1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Framework for buffer objects that can be shared across devices/subsystems. 4 * 5 * Copyright(C) 2011 Linaro Limited. All rights reserved. 6 * Author: Sumit Semwal <sumit.semwal@ti.com> 7 * 8 * Many thanks to linaro-mm-sig list, and specially 9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and 10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and 11 * refining of this idea. 12 */ 13 14 #include <linux/fs.h> 15 #include <linux/slab.h> 16 #include <linux/dma-buf.h> 17 #include <linux/dma-fence.h> 18 #include <linux/dma-fence-unwrap.h> 19 #include <linux/anon_inodes.h> 20 #include <linux/export.h> 21 #include <linux/debugfs.h> 22 #include <linux/list.h> 23 #include <linux/module.h> 24 #include <linux/mutex.h> 25 #include <linux/seq_file.h> 26 #include <linux/sync_file.h> 27 #include <linux/poll.h> 28 #include <linux/dma-resv.h> 29 #include <linux/mm.h> 30 #include <linux/mount.h> 31 #include <linux/pseudo_fs.h> 32 33 #include <uapi/linux/dma-buf.h> 34 #include <uapi/linux/magic.h> 35 36 #include "dma-buf-sysfs-stats.h" 37 38 static inline int is_dma_buf_file(struct file *); 39 40 static DEFINE_MUTEX(dmabuf_list_mutex); 41 static LIST_HEAD(dmabuf_list); 42 43 static void __dma_buf_list_add(struct dma_buf *dmabuf) 44 { 45 mutex_lock(&dmabuf_list_mutex); 46 list_add(&dmabuf->list_node, &dmabuf_list); 47 mutex_unlock(&dmabuf_list_mutex); 48 } 49 50 static void __dma_buf_list_del(struct dma_buf *dmabuf) 51 { 52 if (!dmabuf) 53 return; 54 55 mutex_lock(&dmabuf_list_mutex); 56 list_del(&dmabuf->list_node); 57 mutex_unlock(&dmabuf_list_mutex); 58 } 59 60 /** 61 * dma_buf_iter_begin - begin iteration through global list of all DMA buffers 62 * 63 * Returns the first buffer in the global list of DMA-bufs that's not in the 64 * process of being destroyed. Increments that buffer's reference count to 65 * prevent buffer destruction. Callers must release the reference, either by 66 * continuing iteration with dma_buf_iter_next(), or with dma_buf_put(). 67 * 68 * Return: 69 * * First buffer from global list, with refcount elevated 70 * * NULL if no active buffers are present 71 */ 72 struct dma_buf *dma_buf_iter_begin(void) 73 { 74 struct dma_buf *ret = NULL, *dmabuf; 75 76 /* 77 * The list mutex does not protect a dmabuf's refcount, so it can be 78 * zeroed while we are iterating. We cannot call get_dma_buf() since the 79 * caller may not already own a reference to the buffer. 80 */ 81 mutex_lock(&dmabuf_list_mutex); 82 list_for_each_entry(dmabuf, &dmabuf_list, list_node) { 83 if (file_ref_get(&dmabuf->file->f_ref)) { 84 ret = dmabuf; 85 break; 86 } 87 } 88 mutex_unlock(&dmabuf_list_mutex); 89 return ret; 90 } 91 92 /** 93 * dma_buf_iter_next - continue iteration through global list of all DMA buffers 94 * @dmabuf: [in] pointer to dma_buf 95 * 96 * Decrements the reference count on the provided buffer. Returns the next 97 * buffer from the remainder of the global list of DMA-bufs with its reference 98 * count incremented. Callers must release the reference, either by continuing 99 * iteration with dma_buf_iter_next(), or with dma_buf_put(). 100 * 101 * Return: 102 * * Next buffer from global list, with refcount elevated 103 * * NULL if no additional active buffers are present 104 */ 105 struct dma_buf *dma_buf_iter_next(struct dma_buf *dmabuf) 106 { 107 struct dma_buf *ret = NULL; 108 109 /* 110 * The list mutex does not protect a dmabuf's refcount, so it can be 111 * zeroed while we are iterating. We cannot call get_dma_buf() since the 112 * caller may not already own a reference to the buffer. 113 */ 114 mutex_lock(&dmabuf_list_mutex); 115 dma_buf_put(dmabuf); 116 list_for_each_entry_continue(dmabuf, &dmabuf_list, list_node) { 117 if (file_ref_get(&dmabuf->file->f_ref)) { 118 ret = dmabuf; 119 break; 120 } 121 } 122 mutex_unlock(&dmabuf_list_mutex); 123 return ret; 124 } 125 126 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen) 127 { 128 struct dma_buf *dmabuf; 129 char name[DMA_BUF_NAME_LEN]; 130 ssize_t ret = 0; 131 132 dmabuf = dentry->d_fsdata; 133 spin_lock(&dmabuf->name_lock); 134 if (dmabuf->name) 135 ret = strscpy(name, dmabuf->name, sizeof(name)); 136 spin_unlock(&dmabuf->name_lock); 137 138 return dynamic_dname(buffer, buflen, "/%s:%s", 139 dentry->d_name.name, ret > 0 ? name : ""); 140 } 141 142 static void dma_buf_release(struct dentry *dentry) 143 { 144 struct dma_buf *dmabuf; 145 146 dmabuf = dentry->d_fsdata; 147 if (unlikely(!dmabuf)) 148 return; 149 150 BUG_ON(dmabuf->vmapping_counter); 151 152 /* 153 * If you hit this BUG() it could mean: 154 * * There's a file reference imbalance in dma_buf_poll / dma_buf_poll_cb or somewhere else 155 * * dmabuf->cb_in/out.active are non-0 despite no pending fence callback 156 */ 157 BUG_ON(dmabuf->cb_in.active || dmabuf->cb_out.active); 158 159 dma_buf_stats_teardown(dmabuf); 160 dmabuf->ops->release(dmabuf); 161 162 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1]) 163 dma_resv_fini(dmabuf->resv); 164 165 WARN_ON(!list_empty(&dmabuf->attachments)); 166 module_put(dmabuf->owner); 167 kfree(dmabuf->name); 168 kfree(dmabuf); 169 } 170 171 static int dma_buf_file_release(struct inode *inode, struct file *file) 172 { 173 if (!is_dma_buf_file(file)) 174 return -EINVAL; 175 176 __dma_buf_list_del(file->private_data); 177 178 return 0; 179 } 180 181 static const struct dentry_operations dma_buf_dentry_ops = { 182 .d_dname = dmabuffs_dname, 183 .d_release = dma_buf_release, 184 }; 185 186 static struct vfsmount *dma_buf_mnt; 187 188 static int dma_buf_fs_init_context(struct fs_context *fc) 189 { 190 struct pseudo_fs_context *ctx; 191 192 ctx = init_pseudo(fc, DMA_BUF_MAGIC); 193 if (!ctx) 194 return -ENOMEM; 195 ctx->dops = &dma_buf_dentry_ops; 196 return 0; 197 } 198 199 static struct file_system_type dma_buf_fs_type = { 200 .name = "dmabuf", 201 .init_fs_context = dma_buf_fs_init_context, 202 .kill_sb = kill_anon_super, 203 }; 204 205 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma) 206 { 207 struct dma_buf *dmabuf; 208 209 if (!is_dma_buf_file(file)) 210 return -EINVAL; 211 212 dmabuf = file->private_data; 213 214 /* check if buffer supports mmap */ 215 if (!dmabuf->ops->mmap) 216 return -EINVAL; 217 218 /* check for overflowing the buffer's size */ 219 if (vma->vm_pgoff + vma_pages(vma) > 220 dmabuf->size >> PAGE_SHIFT) 221 return -EINVAL; 222 223 return dmabuf->ops->mmap(dmabuf, vma); 224 } 225 226 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence) 227 { 228 struct dma_buf *dmabuf; 229 loff_t base; 230 231 if (!is_dma_buf_file(file)) 232 return -EBADF; 233 234 dmabuf = file->private_data; 235 236 /* only support discovering the end of the buffer, 237 * but also allow SEEK_SET to maintain the idiomatic 238 * SEEK_END(0), SEEK_CUR(0) pattern. 