1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright(c) 2017 Intel Corporation. All rights reserved. 4 */ 5 #include <linux/pagemap.h> 6 #include <linux/module.h> 7 #include <linux/mount.h> 8 #include <linux/pseudo_fs.h> 9 #include <linux/magic.h> 10 #include <linux/pfn_t.h> 11 #include <linux/cdev.h> 12 #include <linux/slab.h> 13 #include <linux/uio.h> 14 #include <linux/dax.h> 15 #include <linux/fs.h> 16 #include "dax-private.h" 17 18 /** 19 * struct dax_device - anchor object for dax services 20 * @inode: core vfs 21 * @cdev: optional character interface for "device dax" 22 * @private: dax driver private data 23 * @flags: state and boolean properties 24 * @ops: operations for this device 25 * @holder_data: holder of a dax_device: could be filesystem or mapped device 26 * @holder_ops: operations for the inner holder 27 */ 28 struct dax_device { 29 struct inode inode; 30 struct cdev cdev; 31 void *private; 32 unsigned long flags; 33 const struct dax_operations *ops; 34 void *holder_data; 35 const struct dax_holder_operations *holder_ops; 36 }; 37 38 static dev_t dax_devt; 39 DEFINE_STATIC_SRCU(dax_srcu); 40 static struct vfsmount *dax_mnt; 41 static DEFINE_IDA(dax_minor_ida); 42 static struct kmem_cache *dax_cache __read_mostly; 43 static struct super_block *dax_superblock __read_mostly; 44 45 int dax_read_lock(void) 46 { 47 return srcu_read_lock(&dax_srcu); 48 } 49 EXPORT_SYMBOL_GPL(dax_read_lock); 50 51 void dax_read_unlock(int id) 52 { 53 srcu_read_unlock(&dax_srcu, id); 54 } 55 EXPORT_SYMBOL_GPL(dax_read_unlock); 56 57 #if defined(CONFIG_BLOCK) && defined(CONFIG_FS_DAX) 58 #include <linux/blkdev.h> 59 60 static DEFINE_XARRAY(dax_hosts); 61 62 int dax_add_host(struct dax_device *dax_dev, struct gendisk *disk) 63 { 64 return xa_insert(&dax_hosts, (unsigned long)disk, dax_dev, GFP_KERNEL); 65 } 66 EXPORT_SYMBOL_GPL(dax_add_host); 67 68 void dax_remove_host(struct gendisk *disk) 69 { 70 xa_erase(&dax_hosts, (unsigned long)disk); 71 } 72 EXPORT_SYMBOL_GPL(dax_remove_host); 73 74 /** 75 * fs_dax_get_by_bdev() - temporary lookup mechanism for filesystem-dax 76 * @bdev: block device to find a dax_device for 77 * @start_off: returns the byte offset into the dax_device that @bdev starts 78 * @holder: filesystem or mapped device inside the dax_device 79 * @ops: operations for the inner holder 80 */ 81 struct dax_device *fs_dax_get_by_bdev(struct block_device *bdev, u64 *start_off, 82 void *holder, const struct dax_holder_operations *ops) 83 { 84 struct dax_device *dax_dev; 85 u64 part_size; 86 int id; 87 88 if (!blk_queue_dax(bdev->bd_disk->queue)) 89 return NULL; 90 91 *start_off = get_start_sect(bdev) * SECTOR_SIZE; 92 part_size = bdev_nr_sectors(bdev) * SECTOR_SIZE; 93 if (*start_off % PAGE_SIZE || part_size % PAGE_SIZE) { 94 pr_info("%pg: error: unaligned partition for dax\n", bdev); 95 return NULL; 96 } 97 98 id = dax_read_lock(); 99 dax_dev = xa_load(&dax_hosts, (unsigned long)bdev->bd_disk); 100 if (!dax_dev || !dax_alive(dax_dev) || !igrab(&dax_dev->inode)) 101 dax_dev = NULL; 102 else if (holder) { 103 if (!cmpxchg(&dax_dev->holder_data, NULL, holder)) 104 dax_dev->holder_ops = ops; 105 else 106 dax_dev = NULL; 107 } 108 dax_read_unlock(id); 109 110 return dax_dev; 111 } 112 