1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright(c) 2017 Intel Corporation. All rights reserved. 4 */ 5 #include <linux/pagemap.h> 6 #include <linux/module.h> 7 #include <linux/mount.h> 8 #include <linux/pseudo_fs.h> 9 #include <linux/magic.h> 10 #include <linux/pfn_t.h> 11 #include <linux/cdev.h> 12 #include <linux/slab.h> 13 #include <linux/uio.h> 14 #include <linux/dax.h> 15 #include <linux/fs.h> 16 #include "dax-private.h" 17 18 /** 19 * struct dax_device - anchor object for dax services 20 * @inode: core vfs 21 * @cdev: optional character interface for "device dax" 22 * @private: dax driver private data 23 * @flags: state and boolean properties 24 * @ops: operations for this device 25 * @holder_data: holder of a dax_device: could be filesystem or mapped device 26 * @holder_ops: operations for the inner holder 27 */ 28 struct dax_device { 29 struct inode inode; 30 struct cdev cdev; 31 void *private; 32 unsigned long flags; 33 const struct dax_operations *ops; 34 void *holder_data; 35 const struct dax_holder_operations *holder_ops; 36 }; 37 38 static dev_t dax_devt; 39 DEFINE_STATIC_SRCU(dax_srcu); 40 static struct vfsmount *dax_mnt; 41 static DEFINE_IDA(dax_minor_ida); 42 static struct kmem_cache *dax_cache __read_mostly; 43 static struct super_block *dax_superblock __read_mostly; 44 45 int dax_read_lock(void) 46 { 47 return srcu_read_lock(&dax_srcu); 48 } 49 EXPORT_SYMBOL_GPL(dax_read_lock); 50 51 void dax_read_unlock(int id) 52 { 53 srcu_read_unlock(&dax_srcu, id); 54 } 55 EXPORT_SYMBOL_GPL(dax_read_unlock); 56 57 #if defined(CONFIG_BLOCK) && defined(CONFIG_FS_DAX) 58 #include <linux/blkdev.h> 59 60 static DEFINE_XARRAY(dax_hosts); 61 62 int dax_add_host(struct dax_device *dax_dev, struct gendisk *disk) 63 { 64 return xa_insert(&dax_hosts, (unsigned long)disk, dax_dev, GFP_KERNEL); 65 } 66 EXPORT_SYMBOL_GPL(dax_add_host); 67 68 void dax_remove_host(struct gendisk *disk) 69 { 70 xa_erase(&dax_hosts, (unsigned long)disk); 71 } 72 EXPORT_SYMBOL_GPL(dax_remove_host); 73 74 /** 75 * fs_dax_get_by_bdev() - temporary lookup mechanism for filesystem-dax 76 * @bdev: block device to find a dax_device for 77 * @start_off: returns the byte offset into the dax_device that @bdev starts 78 * @holder: filesystem or mapped device inside the dax_device 79 * @ops: operations for the inner holder 80 */ 81 struct dax_device *fs_dax_get_by_bdev(struct block_device *bdev, u64 *start_off, 82 void *holder, const struct dax_holder_operations *ops) 83 { 84 struct dax_device *dax_dev; 85 u64 part_size; 86 int id; 87 88 if (!blk_queue_dax(bdev->bd_disk->queue)) 89 return NULL; 90 91 *start_off = get_start_sect(bdev) * SECTOR_SIZE; 92 part_size = bdev_nr_sectors(bdev) * SECTOR_SIZE; 93 if (*start_off % PAGE_SIZE || part_size % PAGE_SIZE) { 94 pr_info("%pg: error: unaligned partition for dax\n", bdev); 95 return NULL; 96 } 97 98 id = dax_read_lock(); 99 dax_dev = xa_load(&dax_hosts, (unsigned long)bdev->bd_disk); 100 if (!dax_dev || !dax_alive(dax_dev) || !igrab(&dax_dev->inode)) 101 dax_dev = NULL; 102 else if (holder) { 103 if (!cmpxchg(&dax_dev->holder_data, NULL, holder)) 104 dax_dev->holder_ops = ops; 105 else 106 dax_dev = NULL; 107 } 108 dax_read_unlock(id); 109 110 return dax_dev; 111 } 