239 */ 240 if (whence == SEEK_END) 241 base = dmabuf->size; 242 else if (whence == SEEK_SET) 243 base = 0; 244 else 245 return -EINVAL; 246 247 if (offset != 0) 248 return -EINVAL; 249 250 return base + offset; 251 } 252 253 /** 254 * DOC: implicit fence polling 255 * 256 * To support cross-device and cross-driver synchronization of buffer access 257 * implicit fences (represented internally in the kernel with &struct dma_fence) 258 * can be attached to a &dma_buf. The glue for that and a few related things are 259 * provided in the &dma_resv structure. 260 * 261 * Userspace can query the state of these implicitly tracked fences using poll() 262 * and related system calls: 263 * 264 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the 265 * most recent write or exclusive fence. 266 * 267 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of 268 * all attached fences, shared and exclusive ones. 269 * 270 * Note that this only signals the completion of the respective fences, i.e. the 271 * DMA transfers are complete. Cache flushing and any other necessary 272 * preparations before CPU access can begin still need to happen. 273 * 274 * As an alternative to poll(), the set of fences on DMA buffer can be 275 * exported as a &sync_file using &dma_buf_sync_file_export. 276 */ 277 278 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 279 { 280 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb; 281 struct dma_buf *dmabuf = container_of(dcb->poll, struct dma_buf, poll); 282 unsigned long flags; 283 284 spin_lock_irqsave(&dcb->poll->lock, flags); 285 wake_up_locked_poll(dcb->poll, dcb->active); 286 dcb->active = 0; 287 spin_unlock_irqrestore(&dcb->poll->lock, flags); 288 dma_fence_put(fence); 289 /* Paired with get_file in dma_buf_poll */ 290 fput(dmabuf->file); 291 } 292 293 static bool dma_buf_poll_add_cb(struct dma_resv *resv, bool write, 294 struct dma_buf_poll_cb_t *dcb) 295 { 296 struct dma_resv_iter cursor; 297 struct dma_fence *fence; 298 int r; 299 300 dma_resv_for_each_fence(&cursor, resv, dma_resv_usage_rw(write), 301 fence) { 302 dma_fence_get(fence); 303 r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb); 304 if (!r) 305 return true; 306 dma_fence_put(fence); 307 } 308 309 return false; 310 } 311 312 static __poll_t dma_buf_poll(struct file *file, poll_table *poll) 313 { 314 struct dma_buf *dmabuf; 315 struct dma_resv *resv; 316 __poll_t events; 317 318 dmabuf = file->private_data; 319 if (!dmabuf || !dmabuf->resv) 320 return EPOLLERR; 321 322 resv = dmabuf->resv; 323 324 poll_wait(file, &dmabuf->poll, poll); 325 326 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT); 327 if (!events) 328 return 0; 329 330 dma_resv_lock(resv, NULL); 331 332 if (events & EPOLLOUT) { 333 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_out; 334 335 /* Check that callback isn't busy */ 336 spin_lock_irq(&dmabuf->poll.lock); 337 if (dcb->active) 338 events &= ~EPOLLOUT; 339 else 340 dcb->active = EPOLLOUT; 341 spin_unlock_irq(&dmabuf->poll.lock); 342 343 if (events & EPOLLOUT) { 344 /* Paired with fput in dma_buf_poll_cb */ 345 get_file(dmabuf->file); 346 347 if (!dma_buf_poll_add_cb(resv, true, dcb)) 348 /* No callback queued, wake up any other waiters */ 349 dma_buf_poll_cb(NULL, &dcb->cb); 350 else 351 events &= ~EPOLLOUT; 352 } 353 } 354 355 if (events & EPOLLIN) { 356 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_in; 357 358 /* Check that callback isn't busy */ 359 spin_lock_irq(&dmabuf->poll.lock); 360 if (dcb->active) 361 events &= ~EPOLLIN; 362 else 363 dcb->active = EPOLLIN; 364 spin_unlock_irq(&dmabuf->poll.lock); 365 366 if (events & EPOLLIN) { 367 /* Paired with fput in dma_buf_poll_cb */ 368 get_file(dmabuf->file); 369 370 if (!dma_buf_poll_add_cb(resv, false, dcb)) 371 /* No callback queued, wake up any other waiters */ 372 dma_buf_poll_cb(NULL, &dcb->cb); 373 else 374 events &= ~EPOLLIN; 375 } 376 } 377 378 dma_resv_unlock(resv); 379 return events; 380 } 381 382 /** 383 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage. 384 * It could support changing the name of the dma-buf if the same 385 * piece of memory is used for multiple purpose between different devices. 386 * 387 * @dmabuf: [in] dmabuf buffer that will be renamed. 388 * @buf: [in] A piece of userspace memory that contains the name of 389 * the dma-buf. 390 * 391 * Returns 0 on success. If the dma-buf buffer is already attached to 392 * devices, return -EBUSY. 393 * 394 */ 395 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf) 396 { 397 char *name = strndup_user(buf, DMA_BUF_NAME_LEN); 398 399 if (IS_ERR(name)) 400 return PTR_ERR(name); 401 402 spin_lock(&dmabuf->name_lock); 403 kfree(dmabuf->name); 404 dmabuf->name = name; 405 spin_unlock(&dmabuf->name_lock); 406 407 return 0; 408 } 409 410 #if IS_ENABLED(CONFIG_SYNC_FILE) 411 static long dma_buf_export_sync_file(struct dma_buf *dmabuf, 412 void __user *user_data) 413 { 414 struct dma_buf_export_sync_file arg; 415 enum dma_resv_usage usage; 416 struct dma_fence *fence = NULL; 417 struct sync_file *sync_file; 418 int fd, ret; 419 420 if (copy_from_user(&arg, user_data, sizeof(arg))) 421 return -EFAULT; 422 423 if (arg.flags & ~DMA_BUF_SYNC_RW) 424 return -EINVAL; 425 426 if ((arg.flags & DMA_BUF_SYNC_RW) == 0) 427 return -EINVAL; 428 429 fd = get_unused_fd_flags(O_CLOEXEC); 430 if (fd < 0) 431 return fd; 432 433 usage = dma_resv_usage_rw(arg.flags & DMA_BUF_SYNC_WRITE); 434 ret = dma_resv_get_singleton(dmabuf->resv, usage, &fence); 435 if (ret) 436 goto err_put_fd; 437 438 if (!fence) 439 fence = dma_fence_get_stub(); 440 441 sync_file = sync_file_create(fence); 442 443 dma_fence_put(fence); 444 445 if (!sync_file) { 446 ret = -ENOMEM; 447 goto err_put_fd; 448 } 449 450 arg.fd = fd; 451 if (copy_to_user(user_data, &arg, sizeof(arg))) { 452 ret = -EFAULT; 453 goto err_put_file; 454 } 455 456 fd_install(fd, sync_file->file); 457 458 return 0; 459 460 err_put_file: 461 fput(sync_file->file); 462 err_put_fd: 463 put_unused_fd(fd); 464 return ret; 465 } 466 467 static long dma_buf_import_sync_file(struct dma_buf *dmabuf, 468 const void __user *user_data) 469 { 470 struct dma_buf_import_sync_file arg; 471 struct dma_fence *fence, *f; 472 enum dma_resv_usage usage; 473 struct dma_fence_unwrap iter; 474 unsigned int num_fences; 475 int ret = 0; 476 477 if (copy_from_user(&arg, user_data, sizeof(arg))) 478 return -EFAULT; 479 480 if (arg.flags & ~DMA_BUF_SYNC_RW) 481 return -EINVAL; 482 483 if ((arg.flags & DMA_BUF_SYNC_RW) == 0) 484 return -EINVAL; 485 486 fence = sync_file_get_fence(arg.fd); 487 if (!fence) 488 return -EINVAL; 489 490 usage = (arg.flags & DMA_BUF_SYNC_WRITE) ? DMA_RESV_USAGE_WRITE : 491 DMA_RESV_USAGE_READ; 492 493 num_fences = 0; 494 dma_fence_unwrap_for_each(f, &iter, fence) 495 ++num_fences; 496 497 if (num_fences > 0) { 498 dma_resv_lock(dmabuf->resv, NULL); 499 500 ret = dma_resv_reserve_fences(dmabuf->resv, num_fences); 501 if (!ret) { 502 dma_fence_unwrap_for_each(f, &iter, fence) 503 dma_resv_add_fence(dmabuf->resv, f, usage); 504 } 505 506 dma_resv_unlock(dmabuf->resv); 507 } 508 509 dma_fence_put(fence); 510 511 return ret; 512 } 513 #endif 514 515 static long dma_buf_ioctl(struct file *file, 516 unsigned int cmd, unsigned long arg) 517 { 518 struct dma_buf *dmabuf; 519 struct dma_buf_sync sync; 520 enum dma_data_direction direction; 521 int ret; 522 523 dmabuf = file->private_data; 524 525 switch (cmd) { 526 case DMA_BUF_IOCTL_SYNC: 527 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync))) 528 return -EFAULT; 529 530 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK) 531 return -EINVAL; 532 533 switch (sync.flags & DMA_BUF_SYNC_RW) { 534 case DMA_BUF_SYNC_READ: 535 direction = DMA_FROM_DEVICE; 536 break; 537 case DMA_BUF_SYNC_WRITE: 538 direction = DMA_TO_DEVICE; 539 break; 540 case DMA_BUF_SYNC_RW: 541 direction = DMA_BIDIRECTIONAL; 542 break; 543 default: 544 return -EINVAL; 545 } 546 547 if (sync.flags & DMA_BUF_SYNC_END) 548 ret = dma_buf_end_cpu_access(dmabuf, direction); 549 else 550 ret = dma_buf_begin_cpu_access(dmabuf, direction); 551 552 return ret; 553 554 case DMA_BUF_SET_NAME_A: 555 case DMA_BUF_SET_NAME_B: 556 return dma_buf_set_name(dmabuf, (const char __user *)arg); 557 558 #if IS_ENABLED(CONFIG_SYNC_FILE) 559 case DMA_BUF_IOCTL_EXPORT_SYNC_FILE: 560 return dma_buf_export_sync_file(dmabuf, (void __user *)arg); 561 case DMA_BUF_IOCTL_IMPORT_SYNC_FILE: 562 return dma_buf_import_sync_file(dmabuf, (const void __user *)arg); 563 #endif 564 565 default: 566 return -ENOTTY; 567 } 568 } 569 570 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file) 571 { 572 struct dma_buf *dmabuf = file->private_data; 573 574 seq_printf(m, "size:\t%zu\n", dmabuf->size); 575 /* Don't count the temporary reference taken inside procfs seq_show */ 576 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1); 577 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name); 578 spin_lock(&dmabuf->name_lock); 579 if (dmabuf->name) 580 seq_printf(m, "name:\t%s\n", dmabuf->name); 581 spin_unlock(&dmabuf->name_lock); 582 } 583 584 static const struct file_operations dma_buf_fops = { 585 .release = dma_buf_file_release, 586 .mmap = dma_buf_mmap_internal, 587 .llseek = dma_buf_llseek, 588 .poll = dma_buf_poll, 589 .unlocked_ioctl = dma_buf_ioctl, 590 .compat_ioctl = compat_ptr_ioctl, 591 .show_fdinfo = dma_buf_show_fdinfo, 592 }; 593 594 /* 595 * is_dma_buf_file - Check if struct file* is associated with dma_buf 596 */ 597 static inline int is_dma_buf_file(struct file *file) 598 { 599 return file->f_op == &dma_buf_fops; 600 } 601 602 static struct file *dma_buf_getfile(size_t size, int flags) 603 { 604 static atomic64_t dmabuf_inode = ATOMIC64_INIT(0); 605 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb); 606 struct file *file; 607 608 if (IS_ERR(inode)) 609 return ERR_CAST(inode); 610 611 inode->i_size = size; 612 inode_set_bytes(inode, size); 613 614 /* 615 * The ->i_ino acquired from get_next_ino() is not unique thus 616 * not suitable for using it as dentry name by dmabuf stats. 617 * Override ->i_ino with the unique and dmabuffs specific 618 * value. 619 */ 620 inode->i_ino = atomic64_inc_return(&dmabuf_inode); 621 flags &= O_ACCMODE | O_NONBLOCK; 622 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf", 623 flags, &dma_buf_fops); 624 if (IS_ERR(file)) 625 goto err_alloc_file; 626 627 return file; 628 629 err_alloc_file: 630 iput(inode); 631 return file; 632 } 633 634 /** 635 * DOC: dma buf device access 636 * 637 * For device DMA access to a shared DMA buffer the usual sequence of operations 638 * is fairly simple: 639 * 640 * 1. The exporter defines his exporter instance using 641 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private 642 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace 643 * as a file descriptor by calling dma_buf_fd(). 644 * 645 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer 646 * to share with: First the file descriptor is converted to a &dma_buf using 647 * dma_buf_get(). Then the buffer is attached to the device using 648 * dma_buf_attach(). 649 * 650 * Up to this stage the exporter is still free to migrate or reallocate the 651 * backing storage. 652 * 653 * 3. Once the buffer is attached to all devices userspace can initiate DMA 654 * access to the shared buffer. In the kernel this is done by calling 655 * dma_buf_map_attachment() and dma_buf_unmap_attachment(). 656 * 657 * 4. Once a driver is done with a shared buffer it needs to call 658 * dma_buf_detach() (after cleaning up any mappings) and then release the 659 * reference acquired with dma_buf_get() by calling dma_buf_put(). 660 * 661 * For the detailed semantics exporters are expected to implement see 662 * &dma_buf_ops. 663 */ 664 665 /** 666 * dma_buf_export - Creates a new dma_buf, and associates an anon file 667 * with this buffer, so it can be exported. 668 * Also connect the allocator specific data and ops to the buffer. 669 * Additionally, provide a name string for exporter; useful in debugging. 670 * 671 * @exp_info: [in] holds all the export related information provided 672 * by the exporter. see &struct dma_buf_export_info 673 * for further details. 674 * 675 * Returns, on success, a newly created struct dma_buf object, which wraps the 676 * supplied private data and operations for struct dma_buf_ops. On either 677 * missing ops, or error in allocating struct dma_buf, will return negative 678 * error. 679 * 680 * For most cases the easiest way to create @exp_info is through the 681 * %DEFINE_DMA_BUF_EXPORT_INFO macro. 