xref: /linux/drivers/dma-buf/dma-buf.c (revision 45de28e31a6e250cd9e17c8b9f9db5a439fb39b2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Framework for buffer objects that can be shared across devices/subsystems.
4  *
5  * Copyright(C) 2011 Linaro Limited. All rights reserved.
6  * Author: Sumit Semwal <sumit.semwal@ti.com>
7  *
8  * Many thanks to linaro-mm-sig list, and specially
9  * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10  * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11  * refining of this idea.
12  */
13 
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/anon_inodes.h>
19 #include <linux/export.h>
20 #include <linux/debugfs.h>
21 #include <linux/module.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/dma-resv.h>
25 #include <linux/mm.h>
26 #include <linux/mount.h>
27 #include <linux/pseudo_fs.h>
28 
29 #include <uapi/linux/dma-buf.h>
30 #include <uapi/linux/magic.h>
31 
32 static inline int is_dma_buf_file(struct file *);
33 
34 struct dma_buf_list {
35 	struct list_head head;
36 	struct mutex lock;
37 };
38 
39 static struct dma_buf_list db_list;
40 
41 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
42 {
43 	struct dma_buf *dmabuf;
44 	char name[DMA_BUF_NAME_LEN];
45 	size_t ret = 0;
46 
47 	dmabuf = dentry->d_fsdata;
48 	spin_lock(&dmabuf->name_lock);
49 	if (dmabuf->name)
50 		ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
51 	spin_unlock(&dmabuf->name_lock);
52 
53 	return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
54 			     dentry->d_name.name, ret > 0 ? name : "");
55 }
56 
57 static void dma_buf_release(struct dentry *dentry)
58 {
59 	struct dma_buf *dmabuf;
60 
61 	dmabuf = dentry->d_fsdata;
62 
63 	BUG_ON(dmabuf->vmapping_counter);
64 
65 	/*
66 	 * Any fences that a dma-buf poll can wait on should be signaled
67 	 * before releasing dma-buf. This is the responsibility of each
68 	 * driver that uses the reservation objects.
69 	 *
70 	 * If you hit this BUG() it means someone dropped their ref to the
71 	 * dma-buf while still having pending operation to the buffer.
72 	 */
73 	BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
74 
75 	dmabuf->ops->release(dmabuf);
76 
77 	mutex_lock(&db_list.lock);
78 	list_del(&dmabuf->list_node);
79 	mutex_unlock(&db_list.lock);
80 
81 	if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
82 		dma_resv_fini(dmabuf->resv);
83 
84 	module_put(dmabuf->owner);
85 	kfree(dmabuf->name);
86 	kfree(dmabuf);
87 }
88 
89 static const struct dentry_operations dma_buf_dentry_ops = {
90 	.d_dname = dmabuffs_dname,
91 	.d_release = dma_buf_release,
92 };
93 
94 static struct vfsmount *dma_buf_mnt;
95 
96 static int dma_buf_fs_init_context(struct fs_context *fc)
97 {
98 	struct pseudo_fs_context *ctx;
99 
100 	ctx = init_pseudo(fc, DMA_BUF_MAGIC);
101 	if (!ctx)
102 		return -ENOMEM;
103 	ctx->dops = &dma_buf_dentry_ops;
104 	return 0;
105 }
106 
107 static struct file_system_type dma_buf_fs_type = {
108 	.name = "dmabuf",
109 	.init_fs_context = dma_buf_fs_init_context,
110 	.kill_sb = kill_anon_super,
111 };
112 
113 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
114 {
115 	struct dma_buf *dmabuf;
116 
117 	if (!is_dma_buf_file(file))
118 		return -EINVAL;
119 
120 	dmabuf = file->private_data;
121 
122 	/* check if buffer supports mmap */
123 	if (!dmabuf->ops->mmap)
124 		return -EINVAL;
125 
126 	/* check for overflowing the buffer's size */
127 	if (vma->vm_pgoff + vma_pages(vma) >
128 	    dmabuf->size >> PAGE_SHIFT)
129 		return -EINVAL;
130 
131 	return dmabuf->ops->mmap(dmabuf, vma);
132 }
133 
134 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
135 {
136 	struct dma_buf *dmabuf;
137 	loff_t base;
138 
139 	if (!is_dma_buf_file(file))
140 		return -EBADF;
141 
142 	dmabuf = file->private_data;
143 
144 	/* only support discovering the end of the buffer,
145 	   but also allow SEEK_SET to maintain the idiomatic
146 	   SEEK_END(0), SEEK_CUR(0) pattern */
147 	if (whence == SEEK_END)
148 		base = dmabuf->size;
149 	else if (whence == SEEK_SET)
150 		base = 0;
151 	else
152 		return -EINVAL;
153 
154 	if (offset != 0)
155 		return -EINVAL;
156 
157 	return base + offset;
158 }
159 
160 /**
161  * DOC: implicit fence polling
162  *
163  * To support cross-device and cross-driver synchronization of buffer access
164  * implicit fences (represented internally in the kernel with &struct dma_fence)
165  * can be attached to a &dma_buf. The glue for that and a few related things are
166  * provided in the &dma_resv structure.
167  *
168  * Userspace can query the state of these implicitly tracked fences using poll()
169  * and related system calls:
170  *
171  * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
172  *   most recent write or exclusive fence.
173  *
174  * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
175  *   all attached fences, shared and exclusive ones.
176  *
177  * Note that this only signals the completion of the respective fences, i.e. the
178  * DMA transfers are complete. Cache flushing and any other necessary
179  * preparations before CPU access can begin still need to happen.
