1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright(c) 2023 Intel Corporation. All rights reserved. */ 3 #include <linux/acpi.h> 4 #include <linux/xarray.h> 5 #include <linux/fw_table.h> 6 #include <linux/node.h> 7 #include <linux/overflow.h> 8 #include "cxlpci.h" 9 #include "cxlmem.h" 10 #include "core.h" 11 #include "cxl.h" 12 13 struct dsmas_entry { 14 struct range dpa_range; 15 u8 handle; 16 struct access_coordinate coord[ACCESS_COORDINATE_MAX]; 17 struct access_coordinate cdat_coord[ACCESS_COORDINATE_MAX]; 18 int entries; 19 int qos_class; 20 }; 21 22 static u32 cdat_normalize(u16 entry, u64 base, u8 type) 23 { 24 u32 value; 25 26 /* 27 * Check for invalid and overflow values 28 */ 29 if (entry == 0xffff || !entry) 30 return 0; 31 if (base > (UINT_MAX / (entry))) 32 return 0; 33 34 /* 35 * CDAT fields follow the format of HMAT fields. See table 5 Device 36 * Scoped Latency and Bandwidth Information Structure in Coherent Device 37 * Attribute Table (CDAT) Specification v1.01. 38 */ 39 value = entry * base; 40 switch (type) { 41 case ACPI_HMAT_ACCESS_LATENCY: 42 case ACPI_HMAT_READ_LATENCY: 43 case ACPI_HMAT_WRITE_LATENCY: 44 value = DIV_ROUND_UP(value, 1000); 45 break; 46 default: 47 break; 48 } 49 return value; 50 } 51 52 static int cdat_dsmas_handler(union acpi_subtable_headers *header, void *arg, 53 const unsigned long end) 54 { 55 struct acpi_cdat_header *hdr = &header->cdat; 56 struct acpi_cdat_dsmas *dsmas; 57 int size = sizeof(*hdr) + sizeof(*dsmas); 58 struct xarray *dsmas_xa = arg; 59 struct dsmas_entry *dent; 60 u16 len; 61 int rc; 62 63 len = le16_to_cpu((__force __le16)hdr->length); 64 if (len != size || (unsigned long)hdr + len > end) { 65 pr_warn("Malformed DSMAS table length: (%u:%u)\n", size, len); 66 return -EINVAL; 67 } 68 69 /* Skip common header */ 70 dsmas = (struct acpi_cdat_dsmas *)(hdr + 1); 71 72 dent = kzalloc(sizeof(*dent), GFP_KERNEL); 73 if (!dent) 74 return -ENOMEM; 75 76 dent->handle = dsmas->dsmad_handle; 77 dent->dpa_range.start = le64_to_cpu((__force __le64)dsmas->dpa_base_address); 78 dent->dpa_range.end = le64_to_cpu((__force __le64)dsmas->dpa_base_address) + 79 le64_to_cpu((__force __le64)dsmas->dpa_length) - 1; 80 81 rc = xa_insert(dsmas_xa, dent->handle, dent, GFP_KERNEL); 82 if (rc) { 83 kfree(dent); 84 return rc; 85 } 86 87 return 0; 88 } 89 90 static void __cxl_access_coordinate_set(struct access_coordinate *coord, 91 int access, unsigned int val) 92 { 93 switch (access) { 94 case ACPI_HMAT_ACCESS_LATENCY: 95 coord->read_latency = val; 96 coord->write_latency = val; 97 break; 98 case ACPI_HMAT_READ_LATENCY: 99 coord->read_latency = val; 100 break; 101 case ACPI_HMAT_WRITE_LATENCY: 102 coord->write_latency = val; 103 break; 104 case ACPI_HMAT_ACCESS_BANDWIDTH: 105 coord->read_bandwidth = val; 106 coord->write_bandwidth = val; 107 break; 108 case ACPI_HMAT_READ_BANDWIDTH: 109 coord->read_bandwidth = val; 110 break; 111 case ACPI_HMAT_WRITE_BANDWIDTH: 112 coord->write_bandwidth = val; 113 break; 114 } 115 } 116 117 static void cxl_access_coordinate_set(struct access_coordinate *coord, 118 int access, unsigned int val) 119 { 120 for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) 121 __cxl_access_coordinate_set(&coord[i], access, val); 122 } 123 124 static int cdat_dslbis_handler(union acpi_subtable_headers *header, void *arg, 125 const unsigned long end) 126 { 127 struct acpi_cdat_header *hdr = &header->cdat; 128 struct acpi_cdat_dslbis *dslbis; 129 int size = sizeof(*hdr) + sizeof(*dslbis); 130 struct xarray *dsmas_xa = arg; 131 struct dsmas_entry *dent; 132 __le64 le_base; 133 __le16 le_val; 134 u64 val; 135 u16 len; 136 137 len = le16_to_cpu((__force __le16)hdr->length); 138 if (len != size || (unsigned long)hdr + len > end) { 139 pr_warn("Malformed DSLBIS table length: (%u:%u)\n", size, len); 140 return -EINVAL; 141 } 142 143 /* Skip common header */ 144 dslbis = (struct acpi_cdat_dslbis *)(hdr + 1); 145 146 /* Skip unrecognized data type */ 147 if (dslbis->data_type > ACPI_HMAT_WRITE_BANDWIDTH) 148 return 0; 149 150 /* Not a memory type, skip */ 151 if ((dslbis->flags & ACPI_HMAT_MEMORY_HIERARCHY) != ACPI_HMAT_MEMORY) 152 return 0; 153 154 dent = xa_load(dsmas_xa, dslbis->handle); 155 if (!dent) { 156 pr_warn("No matching DSMAS entry for DSLBIS entry.\n"); 157 return 0; 158 } 159 160 le_base = (__force __le64)dslbis->entry_base_unit; 161 le_val = (__force __le16)dslbis->entry[0]; 162 val = cdat_normalize(le16_to_cpu(le_val), le64_to_cpu(le_base), 163 dslbis->data_type); 164 165 cxl_access_coordinate_set(dent->cdat_coord, dslbis->data_type, val); 166 167 return 0; 168 } 169 170 static int cdat_table_parse_output(int rc) 171 { 172 if (rc < 0) 173 return rc; 174 if (rc == 0) 175 return -ENOENT; 176 177 return 0; 178 } 179 180 static int cxl_cdat_endpoint_process(struct cxl_port *port, 181 struct xarray *dsmas_xa) 182 { 183 int rc; 184 185 rc = cdat_table_parse(ACPI_CDAT_TYPE_DSMAS, cdat_dsmas_handler, 186 dsmas_xa, port->cdat.table, port->cdat.length); 187 rc = cdat_table_parse_output(rc); 188 if (rc) 189 return rc; 190 191 rc = cdat_table_parse(ACPI_CDAT_TYPE_DSLBIS, cdat_dslbis_handler, 192 dsmas_xa, port->cdat.table, port->cdat.length); 193 return cdat_table_parse_output(rc); 194 } 195 196 static int cxl_port_perf_data_calculate(struct cxl_port *port, 197 struct xarray *dsmas_xa) 198 { 199 struct access_coordinate ep_c[ACCESS_COORDINATE_MAX]; 200 struct dsmas_entry *dent; 201 int valid_entries = 0; 202 unsigned long index; 203 int rc; 204 205 rc = cxl_endpoint_get_perf_coordinates(port, ep_c); 206 if (rc) { 207 dev_dbg(&port->dev, "Failed to retrieve ep perf coordinates.\n"); 208 return rc; 209 } 210 211 struct cxl_root *cxl_root __free(put_cxl_root) = find_cxl_root(port); 212 213 if (!cxl_root) 214 return -ENODEV; 215 216 if (!cxl_root->ops || !cxl_root->ops->qos_class) 217 return -EOPNOTSUPP; 218 219 xa_for_each(dsmas_xa, index, dent) { 220 int qos_class; 221 222 cxl_coordinates_combine(dent->coord, dent->cdat_coord, ep_c); 223 dent->entries = 1; 224 rc = cxl_root->ops->qos_class(cxl_root, 225 &dent->coord[ACCESS_COORDINATE_CPU], 226 1, &qos_class); 227 if (rc != 1) 228 continue; 229 230 valid_entries++; 231 dent->qos_class = qos_class; 232 } 233 234 if (!valid_entries) 235 return -ENOENT; 236 237 return 0; 238 } 239 240 static void update_perf_entry(struct device *dev, struct dsmas_entry *dent, 241 struct cxl_dpa_perf *dpa_perf) 242 { 243 for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) { 244 dpa_perf->coord[i] = dent->coord[i]; 245 dpa_perf->cdat_coord[i] = dent->cdat_coord[i]; 246 } 247 dpa_perf->dpa_range = dent->dpa_range; 248 dpa_perf->qos_class = dent->qos_class; 249 dev_dbg(dev, 250 "DSMAS: dpa: %pra qos: %d read_bw: %d write_bw %d read_lat: %d write_lat: %d\n", 251 &dent->dpa_range, dpa_perf->qos_class, 