EXPORT_SYMBOL_GPL(fs_dax_get_by_bdev); 113 114 void fs_put_dax(struct dax_device *dax_dev, void *holder) 115 { 116 if (dax_dev && holder && 117 cmpxchg(&dax_dev->holder_data, holder, NULL) == holder) 118 dax_dev->holder_ops = NULL; 119 put_dax(dax_dev); 120 } 121 EXPORT_SYMBOL_GPL(fs_put_dax); 122 #endif /* CONFIG_BLOCK && CONFIG_FS_DAX */ 123 124 enum dax_device_flags { 125 /* !alive + rcu grace period == no new operations / mappings */ 126 DAXDEV_ALIVE, 127 /* gate whether dax_flush() calls the low level flush routine */ 128 DAXDEV_WRITE_CACHE, 129 /* flag to check if device supports synchronous flush */ 130 DAXDEV_SYNC, 131 /* do not leave the caches dirty after writes */ 132 DAXDEV_NOCACHE, 133 /* handle CPU fetch exceptions during reads */ 134 DAXDEV_NOMC, 135 }; 136 137 /** 138 * dax_direct_access() - translate a device pgoff to an absolute pfn 139 * @dax_dev: a dax_device instance representing the logical memory range 140 * @pgoff: offset in pages from the start of the device to translate 141 * @nr_pages: number of consecutive pages caller can handle relative to @pfn 142 * @mode: indicator on normal access or recovery write 143 * @kaddr: output parameter that returns a virtual address mapping of pfn 144 * @pfn: output parameter that returns an absolute pfn translation of @pgoff 145 * 146 * Return: negative errno if an error occurs, otherwise the number of 147 * pages accessible at the device relative @pgoff. 148 */ 149 long dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, long nr_pages, 150 enum dax_access_mode mode, void **kaddr, pfn_t *pfn) 151 { 152 long avail; 153 154 if (!dax_dev) 155 return -EOPNOTSUPP; 156 157 if (!dax_alive(dax_dev)) 158 return -ENXIO; 159 160 if (nr_pages < 0) 161 return -EINVAL; 162 163 avail = dax_dev->ops->direct_access(dax_dev, pgoff, nr_pages, 164 mode, kaddr, pfn); 165 if (!avail) 166 return -ERANGE; 167 return min(avail, nr_pages); 168 } 169 EXPORT_SYMBOL_GPL(dax_direct_access); 170 171 size_t dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr, 172 size_t bytes, struct iov_iter *i) 173 { 174 if (!dax_alive(dax_dev)) 175 return 0; 176 177 /* 178 * The userspace address for the memory copy has already been validated 179 * via access_ok() in vfs_write, so use the 'no check' version to bypass 180 * the HARDENED_USERCOPY overhead. 181 */ 182 if (test_bit(DAXDEV_NOCACHE, &dax_dev->flags)) 183 return _copy_from_iter_flushcache(addr, bytes, i); 184 return _copy_from_iter(addr, bytes, i); 185 } 186 187 size_t dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr, 188 size_t bytes, struct iov_iter *i) 189 { 190 if (!dax_alive(dax_dev)) 191 return 0; 192 193 /* 194 * The userspace address for the memory copy has already been validated 195 * via access_ok() in vfs_red, so use the 'no check' version to bypass 196 * the HARDENED_USERCOPY overhead. 197 */ 198 if (test_bit(DAXDEV_NOMC, &dax_dev->flags)) 199 return _copy_mc_to_iter(addr, bytes, i); 200 return _copy_to_iter(addr, bytes, i); 201 } 202 203 int dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, 204 size_t nr_pages) 205 { 206 int ret; 207 208 if (!dax_alive(dax_dev)) 209 return -ENXIO; 210 /* 211 * There are no callers that want to zero more than one page as of now. 212 * Once users are there, this check can be removed after the 213 * device mapper code has been updated to split ranges across targets. 