xref: /linux/drivers/devfreq/tegra30-devfreq.c (revision 0e3901891ab66dce0a51579035594c9b685650dd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * A devfreq driver for NVIDIA Tegra SoCs
4  *
5  * Copyright (c) 2014 NVIDIA CORPORATION. All rights reserved.
6  * Copyright (C) 2014 Google, Inc
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/cpufreq.h>
11 #include <linux/devfreq.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/module.h>
15 #include <linux/mod_devicetable.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_opp.h>
18 #include <linux/reset.h>
19 
20 #include "governor.h"
21 
22 #define ACTMON_GLB_STATUS					0x0
23 #define ACTMON_GLB_PERIOD_CTRL					0x4
24 
25 #define ACTMON_DEV_CTRL						0x0
26 #define ACTMON_DEV_CTRL_K_VAL_SHIFT				10
27 #define ACTMON_DEV_CTRL_ENB_PERIODIC				BIT(18)
28 #define ACTMON_DEV_CTRL_AVG_BELOW_WMARK_EN			BIT(20)
29 #define ACTMON_DEV_CTRL_AVG_ABOVE_WMARK_EN			BIT(21)
30 #define ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_NUM_SHIFT	23
31 #define ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_NUM_SHIFT	26
32 #define ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN		BIT(29)
33 #define ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN		BIT(30)
34 #define ACTMON_DEV_CTRL_ENB					BIT(31)
35 
36 #define ACTMON_DEV_UPPER_WMARK					0x4
37 #define ACTMON_DEV_LOWER_WMARK					0x8
38 #define ACTMON_DEV_INIT_AVG					0xc
39 #define ACTMON_DEV_AVG_UPPER_WMARK				0x10
40 #define ACTMON_DEV_AVG_LOWER_WMARK				0x14
41 #define ACTMON_DEV_COUNT_WEIGHT					0x18
42 #define ACTMON_DEV_AVG_COUNT					0x20
43 #define ACTMON_DEV_INTR_STATUS					0x24
44 
45 #define ACTMON_INTR_STATUS_CLEAR				0xffffffff
46 
47 #define ACTMON_DEV_INTR_CONSECUTIVE_UPPER			BIT(31)
48 #define ACTMON_DEV_INTR_CONSECUTIVE_LOWER			BIT(30)
49 
50 #define ACTMON_ABOVE_WMARK_WINDOW				1
51 #define ACTMON_BELOW_WMARK_WINDOW				3
52 #define ACTMON_BOOST_FREQ_STEP					16000
53 
54 /*
55  * Activity counter is incremented every 256 memory transactions, and each
56  * transaction takes 4 EMC clocks for Tegra124; So the COUNT_WEIGHT is
57  * 4 * 256 = 1024.
58  */
59 #define ACTMON_COUNT_WEIGHT					0x400
60 
61 /*
62  * ACTMON_AVERAGE_WINDOW_LOG2: default value for @DEV_CTRL_K_VAL, which
63  * translates to 2 ^ (K_VAL + 1). ex: 2 ^ (6 + 1) = 128
64  */
65 #define ACTMON_AVERAGE_WINDOW_LOG2			6
66 #define ACTMON_SAMPLING_PERIOD				12 /* ms */
67 #define ACTMON_DEFAULT_AVG_BAND				6  /* 1/10 of % */
68 
69 #define KHZ							1000
70 
71 /* Assume that the bus is saturated if the utilization is 25% */
72 #define BUS_SATURATION_RATIO					25
73 
74 /**
75  * struct tegra_devfreq_device_config - configuration specific to an ACTMON
76  * device
77  *
78  * Coefficients and thresholds are percentages unless otherwise noted
79  */
80 struct tegra_devfreq_device_config {
81 	u32		offset;
82 	u32		irq_mask;
83 
84 	/* Factors applied to boost_freq every consecutive watermark breach */
85 	unsigned int	boost_up_coeff;
86 	unsigned int	boost_down_coeff;
87 
88 	/* Define the watermark bounds when applied to the current avg */
89 	unsigned int	boost_up_threshold;
90 	unsigned int	boost_down_threshold;
91 
92 	/*
93 	 * Threshold of activity (cycles) below which the CPU frequency isn't
94 	 * to be taken into account. This is to avoid increasing the EMC
95 	 * frequency when the CPU is very busy but not accessing the bus often.