252 dent->coord[ACCESS_COORDINATE_CPU].read_bandwidth, 253 dent->coord[ACCESS_COORDINATE_CPU].write_bandwidth, 254 dent->coord[ACCESS_COORDINATE_CPU].read_latency, 255 dent->coord[ACCESS_COORDINATE_CPU].write_latency); 256 } 257 258 static void cxl_memdev_set_qos_class(struct cxl_dev_state *cxlds, 259 struct xarray *dsmas_xa) 260 { 261 struct device *dev = cxlds->dev; 262 struct dsmas_entry *dent; 263 unsigned long index; 264 265 xa_for_each(dsmas_xa, index, dent) { 266 bool found = false; 267 268 for (int i = 0; i < cxlds->nr_partitions; i++) { 269 struct resource *res = &cxlds->part[i].res; 270 struct range range = { 271 .start = res->start, 272 .end = res->end, 273 }; 274 275 if (range_contains(&range, &dent->dpa_range)) { 276 update_perf_entry(dev, dent, 277 &cxlds->part[i].perf); 278 found = true; 279 break; 280 } 281 } 282 283 if (!found) 284 dev_dbg(dev, "no partition for dsmas dpa: %pra\n", 285 &dent->dpa_range); 286 } 287 } 288 289 static int match_cxlrd_qos_class(struct device *dev, void *data) 290 { 291 int dev_qos_class = *(int *)data; 292 struct cxl_root_decoder *cxlrd; 293 294 if (!is_root_decoder(dev)) 295 return 0; 296 297 cxlrd = to_cxl_root_decoder(dev); 298 if (cxlrd->qos_class == CXL_QOS_CLASS_INVALID) 299 return 0; 300 301 if (cxlrd->qos_class == dev_qos_class) 302 return 1; 303 304 return 0; 305 } 306 307 static void reset_dpa_perf(struct cxl_dpa_perf *dpa_perf) 308 { 309 *dpa_perf = (struct cxl_dpa_perf) { 310 .qos_class = CXL_QOS_CLASS_INVALID, 311 }; 312 } 313 314 static bool cxl_qos_match(struct cxl_port *root_port, 315 struct cxl_dpa_perf *dpa_perf) 316 { 317 if (dpa_perf->qos_class == CXL_QOS_CLASS_INVALID) 318 return false; 319 320 if (!device_for_each_child(&root_port->dev, &dpa_perf->qos_class, 321 match_cxlrd_qos_class)) 322 return false; 323 324 return true; 325 } 326 327 static int match_cxlrd_hb(struct device *dev, void *data) 328 { 329 struct device *host_bridge = data; 330 struct cxl_switch_decoder *cxlsd; 331 struct cxl_root_decoder *cxlrd; 332 333 if (!is_root_decoder(dev)) 334 return 0; 335 336 cxlrd = to_cxl_root_decoder(dev); 337 cxlsd = &cxlrd->cxlsd; 338 339 guard(rwsem_read)(&cxl_rwsem.region); 340 for (int i = 0; i < cxlsd->nr_targets; i++) { 341 if (cxlsd->target[i] && host_bridge == cxlsd->target[i]->dport_dev) 342 return 1; 343 } 344 345 return 0; 346 } 347 348 static void cxl_qos_class_verify(struct cxl_memdev *cxlmd) 349 { 350 struct cxl_dev_state *cxlds = cxlmd->cxlds; 351 struct cxl_port *root_port; 352 353 struct cxl_root *cxl_root __free(put_cxl_root) = 354 find_cxl_root(cxlmd->endpoint); 355 356 /* 357 * No need to reset_dpa_perf() here as find_cxl_root() is guaranteed to 358 * succeed when called in the cxl_endpoint_port_probe() path. 359 */ 360 if (!cxl_root) 361 return; 362 363 root_port = &cxl_root->port; 364 365 /* 366 * Save userspace from needing to check if a qos class has any matches 367 * by hiding qos class info if the memdev is not mapped by a root 368 * decoder, or the partition class does not match any root decoder 369 * class. 