112 EXPORT_SYMBOL_GPL(fs_dax_get_by_bdev); 113 114 void fs_put_dax(struct dax_device *dax_dev, void *holder) 115 { 116 if (dax_dev && holder && 117 cmpxchg(&dax_dev->holder_data, holder, NULL) == holder) 118 dax_dev->holder_ops = NULL; 119 put_dax(dax_dev); 120 } 121 EXPORT_SYMBOL_GPL(fs_put_dax); 122 #endif /* CONFIG_BLOCK && CONFIG_FS_DAX */ 123 124 enum dax_device_flags { 125 /* !alive + rcu grace period == no new operations / mappings */ 126 DAXDEV_ALIVE, 127 /* gate whether dax_flush() calls the low level flush routine */ 128 DAXDEV_WRITE_CACHE, 129 /* flag to check if device supports synchronous flush */ 130 DAXDEV_SYNC, 131 /* do not leave the caches dirty after writes */ 132 DAXDEV_NOCACHE, 133 /* handle CPU fetch exceptions during reads */ 134 DAXDEV_NOMC, 135 }; 136 137 /** 138 * dax_direct_access() - translate a device pgoff to an absolute pfn 139 * @dax_dev: a dax_device instance representing the logical memory range 140 * @pgoff: offset in pages from the start of the device to translate 141 * @nr_pages: number of consecutive pages caller can handle relative to @pfn 142 * @mode: indicator on normal access or recovery write 143 * @kaddr: output parameter that returns a virtual address mapping of pfn 144 * @pfn: output parameter that returns an absolute pfn translation of @pgoff 145 * 146 * Return: negative errno if an error occurs, otherwise the number of 147 * pages accessible at the device relative @pgoff. 148 */ 149 long dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, long nr_pages, 150 enum dax_access_mode mode, void **kaddr, pfn_t *pfn) 151 { 152 long avail; 153 154 if (!dax_dev) 155 return -EOPNOTSUPP; 156 157 if (!dax_alive(dax_dev)) 158 return -ENXIO; 159 160 if (nr_pages < 0) 161 return -EINVAL; 162 163 avail = dax_dev->ops->direct_access(dax_dev, pgoff, nr_pages, 164 mode, kaddr, pfn); 165 if (!avail) 166 return -ERANGE; 167 return min(avail, nr_pages); 168 } 169 EXPORT_SYMBOL_GPL(dax_direct_access); 170 171 size_t dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr, 172 size_t bytes, struct iov_iter *i) 173 { 174 if (!dax_alive(dax_dev)) 175 return 0; 176 177 /* 178 * The userspace address for the memory copy has already been validated 179 * via access_ok() in vfs_write, so use the 'no check' version to bypass 180 * the HARDENED_USERCOPY overhead. 181 */ 182 if (test_bit(DAXDEV_NOCACHE, &dax_dev->flags)) 183 return _copy_from_iter_flushcache(addr, bytes, i); 184 return _copy_from_iter(addr, bytes, i); 185 } 186 187 size_t dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr, 188 size_t bytes, struct iov_iter *i) 189 { 190 if (!dax_alive(dax_dev)) 191 return 0; 192 193 /* 194 * The userspace address for the memory copy has already been validated 195 * via access_ok() in vfs_red, so use the 'no check' version to bypass 196 * the HARDENED_USERCOPY overhead. 197 */ 198 if (test_bit(DAXDEV_NOMC, &dax_dev->flags)) 199 return _copy_mc_to_iter(addr, bytes, i); 200 return _copy_to_iter(addr, bytes, i); 201 } 202 203 int dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 204 size_t nr_pages) 205 { 206 int ret; 207 208 if (!dax_alive(dax_dev)) 209 return -ENXIO; 210 /* 211 * There are no callers that want to zero more than one page as of now. 212 * Once users are there, this check can be removed after the 213 * device mapper code has been updated to split ranges across targets. 