682 */ 683 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info) 684 { 685 struct dma_buf *dmabuf; 686 struct dma_resv *resv = exp_info->resv; 687 struct file *file; 688 size_t alloc_size = sizeof(struct dma_buf); 689 int ret; 690 691 if (WARN_ON(!exp_info->priv || !exp_info->ops 692 || !exp_info->ops->map_dma_buf 693 || !exp_info->ops->unmap_dma_buf 694 || !exp_info->ops->release)) 695 return ERR_PTR(-EINVAL); 696 697 if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin)) 698 return ERR_PTR(-EINVAL); 699 700 if (!try_module_get(exp_info->owner)) 701 return ERR_PTR(-ENOENT); 702 703 file = dma_buf_getfile(exp_info->size, exp_info->flags); 704 if (IS_ERR(file)) { 705 ret = PTR_ERR(file); 706 goto err_module; 707 } 708 709 if (!exp_info->resv) 710 alloc_size += sizeof(struct dma_resv); 711 else 712 /* prevent &dma_buf[1] == dma_buf->resv */ 713 alloc_size += 1; 714 dmabuf = kzalloc(alloc_size, GFP_KERNEL); 715 if (!dmabuf) { 716 ret = -ENOMEM; 717 goto err_file; 718 } 719 720 dmabuf->priv = exp_info->priv; 721 dmabuf->ops = exp_info->ops; 722 dmabuf->size = exp_info->size; 723 dmabuf->exp_name = exp_info->exp_name; 724 dmabuf->owner = exp_info->owner; 725 spin_lock_init(&dmabuf->name_lock); 726 init_waitqueue_head(&dmabuf->poll); 727 dmabuf->cb_in.poll = dmabuf->cb_out.poll = &dmabuf->poll; 728 dmabuf->cb_in.active = dmabuf->cb_out.active = 0; 729 INIT_LIST_HEAD(&dmabuf->attachments); 730 731 if (!resv) { 732 dmabuf->resv = (struct dma_resv *)&dmabuf[1]; 733 dma_resv_init(dmabuf->resv); 734 } else { 735 dmabuf->resv = resv; 736 } 737 738 ret = dma_buf_stats_setup(dmabuf, file); 739 if (ret) 740 goto err_dmabuf; 741 742 file->private_data = dmabuf; 743 file->f_path.dentry->d_fsdata = dmabuf; 744 dmabuf->file = file; 745 746 __dma_buf_list_add(dmabuf); 747 748 return dmabuf; 749 750 err_dmabuf: 751 if (!resv) 752 dma_resv_fini(dmabuf->resv); 753 kfree(dmabuf); 754 err_file: 755 fput(file); 756 err_module: 757 module_put(exp_info->owner); 758 return ERR_PTR(ret); 759 } 760 EXPORT_SYMBOL_NS_GPL(dma_buf_export, "DMA_BUF"); 761 762 /** 763 * dma_buf_fd - returns a file descriptor for the given struct dma_buf 764 * @dmabuf: [in] pointer to dma_buf for which fd is required. 765 * @flags: [in] flags to give to fd 766 * 767 * On success, returns an associated 'fd'. Else, returns error. 768 */ 769 int dma_buf_fd(struct dma_buf *dmabuf, int flags) 770 { 771 int fd; 772 773 if (!dmabuf || !dmabuf->file) 774 return -EINVAL; 775 776 fd = get_unused_fd_flags(flags); 777 if (fd < 0) 778 return fd; 779 780 fd_install(fd, dmabuf->file); 781 782 return fd; 783 } 784 EXPORT_SYMBOL_NS_GPL(dma_buf_fd, "DMA_BUF"); 785 786 /** 787 * dma_buf_get - returns the struct dma_buf related to an fd 788 * @fd: [in] fd associated with the struct dma_buf to be returned 789 * 790 * On success, returns the struct dma_buf associated with an fd; uses 791 * file's refcounting done by fget to increase refcount. returns ERR_PTR 792 * otherwise. 793 */ 794 struct dma_buf *dma_buf_get(int fd) 795 { 796 struct file *file; 797 798 file = fget(fd); 799 800 if (!file) 801 return ERR_PTR(-EBADF); 802 803 if (!is_dma_buf_file(file)) { 804 fput(file); 805 return ERR_PTR(-EINVAL); 806 } 807 808 return file->private_data; 809 } 810 EXPORT_SYMBOL_NS_GPL(dma_buf_get, "DMA_BUF"); 811 812 /** 813 * dma_buf_put - decreases refcount of the buffer 814 * @dmabuf: [in] buffer to reduce refcount of 815 * 816 * Uses file's refcounting done implicitly by fput(). 817 * 818 * If, as a result of this call, the refcount becomes 0, the 'release' file 819 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc 820 * in turn, and frees the memory allocated for dmabuf when exported. 821 */ 822 void dma_buf_put(struct dma_buf *dmabuf) 823 { 824 if (WARN_ON(!dmabuf || !dmabuf->file)) 825 return; 826 827 fput(dmabuf->file); 828 } 829 EXPORT_SYMBOL_NS_GPL(dma_buf_put, "DMA_BUF"); 830 831 static void mangle_sg_table(struct sg_table *sg_table) 832 { 833 #ifdef CONFIG_DMABUF_DEBUG 834 int i; 835 struct scatterlist *sg; 836 837 /* To catch abuse of the underlying struct page by importers mix 838 * up the bits, but take care to preserve the low SG_ bits to 839 * not corrupt the sgt. The mixing is undone on unmap 840 * before passing the sgt back to the exporter. 841 */ 842 for_each_sgtable_sg(sg_table, sg, i) 843 sg->page_link ^= ~0xffUL; 844 #endif 845 846 } 847 848 static inline bool 849 dma_buf_attachment_is_dynamic(struct dma_buf_attachment *attach) 850 { 851 return !!attach->importer_ops; 852 } 853 854 static bool 855 dma_buf_pin_on_map(struct dma_buf_attachment *attach) 856 { 857 return attach->dmabuf->ops->pin && 858 (!dma_buf_attachment_is_dynamic(attach) || 859 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)); 860 } 861 862 /** 863 * DOC: locking convention 864 * 865 * In order to avoid deadlock situations between dma-buf exports and importers, 866 * all dma-buf API users must follow the common dma-buf locking convention. 867 * 868 * Convention for importers 869 * 870 * 1. Importers must hold the dma-buf reservation lock when calling these 871 * functions: 872 * 873 * - dma_buf_pin() 874 * - dma_buf_unpin() 875 * - dma_buf_map_attachment() 876 * - dma_buf_unmap_attachment() 877 * - dma_buf_vmap() 878 * - dma_buf_vunmap() 879 * 880 * 2. Importers must not hold the dma-buf reservation lock when calling these 881 * functions: 882 * 883 * - dma_buf_attach() 884 * - dma_buf_dynamic_attach() 885 * - dma_buf_detach() 886 * - dma_buf_export() 887 * - dma_buf_fd() 888 * - dma_buf_get() 889 * - dma_buf_put() 890 * - dma_buf_mmap() 891 * - dma_buf_begin_cpu_access() 892 * - dma_buf_end_cpu_access() 893 * - dma_buf_map_attachment_unlocked() 894 * - dma_buf_unmap_attachment_unlocked() 895 * - dma_buf_vmap_unlocked() 896 * - dma_buf_vunmap_unlocked() 897 * 898 * Convention for exporters 899 * 900 * 1. These &dma_buf_ops callbacks are invoked with unlocked dma-buf 901 * reservation and exporter can take the lock: 902 * 903 * - &dma_buf_ops.attach() 904 * - &dma_buf_ops.detach() 905 * - &dma_buf_ops.release() 906 * - &dma_buf_ops.begin_cpu_access() 907 * - &dma_buf_ops.end_cpu_access() 908 * - &dma_buf_ops.mmap() 909 * 910 * 2. These &dma_buf_ops callbacks are invoked with locked dma-buf 911 * reservation and exporter can't take the lock: 912 * 913 * - &dma_buf_ops.pin() 914 * - &dma_buf_ops.unpin() 915 * - &dma_buf_ops.map_dma_buf() 916 * - &dma_buf_ops.unmap_dma_buf() 917 * - &dma_buf_ops.vmap() 918 * - &dma_buf_ops.vunmap() 919 * 920 * 3. Exporters must hold the dma-buf reservation lock when calling these 921 * functions: 922 * 923 * - dma_buf_move_notify() 924 */ 925 926 /** 927 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list 928 * @dmabuf: [in] buffer to attach device to. 929 * @dev: [in] device to be attached. 930 * @importer_ops: [in] importer operations for the attachment 931 * @importer_priv: [in] importer private pointer for the attachment 932 * 933 * Returns struct dma_buf_attachment pointer for this attachment. Attachments 934 * must be cleaned up by calling dma_buf_detach(). 