370 */ 371 if (!device_for_each_child(&root_port->dev, 372 cxlmd->endpoint->host_bridge, 373 match_cxlrd_hb)) { 374 for (int i = 0; i < cxlds->nr_partitions; i++) { 375 struct cxl_dpa_perf *perf = &cxlds->part[i].perf; 376 377 reset_dpa_perf(perf); 378 } 379 return; 380 } 381 382 for (int i = 0; i < cxlds->nr_partitions; i++) { 383 struct cxl_dpa_perf *perf = &cxlds->part[i].perf; 384 385 if (!cxl_qos_match(root_port, perf)) 386 reset_dpa_perf(perf); 387 } 388 } 389 390 static void discard_dsmas(struct xarray *xa) 391 { 392 unsigned long index; 393 void *ent; 394 395 xa_for_each(xa, index, ent) { 396 xa_erase(xa, index); 397 kfree(ent); 398 } 399 xa_destroy(xa); 400 } 401 DEFINE_FREE(dsmas, struct xarray *, if (_T) discard_dsmas(_T)) 402 403 void cxl_endpoint_parse_cdat(struct cxl_port *port) 404 { 405 struct cxl_memdev *cxlmd = to_cxl_memdev(port->uport_dev); 406 struct cxl_dev_state *cxlds = cxlmd->cxlds; 407 struct xarray __dsmas_xa; 408 struct xarray *dsmas_xa __free(dsmas) = &__dsmas_xa; 409 int rc; 410 411 xa_init(&__dsmas_xa); 412 if (!port->cdat.table) 413 return; 414 415 rc = cxl_cdat_endpoint_process(port, dsmas_xa); 416 if (rc < 0) { 417 dev_dbg(&port->dev, "Failed to parse CDAT: %d\n", rc); 418 return; 419 } 420 421 rc = cxl_port_perf_data_calculate(port, dsmas_xa); 422 if (rc) { 423 dev_dbg(&port->dev, "Failed to do perf coord calculations.\n"); 424 return; 425 } 426 427 cxl_memdev_set_qos_class(cxlds, dsmas_xa); 428 cxl_qos_class_verify(cxlmd); 429 cxl_memdev_update_perf(cxlmd); 430 } 431 EXPORT_SYMBOL_NS_GPL(cxl_endpoint_parse_cdat, "CXL"); 432 433 static int cdat_sslbis_handler(union acpi_subtable_headers *header, void *arg, 434 const unsigned long end) 435 { 436 struct acpi_cdat_sslbis_table { 437 struct acpi_cdat_header header; 438 struct acpi_cdat_sslbis sslbis_header; 439 struct acpi_cdat_sslbe entries[]; 440 } *tbl = (struct acpi_cdat_sslbis_table *)header; 441 int size = sizeof(header->cdat) + sizeof(tbl->sslbis_header); 442 struct acpi_cdat_sslbis *sslbis; 443 struct cxl_dport *dport = arg; 444 struct device *dev = &dport->port->dev; 445 int remain, entries, i; 446 u16 len; 447 448 len = le16_to_cpu((__force __le16)header->cdat.length); 449 remain = len - size; 450 if (!remain || remain % sizeof(tbl->entries[0]) || 451 (unsigned long)header + len > end) { 452 dev_warn(dev, "Malformed SSLBIS table length: (%u)\n", len); 453 return -EINVAL; 454 } 455 456 sslbis = &tbl->sslbis_header; 457 /* Unrecognized data type, we can skip */ 458 if (sslbis->data_type > ACPI_HMAT_WRITE_BANDWIDTH) 459 return 0; 460 461 entries = remain / sizeof(tbl->entries[0]); 462 if (struct_size(tbl, entries, entries) != len) 463 return -EINVAL; 464 465 for (i = 0; i < entries; i++) { 466 u16 x = le16_to_cpu((__force __le16)tbl->entries[i].portx_id); 467 u16 y = le16_to_cpu((__force __le16)tbl->entries[i].porty_id); 468 __le64 le_base; 469 __le16 le_val; 470 u16 dsp_id; 471 u64 val; 472 473 switch (x) { 474 case ACPI_CDAT_SSLBIS_US_PORT: 475 dsp_id = y; 476 break; 477 case ACPI_CDAT_SSLBIS_ANY_PORT: 478 switch (y) { 479 case ACPI_CDAT_SSLBIS_US_PORT: 480 dsp_id = x; 481 break; 482 case ACPI_CDAT_SSLBIS_ANY_PORT: 483 dsp_id = ACPI_CDAT_SSLBIS_ANY_PORT; 484 break; 485 default: 486 dsp_id = y; 487 break; 488 } 489 break; 490 default: 491 dsp_id = x; 492 break; 493 } 494 495 le_base = (__force __le64)tbl->sslbis_header.entry_base_unit; 496 le_val = (__force __le16)tbl->entries[i].latency_or_bandwidth; 497 val = cdat_normalize(le16_to_cpu(le_val), le64_to_cpu(le_base), 498 sslbis->data_type); 499 500 if (dsp_id == ACPI_CDAT_SSLBIS_ANY_PORT || 501 dsp_id == dport->port_id) { 502 cxl_access_coordinate_set(dport->coord, 503 sslbis->data_type, val); 504 return 0; 505 } 506 } 507 508 return 