180  */
181 
182 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
183 {
184 	struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
185 	unsigned long flags;
186 
187 	spin_lock_irqsave(&dcb->poll->lock, flags);
188 	wake_up_locked_poll(dcb->poll, dcb->active);
189 	dcb->active = 0;
190 	spin_unlock_irqrestore(&dcb->poll->lock, flags);
191 }
192 
193 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
194 {
195 	struct dma_buf *dmabuf;
196 	struct dma_resv *resv;
197 	struct dma_resv_list *fobj;
198 	struct dma_fence *fence_excl;
199 	__poll_t events;
200 	unsigned shared_count, seq;
201 
202 	dmabuf = file->private_data;
203 	if (!dmabuf || !dmabuf->resv)
204 		return EPOLLERR;
205 
206 	resv = dmabuf->resv;
207 
208 	poll_wait(file, &dmabuf->poll, poll);
209 
210 	events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
211 	if (!events)
212 		return 0;
213 
214 retry:
215 	seq = read_seqcount_begin(&resv->seq);
216 	rcu_read_lock();
217 
218 	fobj = rcu_dereference(resv->fence);
219 	if (fobj)
220 		shared_count = fobj->shared_count;
221 	else
222 		shared_count = 0;
223 	fence_excl = rcu_dereference(resv->fence_excl);
224 	if (read_seqcount_retry(&resv->seq, seq)) {
225 		rcu_read_unlock();
226 		goto retry;
227 	}
228 
229 	if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
230 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
231 		__poll_t pevents = EPOLLIN;
232 
233 		if (shared_count == 0)
234 			pevents |= EPOLLOUT;
235 
236 		spin_lock_irq(&dmabuf->poll.lock);
237 		if (dcb->active) {
238 			dcb->active |= pevents;
239 			events &= ~pevents;
240 		} else
241 			dcb->active = pevents;
242 		spin_unlock_irq(&dmabuf->poll.lock);
243 
244 		if (events & pevents) {
245 			if (!dma_fence_get_rcu(fence_excl)) {
246 				/* force a recheck */
247 				events &= ~pevents;
248 				dma_buf_poll_cb(NULL, &dcb->cb);
249 			} else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
250 							   dma_buf_poll_cb)) {
251 				events &= ~pevents;
252 				dma_fence_put(fence_excl);
253 			} else {
254 				/*
255 				 * No callback queued, wake up any additional
256 				 * waiters.
257 				 */
258 				dma_fence_put(fence_excl);
259 				dma_buf_poll_cb(NULL, &dcb->cb);
260 			}
261 		}
262 	}
263 
264 	if ((events & EPOLLOUT) && shared_count > 0) {
265 		struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
266 		int i;
267 
268 		/* Only queue a new callback if no event has fired yet */
269 		spin_lock_irq(&dmabuf->poll.lock);
270 		if (dcb->active)
271 			events &= ~EPOLLOUT;
272 		else
273 			dcb->active = EPOLLOUT;
274 		spin_unlock_irq(&dmabuf->poll.lock);
275 
276 		if (!(events & EPOLLOUT))
277 			goto out;
278 
279 		for (i = 0; i < shared_count; ++i) {
280 			struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
281 
282 			if (!dma_fence_get_rcu(fence)) {
283 				/*
284 				 * fence refcount dropped to zero, this means
285 				 * that fobj has been freed
286 				 *
287 				 * call dma_buf_poll_cb and force a recheck!
288 				 */
289 				events &= ~EPOLLOUT;
290 				dma_buf_poll_cb(NULL, &dcb->cb);
291 				break;
292 			}
293 			if (!dma_fence_add_callback(fence, &dcb->cb,
294 						    dma_buf_poll_cb)) {
295 				dma_fence_put(fence);
296 				events &= ~EPOLLOUT;
297 				break;
298 			}
299 			dma_fence_put(fence);
300 		}
301 
302 		/* No callback queued, wake up any additional waiters. */
303 		if (i == shared_count)
304 			dma_buf_poll_cb(NULL, &dcb->cb);
305 	}
306 
307 out:
308 	rcu_read_unlock();
309 	return events;
310 }
311 
312 /**
313  * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
314  * The name of the dma-buf buffer can only be set when the dma-buf is not
315  * attached to any devices. It could theoritically support changing the
316  * name of the dma-buf if the same piece of memory is used for multiple
317  * purpose between different devices.
318  *
319  * @dmabuf [in]     dmabuf buffer that will be renamed.
320  * @buf:   [in]     A piece of userspace memory that contains the name of
321  *                  the dma-buf.
322  *
323  * Returns 0 on success. If the dma-buf buffer is already attached to
324  * devices, return -EBUSY.