214 */ 215 if (nr_pages != 1) 216 return -EIO; 217 218 ret = dax_dev->ops->zero_page_range(dax_dev, pgoff, nr_pages); 219 return dax_mem2blk_err(ret); 220 } 221 EXPORT_SYMBOL_GPL(dax_zero_page_range); 222 223 size_t dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, 224 void *addr, size_t bytes, struct iov_iter *iter) 225 { 226 if (!dax_dev->ops->recovery_write) 227 return 0; 228 return dax_dev->ops->recovery_write(dax_dev, pgoff, addr, bytes, iter); 229 } 230 EXPORT_SYMBOL_GPL(dax_recovery_write); 231 232 int dax_holder_notify_failure(struct dax_device *dax_dev, u64 off, 233 u64 len, int mf_flags) 234 { 235 int rc, id; 236 237 id = dax_read_lock(); 238 if (!dax_alive(dax_dev)) { 239 rc = -ENXIO; 240 goto out; 241 } 242 243 if (!dax_dev->holder_ops) { 244 rc = -EOPNOTSUPP; 245 goto out; 246 } 247 248 rc = dax_dev->holder_ops->notify_failure(dax_dev, off, len, mf_flags); 249 out: 250 dax_read_unlock(id); 251 return rc; 252 } 253 EXPORT_SYMBOL_GPL(dax_holder_notify_failure); 254 255 #ifdef CONFIG_ARCH_HAS_PMEM_API 256 void arch_wb_cache_pmem(void *addr, size_t size); 257 void dax_flush(struct dax_device *dax_dev, void *addr, size_t size) 258 { 259 if (unlikely(!dax_write_cache_enabled(dax_dev))) 260 return; 261 262 arch_wb_cache_pmem(addr, size); 263 } 264 #else 265 void dax_flush(struct dax_device *dax_dev, void *addr, size_t size) 266 { 267 } 268 #endif 269 EXPORT_SYMBOL_GPL(dax_flush); 270 271 void dax_write_cache(struct dax_device *dax_dev, bool wc) 272 { 273 if (wc) 274 set_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags); 275 else 276 clear_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags); 277 } 278 EXPORT_SYMBOL_GPL(dax_write_cache); 279 280 bool dax_write_cache_enabled(struct dax_device *dax_dev) 281 { 282 return test_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags); 283 } 284 EXPORT_SYMBOL_GPL(dax_write_cache_enabled); 285 286 bool dax_synchronous(struct dax_device *dax_dev) 287 { 288 return test_bit(DAXDEV_SYNC, &dax_dev->flags); 289 } 290 EXPORT_SYMBOL_GPL(dax_synchronous); 291 292 void set_dax_synchronous(struct dax_device *dax_dev) 293 { 294 set_bit(DAXDEV_SYNC, &dax_dev->flags); 295 } 296 EXPORT_SYMBOL_GPL(set_dax_synchronous); 297 298 void set_dax_nocache(struct dax_device *dax_dev) 299 { 300 set_bit(DAXDEV_NOCACHE, &dax_dev->flags); 301 } 302 EXPORT_SYMBOL_GPL(set_dax_nocache); 303 304 void set_dax_nomc(struct dax_device *dax_dev) 305 { 306 set_bit(DAXDEV_NOMC, &dax_dev->flags); 307 } 308 EXPORT_SYMBOL_GPL(set_dax_nomc); 309 310 bool dax_alive(struct dax_device *dax_dev) 311 { 312 lockdep_assert_held(&dax_srcu); 313 return test_bit(DAXDEV_ALIVE, &dax_dev->flags); 314 } 315 EXPORT_SYMBOL_GPL(dax_alive); 316 317 /* 318 * Note, rcu is not protecting the liveness of dax_dev, rcu is ensuring 319 * that any fault handlers or operations that might have seen 320 * dax_alive(), have completed. Any operations that start after 321 * synchronize_srcu() has run will abort upon seeing !dax_alive(). 