0; 509 } 510 511 void cxl_switch_parse_cdat(struct cxl_dport *dport) 512 { 513 struct cxl_port *port = dport->port; 514 int rc; 515 516 if (!port->cdat.table) 517 return; 518 519 rc = cdat_table_parse(ACPI_CDAT_TYPE_SSLBIS, cdat_sslbis_handler, 520 dport, port->cdat.table, port->cdat.length); 521 rc = cdat_table_parse_output(rc); 522 if (rc) 523 dev_dbg(&port->dev, "Failed to parse SSLBIS: %d\n", rc); 524 } 525 EXPORT_SYMBOL_NS_GPL(cxl_switch_parse_cdat, "CXL"); 526 527 static void __cxl_coordinates_combine(struct access_coordinate *out, 528 struct access_coordinate *c1, 529 struct access_coordinate *c2) 530 { 531 if (c1->write_bandwidth && c2->write_bandwidth) 532 out->write_bandwidth = min(c1->write_bandwidth, 533 c2->write_bandwidth); 534 out->write_latency = c1->write_latency + c2->write_latency; 535 536 if (c1->read_bandwidth && c2->read_bandwidth) 537 out->read_bandwidth = min(c1->read_bandwidth, 538 c2->read_bandwidth); 539 out->read_latency = c1->read_latency + c2->read_latency; 540 } 541 542 /** 543 * cxl_coordinates_combine - Combine the two input coordinates 544 * 545 * @out: Output coordinate of c1 and c2 combined 546 * @c1: input coordinates 547 * @c2: input coordinates 548 */ 549 void cxl_coordinates_combine(struct access_coordinate *out, 550 struct access_coordinate *c1, 551 struct access_coordinate *c2) 552 { 553 for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) 554 __cxl_coordinates_combine(&out[i], &c1[i], &c2[i]); 555 } 556 557 MODULE_IMPORT_NS("CXL"); 558 559 static void cxl_bandwidth_add(struct access_coordinate *coord, 560 struct access_coordinate *c1, 561 struct access_coordinate *c2) 562 { 563 for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) { 564 coord[i].read_bandwidth = c1[i].read_bandwidth + 565 c2[i].read_bandwidth; 566 coord[i].write_bandwidth = c1[i].write_bandwidth + 567 c2[i].write_bandwidth; 568 } 569 } 570 571 static bool dpa_perf_contains(struct cxl_dpa_perf *perf, 572 struct resource *dpa_res) 573 { 574 struct range dpa = { 575 .start = dpa_res->start, 576 .end = dpa_res->end, 577 }; 578 579 return range_contains(&perf->dpa_range, &dpa); 580 } 581 582 static struct cxl_dpa_perf *cxled_get_dpa_perf(struct cxl_endpoint_decoder *cxled) 583 { 584 struct cxl_memdev *cxlmd = cxled_to_memdev(cxled); 585 struct cxl_dev_state *cxlds = cxlmd->cxlds; 586 struct cxl_dpa_perf *perf; 587 588 if (cxled->part < 0) 589 return ERR_PTR(-EINVAL); 590 perf = &cxlds->part[cxled->part].perf; 591 592 if (!perf) 593 return ERR_PTR(-EINVAL); 594 595 if (!dpa_perf_contains(perf, cxled->dpa_res)) 596 return ERR_PTR(-EINVAL); 597 598 return perf; 599 } 600 601 /* 602 * Transient context for containing the current calculation of bandwidth when 603 * doing walking the port hierarchy to deal with shared upstream link. 604 */ 605 struct cxl_perf_ctx { 606 struct access_coordinate coord[ACCESS_COORDINATE_MAX]; 607 struct cxl_port *port; 608 }; 609 610 /** 611 * cxl_endpoint_gather_bandwidth - collect all the endpoint bandwidth in an xarray 612 * @cxlr: CXL region for the bandwidth calculation 613 * @cxled: endpoint decoder to start on 614 * @usp_xa: (output) the xarray that collects all the bandwidth coordinates 615 * indexed by the upstream device with data of 'struct cxl_perf_ctx'. 