325  *
326  */
327 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
328 {
329 	char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
330 	long ret = 0;
331 
332 	if (IS_ERR(name))
333 		return PTR_ERR(name);
334 
335 	dma_resv_lock(dmabuf->resv, NULL);
336 	if (!list_empty(&dmabuf->attachments)) {
337 		ret = -EBUSY;
338 		kfree(name);
339 		goto out_unlock;
340 	}
341 	spin_lock(&dmabuf->name_lock);
342 	kfree(dmabuf->name);
343 	dmabuf->name = name;
344 	spin_unlock(&dmabuf->name_lock);
345 
346 out_unlock:
347 	dma_resv_unlock(dmabuf->resv);
348 	return ret;
349 }
350 
351 static long dma_buf_ioctl(struct file *file,
352 			  unsigned int cmd, unsigned long arg)
353 {
354 	struct dma_buf *dmabuf;
355 	struct dma_buf_sync sync;
356 	enum dma_data_direction direction;
357 	int ret;
358 
359 	dmabuf = file->private_data;
360 
361 	switch (cmd) {
362 	case DMA_BUF_IOCTL_SYNC:
363 		if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
364 			return -EFAULT;
365 
366 		if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
367 			return -EINVAL;
368 
369 		switch (sync.flags & DMA_BUF_SYNC_RW) {
370 		case DMA_BUF_SYNC_READ:
371 			direction = DMA_FROM_DEVICE;
372 			break;
373 		case DMA_BUF_SYNC_WRITE:
374 			direction = DMA_TO_DEVICE;
375 			break;
376 		case DMA_BUF_SYNC_RW:
377 			direction = DMA_BIDIRECTIONAL;
378 			break;
379 		default:
380 			return -EINVAL;
381 		}
382 
383 		if (sync.flags & DMA_BUF_SYNC_END)
384 			ret = dma_buf_end_cpu_access(dmabuf, direction);
385 		else
386 			ret = dma_buf_begin_cpu_access(dmabuf, direction);
387 
388 		return ret;
389 
390 	case DMA_BUF_SET_NAME_A:
391 	case DMA_BUF_SET_NAME_B:
392 		return dma_buf_set_name(dmabuf, (const char __user *)arg);
393 
394 	default:
395 		return -ENOTTY;
396 	}
397 }
398 
399 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
400 {
401 	struct dma_buf *dmabuf = file->private_data;
402 
403 	seq_printf(m, "size:\t%zu\n", dmabuf->size);
404 	/* Don't count the temporary reference taken inside procfs seq_show */
405 	seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
406 	seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
407 	spin_lock(&dmabuf->name_lock);
408 	if (dmabuf->name)
409 		seq_printf(m, "name:\t%s\n", dmabuf->name);
410 	spin_unlock(&dmabuf->name_lock);
411 }
412 
413 static const struct file_operations dma_buf_fops = {
414 	.mmap		= dma_buf_mmap_internal,
415 	.llseek		= dma_buf_llseek,
416 	.poll		= dma_buf_poll,
417 	.unlocked_ioctl	= dma_buf_ioctl,
418 	.compat_ioctl	= compat_ptr_ioctl,
419 	.show_fdinfo	= dma_buf_show_fdinfo,
420 };
421 
422 /*
423  * is_dma_buf_file - Check if struct file* is associated with dma_buf
424  */
425 static inline int is_dma_buf_file(struct file *file)
426 {
427 	return file->f_op == &dma_buf_fops;
428 }
429 
430 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
431 {
432 	struct file *file;
433 	struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
434 
435 	if (IS_ERR(inode))
436 		return ERR_CAST(inode);
437 
438 	inode->i_size = dmabuf->size;
439 	inode_set_bytes(inode, dmabuf->size);
440 
441 	file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
442 				 flags, &dma_buf_fops);
443 	if (IS_ERR(file))
444 		goto err_alloc_file;
445 	file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
446 	file->private_data = dmabuf;
447 	file->f_path.dentry->d_fsdata = dmabuf;
448 
449 	return file;
450 
451 err_alloc_file:
452 	iput(inode);
453 	return file;
454 }
455 
456 /**
457  * DOC: dma buf device access
458  *
459  * For device DMA access to a shared DMA buffer the usual sequence of operations
460  * is fairly simple:
461  *
462  * 1. The exporter defines his exporter instance using
463  *    DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
464  *    buffer object into a &dma_buf. It then exports that &dma_buf to userspace
465  *    as a file descriptor by calling dma_buf_fd().
466  *
467  * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
468  *    to share with: First the filedescriptor is converted to a &dma_buf using
469  *    dma_buf_get(). Then the buffer is attached to the device using
470  *    dma_buf_attach().
471  *
472  *    Up to this stage the exporter is still free to migrate or reallocate the
473  *    backing storage.
474  *
475  * 3. Once the buffer is attached to all devices userspace can initiate DMA
476  *    access to the shared buffer. In the kernel this is done by calling
477  *    dma_buf_map_attachment() and dma_buf_unmap_attachment().
478  *
479  * 4. Once a driver is done with a shared buffer it needs to call
480  *    dma_buf_detach() (after cleaning up any mappings) and then release the
481  *    reference acquired with dma_buf_get by calling dma_buf_put().
482  *
483  * For the detailed semantics exporters are expected to implement see
484  * &dma_buf_ops.
485  */
486 
487 /**
488  * dma_buf_export - Creates a new dma_buf, and associates an anon file
489  * with this buffer, so it can be exported.
490  * Also connect the allocator specific data and ops to the buffer.
491  * Additionally, provide a name string for exporter; useful in debugging.
492  *
493  * @exp_info:	[in]	holds all the export related information provided
494  *			by the exporter. see &struct dma_buf_export_info
495  *			for further details.
496  *
497  * Returns, on success, a newly created dma_buf object, which wraps the
498  * supplied private data and operations for dma_buf_ops. On either missing
499  * ops, or error in allocating struct dma_buf, will return negative error.
500  *
501  * For most cases the easiest way to create @exp_info is through the
502  * %DEFINE_DMA_BUF_EXPORT_INFO macro.
503  */
504 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
505 {
506 	struct dma_buf *dmabuf;
507 	struct dma_resv *resv = exp_info->resv;
508 	struct file *file;
509 	size_t alloc_size = sizeof(struct dma_buf);
510 	int ret;
511 
512 	if (!exp_info->resv)
513 		alloc_size += sizeof(struct dma_resv);
514 	else
515 		/* prevent &dma_buf[1] == dma_buf->resv */
516 		alloc_size += 1;
517 
518 	if (WARN_ON(!exp_info->priv
519 			  || !exp_info->ops
520 			  || !exp_info->ops->map_dma_buf
521 			  || !exp_info->ops->unmap_dma_buf
522 			  || !exp_info->ops->release)) {
523 		return ERR_PTR(-EINVAL);
524 	}
525 
526 	if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
527 		    (exp_info->ops->pin || exp_info->ops->unpin)))
528 		return ERR_PTR(-EINVAL);
529 
530 	if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
531 		return ERR_PTR(-EINVAL);
532 
533 	if (!try_module_get(exp_info->owner))
534 		return ERR_PTR(-ENOENT);
535 
536 	dmabuf = kzalloc(alloc_size, GFP_KERNEL);
537 	if (!dmabuf) {
538 		ret = -ENOMEM;
539 		goto err_module;
540 	}
541 
542 	dmabuf->priv = exp_info->priv;
543 	dmabuf->ops = exp_info->ops;
544 	dmabuf->size = exp_info->size;
545 	dmabuf->exp_name = exp_info->exp_name;
546 	dmabuf->owner = exp_info->owner;
547 	spin_lock_init(&dmabuf->name_lock);
548 	init_waitqueue_head(&dmabuf->poll);
549 	dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
550 	dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
551 
552 	if (!resv) {
553 		resv = (struct dma_resv *)&dmabuf[1];
554 		dma_resv_init(resv);
555 	}
556 	dmabuf->resv = resv;
557 
558 	file = dma_buf_getfile(dmabuf, exp_info->flags);
559 	if (IS_ERR(file)) {
560 		ret = PTR_ERR(file);
561 		goto err_dmabuf;
562 	}
563 
564 	file->f_mode |= FMODE_LSEEK;
565 	dmabuf->file = file;
566 
567 	mutex_init(&dmabuf->lock);
568 	INIT_LIST_HEAD(&dmabuf->attachments);
569 
570 	mutex_lock(&db_list.lock);
571 	list_add(&dmabuf->list_node, &db_list.head);
572 	mutex_unlock(&db_list.lock);
573 
574 	return dmabuf;
575 
576 err_dmabuf:
577 	kfree(dmabuf);
578 err_module:
579 	module_put(exp_info->owner);
580 	return ERR_PTR(ret);
581 }
582 EXPORT_SYMBOL_GPL(dma_buf_export);
583 
584 /**
585  * dma_buf_fd - returns a file descriptor for the given dma_buf
586  * @dmabuf:	[in]	pointer to dma_buf for which fd is required.
