1032 * @dmabuf: [in] buffer to vunmap 1033 * @vaddr: [in] vmap to vunmap 1034 */ 1035 void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr) 1036 { 1037 if (WARN_ON(!dmabuf)) 1038 return; 1039 1040 BUG_ON(!dmabuf->vmap_ptr); 1041 BUG_ON(dmabuf->vmapping_counter == 0); 1042 BUG_ON(dmabuf->vmap_ptr != vaddr); 1043 1044 mutex_lock(&dmabuf->lock); 1045 if (--dmabuf->vmapping_counter == 0) { 1046 if (dmabuf->ops->vunmap) 1047 dmabuf->ops->vunmap(dmabuf, vaddr); 1048 dmabuf->vmap_ptr = NULL; 1049 } 1050 mutex_unlock(&dmabuf->lock); 1051 } 1052 EXPORT_SYMBOL_GPL(dma_buf_vunmap); 1053 1054 #ifdef CONFIG_DEBUG_FS 1055 static int dma_buf_debug_show(struct seq_file *s, void *unused) 1056 { 1057 int ret; 1058 struct dma_buf *buf_obj; 1059 struct dma_buf_attachment *attach_obj; 1060 int count = 0, attach_count; 1061 size_t size = 0; 1062 1063 ret = mutex_lock_interruptible(&db_list.lock); 1064 1065 if (ret) 1066 return ret; 1067 1068 seq_puts(s, "\nDma-buf Objects:\n"); 1069 seq_puts(s, "size\tflags\tmode\tcount\texp_name\n"); 1070 1071 list_for_each_entry(buf_obj, &db_list.head, list_node) { 1072 ret = mutex_lock_interruptible(&buf_obj->lock); 1073 1074 if (ret) { 1075 seq_puts(s, 1076 "\tERROR locking buffer object: skipping\n"); 1077 continue; 1078 } 1079 1080 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\n", 1081 buf_obj->size, 1082 buf_obj->file->f_flags, buf_obj->file->f_mode, 1083 file_count(buf_obj->file), 1084 buf_obj->exp_name); 1085 1086 seq_puts(s, "\tAttached Devices:\n"); 1087 attach_count = 0; 1088 1089 list_for_each_entry(attach_obj, &buf_obj->attachments, node) { 1090 seq_puts(s, "\t"); 1091 1092 seq_printf(s, "%s\n", dev_name(attach_obj->dev)); 1093 attach_count++; 1094 } 1095 1096 seq_printf(s, "Total %d devices attached\n\n", 1097 attach_count); 1098 1099 count++; 1100 size += buf_obj->size; 1101 mutex_unlock(&buf_obj->lock); 1102 } 1103 1104 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size); 1105 1106 mutex_unlock(&db_list.lock); 1107 return 0; 1108 } 1109 1110 static int dma_buf_debug_open(struct inode *inode, struct file *file) 1111 { 1112 return single_open(file, dma_buf_debug_show, NULL); 1113 } 1114 1115 static const struct file_operations dma_buf_debug_fops = { 1116 .open = dma_buf_debug_open, 1117 .read = seq_read, 1118 .llseek = seq_lseek, 1119 .release = single_release, 1120 }; 1121 1122 static struct dentry *dma_buf_debugfs_dir; 1123 1124 static int dma_buf_init_debugfs(void) 1125 { 1126 struct dentry *d; 1127 int err = 0; 1128 1129 d = debugfs_create_dir("dma_buf", NULL); 1130 if (IS_ERR(d)) 1131 return PTR_ERR(d); 1132 1133 dma_buf_debugfs_dir = d; 1134 1135 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir, 1136 NULL, &dma_buf_debug_fops); 1137 if (IS_ERR(d)) { 1138 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n"); 1139 debugfs_remove_recursive(dma_buf_debugfs_dir); 1140 dma_buf_debugfs_dir = NULL; 1141 err = PTR_ERR(d); 1142 } 1143 1144 return err; 1145 } 1146 1147 static void dma_buf_uninit_debugfs(void) 1148 { 1149 if (dma_buf_debugfs_dir) 1150 debugfs_remove_recursive(dma_buf_debugfs_dir); 1151 } 1152 #else 1153 static inline int dma_buf_init_debugfs(void) 1154 { 1155 return 0; 1156 } 1157 static inline void dma_buf_uninit_debugfs(void) 1158 { 1159 } 1160 #endif 1161 1162 static int __init dma_buf_init(void) 1163 { 1164 mutex_init(&db_list.lock); 1165 INIT_LIST_HEAD(&db_list.head); 1166 dma_buf_init_debugfs(); 1167 return 0; 1168 } 1169 subsys_initcall(dma_buf_init); 1170 1171 static void __exit dma_buf_deinit(void) 1172 { 1173 dma_buf_uninit_debugfs(); 1174 } 1175 __exitcall(dma_buf_deinit); 1176