616 * @gp_is_root: (output) bool of whether the grandparent is cxl root. 617 * 618 * Return: 0 for success or -errno 619 * 620 * Collects aggregated endpoint bandwidth and store the bandwidth in 621 * an xarray indexed by the upstream device of the switch or the RP 622 * device. Each endpoint consists the minimum of the bandwidth from DSLBIS 623 * from the endpoint CDAT, the endpoint upstream link bandwidth, and the 624 * bandwidth from the SSLBIS of the switch CDAT for the switch upstream port to 625 * the downstream port that's associated with the endpoint. If the 626 * device is directly connected to a RP, then no SSLBIS is involved. 627 */ 628 static int cxl_endpoint_gather_bandwidth(struct cxl_region *cxlr, 629 struct cxl_endpoint_decoder *cxled, 630 struct xarray *usp_xa, 631 bool *gp_is_root) 632 { 633 struct cxl_port *endpoint = to_cxl_port(cxled->cxld.dev.parent); 634 struct cxl_port *parent_port = to_cxl_port(endpoint->dev.parent); 635 struct cxl_port *gp_port = to_cxl_port(parent_port->dev.parent); 636 struct access_coordinate pci_coord[ACCESS_COORDINATE_MAX]; 637 struct access_coordinate sw_coord[ACCESS_COORDINATE_MAX]; 638 struct access_coordinate ep_coord[ACCESS_COORDINATE_MAX]; 639 struct cxl_memdev *cxlmd = cxled_to_memdev(cxled); 640 struct cxl_dev_state *cxlds = cxlmd->cxlds; 641 struct pci_dev *pdev = to_pci_dev(cxlds->dev); 642 struct cxl_perf_ctx *perf_ctx; 643 struct cxl_dpa_perf *perf; 644 unsigned long index; 645 void *ptr; 646 int rc; 647 648 if (!dev_is_pci(cxlds->dev)) 649 return -ENODEV; 650 651 if (cxlds->rcd) 652 return -ENODEV; 653 654 perf = cxled_get_dpa_perf(cxled); 655 if (IS_ERR(perf)) 656 return PTR_ERR(perf); 657 658 *gp_is_root = is_cxl_root(gp_port); 659 660 /* 661 * If the grandparent is cxl root, then index is the root port, 662 * otherwise it's the parent switch upstream device. 663 */ 664 if (*gp_is_root) 665 index = (unsigned long)endpoint->parent_dport->dport_dev; 666 else 667 index = (unsigned long)parent_port->uport_dev; 668 669 perf_ctx = xa_load(usp_xa, index); 670 if (!perf_ctx) { 671 struct cxl_perf_ctx *c __free(kfree) = 672 kzalloc(sizeof(*perf_ctx), GFP_KERNEL); 673 674 if (!c) 675 return -ENOMEM; 676 ptr = xa_store(usp_xa, index, c, GFP_KERNEL); 677 if (xa_is_err(ptr)) 678 return xa_err(ptr); 679 perf_ctx = no_free_ptr(c); 680 perf_ctx->port = parent_port; 681 } 682 683 /* Direct upstream link from EP bandwidth */ 684 rc = cxl_pci_get_bandwidth(pdev, pci_coord); 685 if (rc < 0) 686 return rc; 687 688 /* 689 * Min of upstream link bandwidth and Endpoint CDAT bandwidth from 690 * DSLBIS. 691 */ 692 cxl_coordinates_combine(ep_coord, pci_coord, perf->cdat_coord); 693 694 /* 695 * If grandparent port is root, then there's no switch involved and 696 * the endpoint is connected to a root port. 697 */ 698 if (!*gp_is_root) { 699 /* 700 * Retrieve the switch SSLBIS for switch downstream port 701 * associated with the endpoint bandwidth. 702 */ 703 rc = cxl_port_get_switch_dport_bandwidth(endpoint, sw_coord); 704 if (rc) 705 return rc; 706 707 /* 708 * Min of the earlier coordinates with the switch SSLBIS 709 * bandwidth 710 */ 711 cxl_coordinates_combine(ep_coord, ep_coord, sw_coord); 712 } 713 714 /* 715 * Aggregate the computed bandwidth with the current aggregated bandwidth 716 * of the endpoints with the same switch upstream device or RP. 717 */ 718 cxl_bandwidth_add(perf_ctx->coord, perf_ctx->coord, ep_coord); 719 720 return 0; 721 } 722 723 static void free_perf_xa(struct xarray *xa) 724 { 725 struct cxl_perf_ctx *ctx; 726 