96 	 */
97 	u32		avg_dependency_threshold;
98 };
99 
100 enum tegra_actmon_device {
101 	MCALL = 0,
102 	MCCPU,
103 };
104 
105 static struct tegra_devfreq_device_config actmon_device_configs[] = {
106 	{
107 		/* MCALL: All memory accesses (including from the CPUs) */
108 		.offset = 0x1c0,
109 		.irq_mask = 1 << 26,
110 		.boost_up_coeff = 200,
111 		.boost_down_coeff = 50,
112 		.boost_up_threshold = 60,
113 		.boost_down_threshold = 40,
114 	},
115 	{
116 		/* MCCPU: memory accesses from the CPUs */
117 		.offset = 0x200,
118 		.irq_mask = 1 << 25,
119 		.boost_up_coeff = 800,
120 		.boost_down_coeff = 90,
121 		.boost_up_threshold = 27,
122 		.boost_down_threshold = 10,
123 		.avg_dependency_threshold = 50000,
124 	},
125 };
126 
127 /**
128  * struct tegra_devfreq_device - state specific to an ACTMON device
129  *
130  * Frequencies are in kHz.
131  */
132 struct tegra_devfreq_device {
133 	const struct tegra_devfreq_device_config *config;
134 	void __iomem *regs;
135 
136 	/* Average event count sampled in the last interrupt */
137 	u32 avg_count;
138 
139 	/*
140 	 * Extra frequency to increase the target by due to consecutive
141 	 * watermark breaches.
142 	 */
143 	unsigned long boost_freq;
144 
145 	/* Optimal frequency calculated from the stats for this device */
146 	unsigned long target_freq;
147 };
148 
149 struct tegra_devfreq {
150 	struct devfreq		*devfreq;
151 
152 	struct reset_control	*reset;
153 	struct clk		*clock;
154 	void __iomem		*regs;
155 
156 	struct clk		*emc_clock;
157 	unsigned long		max_freq;
158 	unsigned long		cur_freq;
159 	struct notifier_block	rate_change_nb;
160 
161 	struct tegra_devfreq_device devices[ARRAY_SIZE(actmon_device_configs)];
162 
163 	int irq;
164 };
165 
166 struct tegra_actmon_emc_ratio {
167 	unsigned long cpu_freq;
168 	unsigned long emc_freq;
169 };
170 
171 static struct tegra_actmon_emc_ratio actmon_emc_ratios[] = {
172 	{ 1400000, ULONG_MAX },
173 	{ 1200000,    750000 },
174 	{ 1100000,    600000 },
175 	{ 1000000,    500000 },
176 	{  800000,    375000 },
177 	{  500000,    200000 },
178 	{  250000,    100000 },
179 };
180 
181 static u32 actmon_readl(struct tegra_devfreq *tegra, u32 offset)
182 {
183 	return readl_relaxed(tegra->regs + offset);
184 }
185 
186 static void actmon_writel(struct tegra_devfreq *tegra, u32 val, u32 offset)
187 {
188 	writel_relaxed(val, tegra->regs + offset);
189 }
190 
191 static u32 device_readl(struct tegra_devfreq_device *dev, u32 offset)
192 {
193 	return readl_relaxed(dev->regs + offset);
194 }
195 
196 static void device_writel(struct tegra_devfreq_device *dev, u32 val,
197 			  u32 offset)
198 {
199 	writel_relaxed(val, dev->regs + offset);
200 }
201 
202 static unsigned long do_percent(unsigned long val, unsigned int pct)
203 {
204 	return val * pct / 100;
205 }
206 
207 static void tegra_devfreq_update_avg_wmark(struct tegra_devfreq *tegra,
208 					   struct tegra_devfreq_device *dev)
209 {
210 	u32 avg = dev->avg_count;
211 	u32 avg_band_freq = tegra->max_freq * ACTMON_DEFAULT_AVG_BAND / KHZ;
212 	u32 band = avg_band_freq * ACTMON_SAMPLING_PERIOD;
213 
214 	device_writel(dev, avg + band, ACTMON_DEV_AVG_UPPER_WMARK);
215 