587  * @flags:      [in]    flags to give to fd
588  *
589  * On success, returns an associated 'fd'. Else, returns error.
590  */
591 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
592 {
593 	int fd;
594 
595 	if (!dmabuf || !dmabuf->file)
596 		return -EINVAL;
597 
598 	fd = get_unused_fd_flags(flags);
599 	if (fd < 0)
600 		return fd;
601 
602 	fd_install(fd, dmabuf->file);
603 
604 	return fd;
605 }
606 EXPORT_SYMBOL_GPL(dma_buf_fd);
607 
608 /**
609  * dma_buf_get - returns the dma_buf structure related to an fd
610  * @fd:	[in]	fd associated with the dma_buf to be returned
611  *
612  * On success, returns the dma_buf structure associated with an fd; uses
613  * file's refcounting done by fget to increase refcount. returns ERR_PTR
614  * otherwise.
615  */
616 struct dma_buf *dma_buf_get(int fd)
617 {
618 	struct file *file;
619 
620 	file = fget(fd);
621 
622 	if (!file)
623 		return ERR_PTR(-EBADF);
624 
625 	if (!is_dma_buf_file(file)) {
626 		fput(file);
627 		return ERR_PTR(-EINVAL);
628 	}
629 
630 	return file->private_data;
631 }
632 EXPORT_SYMBOL_GPL(dma_buf_get);
633 
634 /**
635  * dma_buf_put - decreases refcount of the buffer
636  * @dmabuf:	[in]	buffer to reduce refcount of
637  *
638  * Uses file's refcounting done implicitly by fput().
639  *
640  * If, as a result of this call, the refcount becomes 0, the 'release' file
641  * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
642  * in turn, and frees the memory allocated for dmabuf when exported.
643  */
644 void dma_buf_put(struct dma_buf *dmabuf)
645 {
646 	if (WARN_ON(!dmabuf || !dmabuf->file))
647 		return;
648 
649 	fput(dmabuf->file);
650 }
651 EXPORT_SYMBOL_GPL(dma_buf_put);
652 
653 /**
654  * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list; optionally,
655  * calls attach() of dma_buf_ops to allow device-specific attach functionality
656  * @dmabuf:		[in]	buffer to attach device to.
657  * @dev:		[in]	device to be attached.
658  * @importer_ops:	[in]	importer operations for the attachment
659  * @importer_priv:	[in]	importer private pointer for the attachment
660  *
661  * Returns struct dma_buf_attachment pointer for this attachment. Attachments
662  * must be cleaned up by calling dma_buf_detach().
663  *
664  * Returns:
665  *
666  * A pointer to newly created &dma_buf_attachment on success, or a negative
667  * error code wrapped into a pointer on failure.
668  *
669  * Note that this can fail if the backing storage of @dmabuf is in a place not
670  * accessible to @dev, and cannot be moved to a more suitable place. This is
671  * indicated with the error code -EBUSY.
672  */
673 struct dma_buf_attachment *
674 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
675 		       const struct dma_buf_attach_ops *importer_ops,
676 		       void *importer_priv)
677 {
678 	struct dma_buf_attachment *attach;
679 	int ret;
680 
681 	if (WARN_ON(!dmabuf || !dev))
682 		return ERR_PTR(-EINVAL);
683 
684 	if (WARN_ON(importer_ops && !importer_ops->move_notify))
685 		return ERR_PTR(-EINVAL);
686 
687 	attach = kzalloc(sizeof(*attach), GFP_KERNEL);
688 	if (!attach)
689 		return ERR_PTR(-ENOMEM);
690 
691 	attach->dev = dev;
692 	attach->dmabuf = dmabuf;
693 	if (importer_ops)
694 		attach->peer2peer = importer_ops->allow_peer2peer;
695 	attach->importer_ops = importer_ops;
696 	attach->importer_priv = importer_priv;
697 
698 	if (dmabuf->ops->attach) {
699 		ret = dmabuf->ops->attach(dmabuf, attach);
700 		if (ret)
701 			goto err_attach;
702 	}
703 	dma_resv_lock(dmabuf->resv, NULL);
704 	list_add(&attach->node, &dmabuf->attachments);
705 	dma_resv_unlock(dmabuf->resv);
706 
707 	/* When either the importer or the exporter can't handle dynamic
708 	 * mappings we cache the mapping here to avoid issues with the
709 	 * reservation object lock.