935 * 936 * Optionally this calls &dma_buf_ops.attach to allow device-specific attach 937 * functionality. 938 * 939 * Returns: 940 * 941 * A pointer to newly created &dma_buf_attachment on success, or a negative 942 * error code wrapped into a pointer on failure. 943 * 944 * Note that this can fail if the backing storage of @dmabuf is in a place not 945 * accessible to @dev, and cannot be moved to a more suitable place. This is 946 * indicated with the error code -EBUSY. 947 */ 948 struct dma_buf_attachment * 949 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev, 950 const struct dma_buf_attach_ops *importer_ops, 951 void *importer_priv) 952 { 953 struct dma_buf_attachment *attach; 954 int ret; 955 956 if (WARN_ON(!dmabuf || !dev)) 957 return ERR_PTR(-EINVAL); 958 959 if (WARN_ON(importer_ops && !importer_ops->move_notify)) 960 return ERR_PTR(-EINVAL); 961 962 attach = kzalloc(sizeof(*attach), GFP_KERNEL); 963 if (!attach) 964 return ERR_PTR(-ENOMEM); 965 966 attach->dev = dev; 967 attach->dmabuf = dmabuf; 968 if (importer_ops) 969 attach->peer2peer = importer_ops->allow_peer2peer; 970 attach->importer_ops = importer_ops; 971 attach->importer_priv = importer_priv; 972 973 if (dmabuf->ops->attach) { 974 ret = dmabuf->ops->attach(dmabuf, attach); 975 if (ret) 976 goto err_attach; 977 } 978 dma_resv_lock(dmabuf->resv, NULL); 979 list_add(&attach->node, &dmabuf->attachments); 980 dma_resv_unlock(dmabuf->resv); 981 982 return attach; 983 984 err_attach: 985 kfree(attach); 986 return ERR_PTR(ret); 987 } 988 EXPORT_SYMBOL_NS_GPL(dma_buf_dynamic_attach, "DMA_BUF"); 989 990 /** 991 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach 992 * @dmabuf: [in] buffer to attach device to. 993 * @dev: [in] device to be attached. 994 * 995 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static 996 * mapping. 997 */ 998 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf, 999 struct device *dev) 1000 { 1001 return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL); 1002 } 1003 EXPORT_SYMBOL_NS_GPL(dma_buf_attach, "DMA_BUF"); 1004 1005 /** 1006 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list 1007 * @dmabuf: [in] buffer to detach from. 1008 * @attach: [in] attachment to be detached; is free'd after this call. 1009 * 1010 * Clean up a device attachment obtained by calling dma_buf_attach(). 1011 * 1012 * Optionally this calls &dma_buf_ops.detach for device-specific detach. 1013 */ 1014 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach) 1015 { 1016 if (WARN_ON(!dmabuf || !attach || dmabuf != attach->dmabuf)) 1017 return; 1018 1019 dma_resv_lock(dmabuf->resv, NULL); 1020 list_del(&attach->node); 1021 dma_resv_unlock(dmabuf->resv); 1022 1023 if (dmabuf->ops->detach) 1024 dmabuf->ops->detach(dmabuf, attach); 1025 1026 kfree(attach); 1027 } 1028 EXPORT_SYMBOL_NS_GPL(dma_buf_detach, "DMA_BUF"); 1029 1030 /** 1031 * dma_buf_pin - Lock down the DMA-buf 1032 * @attach: [in] attachment which should be pinned 1033 * 1034 * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may 1035 * call this, and only for limited use cases like scanout and not for temporary 1036 * pin operations. It is not permitted to allow userspace to pin arbitrary 1037 * amounts of buffers through this interface. 1038 * 1039 * Buffers must be unpinned by calling dma_buf_unpin(). 1040 * 1041 * Returns: 1042 * 0 on success, negative error code on failure. 1043 */ 1044 int dma_buf_pin(struct dma_buf_attachment *attach) 1045 { 1046 struct dma_buf *dmabuf = attach->dmabuf; 1047 int ret = 0; 1048 1049 WARN_ON(!attach->importer_ops); 1050 1051 dma_resv_assert_held(dmabuf->resv); 1052 1053 if (dmabuf->ops->pin) 1054 ret = dmabuf->ops->pin(attach); 1055 1056 return ret; 1057 } 1058 EXPORT_SYMBOL_NS_GPL(dma_buf_pin, "DMA_BUF"); 1059 1060 /** 1061 * dma_buf_unpin - Unpin a DMA-buf 1062 * @attach: [in] attachment which should be unpinned 1063 * 1064 * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move 1065 * any mapping of @attach again and inform the importer through 1066 * &dma_buf_attach_ops.move_notify. 1067 */ 1068 void dma_buf_unpin(struct dma_buf_attachment *attach) 1069 { 1070 struct dma_buf *dmabuf = attach->dmabuf; 1071 1072 WARN_ON(!attach->importer_ops); 1073 1074 dma_resv_assert_held(dmabuf->resv); 1075 1076 if (dmabuf->ops->unpin) 1077 dmabuf->ops->unpin(attach); 1078 } 1079 EXPORT_SYMBOL_NS_GPL(dma_buf_unpin, "DMA_BUF"); 1080 1081 /** 1082 * dma_buf_map_attachment - Returns the scatterlist table of the attachment; 1083 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the 1084 * dma_buf_ops. 1085 * @attach: [in] attachment whose scatterlist is to be returned 1086 * @direction: [in] direction of DMA transfer 1087 * 1088 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR 1089 * on error. May return -EINTR if it is interrupted by a signal. 1090 * 1091 * On success, the DMA addresses and lengths in the returned scatterlist are 1092 * PAGE_SIZE aligned. 1093 * 1094 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that 1095 * the underlying backing storage is pinned for as long as a mapping exists, 1096 * therefore users/importers should not hold onto a mapping for undue amounts of 1097 * time. 1098 * 1099 * Important: Dynamic importers must wait for the exclusive fence of the struct 1100 * dma_resv attached to the DMA-BUF first. 1101 */ 1102 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach, 1103 enum dma_data_direction direction) 1104 { 1105 struct sg_table *sg_table; 1106 signed long ret; 1107 1108 might_sleep(); 1109 1110 if (WARN_ON(!attach || !attach->dmabuf)) 1111 return ERR_PTR(-EINVAL); 1112 1113 dma_resv_assert_held(attach->dmabuf->resv); 1114 1115 if (dma_buf_pin_on_map(attach)) { 1116 ret = attach->dmabuf->ops->pin(attach); 1117 /* 1118 * Catch exporters making buffers inaccessible even when 1119 * attachments preventing that exist. 1120 */ 1121 WARN_ON_ONCE(ret == -EBUSY); 1122 if (ret) 1123 return ERR_PTR(ret); 1124 } 1125 1126 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction); 1127 if (!sg_table) 1128 sg_table = ERR_PTR(-ENOMEM); 1129 if (IS_ERR(sg_table)) 1130 goto error_unpin; 1131 1132 /* 1133 * Importers with static attachments don't wait for fences. 1134 */ 1135 if (!dma_buf_attachment_is_dynamic(attach)) { 1136 ret = dma_resv_wait_timeout(attach->dmabuf->resv, 1137 DMA_RESV_USAGE_KERNEL, true, 1138 MAX_SCHEDULE_TIMEOUT); 1139 if (ret < 0) 1140 goto error_unmap; 1141 } 1142 mangle_sg_table(sg_table); 1143 1144 #ifdef CONFIG_DMA_API_DEBUG 1145 { 1146 struct scatterlist *sg; 1147 u64 addr; 1148 int len; 1149 int i; 1150 1151 for_each_sgtable_dma_sg(sg_table, sg, i) { 1152 addr = sg_dma_address(sg); 1153 len = sg_dma_len(sg); 1154 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) { 1155 pr_debug("%s: addr %llx or len %x is not page aligned!