216 	avg = max(dev->avg_count, band);
217 	device_writel(dev, avg - band, ACTMON_DEV_AVG_LOWER_WMARK);
218 }
219 
220 static void tegra_devfreq_update_wmark(struct tegra_devfreq *tegra,
221 				       struct tegra_devfreq_device *dev)
222 {
223 	u32 val = tegra->cur_freq * ACTMON_SAMPLING_PERIOD;
224 
225 	device_writel(dev, do_percent(val, dev->config->boost_up_threshold),
226 		      ACTMON_DEV_UPPER_WMARK);
227 
228 	device_writel(dev, do_percent(val, dev->config->boost_down_threshold),
229 		      ACTMON_DEV_LOWER_WMARK);
230 }
231 
232 static void actmon_write_barrier(struct tegra_devfreq *tegra)
233 {
234 	/* ensure the update has reached the ACTMON */
235 	readl(tegra->regs + ACTMON_GLB_STATUS);
236 }
237 
238 static void actmon_isr_device(struct tegra_devfreq *tegra,
239 			      struct tegra_devfreq_device *dev)
240 {
241 	u32 intr_status, dev_ctrl;
242 
243 	dev->avg_count = device_readl(dev, ACTMON_DEV_AVG_COUNT);
244 	tegra_devfreq_update_avg_wmark(tegra, dev);
245 
246 	intr_status = device_readl(dev, ACTMON_DEV_INTR_STATUS);
247 	dev_ctrl = device_readl(dev, ACTMON_DEV_CTRL);
248 
249 	if (intr_status & ACTMON_DEV_INTR_CONSECUTIVE_UPPER) {
250 		/*
251 		 * new_boost = min(old_boost * up_coef + step, max_freq)
252 		 */
253 		dev->boost_freq = do_percent(dev->boost_freq,
254 					     dev->config->boost_up_coeff);
255 		dev->boost_freq += ACTMON_BOOST_FREQ_STEP;
256 
257 		dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
258 
259 		if (dev->boost_freq >= tegra->max_freq)
260 			dev->boost_freq = tegra->max_freq;
261 		else
262 			dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
263 	} else if (intr_status & ACTMON_DEV_INTR_CONSECUTIVE_LOWER) {
264 		/*
265 		 * new_boost = old_boost * down_coef
266 		 * or 0 if (old_boost * down_coef < step / 2)
267 		 */
268 		dev->boost_freq = do_percent(dev->boost_freq,
269 					     dev->config->boost_down_coeff);
270 
271 		dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
272 
273 		if (dev->boost_freq < (ACTMON_BOOST_FREQ_STEP >> 1))
274 			dev->boost_freq = 0;
275 		else
276 			dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
277 	}
278 
279 	if (dev->config->avg_dependency_threshold) {
280 		if (dev->avg_count >= dev->config->avg_dependency_threshold)
281 			dev_ctrl |= ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
282 		else if (dev->boost_freq == 0)
283 			dev_ctrl &= ~ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
284 	}
285 
286 	device_writel(dev, dev_ctrl, ACTMON_DEV_CTRL);
287 
288 	device_writel(dev, ACTMON_INTR_STATUS_CLEAR, ACTMON_DEV_INTR_STATUS);
289 
290 	actmon_write_barrier(tegra);
291 }
292 
293 static unsigned long actmon_cpu_to_emc_rate(struct tegra_devfreq *tegra,
294 					    unsigned long cpu_freq)
295 {
296 	unsigned int i;
297 	struct tegra_actmon_emc_ratio *ratio = actmon_emc_ratios;
298 
299 	for (i = 0; i < ARRAY_SIZE(actmon_emc_ratios); i++, ratio++) {
300 		if (cpu_freq >= ratio->cpu_freq) {
301 			if (ratio->emc_freq >= tegra->max_freq)
302 				return tegra->max_freq;
303 			else
304 				return ratio->emc_freq;
305 		}
306 	}
307 
308 	return 0;
309 }
310 
311 static void actmon_update_target(struct tegra_devfreq *tegra,