710 	 */
711 	if (dma_buf_attachment_is_dynamic(attach) !=
712 	    dma_buf_is_dynamic(dmabuf)) {
713 		struct sg_table *sgt;
714 
715 		if (dma_buf_is_dynamic(attach->dmabuf)) {
716 			dma_resv_lock(attach->dmabuf->resv, NULL);
717 			ret = dma_buf_pin(attach);
718 			if (ret)
719 				goto err_unlock;
720 		}
721 
722 		sgt = dmabuf->ops->map_dma_buf(attach, DMA_BIDIRECTIONAL);
723 		if (!sgt)
724 			sgt = ERR_PTR(-ENOMEM);
725 		if (IS_ERR(sgt)) {
726 			ret = PTR_ERR(sgt);
727 			goto err_unpin;
728 		}
729 		if (dma_buf_is_dynamic(attach->dmabuf))
730 			dma_resv_unlock(attach->dmabuf->resv);
731 		attach->sgt = sgt;
732 		attach->dir = DMA_BIDIRECTIONAL;
733 	}
734 
735 	return attach;
736 
737 err_attach:
738 	kfree(attach);
739 	return ERR_PTR(ret);
740 
741 err_unpin:
742 	if (dma_buf_is_dynamic(attach->dmabuf))
743 		dma_buf_unpin(attach);
744 
745 err_unlock:
746 	if (dma_buf_is_dynamic(attach->dmabuf))
747 		dma_resv_unlock(attach->dmabuf->resv);
748 
749 	dma_buf_detach(dmabuf, attach);
750 	return ERR_PTR(ret);
751 }
752 EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach);
753 
754 /**
755  * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
756  * @dmabuf:	[in]	buffer to attach device to.
757  * @dev:	[in]	device to be attached.
758  *
759  * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
760  * mapping.
761  */
762 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
763 					  struct device *dev)
764 {
765 	return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
766 }
767 EXPORT_SYMBOL_GPL(dma_buf_attach);
768 
769 /**
770  * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
771  * optionally calls detach() of dma_buf_ops for device-specific detach
772  * @dmabuf:	[in]	buffer to detach from.
773  * @attach:	[in]	attachment to be detached; is free'd after this call.
774  *
775  * Clean up a device attachment obtained by calling dma_buf_attach().
776  */
777 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
778 {
779 	if (WARN_ON(!dmabuf || !attach))
780 		return;
781 
782 	if (attach->sgt) {
783 		if (dma_buf_is_dynamic(attach->dmabuf))
784 			dma_resv_lock(attach->dmabuf->resv, NULL);
785 
786 		dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir);
787 
788 		if (dma_buf_is_dynamic(attach->dmabuf)) {
789 			dma_buf_unpin(attach);
790 			dma_resv_unlock(attach->dmabuf->resv);
791 		}
792 	}
793 
794 	dma_resv_lock(dmabuf->resv, NULL);
795 	list_del(&attach->node);
796 	dma_resv_unlock(dmabuf->resv);
797 	if (dmabuf->ops->detach)
798 		dmabuf->ops->detach(dmabuf, attach);
799 
800 	kfree(attach);
801 }
802 EXPORT_SYMBOL_GPL(dma_buf_detach);
803 
804 /**
805  * dma_buf_pin - Lock down the DMA-buf
806  *
807  * @attach:	[in]	attachment which should be pinned
808  *
809  * Returns:
810  * 0 on success, negative error code on failure.
811  */
812 int dma_buf_pin(struct dma_buf_attachment *attach)
813 {
814 	struct dma_buf *dmabuf = attach->dmabuf;
815 	int ret = 0;
816 
817 	dma_resv_assert_held(dmabuf->resv);
818 
819 	if (dmabuf->ops->pin)
820 		ret = dmabuf->ops->pin(attach);
821 
822 	return ret;
823 }
824 EXPORT_SYMBOL_GPL(dma_buf_pin);
825 
826 /**
827  * dma_buf_unpin - Remove lock from DMA-buf
828  *
829  * @attach:	[in]	attachment which should be unpinned
830  */
831 void dma_buf_unpin(struct dma_buf_attachment *attach)
832 {
833 	struct dma_buf *dmabuf = attach->dmabuf;
834 
835 	dma_resv_assert_held(dmabuf->resv);
836 
837 	if (dmabuf->ops->unpin)
838 		dmabuf->ops->unpin(attach);
839 }
840 EXPORT_SYMBOL_GPL(dma_buf_unpin);
841 
842 /**
843  * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
844  * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
845  * dma_buf_ops.
846  * @attach:	[in]	attachment whose scatterlist is to be returned
847  * @direction:	[in]	direction of DMA transfer
848  *
849  * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
850  * on error. May return -EINTR if it is interrupted by a signal.
851  *
852  * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
853  * the underlying backing storage is pinned for as long as a mapping exists,
854  * therefore users/importers should not hold onto a mapping for undue amounts of
855  * time.
856  */
857 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
858 					enum dma_data_direction direction)
859 {
860 	struct sg_table *sg_table;
861 	int r;
862 
863 	might_sleep();
864 
865 	if (WARN_ON(!attach || !attach->dmabuf))
866 		return ERR_PTR(-EINVAL);
867 
868 	if (dma_buf_attachment_is_dynamic(attach))
869 		dma_resv_assert_held(attach->dmabuf->resv);
870 
871 	if (attach->sgt) {
872 		/*
873 		 * Two mappings with different directions for the same
874 		 * attachment are not allowed.
875 		 */
876 		if (attach->dir != direction &&
877 		    attach->dir != DMA_BIDIRECTIONAL)
878 			return ERR_PTR(-EBUSY);
879 
880 		return attach->sgt;
881 	}
882 
883 	if (dma_buf_is_dynamic(attach->dmabuf)) {
884 		dma_resv_assert_held(attach->dmabuf->resv);
885 		if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
886 			r = dma_buf_pin(attach);
887 			if (r)
888 				return ERR_PTR(r);
889 		}
890 	}
891 
892 	sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
893 	if (!sg_table)
894 		sg_table = ERR_PTR(-ENOMEM);
895 
896 	if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) &&
897 	     !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
898 		dma_buf_unpin(attach);
899 
900 	if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
901 		attach->sgt = sg_table;
902 		attach->dir = direction;
903 	}
904 
905 	return sg_table;
906 }
907 EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
908 
909 /**
910  * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
911  * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
912  * dma_buf_ops.