\n", 1156 __func__, addr, len); 1157 } 1158 } 1159 } 1160 #endif /* CONFIG_DMA_API_DEBUG */ 1161 return sg_table; 1162 1163 error_unmap: 1164 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction); 1165 sg_table = ERR_PTR(ret); 1166 1167 error_unpin: 1168 if (dma_buf_pin_on_map(attach)) 1169 attach->dmabuf->ops->unpin(attach); 1170 1171 return sg_table; 1172 } 1173 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment, "DMA_BUF"); 1174 1175 /** 1176 * dma_buf_map_attachment_unlocked - Returns the scatterlist table of the attachment; 1177 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the 1178 * dma_buf_ops. 1179 * @attach: [in] attachment whose scatterlist is to be returned 1180 * @direction: [in] direction of DMA transfer 1181 * 1182 * Unlocked variant of dma_buf_map_attachment(). 1183 */ 1184 struct sg_table * 1185 dma_buf_map_attachment_unlocked(struct dma_buf_attachment *attach, 1186 enum dma_data_direction direction) 1187 { 1188 struct sg_table *sg_table; 1189 1190 might_sleep(); 1191 1192 if (WARN_ON(!attach || !attach->dmabuf)) 1193 return ERR_PTR(-EINVAL); 1194 1195 dma_resv_lock(attach->dmabuf->resv, NULL); 1196 sg_table = dma_buf_map_attachment(attach, direction); 1197 dma_resv_unlock(attach->dmabuf->resv); 1198 1199 return sg_table; 1200 } 1201 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment_unlocked, "DMA_BUF"); 1202 1203 /** 1204 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might 1205 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of 1206 * dma_buf_ops. 1207 * @attach: [in] attachment to unmap buffer from 1208 * @sg_table: [in] scatterlist info of the buffer to unmap 1209 * @direction: [in] direction of DMA transfer 1210 * 1211 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment(). 1212 */ 1213 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach, 1214 struct sg_table *sg_table, 1215 enum dma_data_direction direction) 1216 { 1217 might_sleep(); 1218 1219 if (WARN_ON(!attach || !attach->dmabuf || !sg_table)) 1220 return; 1221 1222 dma_resv_assert_held(attach->dmabuf->resv); 1223 1224 mangle_sg_table(sg_table); 1225 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction); 1226 1227 if (dma_buf_pin_on_map(attach)) 1228 attach->dmabuf->ops->unpin(attach); 1229 } 1230 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment, "DMA_BUF"); 1231 1232 /** 1233 * dma_buf_unmap_attachment_unlocked - unmaps and decreases usecount of the buffer;might 1234 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of 1235 * dma_buf_ops. 1236 * @attach: [in] attachment to unmap buffer from 1237 * @sg_table: [in] scatterlist info of the buffer to unmap 1238 * @direction: [in] direction of DMA transfer 1239 * 1240 * Unlocked variant of dma_buf_unmap_attachment(). 1241 */ 1242 void dma_buf_unmap_attachment_unlocked(struct dma_buf_attachment *attach, 1243 struct sg_table *sg_table, 1244 enum dma_data_direction direction) 1245 { 1246 might_sleep(); 1247 1248 if (WARN_ON(!attach || !attach->dmabuf || !sg_table)) 1249 return; 1250 1251 dma_resv_lock(attach->dmabuf->resv, NULL); 1252 dma_buf_unmap_attachment(attach, sg_table, direction); 1253 dma_resv_unlock(attach->dmabuf->resv); 1254 } 1255 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment_unlocked, "DMA_BUF"); 1256 1257 /** 1258 * dma_buf_move_notify - notify attachments that DMA-buf is moving 1259 * 1260 * @dmabuf: [in] buffer which is moving 1261 * 1262 * Informs all attachments that they need to destroy and recreate all their 1263 * mappings. 1264 */ 1265 void dma_buf_move_notify(struct dma_buf *dmabuf) 1266 { 1267 struct dma_buf_attachment *attach; 1268 1269 dma_resv_assert_held(dmabuf->resv); 1270 1271 list_for_each_entry(attach, &dmabuf->attachments, node) 1272 if (attach->importer_ops) 1273 attach->importer_ops->move_notify(attach); 1274 } 1275 EXPORT_SYMBOL_NS_GPL(dma_buf_move_notify, "DMA_BUF"); 1276 1277 /** 1278 * DOC: cpu access 1279 * 1280 * There are multiple reasons for supporting CPU access to a dma buffer object: 1281 * 1282 * - Fallback operations in the kernel, for example when a device is connected 1283 * over USB and the kernel needs to shuffle the data around first before 1284 * sending it away. Cache coherency is handled by bracketing any transactions 1285 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access() 1286 * access. 1287 * 1288 * Since for most kernel internal dma-buf accesses need the entire buffer, a 1289 * vmap interface is introduced. Note that on very old 32-bit architectures 1290 * vmalloc space might be limited and result in vmap calls failing. 1291 * 1292 * Interfaces: 1293 * 1294 * .. code-block:: c 1295 * 1296 * void *dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map) 1297 * void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map) 1298 * 1299 * The vmap call can fail if there is no vmap support in the exporter, or if 1300 * it runs out of vmalloc space. Note that the dma-buf layer keeps a reference 1301 * count for all vmap access and calls down into the exporter's vmap function 1302 * only when no vmapping exists, and only unmaps it once. Protection against 1303 * concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex. 1304 * 1305 * - For full compatibility on the importer side with existing userspace 1306 * interfaces, which might already support mmap'ing buffers. This is needed in 1307 * many processing pipelines (e.g. feeding a software rendered image into a 1308 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION 1309 * framework already supported this and for DMA buffer file descriptors to 1310 * replace ION buffers mmap support was needed. 1311 * 1312 * There is no special interfaces, userspace simply calls mmap on the dma-buf 1313 * fd. But like for CPU access there's a need to bracket the actual access, 1314 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that 1315 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must 1316 * be restarted. 