312 				 struct tegra_devfreq_device *dev)
313 {
314 	unsigned long cpu_freq = 0;
315 	unsigned long static_cpu_emc_freq = 0;
316 	unsigned int avg_sustain_coef;
317 
318 	if (dev->config->avg_dependency_threshold) {
319 		cpu_freq = cpufreq_get(0);
320 		static_cpu_emc_freq = actmon_cpu_to_emc_rate(tegra, cpu_freq);
321 	}
322 
323 	dev->target_freq = dev->avg_count / ACTMON_SAMPLING_PERIOD;
324 	avg_sustain_coef = 100 * 100 / dev->config->boost_up_threshold;
325 	dev->target_freq = do_percent(dev->target_freq, avg_sustain_coef);
326 	dev->target_freq += dev->boost_freq;
327 
328 	if (dev->avg_count >= dev->config->avg_dependency_threshold)
329 		dev->target_freq = max(dev->target_freq, static_cpu_emc_freq);
330 }
331 
332 static irqreturn_t actmon_thread_isr(int irq, void *data)
333 {
334 	struct tegra_devfreq *tegra = data;
335 	bool handled = false;
336 	unsigned int i;
337 	u32 val;
338 
339 	mutex_lock(&tegra->devfreq->lock);
340 
341 	val = actmon_readl(tegra, ACTMON_GLB_STATUS);
342 	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
343 		if (val & tegra->devices[i].config->irq_mask) {
344 			actmon_isr_device(tegra, tegra->devices + i);
345 			handled = true;
346 		}
347 	}
348 
349 	if (handled)
350 		update_devfreq(tegra->devfreq);
351 
352 	mutex_unlock(&tegra->devfreq->lock);
353 
354 	return handled ? IRQ_HANDLED : IRQ_NONE;
355 }
356 
357 static int tegra_actmon_rate_notify_cb(struct notifier_block *nb,
358 				       unsigned long action, void *ptr)
359 {
360 	struct clk_notifier_data *data = ptr;
361 	struct tegra_devfreq *tegra;
362 	struct tegra_devfreq_device *dev;
363 	unsigned int i;
364 
365 	if (action != POST_RATE_CHANGE)
366 		return NOTIFY_OK;
367 
368 	tegra = container_of(nb, struct tegra_devfreq, rate_change_nb);
369 
370 	tegra->cur_freq = data->new_rate / KHZ;
371 
372 	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
373 		dev = &tegra->devices[i];
374 
375 		tegra_devfreq_update_wmark(tegra, dev);
376 	}
377 
378 	actmon_write_barrier(tegra);
379 
380 	return NOTIFY_OK;
381 }
382 
383 static void tegra_actmon_configure_device(struct tegra_devfreq *tegra,
384 					  struct tegra_devfreq_device *dev)
385 {
386 	u32 val = 0;
387 
388 	dev->target_freq = tegra->cur_freq;
389 
390 	dev->avg_count = tegra->cur_freq * ACTMON_SAMPLING_PERIOD;
391 	device_writel(dev, dev->avg_count, ACTMON_DEV_INIT_AVG);
392 
393 	tegra_devfreq_update_avg_wmark(tegra, dev);
394 	tegra_devfreq_update_wmark(tegra, dev);
395 
396 	device_writel(dev, ACTMON_COUNT_WEIGHT, ACTMON_DEV_COUNT_WEIGHT);
397 	device_writel(dev, ACTMON_INTR_STATUS_CLEAR, ACTMON_DEV_INTR_STATUS);
398 
399 	val |= ACTMON_DEV_CTRL_ENB_PERIODIC;
400 	val |= (ACTMON_AVERAGE_WINDOW_LOG2 - 1)
401 		<< ACTMON_DEV_CTRL_K_VAL_SHIFT;
402 	val |= (ACTMON_BELOW_WMARK_WINDOW - 1)
403 		<< ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_NUM_SHIFT;
404 	val |= (ACTMON_ABOVE_WMARK_WINDOW - 1)
405 		<< ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_NUM_SHIFT;
406 	val |= ACTMON_DEV_CTRL_AVG_ABOVE_WMARK_EN;
407 	val |= ACTMON_DEV_CTRL_AVG_BELOW_WMARK_EN;
408 	val |= ACTMON_DEV_CTRL_CONSECUTIVE_BELOW_WMARK_EN;