322 */ 323 void kill_dax(struct dax_device *dax_dev) 324 { 325 if (!dax_dev) 326 return; 327 328 if (dax_dev->holder_data != NULL) 329 dax_holder_notify_failure(dax_dev, 0, U64_MAX, 0); 330 331 clear_bit(DAXDEV_ALIVE, &dax_dev->flags); 332 synchronize_srcu(&dax_srcu); 333 334 /* clear holder data */ 335 dax_dev->holder_ops = NULL; 336 dax_dev->holder_data = NULL; 337 } 338 EXPORT_SYMBOL_GPL(kill_dax); 339 340 void run_dax(struct dax_device *dax_dev) 341 { 342 set_bit(DAXDEV_ALIVE, &dax_dev->flags); 343 } 344 EXPORT_SYMBOL_GPL(run_dax); 345 346 static struct inode *dax_alloc_inode(struct super_block *sb) 347 { 348 struct dax_device *dax_dev; 349 struct inode *inode; 350 351 dax_dev = alloc_inode_sb(sb, dax_cache, GFP_KERNEL); 352 if (!dax_dev) 353 return NULL; 354 355 inode = &dax_dev->inode; 356 inode->i_rdev = 0; 357 return inode; 358 } 359 360 static struct dax_device *to_dax_dev(struct inode *inode) 361 { 362 return container_of(inode, struct dax_device, inode); 363 } 364 365 static void dax_free_inode(struct inode *inode) 366 { 367 struct dax_device *dax_dev = to_dax_dev(inode); 368 if (inode->i_rdev) 369 ida_free(&dax_minor_ida, iminor(inode)); 370 kmem_cache_free(dax_cache, dax_dev); 371 } 372 373 static void dax_destroy_inode(struct inode *inode) 374 { 375 struct dax_device *dax_dev = to_dax_dev(inode); 376 WARN_ONCE(test_bit(DAXDEV_ALIVE, &dax_dev->flags), 377 "kill_dax() must be called before final iput()\n"); 378 } 379 380 static const struct super_operations dax_sops = { 381 .statfs = simple_statfs, 382 .alloc_inode = dax_alloc_inode, 383 .destroy_inode = dax_destroy_inode, 384 .free_inode = dax_free_inode, 385 .drop_inode = generic_delete_inode, 386 }; 387 388 static int dax_init_fs_context(struct fs_context *fc) 389 { 390 struct pseudo_fs_context *ctx = init_pseudo(fc, DAXFS_MAGIC); 391 if (!ctx) 392 return -ENOMEM; 393 ctx->ops = &dax_sops; 394 return 0; 395 } 396 397 static struct file_system_type dax_fs_type = { 398 .name = "dax", 399 .init_fs_context = dax_init_fs_context, 400 .kill_sb = kill_anon_super, 401 }; 402 403 static int dax_test(struct inode *inode, void *data) 404 { 405 dev_t devt = *(dev_t *) data; 406 407 return inode->i_rdev == devt; 408 } 409 410 static int dax_set(struct inode *inode, void *data) 411 { 412 dev_t devt = *(dev_t *) data; 413 414 inode->i_rdev = devt; 415 return 0; 416 } 417 418 static struct dax_device *dax_dev_get(dev_t devt) 419 { 420 struct dax_device *dax_dev; 421 struct inode *inode; 422 423 inode = iget5_locked(dax_superblock, hash_32(devt + DAXFS_MAGIC, 31), 424 dax_test, dax_set, &devt); 425 426 if (!inode) 427 return NULL; 428 429 dax_dev = to_dax_dev(inode); 430 if (inode->i_state & I_NEW) { 431 set_bit(DAXDEV_ALIVE, &dax_dev->flags); 432 inode->i_cdev = &dax_dev->cdev; 433 inode->i_mode = S_IFCHR; 434 inode->i_flags = S_DAX; 435 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 436 unlock_new_inode(inode); 437 } 438 439 return dax_dev; 440 } 441 442 struct dax_device *alloc_dax(void *private, const struct dax_operations *ops) 443 { 444 struct dax_device *dax_dev; 445 dev_t devt; 446 int minor; 447 448 if (WARN_ON_ONCE(ops && !ops->zero_page_range)) 449 return ERR_PTR(-EINVAL); 450 451 minor = ida_alloc_max(&dax_minor_ida, MINORMASK, GFP_KERNEL); 452 if (minor < 0) 453 return ERR_PTR(-ENOMEM); 454 455 devt = MKDEV(MAJOR(dax_devt), minor); 456 dax_dev = dax_dev_get(devt); 457 if (!dax_dev) 458 goto err_dev; 459 460 dax_dev->ops = ops; 461 dax_dev->private = private; 462 return dax_dev; 463 464 err_dev: 465 ida_free(&dax_minor_ida, minor); 466 return ERR_PTR(-ENOMEM); 467 } 468 EXPORT_SYMBOL_GPL(alloc_dax); 469 470 void put_dax(struct dax_device *dax_dev) 471 { 472 if (!dax_dev) 473 return; 474 iput(&dax_dev->inode); 475 } 476 EXPORT_SYMBOL_GPL(put_dax); 477 478 /** 479 * dax_holder() - obtain the holder of a dax device 480 * @dax_dev: a dax_device instance 481 * 482 * Return: the holder's data which represents the holder if registered, 483 * otherwize NULL. 484 */ 485 void *dax_holder(struct dax_device *dax_dev) 486 { 487 return dax_dev->holder_data; 488 } 489 EXPORT_SYMBOL_GPL(dax_holder); 490 491 /** 492 * inode_dax: convert a public inode into its dax_dev 493 * @inode: An inode with i_cdev pointing to a dax_dev 494 * 495 * Note this is not equivalent to to_dax_dev() which is for private 496 * internal use where we know the inode filesystem type == dax_fs_type. 497 */ 498 struct dax_device *inode_dax(struct inode *inode) 499 { 500 struct cdev *cdev = inode->i_cdev; 501 502 return container_of(cdev, struct dax_device, cdev); 503 } 504 EXPORT_SYMBOL_GPL(inode_dax); 505 506 struct inode *dax_inode(struct dax_device *dax_dev) 507 { 508 return &dax_dev->inode; 509 } 510 EXPORT_SYMBOL_GPL(dax_inode); 511 512 void *dax_get_private(struct dax_device *dax_dev) 513 { 514 if (!test_bit(DAXDEV_ALIVE, &dax_dev->flags)) 515 return NULL; 516 return dax_dev->private; 517 } 518 EXPORT_SYMBOL_GPL(dax_get_private); 519 520 static void init_once(void *_dax_dev) 521 { 522 struct dax_device *dax_dev = _dax_dev; 523 struct inode *inode = &dax_dev->inode; 524 525 memset(dax_dev, 0, sizeof(*dax_dev)); 526 inode_init_once(inode); 527 } 528 529 static int dax_fs_init(void) 530 { 531 int rc; 532 533 dax_cache = kmem_cache_create("dax_cache", sizeof(struct dax_device), 0, 534 (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 535 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 536 init_once); 537 if (!dax_cache) 538 return -ENOMEM; 539 540 dax_mnt = kern_mount(&dax_fs_type); 541 if (IS_ERR(dax_mnt)) { 542 rc = PTR_ERR(dax_mnt); 543 goto err_mount; 544 } 545 dax_superblock = dax_mnt->mnt_sb; 546 547 return 0; 548 549 err_mount: 550 kmem_cache_destroy(dax_cache); 551 552 return rc; 553 } 554 555 static void dax_fs_exit(void) 556 { 557 kern_unmount(dax_mnt); 558 rcu_barrier(); 559 kmem_cache_destroy(dax_cache); 560 } 561 562 static int __init dax_core_init(void) 563 { 564 int rc; 565 566 rc = dax_fs_init(); 567 if (rc) 568 return rc; 569 570 rc = alloc_chrdev_region(&dax_devt, 0, MINORMASK+1, "dax"); 571 if (rc) 572 goto err_chrdev; 573 574 rc = dax_bus_init(); 575 if (rc) 576 goto err_bus; 577 return 0; 578 579 err_bus: 580 unregister_chrdev_region(dax_devt, MINORMASK+1); 581 err_chrdev: 582 dax_fs_exit(); 583 return 0; 584 } 585 586 static void __exit dax_core_exit(void) 587 { 588 dax_bus_exit(); 589 unregister_chrdev_region(dax_devt, MINORMASK+1); 590 ida_destroy(&dax_minor_ida); 591 dax_fs_exit(); 592 } 593 594 MODULE_AUTHOR("Intel Corporation"); 595 MODULE_LICENSE("GPL v2"); 596 subsys_initcall(dax_core_init); 597 module_exit(dax_core_exit); 598