913  * @attach:	[in]	attachment to unmap buffer from
914  * @sg_table:	[in]	scatterlist info of the buffer to unmap
915  * @direction:  [in]    direction of DMA transfer
916  *
917  * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
918  */
919 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
920 				struct sg_table *sg_table,
921 				enum dma_data_direction direction)
922 {
923 	might_sleep();
924 
925 	if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
926 		return;
927 
928 	if (dma_buf_attachment_is_dynamic(attach))
929 		dma_resv_assert_held(attach->dmabuf->resv);
930 
931 	if (attach->sgt == sg_table)
932 		return;
933 
934 	if (dma_buf_is_dynamic(attach->dmabuf))
935 		dma_resv_assert_held(attach->dmabuf->resv);
936 
937 	attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
938 
939 	if (dma_buf_is_dynamic(attach->dmabuf) &&
940 	    !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
941 		dma_buf_unpin(attach);
942 }
943 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
944 
945 /**
946  * dma_buf_move_notify - notify attachments that DMA-buf is moving
947  *
948  * @dmabuf:	[in]	buffer which is moving
949  *
950  * Informs all attachmenst that they need to destroy and recreated all their
951  * mappings.
952  */
953 void dma_buf_move_notify(struct dma_buf *dmabuf)
954 {
955 	struct dma_buf_attachment *attach;
956 
957 	dma_resv_assert_held(dmabuf->resv);
958 
959 	list_for_each_entry(attach, &dmabuf->attachments, node)
960 		if (attach->importer_ops)
961 			attach->importer_ops->move_notify(attach);
962 }
963 EXPORT_SYMBOL_GPL(dma_buf_move_notify);
964 
965 /**
966  * DOC: cpu access
967  *
968  * There are mutliple reasons for supporting CPU access to a dma buffer object:
969  *
970  * - Fallback operations in the kernel, for example when a device is connected
971  *   over USB and the kernel needs to shuffle the data around first before
972  *   sending it away. Cache coherency is handled by braketing any transactions
973  *   with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
974  *   access.
975  *
976  *   Since for most kernel internal dma-buf accesses need the entire buffer, a
977  *   vmap interface is introduced. Note that on very old 32-bit architectures
978  *   vmalloc space might be limited and result in vmap calls failing.
979  *
980  *   Interfaces::
981  *      void \*dma_buf_vmap(struct dma_buf \*dmabuf)
982  *      void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
983  *
984  *   The vmap call can fail if there is no vmap support in the exporter, or if
985  *   it runs out of vmalloc space. Fallback to kmap should be implemented. Note
986  *   that the dma-buf layer keeps a reference count for all vmap access and
987  *   calls down into the exporter's vmap function only when no vmapping exists,
988  *   and only unmaps it once. Protection against concurrent vmap/vunmap calls is
989  *   provided by taking the dma_buf->lock mutex.
990  *
991  * - For full compatibility on the importer side with existing userspace
992  *   interfaces, which might already support mmap'ing buffers. This is needed in
993  *   many processing pipelines (e.g. feeding a software rendered image into a
994  *   hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
995  *   framework already supported this and for DMA buffer file descriptors to
996  *   replace ION buffers mmap support was needed.
997  *
998  *   There is no special interfaces, userspace simply calls mmap on the dma-buf
999  *   fd. But like for CPU access there's a need to braket the actual access,
1000  *   which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1001  *   DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1002  *   be restarted.
1003  *
1004  *   Some systems might need some sort of cache coherency management e.g. when
1005  *   CPU and GPU domains are being accessed through dma-buf at the same time.
1006  *   To circumvent this problem there are begin/end coherency markers, that
1007  *   forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1008  *   can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1009  *   sequence would be used like following:
1010  *
1011  *     - mmap dma-buf fd
1012  *     - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1013  *       to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1014  *       want (with the new data being consumed by say the GPU or the scanout
1015  *       device)
1016  *     - munmap once you don't need the buffer any more
1017  *
1018  *    For correctness and optimal performance, it is always required to use
1019  *    SYNC_START and SYNC_END before and after, respectively, when accessing the
1020  *    mapped address. Userspace cannot rely on coherent access, even when there
1021  *    are systems where it just works without calling these ioctls.
1022  *
1023  * - And as a CPU fallback in userspace processing pipelines.
1024  *
1025  *   Similar to the motivation for kernel cpu access it is again important that
1026  *   the userspace code of a given importing subsystem can use the same
1027  *   interfaces with a imported dma-buf buffer object as with a native buffer
1028  *   object. This is especially important for drm where the userspace part of
1029  *   contemporary OpenGL, X, and other drivers is huge, and reworking them to
1030  *   use a different way to mmap a buffer rather invasive.
1031  *
1032  *   The assumption in the current dma-buf interfaces is that redirecting the
1033  *   initial mmap is all that's needed. A survey of some of the existing
1034  *   subsystems shows that no driver seems to do any nefarious thing like
1035  *   syncing up with outstanding asynchronous processing on the device or
1036  *   allocating special resources at fault time. So hopefully this is good
1037  *   enough, since adding interfaces to intercept pagefaults and allow pte
1038  *   shootdowns would increase the complexity quite a bit.
1039  *
1040  *   Interface::
1041  *      int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1042  *		       unsigned long);
1043  *
1044  *   If the importing subsystem simply provides a special-purpose mmap call to
1045  *   set up a mapping in userspace, calling do_mmap with dma_buf->file will
1046  *   equally achieve that for a dma-buf object.
1047  */
1048 
1049 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1050 				      enum dma_data_direction direction)
1051 {
1052 	bool write = (direction == DMA_BIDIRECTIONAL ||
1053 		      direction == DMA_TO_DEVICE);
1054 	struct dma_resv *resv = dmabuf->resv;
1055 	long ret;
1056 
1057 	/* Wait on any implicit rendering fences */
1058 	ret = dma_resv_wait_timeout_rcu(resv, write, true,
1059 						  MAX_SCHEDULE_TIMEOUT);
1060 	if (ret < 0)
1061 		return ret;
1062 
1063 	return 0;
1064 }
1065 
1066 /**
1067  * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1068  * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1069  * preparations. Coherency is only guaranteed in the specified range for the
1070  * specified access direction.