409 	val |= ACTMON_DEV_CTRL_CONSECUTIVE_ABOVE_WMARK_EN;
410 	val |= ACTMON_DEV_CTRL_ENB;
411 
412 	device_writel(dev, val, ACTMON_DEV_CTRL);
413 }
414 
415 static void tegra_actmon_start(struct tegra_devfreq *tegra)
416 {
417 	unsigned int i;
418 
419 	disable_irq(tegra->irq);
420 
421 	actmon_writel(tegra, ACTMON_SAMPLING_PERIOD - 1,
422 		      ACTMON_GLB_PERIOD_CTRL);
423 
424 	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++)
425 		tegra_actmon_configure_device(tegra, &tegra->devices[i]);
426 
427 	actmon_write_barrier(tegra);
428 
429 	enable_irq(tegra->irq);
430 }
431 
432 static void tegra_actmon_stop(struct tegra_devfreq *tegra)
433 {
434 	unsigned int i;
435 
436 	disable_irq(tegra->irq);
437 
438 	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
439 		device_writel(&tegra->devices[i], 0x00000000, ACTMON_DEV_CTRL);
440 		device_writel(&tegra->devices[i], ACTMON_INTR_STATUS_CLEAR,
441 			      ACTMON_DEV_INTR_STATUS);
442 	}
443 
444 	actmon_write_barrier(tegra);
445 
446 	enable_irq(tegra->irq);
447 }
448 
449 static int tegra_devfreq_target(struct device *dev, unsigned long *freq,
450 				u32 flags)
451 {
452 	struct tegra_devfreq *tegra = dev_get_drvdata(dev);
453 	struct devfreq *devfreq = tegra->devfreq;
454 	struct dev_pm_opp *opp;
455 	unsigned long rate;
456 	int err;
457 
458 	opp = devfreq_recommended_opp(dev, freq, flags);
459 	if (IS_ERR(opp)) {
460 		dev_err(dev, "Failed to find opp for %lu Hz\n", *freq);
461 		return PTR_ERR(opp);
462 	}
463 	rate = dev_pm_opp_get_freq(opp);
464 	dev_pm_opp_put(opp);
465 
466 	err = clk_set_min_rate(tegra->emc_clock, rate);
467 	if (err)
468 		return err;
469 
470 	err = clk_set_rate(tegra->emc_clock, 0);
471 	if (err)
472 		goto restore_min_rate;
473 
474 	return 0;
475 
476 restore_min_rate:
477 	clk_set_min_rate(tegra->emc_clock, devfreq->previous_freq);
478 
479 	return err;
480 }
481 
482 static int tegra_devfreq_get_dev_status(struct device *dev,
483 					struct devfreq_dev_status *stat)
484 {
485 	struct tegra_devfreq *tegra = dev_get_drvdata(dev);
486 	struct tegra_devfreq_device *actmon_dev;
487 	unsigned long cur_freq;
488 
489 	cur_freq = READ_ONCE(tegra->cur_freq);
490 
491 	/* To be used by the tegra governor */
492 	stat->private_data = tegra;
493 
494 	/* The below are to be used by the other governors */
495 	stat->current_frequency = cur_freq * KHZ;
496 
497 	actmon_dev = &tegra->devices[MCALL];
498 
499 	/* Number of cycles spent on memory access */
500 	stat->busy_time = device_readl(actmon_dev, ACTMON_DEV_AVG_COUNT);
501 
502 	/* The bus can be considered to be saturated way before 100% */
503 	stat->busy_time *= 100 / BUS_SATURATION_RATIO;
504 
505 	/* Number of cycles in a sampling period */
506 	stat->total_time = ACTMON_SAMPLING_PERIOD * cur_freq;
507 
508 	stat->busy_time = min(stat->busy_time, stat->total_time);
509 
510 	return 0;
511 }
512 
513 static struct devfreq_dev_profile tegra_devfreq_profile = {
514 	.polling_ms	= 0,
515 	.target		= tegra_devfreq_target,
516 	.get_dev_status	= tegra_devfreq_get_dev_status,
517 };
518 
519 static int tegra_governor_get_target(struct devfreq *devfreq,
520 				     unsigned long *freq)
521 {
522 	struct devfreq_dev_status *stat;