unsigned long index; 727 728 if (!xa) 729 return; 730 731 xa_for_each(xa, index, ctx) 732 kfree(ctx); 733 xa_destroy(xa); 734 kfree(xa); 735 } 736 DEFINE_FREE(free_perf_xa, struct xarray *, if (_T) free_perf_xa(_T)) 737 738 /** 739 * cxl_switch_gather_bandwidth - collect all the bandwidth at switch level in an xarray 740 * @cxlr: The region being operated on 741 * @input_xa: xarray indexed by upstream device of a switch with data of 'struct 742 * cxl_perf_ctx' 743 * @gp_is_root: (output) bool of whether the grandparent is cxl root. 744 * 745 * Return: a xarray of resulting cxl_perf_ctx per parent switch or root port 746 * or ERR_PTR(-errno) 747 * 748 * Iterate through the xarray. Take the minimum of the downstream calculated 749 * bandwidth, the upstream link bandwidth, and the SSLBIS of the upstream 750 * switch if exists. Sum the resulting bandwidth under the switch upstream 751 * device or a RP device. The function can be iterated over multiple switches 752 * if the switches are present. 753 */ 754 static struct xarray *cxl_switch_gather_bandwidth(struct cxl_region *cxlr, 755 struct xarray *input_xa, 756 bool *gp_is_root) 757 { 758 struct xarray *res_xa __free(free_perf_xa) = 759 kzalloc(sizeof(*res_xa), GFP_KERNEL); 760 struct access_coordinate coords[ACCESS_COORDINATE_MAX]; 761 struct cxl_perf_ctx *ctx, *us_ctx; 762 unsigned long index, us_index; 763 int dev_count = 0; 764 int gp_count = 0; 765 void *ptr; 766 int rc; 767 768 if (!res_xa) 769 return ERR_PTR(-ENOMEM); 770 xa_init(res_xa); 771 772 xa_for_each(input_xa, index, ctx) { 773 struct device *dev = (struct device *)index; 774 struct cxl_port *port = ctx->port; 775 struct cxl_port *parent_port = to_cxl_port(port->dev.parent); 776 struct cxl_port *gp_port = to_cxl_port(parent_port->dev.parent); 777 struct cxl_dport *dport = port->parent_dport; 778 bool is_root = false; 779 780 dev_count++; 781 if (is_cxl_root(gp_port)) { 782 is_root = true; 783 gp_count++; 784 } 785 786 /* 787 * If the grandparent is cxl root, then index is the root port, 788 * otherwise it's the parent switch upstream device. 789 */ 790 if (is_root) 791 us_index = (unsigned long)port->parent_dport->dport_dev; 792 else 793 us_index = (unsigned long)parent_port->uport_dev; 794 795 us_ctx = xa_load(res_xa, us_index); 796 if (!us_ctx) { 797 struct cxl_perf_ctx *n __free(kfree) = 798 kzalloc(sizeof(*n), GFP_KERNEL); 799 800 if (!n) 801 return ERR_PTR(-ENOMEM); 802 803 ptr = xa_store(res_xa, us_index, n, GFP_KERNEL); 804 if (xa_is_err(ptr)) 805 return ERR_PTR(xa_err(ptr)); 806 us_ctx = no_free_ptr(n); 807 us_ctx->port = parent_port; 808 } 809 810 /* 811 * If the device isn't an upstream PCIe port, there's something 812 * wrong with the topology. 813 */ 814 if (!dev_is_pci(dev)) 815 return ERR_PTR(-EINVAL); 816 817 /* Retrieve the upstream link bandwidth */ 818 rc = cxl_pci_get_bandwidth(to_pci_dev(dev), coords); 819 if (rc) 820 return ERR_PTR(-ENXIO); 821 822 /* 823 * Take the min of downstream bandwidth and the upstream link 824 * bandwidth. 825 */ 826 cxl_coordinates_combine(coords, coords, ctx->coord); 827 828 /* 829 * Take the min of the calculated bandwdith and the upstream 830 * switch SSLBIS bandwidth if there's a parent switch 831 */ 832 if (!is_root) 833 cxl_coordinates_combine(coords, coords, dport->coord); 834 835 /* 836 * Aggregate the calculated bandwidth common to an upstream 837 * switch. 