214 */ 215 if (nr_pages != 1) 216 return -EIO; 217 218 ret = dax_dev->ops->zero_page_range(dax_dev, pgoff, nr_pages); 219 return dax_mem2blk_err(ret); 220 } 221 EXPORT_SYMBOL_GPL(dax_zero_page_range); 222 223 size_t dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff, 224 void *addr, size_t bytes, struct iov_iter *iter) 225 { 226 if (!dax_dev->ops->recovery_write) 227 return 0; 228 return dax_dev->ops->recovery_write(dax_dev, pgoff, addr, bytes, iter); 229 } 230 EXPORT_SYMBOL_GPL(dax_recovery_write); 231 232 int dax_holder_notify_failure(struct dax_device *dax_dev, u64 off, 233 u64 len, int mf_flags) 234 { 235 int rc, id; 236 237 id = dax_read_lock(); 238 if (!dax_alive(dax_dev)) { 239 rc = -ENXIO; 240 goto out; 241 } 242 243 if (!dax_dev->holder_ops) { 244 rc = -EOPNOTSUPP; 245 goto out; 246 } 247 248 rc = dax_dev->holder_ops->notify_failure(dax_dev, off, len, mf_flags); 249 out: 250 dax_read_unlock(id); 251 return rc; 252 } 253 EXPORT_SYMBOL_GPL(dax_holder_notify_failure); 254 255 #ifdef CONFIG_ARCH_HAS_PMEM_API 256 void arch_wb_cache_pmem(void *addr, size_t size); 257 void dax_flush(struct dax_device *dax_dev, void *addr, size_t size) 258 { 259 if (unlikely(!dax_write_cache_enabled(dax_dev))) 260 return; 261 262 arch_wb_cache_pmem(addr, size); 263 } 264 #else 265 void dax_flush(struct dax_device *dax_dev, void *addr, size_t size) 266 { 267 } 268 #endif 269 EXPORT_SYMBOL_GPL(dax_flush); 270 271 void dax_write_cache(struct dax_device *dax_dev, bool wc) 272 { 273 if (wc) 274 set_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags); 275 else 276 clear_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags); 277 } 278 EXPORT_SYMBOL_GPL(dax_write_cache); 279 280 bool dax_write_cache_enabled(struct dax_device *dax_dev) 281 { 282 return test_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags); 283 } 284 EXPORT_SYMBOL_GPL(dax_write_cache_enabled); 285 286 bool dax_synchronous(struct dax_device *dax_dev) 287 { 288 return test_bit(DAXDEV_SYNC, &dax_dev->flags); 289 } 290 EXPORT_SYMBOL_GPL(dax_synchronous); 291 292 void set_dax_synchronous(struct dax_device *dax_dev) 293 { 294 set_bit(DAXDEV_SYNC, &dax_dev->flags); 295 } 296 EXPORT_SYMBOL_GPL(set_dax_synchronous); 297 298 void set_dax_nocache(struct dax_device *dax_dev) 299 { 300 set_bit(DAXDEV_NOCACHE, &dax_dev->flags); 301 } 302 EXPORT_SYMBOL_GPL(set_dax_nocache); 303 304 void set_dax_nomc(struct dax_device *dax_dev) 305 { 306 set_bit(DAXDEV_NOMC, &dax_dev->flags); 307 } 308 EXPORT_SYMBOL_GPL(set_dax_nomc); 309 310 bool dax_alive(struct dax_device *dax_dev) 311 { 312 lockdep_assert_held(&dax_srcu); 313 return test_bit(DAXDEV_ALIVE, &dax_dev->flags); 314 } 315 EXPORT_SYMBOL_GPL(dax_alive); 316 317 /* 318 * Note, rcu is not protecting the liveness of dax_dev, rcu is ensuring 319 * that any fault handlers or operations that might have seen 320 * dax_alive(), have completed. Any operations that start after 321 * synchronize_srcu() has run will abort upon seeing !dax_alive(). 