1071  * @dmabuf:	[in]	buffer to prepare cpu access for.
1072  * @direction:	[in]	length of range for cpu access.
1073  *
1074  * After the cpu access is complete the caller should call
1075  * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1076  * it guaranteed to be coherent with other DMA access.
1077  *
1078  * Can return negative error values, returns 0 on success.
1079  */
1080 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1081 			     enum dma_data_direction direction)
1082 {
1083 	int ret = 0;
1084 
1085 	if (WARN_ON(!dmabuf))
1086 		return -EINVAL;
1087 
1088 	if (dmabuf->ops->begin_cpu_access)
1089 		ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1090 
1091 	/* Ensure that all fences are waited upon - but we first allow
1092 	 * the native handler the chance to do so more efficiently if it
1093 	 * chooses. A double invocation here will be reasonably cheap no-op.
1094 	 */
1095 	if (ret == 0)
1096 		ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1097 
1098 	return ret;
1099 }
1100 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
1101 
1102 /**
1103  * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1104  * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1105  * actions. Coherency is only guaranteed in the specified range for the
1106  * specified access direction.
1107  * @dmabuf:	[in]	buffer to complete cpu access for.
1108  * @direction:	[in]	length of range for cpu access.
1109  *
1110  * This terminates CPU access started with dma_buf_begin_cpu_access().
1111  *
1112  * Can return negative error values, returns 0 on success.
1113  */
1114 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1115 			   enum dma_data_direction direction)
1116 {
1117 	int ret = 0;
1118 
1119 	WARN_ON(!dmabuf);
1120 
1121 	if (dmabuf->ops->end_cpu_access)
1122 		ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1123 
1124 	return ret;
1125 }
1126 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
1127 
1128 
1129 /**
1130  * dma_buf_mmap - Setup up a userspace mmap with the given vma
1131  * @dmabuf:	[in]	buffer that should back the vma
1132  * @vma:	[in]	vma for the mmap
1133  * @pgoff:	[in]	offset in pages where this mmap should start within the
1134  *			dma-buf buffer.
1135  *
1136  * This function adjusts the passed in vma so that it points at the file of the
1137  * dma_buf operation. It also adjusts the starting pgoff and does bounds
1138  * checking on the size of the vma. Then it calls the exporters mmap function to
1139  * set up the mapping.
1140  *
1141  * Can return negative error values, returns 0 on success.
1142  */
1143 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1144 		 unsigned long pgoff)
1145 {
1146 	struct file *oldfile;
1147 	int ret;
1148 
1149 	if (WARN_ON(!dmabuf || !vma))
1150 		return -EINVAL;
1151 
1152 	/* check if buffer supports mmap */
1153 	if (!dmabuf->ops->mmap)
1154 		return -EINVAL;
1155 
1156 	/* check for offset overflow */
1157 	if (pgoff + vma_pages(vma) < pgoff)
1158 		return -EOVERFLOW;
1159 
1160 	/* check for overflowing the buffer's size */
1161 	if (pgoff + vma_pages(vma) >
1162 	    dmabuf->size >> PAGE_SHIFT)
1163 		return -EINVAL;
1164 
1165 	/* readjust the vma */
1166 	get_file(dmabuf->file);
1167 	oldfile = vma->vm_file;
1168 	vma->vm_file = dmabuf->file;
1169 	vma->vm_pgoff = pgoff;
1170 
1171 	ret = dmabuf->ops->mmap(dmabuf, vma);
1172 	if (ret) {
1173 		/* restore old parameters on failure */
1174 		vma->vm_file = oldfile;
1175 		fput(dmabuf->file);
1176 	} else {
1177 		if (oldfile)
1178 			fput(oldfile);
1179 	}
1180 	return ret;
1181 
1182 }
1183 EXPORT_SYMBOL_GPL(dma_buf_mmap);
1184 
1185 /**
1186  * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1187  * address space. Same restrictions as for vmap and friends apply.
1188  * @dmabuf:	[in]	buffer to vmap
1189  *
1190  * This call may fail due to lack of virtual mapping address space.
1191  * These calls are optional in drivers. The intended use for them
1192  * is for mapping objects linear in kernel space for high use objects.
1193  * Please attempt to use kmap/kunmap before thinking about these interfaces.
1194  *
1195  * Returns NULL on error.