523 	struct tegra_devfreq *tegra;
524 	struct tegra_devfreq_device *dev;
525 	unsigned long target_freq = 0;
526 	unsigned int i;
527 	int err;
528 
529 	err = devfreq_update_stats(devfreq);
530 	if (err)
531 		return err;
532 
533 	stat = &devfreq->last_status;
534 
535 	tegra = stat->private_data;
536 
537 	for (i = 0; i < ARRAY_SIZE(tegra->devices); i++) {
538 		dev = &tegra->devices[i];
539 
540 		actmon_update_target(tegra, dev);
541 
542 		target_freq = max(target_freq, dev->target_freq);
543 	}
544 
545 	*freq = target_freq * KHZ;
546 
547 	return 0;
548 }
549 
550 static int tegra_governor_event_handler(struct devfreq *devfreq,
551 					unsigned int event, void *data)
552 {
553 	struct tegra_devfreq *tegra = dev_get_drvdata(devfreq->dev.parent);
554 
555 	switch (event) {
556 	case DEVFREQ_GOV_START:
557 		devfreq_monitor_start(devfreq);
558 		tegra_actmon_start(tegra);
559 		break;
560 
561 	case DEVFREQ_GOV_STOP:
562 		tegra_actmon_stop(tegra);
563 		devfreq_monitor_stop(devfreq);
564 		break;
565 
566 	case DEVFREQ_GOV_SUSPEND:
567 		tegra_actmon_stop(tegra);
568 		devfreq_monitor_suspend(devfreq);
569 		break;
570 
571 	case DEVFREQ_GOV_RESUME:
572 		devfreq_monitor_resume(devfreq);
573 		tegra_actmon_start(tegra);
574 		break;
575 	}
576 
577 	return 0;
578 }
579 
580 static struct devfreq_governor tegra_devfreq_governor = {
581 	.name = "tegra_actmon",
582 	.get_target_freq = tegra_governor_get_target,
583 	.event_handler = tegra_governor_event_handler,
584 	.immutable = true,
585 };
586 
587 static int tegra_devfreq_probe(struct platform_device *pdev)
588 {
589 	struct tegra_devfreq *tegra;
590 	struct tegra_devfreq_device *dev;
591 	unsigned int i;
592 	unsigned long rate;
593 	int err;
594 
595 	tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
596 	if (!tegra)
597 		return -ENOMEM;
598 
599 	tegra->regs = devm_platform_ioremap_resource(pdev, 0);
600 	if (IS_ERR(tegra->regs))
601 		return PTR_ERR(tegra->regs);
602 
603 	tegra->reset = devm_reset_control_get(&pdev->dev, "actmon");
604 	if (IS_ERR(tegra->reset)) {
605 		dev_err(&pdev->dev, "Failed to get reset\n");
606 		return PTR_ERR(tegra->reset);
607 	}
608 
609 	tegra->clock = devm_clk_get(&pdev->dev, "actmon");
610 	if (IS_ERR(tegra->clock)) {
611 		dev_err(&pdev->dev, "Failed to get actmon clock\n");
612 		return PTR_ERR(tegra->clock);
613 	}
614 
615 	tegra->emc_clock = devm_clk_get(&pdev->dev, "emc");
616 	if (IS_ERR(tegra->emc_clock)) {
617 		dev_err(&pdev->dev, "Failed to get emc clock\n");
618 		return PTR_ERR(tegra->emc_clock);
619 	}
620 
621 	tegra->irq = platform_get_irq(pdev, 0);
622 	if (tegra->irq < 0) {
623 		err = tegra->irq;
624 		dev_err(&pdev->dev, "Failed to get IRQ: %d\n", err);
625 		return err;
626 	}
627 
628 	reset_control_assert(tegra->reset);
629 
630 	err = clk_prepare_enable(tegra->clock);
631 	if (err) {
632 		dev_err(&pdev->dev,
633 			"Failed to prepare and enable ACTMON clock\n");
634 		return err;
635 	}
636 
637 	reset_control_deassert(tegra->reset);
638 
639 	tegra->max_freq = clk_round_rate(tegra->emc_clock, ULONG_MAX) / KHZ;
640 	tegra->cur_freq = clk_get_rate(tegra->emc_clock) / KHZ;
641 