322 */ 323 void kill_dax(struct dax_device *dax_dev) 324 { 325 if (!dax_dev) 326 return; 327 328 if (dax_dev->holder_data != NULL) 329 dax_holder_notify_failure(dax_dev, 0, U64_MAX, 330 MF_MEM_PRE_REMOVE); 331 332 clear_bit(DAXDEV_ALIVE, &dax_dev->flags); 333 synchronize_srcu(&dax_srcu); 334 335 /* clear holder data */ 336 dax_dev->holder_ops = NULL; 337 dax_dev->holder_data = NULL; 338 } 339 EXPORT_SYMBOL_GPL(kill_dax); 340 341 void run_dax(struct dax_device *dax_dev) 342 { 343 set_bit(DAXDEV_ALIVE, &dax_dev->flags); 344 } 345 EXPORT_SYMBOL_GPL(run_dax); 346 347 static struct inode *dax_alloc_inode(struct super_block *sb) 348 { 349 struct dax_device *dax_dev; 350 struct inode *inode; 351 352 dax_dev = alloc_inode_sb(sb, dax_cache, GFP_KERNEL); 353 if (!dax_dev) 354 return NULL; 355 356 inode = &dax_dev->inode; 357 inode->i_rdev = 0; 358 return inode; 359 } 360 361 static struct dax_device *to_dax_dev(struct inode *inode) 362 { 363 return container_of(inode, struct dax_device, inode); 364 } 365 366 static void dax_free_inode(struct inode *inode) 367 { 368 struct dax_device *dax_dev = to_dax_dev(inode); 369 if (inode->i_rdev) 370 ida_free(&dax_minor_ida, iminor(inode)); 371 kmem_cache_free(dax_cache, dax_dev); 372 } 373 374 static void dax_destroy_inode(struct inode *inode) 375 { 376 struct dax_device *dax_dev = to_dax_dev(inode); 377 WARN_ONCE(test_bit(DAXDEV_ALIVE, &dax_dev->flags), 378 "kill_dax() must be called before final iput()\n"); 379 } 380 381 static const struct super_operations dax_sops = { 382 .statfs = simple_statfs, 383 .alloc_inode = dax_alloc_inode, 384 .destroy_inode = dax_destroy_inode, 385 .free_inode = dax_free_inode, 386 .drop_inode = generic_delete_inode, 387 }; 388 389 static int dax_init_fs_context(struct fs_context *fc) 390 { 391 struct pseudo_fs_context *ctx = init_pseudo(fc, DAXFS_MAGIC); 392 if (!ctx) 393 return -ENOMEM; 394 ctx->ops = &dax_sops; 395 return 0; 396 } 397 398 static struct file_system_type dax_fs_type = { 399 .name = "dax", 400 .init_fs_context = dax_init_fs_context, 401 .kill_sb = kill_anon_super, 402 }; 403 404 static int dax_test(struct inode *inode, void *data) 405 { 406 dev_t devt = *(dev_t *) data; 407 408 return inode->i_rdev == devt; 409 } 410 411 static int dax_set(struct inode *inode, void *data) 412 { 413 dev_t devt = *(dev_t *) data; 414 415 inode->i_rdev = devt; 416 return 0; 417 } 418 419 static struct dax_device *dax_dev_get(dev_t devt) 420 { 421 struct dax_device *dax_dev; 422 struct inode *inode; 423 424 inode = iget5_locked(dax_superblock, hash_32(devt + DAXFS_MAGIC, 31), 425 dax_test, dax_set, &devt); 426 427 if (!inode) 428 return NULL; 429 430 dax_dev = to_dax_dev(inode); 431 if (inode->i_state & I_NEW) { 432 set_bit(DAXDEV_ALIVE, &dax_dev->flags); 433 inode->i_cdev = &dax_dev->cdev; 434 inode->i_mode = S_IFCHR; 435 inode->i_flags = S_DAX; 436 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 437 unlock_new_inode(inode); 438 } 439 440 return dax_dev; 441 } 442 443 struct dax_device *alloc_dax(void *private, const struct dax_operations *ops) 444 { 445 struct dax_device *dax_dev; 446 dev_t devt; 447 int minor; 448 449 if (WARN_ON_ONCE(ops && !ops->zero_page_range)) 450 return ERR_PTR(-EINVAL); 451 452 minor = ida_alloc_max(&dax_minor_ida, MINORMASK, GFP_KERNEL); 453 if (minor < 0) 454 return ERR_PTR(-ENOMEM); 455 456 devt = MKDEV(MAJOR(dax_devt), minor); 457 