1317 * 1318 * Some systems might need some sort of cache coherency management e.g. when 1319 * CPU and GPU domains are being accessed through dma-buf at the same time. 1320 * To circumvent this problem there are begin/end coherency markers, that 1321 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace 1322 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The 1323 * sequence would be used like following: 1324 * 1325 * - mmap dma-buf fd 1326 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write 1327 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you 1328 * want (with the new data being consumed by say the GPU or the scanout 1329 * device) 1330 * - munmap once you don't need the buffer any more 1331 * 1332 * For correctness and optimal performance, it is always required to use 1333 * SYNC_START and SYNC_END before and after, respectively, when accessing the 1334 * mapped address. Userspace cannot rely on coherent access, even when there 1335 * are systems where it just works without calling these ioctls. 1336 * 1337 * - And as a CPU fallback in userspace processing pipelines. 1338 * 1339 * Similar to the motivation for kernel cpu access it is again important that 1340 * the userspace code of a given importing subsystem can use the same 1341 * interfaces with a imported dma-buf buffer object as with a native buffer 1342 * object. This is especially important for drm where the userspace part of 1343 * contemporary OpenGL, X, and other drivers is huge, and reworking them to 1344 * use a different way to mmap a buffer rather invasive. 1345 * 1346 * The assumption in the current dma-buf interfaces is that redirecting the 1347 * initial mmap is all that's needed. A survey of some of the existing 1348 * subsystems shows that no driver seems to do any nefarious thing like 1349 * syncing up with outstanding asynchronous processing on the device or 1350 * allocating special resources at fault time. So hopefully this is good 1351 * enough, since adding interfaces to intercept pagefaults and allow pte 1352 * shootdowns would increase the complexity quite a bit. 1353 * 1354 * Interface: 1355 * 1356 * .. code-block:: c 1357 * 1358 * int dma_buf_mmap(struct dma_buf *, struct vm_area_struct *, unsigned long); 1359 * 1360 * If the importing subsystem simply provides a special-purpose mmap call to 1361 * set up a mapping in userspace, calling do_mmap with &dma_buf.file will 1362 * equally achieve that for a dma-buf object. 1363 */ 1364 1365 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1366 enum dma_data_direction direction) 1367 { 1368 bool write = (direction == DMA_BIDIRECTIONAL || 1369 direction == DMA_TO_DEVICE); 1370 struct dma_resv *resv = dmabuf->resv; 1371 long ret; 1372 1373 /* Wait on any implicit rendering fences */ 1374 ret = dma_resv_wait_timeout(resv, dma_resv_usage_rw(write), 1375 true, MAX_SCHEDULE_TIMEOUT); 1376 if (ret < 0) 1377 return ret; 1378 1379 return 0; 1380 } 1381 1382 /** 1383 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the 1384 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific 1385 * preparations. Coherency is only guaranteed in the specified range for the 1386 * specified access direction. 1387 * @dmabuf: [in] buffer to prepare cpu access for. 1388 * @direction: [in] direction of access. 1389 * 1390 * After the cpu access is complete the caller should call 1391 * dma_buf_end_cpu_access(). Only when cpu access is bracketed by both calls is 1392 * it guaranteed to be coherent with other DMA access. 1393 * 1394 * This function will also wait for any DMA transactions tracked through 1395 * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit 1396 * synchronization this function will only ensure cache coherency, callers must 1397 * ensure synchronization with such DMA transactions on their own. 1398 * 1399 * Can return negative error values, returns 0 on success. 1400 */ 1401 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf, 1402 enum dma_data_direction direction) 1403 { 1404 int ret = 0; 1405 1406 if (WARN_ON(!dmabuf)) 1407 return -EINVAL; 1408 1409 might_lock(&dmabuf->resv->lock.base); 1410 1411 if (dmabuf->ops->begin_cpu_access) 1412 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction); 1413 1414 /* Ensure that all fences are waited upon - but we first allow 1415 * the native handler the chance to do so more efficiently if it 1416 * chooses. A double invocation here will be reasonably cheap no-op. 1417 */ 1418 if (ret == 0) 1419 ret = __dma_buf_begin_cpu_access(dmabuf, direction); 1420 1421 return ret; 1422 } 1423 EXPORT_SYMBOL_NS_GPL(dma_buf_begin_cpu_access, "DMA_BUF"); 1424 1425 /** 1426 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the 1427 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific 1428 * actions. Coherency is only guaranteed in the specified range for the 1429 * specified access direction. 1430 * @dmabuf: [in] buffer to complete cpu access for. 1431 * @direction: [in] direction of access. 1432 * 1433 * This terminates CPU access started with dma_buf_begin_cpu_access(). 1434 * 1435 * Can return negative error values, returns 0 on success. 1436 */ 1437 int dma_buf_end_cpu_access(struct dma_buf *dmabuf, 1438 enum dma_data_direction direction) 1439 { 1440 int ret = 0; 1441 1442 WARN_ON(!dmabuf); 1443 1444 might_lock(&dmabuf->resv->lock.base); 1445 1446 if (dmabuf->ops->end_cpu_access) 1447 ret = dmabuf->ops->end_cpu_access(dmabuf, direction); 1448 1449 return ret; 1450 } 1451 EXPORT_SYMBOL_NS_GPL(dma_buf_end_cpu_access, "DMA_BUF"); 1452 1453 1454 /** 1455 * dma_buf_mmap - Setup up a userspace mmap with the given vma 1456 * @dmabuf: [in] buffer that should back the vma 1457 * @vma: [in] vma for the mmap 1458 * @pgoff: [in] offset in pages where this mmap should start within the 1459 * dma-buf buffer. 1460 * 1461 * This function adjusts the passed in vma so that it points at the file of the 1462 * dma_buf operation. It also adjusts the starting pgoff and does bounds 1463 * checking on the size of the vma. Then it calls the exporters mmap function to 1464 * set up the mapping. 1465 * 1466 * Can return negative error values, returns 0 on success. 1467 */ 1468 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma, 1469 unsigned long pgoff) 1470 { 1471 if (WARN_ON(!dmabuf || !vma)) 1472 return -EINVAL; 1473 1474 /* check if buffer supports mmap */ 1475 if (!dmabuf->ops->mmap) 1476 return -EINVAL; 1477 1478 /* check for offset overflow */ 1479 if (pgoff + vma_pages(vma) < pgoff) 1480 return -EOVERFLOW; 1481 1482 /* check for overflowing the buffer's size */ 1483 if (pgoff + vma_pages(vma) > 1484 dmabuf->size >> PAGE_SHIFT) 1485 return -EINVAL; 1486 1487 /* readjust the vma */ 1488 vma_set_file(vma, dmabuf->file); 1489 vma->vm_pgoff = pgoff; 1490 1491 return dmabuf->ops->mmap(dmabuf, vma); 1492 } 1493 EXPORT_SYMBOL_NS_GPL(dma_buf_mmap, "DMA_BUF"); 1494 1495 /** 1496 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel 1497 * address space. Same restrictions as for vmap and friends apply. 