642 	for (i = 0; i < ARRAY_SIZE(actmon_device_configs); i++) {
643 		dev = tegra->devices + i;
644 		dev->config = actmon_device_configs + i;
645 		dev->regs = tegra->regs + dev->config->offset;
646 	}
647 
648 	for (rate = 0; rate <= tegra->max_freq * KHZ; rate++) {
649 		rate = clk_round_rate(tegra->emc_clock, rate);
650 
651 		err = dev_pm_opp_add(&pdev->dev, rate, 0);
652 		if (err) {
653 			dev_err(&pdev->dev, "Failed to add OPP: %d\n", err);
654 			goto remove_opps;
655 		}
656 	}
657 
658 	platform_set_drvdata(pdev, tegra);
659 
660 	tegra->rate_change_nb.notifier_call = tegra_actmon_rate_notify_cb;
661 	err = clk_notifier_register(tegra->emc_clock, &tegra->rate_change_nb);
662 	if (err) {
663 		dev_err(&pdev->dev,
664 			"Failed to register rate change notifier\n");
665 		goto remove_opps;
666 	}
667 
668 	err = devfreq_add_governor(&tegra_devfreq_governor);
669 	if (err) {
670 		dev_err(&pdev->dev, "Failed to add governor: %d\n", err);
671 		goto unreg_notifier;
672 	}
673 
674 	tegra_devfreq_profile.initial_freq = clk_get_rate(tegra->emc_clock);
675 	tegra->devfreq = devfreq_add_device(&pdev->dev,
676 					    &tegra_devfreq_profile,
677 					    "tegra_actmon",
678 					    NULL);
679 	if (IS_ERR(tegra->devfreq)) {
680 		err = PTR_ERR(tegra->devfreq);
681 		goto remove_governor;
682 	}
683 
684 	err = devm_request_threaded_irq(&pdev->dev, tegra->irq, NULL,
685 					actmon_thread_isr, IRQF_ONESHOT,
686 					"tegra-devfreq", tegra);
687 	if (err) {
688 		dev_err(&pdev->dev, "Interrupt request failed: %d\n", err);
689 		goto remove_devfreq;
690 	}
691 
692 	return 0;
693 
694 remove_devfreq:
695 	devfreq_remove_device(tegra->devfreq);
696 
697 remove_governor:
698 	devfreq_remove_governor(&tegra_devfreq_governor);
699 
700 unreg_notifier:
701 	clk_notifier_unregister(tegra->emc_clock, &tegra->rate_change_nb);
702 
703 remove_opps:
704 	dev_pm_opp_remove_all_dynamic(&pdev->dev);
705 
706 	reset_control_reset(tegra->reset);
707 	clk_disable_unprepare(tegra->clock);
708 
709 	return err;
710 }
711 
712 static int tegra_devfreq_remove(struct platform_device *pdev)
713 {
714 	struct tegra_devfreq *tegra = platform_get_drvdata(pdev);
715 
716 	devfreq_remove_device(tegra->devfreq);
717 	devfreq_remove_governor(&tegra_devfreq_governor);
718 
719 	clk_notifier_unregister(tegra->emc_clock, &tegra->rate_change_nb);
720 	dev_pm_opp_remove_all_dynamic(&pdev->dev);
721 
722 	reset_control_reset(tegra->reset);
723 	clk_disable_unprepare(tegra->clock);
724 
725 	return 0;
726 }
727 
728 static const struct of_device_id tegra_devfreq_of_match[] = {
729 	{ .compatible = "nvidia,tegra30-actmon" },
730 	{ .compatible = "nvidia,tegra124-actmon" },
731 	{ },
732 };
733 
734 MODULE_DEVICE_TABLE(of, tegra_devfreq_of_match);
735 
736 static struct platform_driver tegra_devfreq_driver = {
737 	.probe	= tegra_devfreq_probe,
738 	.remove	= tegra_devfreq_remove,
739 	.driver = {
740 		.name = "tegra-devfreq",
741 		.of_match_table = tegra_devfreq_of_match,
742 	},
743 };
744 module_platform_driver(tegra_devfreq_driver);
745 
746 MODULE_LICENSE("GPL v2");
747 MODULE_DESCRIPTION("Tegra devfreq driver");
748 MODULE_AUTHOR("Tomeu Vizoso <tomeu.vizoso@collabora.com>");
749