1196  */
1197 void *dma_buf_vmap(struct dma_buf *dmabuf)
1198 {
1199 	void *ptr;
1200 
1201 	if (WARN_ON(!dmabuf))
1202 		return NULL;
1203 
1204 	if (!dmabuf->ops->vmap)
1205 		return NULL;
1206 
1207 	mutex_lock(&dmabuf->lock);
1208 	if (dmabuf->vmapping_counter) {
1209 		dmabuf->vmapping_counter++;
1210 		BUG_ON(!dmabuf->vmap_ptr);
1211 		ptr = dmabuf->vmap_ptr;
1212 		goto out_unlock;
1213 	}
1214 
1215 	BUG_ON(dmabuf->vmap_ptr);
1216 
1217 	ptr = dmabuf->ops->vmap(dmabuf);
1218 	if (WARN_ON_ONCE(IS_ERR(ptr)))
1219 		ptr = NULL;
1220 	if (!ptr)
1221 		goto out_unlock;
1222 
1223 	dmabuf->vmap_ptr = ptr;
1224 	dmabuf->vmapping_counter = 1;
1225 
1226 out_unlock:
1227 	mutex_unlock(&dmabuf->lock);
1228 	return ptr;
1229 }
1230 EXPORT_SYMBOL_GPL(dma_buf_vmap);
1231 
1232 /**
1233  * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1234  * @dmabuf:	[in]	buffer to vunmap
1235  * @vaddr:	[in]	vmap to vunmap
1236  */
1237 void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr)
1238 {
1239 	if (WARN_ON(!dmabuf))
1240 		return;
1241 
1242 	BUG_ON(!dmabuf->vmap_ptr);
1243 	BUG_ON(dmabuf->vmapping_counter == 0);
1244 	BUG_ON(dmabuf->vmap_ptr != vaddr);
1245 
1246 	mutex_lock(&dmabuf->lock);
1247 	if (--dmabuf->vmapping_counter == 0) {
1248 		if (dmabuf->ops->vunmap)
1249 			dmabuf->ops->vunmap(dmabuf, vaddr);
1250 		dmabuf->vmap_ptr = NULL;
1251 	}
1252 	mutex_unlock(&dmabuf->lock);
1253 }
1254 EXPORT_SYMBOL_GPL(dma_buf_vunmap);
1255 
1256 #ifdef CONFIG_DEBUG_FS
1257 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1258 {
1259 	int ret;
1260 	struct dma_buf *buf_obj;
1261 	struct dma_buf_attachment *attach_obj;
1262 	struct dma_resv *robj;
1263 	struct dma_resv_list *fobj;
1264 	struct dma_fence *fence;
1265 	unsigned seq;
1266 	int count = 0, attach_count, shared_count, i;
1267 	size_t size = 0;
1268 
1269 	ret = mutex_lock_interruptible(&db_list.lock);
1270 
1271 	if (ret)
1272 		return ret;
1273 
1274 	seq_puts(s, "\nDma-buf Objects:\n");
1275 	seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1276 		   "size", "flags", "mode", "count", "ino");
1277 
1278 	list_for_each_entry(buf_obj, &db_list.head, list_node) {
1279 
1280 		ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1281 		if (ret)
1282 			goto error_unlock;
1283 
1284 		seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1285 				buf_obj->size,
1286 				buf_obj->file->f_flags, buf_obj->file->f_mode,
1287 				file_count(buf_obj->file),
1288 				buf_obj->exp_name,
1289 				file_inode(buf_obj->file)->i_ino,
1290 				buf_obj->name ?: "");
1291 
1292 		robj = buf_obj->resv;
1293 		while (true) {
1294 			seq = read_seqcount_begin(&robj->seq);
1295 			rcu_read_lock();
1296 			fobj = rcu_dereference(robj->fence);
1297 			shared_count = fobj ? fobj->shared_count : 0;
1298 			fence = rcu_dereference(robj->fence_excl);
1299 			if (!read_seqcount_retry(&robj->seq, seq))
1300 				break;
1301 			rcu_read_unlock();
1302 		}
1303 
1304 		if (fence)
1305 			seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1306 				   fence->ops->get_driver_name(fence),
1307 				   fence->ops->get_timeline_name(fence),
1308 				   dma_fence_is_signaled(fence) ? "" : "un");
1309 		for (i = 0; i < shared_count; i++) {
1310 			fence = rcu_dereference(fobj->shared[i]);
1311 			if (!dma_fence_get_rcu(fence))
1312 				continue;
1313 			seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1314 				   fence->ops->get_driver_name(fence),
1315 				   fence->ops->get_timeline_name(fence),
1316 				   dma_fence_is_signaled(fence) ? "" : "un");
1317 			dma_fence_put(fence);
1318 		}
1319 		rcu_read_unlock();
1320 
1321 		seq_puts(s, "\tAttached Devices:\n");
1322 		attach_count = 0;
1323 
1324 		list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1325 			seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1326 			attach_count++;
1327 		}
1328 		dma_resv_unlock(buf_obj->resv);
1329 
1330 		seq_printf(s, "Total %d devices attached\n\n",
1331 				attach_count);
1332 
1333 		count++;
1334 		size += buf_obj->size;
1335 	}
1336 
1337 	seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1338 
1339 	mutex_unlock(&db_list.lock);
1340 	return 0;
1341 
1342 error_unlock:
1343 	mutex_unlock(&db_list.lock);
1344 	return ret;
1345 }
1346 
1347 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1348 
1349 static struct dentry *dma_buf_debugfs_dir;
1350 
1351 static int dma_buf_init_debugfs(void)
1352 {
1353 	struct dentry *d;
1354 	int err = 0;
1355 
1356 	d = debugfs_create_dir("dma_buf", NULL);
1357 	if (IS_ERR(d))
1358 		return PTR_ERR(d);
1359 
1360 	dma_buf_debugfs_dir = d;
1361 
1362 	d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1363 				NULL, &dma_buf_debug_fops);
1364 	if (IS_ERR(d)) {
1365 		pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1366 		debugfs_remove_recursive(dma_buf_debugfs_dir);
1367 		dma_buf_debugfs_dir = NULL;
1368 		err = PTR_ERR(d);
1369 	}
1370 
1371 	return err;
1372 }
1373 
1374 static void dma_buf_uninit_debugfs(void)
1375 {
1376 	debugfs_remove_recursive(dma_buf_debugfs_dir);
1377 }
1378 #else
1379 static inline int dma_buf_init_debugfs(void)
1380 {
1381 	return 0;
1382 }
1383 static inline void dma_buf_uninit_debugfs(void)
1384 {
1385 }
1386 #endif
1387 
1388 static int __init dma_buf_init(void)
1389 {
1390 	dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1391 	if (IS_ERR(dma_buf_mnt))
1392 		return PTR_ERR(dma_buf_mnt);
1393 
1394 	mutex_init(&db_list.lock);
1395 	INIT_LIST_HEAD(&db_list.head);
1396 	dma_buf_init_debugfs();
1397 	return 0;
1398 }
1399 subsys_initcall(dma_buf_init);
1400 
1401 static void __exit dma_buf_deinit(void)
1402 {
1403 	dma_buf_uninit_debugfs();
1404 	kern_unmount(dma_buf_mnt);
1405 }
1406 __exitcall(dma_buf_deinit);
1407