dax_dev = dax_dev_get(devt); 458 if (!dax_dev) 459 goto err_dev; 460 461 dax_dev->ops = ops; 462 dax_dev->private = private; 463 return dax_dev; 464 465 err_dev: 466 ida_free(&dax_minor_ida, minor); 467 return ERR_PTR(-ENOMEM); 468 } 469 EXPORT_SYMBOL_GPL(alloc_dax); 470 471 void put_dax(struct dax_device *dax_dev) 472 { 473 if (!dax_dev) 474 return; 475 iput(&dax_dev->inode); 476 } 477 EXPORT_SYMBOL_GPL(put_dax); 478 479 /** 480 * dax_holder() - obtain the holder of a dax device 481 * @dax_dev: a dax_device instance 482 * 483 * Return: the holder's data which represents the holder if registered, 484 * otherwize NULL. 485 */ 486 void *dax_holder(struct dax_device *dax_dev) 487 { 488 return dax_dev->holder_data; 489 } 490 EXPORT_SYMBOL_GPL(dax_holder); 491 492 /** 493 * inode_dax: convert a public inode into its dax_dev 494 * @inode: An inode with i_cdev pointing to a dax_dev 495 * 496 * Note this is not equivalent to to_dax_dev() which is for private 497 * internal use where we know the inode filesystem type == dax_fs_type. 498 */ 499 struct dax_device *inode_dax(struct inode *inode) 500 { 501 struct cdev *cdev = inode->i_cdev; 502 503 return container_of(cdev, struct dax_device, cdev); 504 } 505 EXPORT_SYMBOL_GPL(inode_dax); 506 507 struct inode *dax_inode(struct dax_device *dax_dev) 508 { 509 return &dax_dev->inode; 510 } 511 EXPORT_SYMBOL_GPL(dax_inode); 512 513 void *dax_get_private(struct dax_device *dax_dev) 514 { 515 if (!test_bit(DAXDEV_ALIVE, &dax_dev->flags)) 516 return NULL; 517 return dax_dev->private; 518 } 519 EXPORT_SYMBOL_GPL(dax_get_private); 520 521 static void init_once(void *_dax_dev) 522 { 523 struct dax_device *dax_dev = _dax_dev; 524 struct inode *inode = &dax_dev->inode; 525 526 memset(dax_dev, 0, sizeof(*dax_dev)); 527 inode_init_once(inode); 528 } 529 530 static int dax_fs_init(void) 531 { 532 int rc; 533 534 dax_cache = kmem_cache_create("dax_cache", sizeof(struct dax_device), 0, 535 (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 536 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 537 init_once); 538 if (!dax_cache) 539 return -ENOMEM; 540 541 dax_mnt = kern_mount(&dax_fs_type); 542 if (IS_ERR(dax_mnt)) { 543 rc = PTR_ERR(dax_mnt); 544 goto err_mount; 545 } 546 dax_superblock = dax_mnt->mnt_sb; 547 548 return 0; 549 550 err_mount: 551 kmem_cache_destroy(dax_cache); 552 553 return rc; 554 } 555 556 static void dax_fs_exit(void) 557 { 558 kern_unmount(dax_mnt); 559 rcu_barrier(); 560 kmem_cache_destroy(dax_cache); 561 } 562 563 static int __init dax_core_init(void) 564 { 565 int rc; 566 567 rc = dax_fs_init(); 568 if (rc) 569 return rc; 570 571 rc = alloc_chrdev_region(&dax_devt, 0, MINORMASK+1, "dax"); 572 if (rc) 573 goto err_chrdev; 574 575 rc = dax_bus_init(); 576 if (rc) 577 goto err_bus; 578 return 0; 579 580 err_bus: 581 unregister_chrdev_region(dax_devt, MINORMASK+1); 582 err_chrdev: 583 dax_fs_exit(); 584 return 0; 585 } 586 587 static void __exit dax_core_exit(void) 588 { 589 dax_bus_exit(); 590 unregister_chrdev_region(dax_devt, MINORMASK+1); 591 ida_destroy(&dax_minor_ida); 592 dax_fs_exit(); 593 } 594 595 MODULE_AUTHOR("Intel Corporation"); 596 MODULE_LICENSE("GPL v2"); 597 subsys_initcall(dax_core_init); 598 module_exit(dax_core_exit); 599