1498 * @dmabuf: [in] buffer to vmap 1499 * @map: [out] returns the vmap pointer 1500 * 1501 * This call may fail due to lack of virtual mapping address space. 1502 * These calls are optional in drivers. The intended use for them 1503 * is for mapping objects linear in kernel space for high use objects. 1504 * 1505 * To ensure coherency users must call dma_buf_begin_cpu_access() and 1506 * dma_buf_end_cpu_access() around any cpu access performed through this 1507 * mapping. 1508 * 1509 * Returns 0 on success, or a negative errno code otherwise. 1510 */ 1511 int dma_buf_vmap(struct dma_buf *dmabuf, struct iosys_map *map) 1512 { 1513 struct iosys_map ptr; 1514 int ret; 1515 1516 iosys_map_clear(map); 1517 1518 if (WARN_ON(!dmabuf)) 1519 return -EINVAL; 1520 1521 dma_resv_assert_held(dmabuf->resv); 1522 1523 if (!dmabuf->ops->vmap) 1524 return -EINVAL; 1525 1526 if (dmabuf->vmapping_counter) { 1527 dmabuf->vmapping_counter++; 1528 BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr)); 1529 *map = dmabuf->vmap_ptr; 1530 return 0; 1531 } 1532 1533 BUG_ON(iosys_map_is_set(&dmabuf->vmap_ptr)); 1534 1535 ret = dmabuf->ops->vmap(dmabuf, &ptr); 1536 if (WARN_ON_ONCE(ret)) 1537 return ret; 1538 1539 dmabuf->vmap_ptr = ptr; 1540 dmabuf->vmapping_counter = 1; 1541 1542 *map = dmabuf->vmap_ptr; 1543 1544 return 0; 1545 } 1546 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap, "DMA_BUF"); 1547 1548 /** 1549 * dma_buf_vmap_unlocked - Create virtual mapping for the buffer object into kernel 1550 * address space. Same restrictions as for vmap and friends apply. 1551 * @dmabuf: [in] buffer to vmap 1552 * @map: [out] returns the vmap pointer 1553 * 1554 * Unlocked version of dma_buf_vmap() 1555 * 1556 * Returns 0 on success, or a negative errno code otherwise. 1557 */ 1558 int dma_buf_vmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map) 1559 { 1560 int ret; 1561 1562 iosys_map_clear(map); 1563 1564 if (WARN_ON(!dmabuf)) 1565 return -EINVAL; 1566 1567 dma_resv_lock(dmabuf->resv, NULL); 1568 ret = dma_buf_vmap(dmabuf, map); 1569 dma_resv_unlock(dmabuf->resv); 1570 1571 return ret; 1572 } 1573 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap_unlocked, "DMA_BUF"); 1574 1575 /** 1576 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap. 1577 * @dmabuf: [in] buffer to vunmap 1578 * @map: [in] vmap pointer to vunmap 1579 */ 1580 void dma_buf_vunmap(struct dma_buf *dmabuf, struct iosys_map *map) 1581 { 1582 if (WARN_ON(!dmabuf)) 1583 return; 1584 1585 dma_resv_assert_held(dmabuf->resv); 1586 1587 BUG_ON(iosys_map_is_null(&dmabuf->vmap_ptr)); 1588 BUG_ON(dmabuf->vmapping_counter == 0); 1589 BUG_ON(!iosys_map_is_equal(&dmabuf->vmap_ptr, map)); 1590 1591 if (--dmabuf->vmapping_counter == 0) { 1592 if (dmabuf->ops->vunmap) 1593 dmabuf->ops->vunmap(dmabuf, map); 1594 iosys_map_clear(&dmabuf->vmap_ptr); 1595 } 1596 } 1597 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap, "DMA_BUF"); 1598 1599 /** 1600 * dma_buf_vunmap_unlocked - Unmap a vmap obtained by dma_buf_vmap. 1601 * @dmabuf: [in] buffer to vunmap 1602 * @map: [in] vmap pointer to vunmap 1603 */ 1604 void dma_buf_vunmap_unlocked(struct dma_buf *dmabuf, struct iosys_map *map) 1605 { 1606 if (WARN_ON(!dmabuf)) 1607 return; 1608 1609 dma_resv_lock(dmabuf->resv, NULL); 1610 dma_buf_vunmap(dmabuf, map); 1611 dma_resv_unlock(dmabuf->resv); 1612 } 1613 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap_unlocked, "DMA_BUF"); 1614 1615 #ifdef CONFIG_DEBUG_FS 1616 static int dma_buf_debug_show(struct seq_file *s, void *unused) 1617 { 1618 struct dma_buf *buf_obj; 1619 struct dma_buf_attachment *attach_obj; 1620 int count = 0, attach_count; 1621 size_t size = 0; 1622 int ret; 1623 1624 ret = mutex_lock_interruptible(&dmabuf_list_mutex); 1625 1626 if (ret) 1627 return ret; 1628 1629 seq_puts(s, "\nDma-buf Objects:\n"); 1630 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\tname\n", 1631 "size", "flags", "mode", "count", "ino"); 1632 1633 list_for_each_entry(buf_obj, &dmabuf_list, list_node) { 1634 1635 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL); 1636 if (ret) 1637 goto error_unlock; 1638 1639 1640 spin_lock(&buf_obj->name_lock); 1641 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n", 1642 buf_obj->size, 1643 buf_obj->file->f_flags, buf_obj->file->f_mode, 1644 file_count(buf_obj->file), 1645 buf_obj->exp_name, 1646 file_inode(buf_obj->file)->i_ino, 1647 buf_obj->name ?: "<none>"); 1648 spin_unlock(&buf_obj->name_lock); 1649 1650 dma_resv_describe(buf_obj->resv, s); 1651 1652 seq_puts(s, "\tAttached Devices:\n"); 1653 attach_count = 0; 1654 1655 list_for_each_entry(attach_obj, &buf_obj->attachments, node) { 1656 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev)); 1657 attach_count++; 1658 } 1659 dma_resv_unlock(buf_obj->resv); 1660 1661 seq_printf(s, "Total %d devices attached\n\n", 1662 attach_count); 1663 1664 count++; 1665 size += buf_obj->size; 1666 } 1667 1668 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size); 1669 1670 mutex_unlock(&dmabuf_list_mutex); 1671 return 0; 1672 1673 error_unlock: 1674 mutex_unlock(&dmabuf_list_mutex); 1675 return ret; 1676 } 1677 1678 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug); 1679 1680 static struct dentry *dma_buf_debugfs_dir; 1681 1682 static int dma_buf_init_debugfs(void) 1683 { 1684 struct dentry *d; 1685 int err = 0; 1686 1687 d = debugfs_create_dir("dma_buf", NULL); 1688 if (IS_ERR(d)) 1689 return PTR_ERR(d); 1690 1691 dma_buf_debugfs_dir = d; 1692 1693 d = debugfs_create_file("bufinfo", 0444, dma_buf_debugfs_dir, 1694 NULL, &dma_buf_debug_fops); 1695 if (IS_ERR(d)) { 1696 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n"); 1697 debugfs_remove_recursive(dma_buf_debugfs_dir); 1698 dma_buf_debugfs_dir = NULL; 1699 err = PTR_ERR(d); 1700 } 1701 1702 return err; 1703 } 1704 1705 static void dma_buf_uninit_debugfs(void) 1706 { 1707 debugfs_remove_recursive(dma_buf_debugfs_dir); 1708 } 1709 #else 1710 static inline int dma_buf_init_debugfs(void) 1711 { 1712 return 0; 1713 } 1714 static inline void dma_buf_uninit_debugfs(void) 1715 { 1716 } 1717 #endif 1718 1719 static int __init dma_buf_init(void) 1720 { 1721 int ret; 1722 1723 ret = dma_buf_init_sysfs_statistics(); 1724 if (ret) 1725 return ret; 1726 1727 dma_buf_mnt = kern_mount(&dma_buf_fs_type); 1728 if (IS_ERR(dma_buf_mnt)) 1729 return PTR_ERR(dma_buf_mnt); 1730 1731 dma_buf_init_debugfs(); 1732 return 0; 1733 } 1734 subsys_initcall(dma_buf_init); 1735 1736 static void __exit dma_buf_deinit(void) 1737 { 1738 dma_buf_uninit_debugfs(); 1739 kern_unmount(dma_buf_mnt); 1740 dma_buf_uninit_sysfs_statistics(); 1741 } 1742 __exitcall(dma_buf_deinit); 1743