838 */ 839 cxl_bandwidth_add(us_ctx->coord, us_ctx->coord, coords); 840 } 841 842 /* Asymmetric topology detected. */ 843 if (gp_count) { 844 if (gp_count != dev_count) { 845 dev_dbg(&cxlr->dev, 846 "Asymmetric hierarchy detected, bandwidth not updated\n"); 847 return ERR_PTR(-EOPNOTSUPP); 848 } 849 *gp_is_root = true; 850 } 851 852 return no_free_ptr(res_xa); 853 } 854 855 /** 856 * cxl_rp_gather_bandwidth - handle the root port level bandwidth collection 857 * @xa: the xarray that holds the cxl_perf_ctx that has the bandwidth calculated 858 * below each root port device. 859 * 860 * Return: xarray that holds cxl_perf_ctx per host bridge or ERR_PTR(-errno) 861 */ 862 static struct xarray *cxl_rp_gather_bandwidth(struct xarray *xa) 863 { 864 struct xarray *hb_xa __free(free_perf_xa) = 865 kzalloc(sizeof(*hb_xa), GFP_KERNEL); 866 struct cxl_perf_ctx *ctx; 867 unsigned long index; 868 869 if (!hb_xa) 870 return ERR_PTR(-ENOMEM); 871 xa_init(hb_xa); 872 873 xa_for_each(xa, index, ctx) { 874 struct cxl_port *port = ctx->port; 875 unsigned long hb_index = (unsigned long)port->uport_dev; 876 struct cxl_perf_ctx *hb_ctx; 877 void *ptr; 878 879 hb_ctx = xa_load(hb_xa, hb_index); 880 if (!hb_ctx) { 881 struct cxl_perf_ctx *n __free(kfree) = 882 kzalloc(sizeof(*n), GFP_KERNEL); 883 884 if (!n) 885 return ERR_PTR(-ENOMEM); 886 ptr = xa_store(hb_xa, hb_index, n, GFP_KERNEL); 887 if (xa_is_err(ptr)) 888 return ERR_PTR(xa_err(ptr)); 889 hb_ctx = no_free_ptr(n); 890 hb_ctx->port = port; 891 } 892 893 cxl_bandwidth_add(hb_ctx->coord, hb_ctx->coord, ctx->coord); 894 } 895 896 return no_free_ptr(hb_xa); 897 } 898 899 /** 900 * cxl_hb_gather_bandwidth - handle the host bridge level bandwidth collection 901 * @xa: the xarray that holds the cxl_perf_ctx that has the bandwidth calculated 902 * below each host bridge. 903 * 904 * Return: xarray that holds cxl_perf_ctx per ACPI0017 device or ERR_PTR(-errno) 905 */ 906 static struct xarray *cxl_hb_gather_bandwidth(struct xarray *xa) 907 { 908 struct xarray *mw_xa __free(free_perf_xa) = 909 kzalloc(sizeof(*mw_xa), GFP_KERNEL); 910 struct cxl_perf_ctx *ctx; 911 unsigned long index; 912 913 if (!mw_xa) 914 return ERR_PTR(-ENOMEM); 915 xa_init(mw_xa); 916 917 xa_for_each(xa, index, ctx) { 918 struct cxl_port *port = ctx->port; 919 struct cxl_port *parent_port; 920 struct cxl_perf_ctx *mw_ctx; 921 struct cxl_dport *dport; 922 unsigned long mw_index; 923 void *ptr; 924 925 parent_port = to_cxl_port(port->dev.parent); 926 mw_index = (unsigned long)parent_port->uport_dev; 927 928 mw_ctx = xa_load(mw_xa, mw_index); 929 if (!mw_ctx) { 930 struct cxl_perf_ctx *n __free(kfree) = 931 kzalloc(sizeof(*n), GFP_KERNEL); 932 933 if (!n) 934 return ERR_PTR(-ENOMEM); 935 ptr = xa_store(mw_xa, mw_index, n, GFP_KERNEL); 936 if (xa_is_err(ptr)) 937 return ERR_PTR(xa_err(ptr)); 938 mw_ctx = no_free_ptr(n); 939 } 940 941 dport = port->parent_dport; 942 cxl_coordinates_combine(ctx->coord, ctx->coord, dport->coord); 943 cxl_bandwidth_add(mw_ctx->coord, mw_ctx->coord, ctx->coord); 944 } 945 946 return no_free_ptr(mw_xa); 947 } 948 949 /** 950 * cxl_region_update_bandwidth - Update the bandwidth access coordinates of a region 951 * @cxlr: The region being operated on 952 * @input_xa: xarray holds cxl_perf_ctx wht calculated bandwidth per ACPI0017 instance 953 */ 954 static void cxl_region_update_bandwidth(struct cxl_region *cxlr, 955 struct xarray *input_xa) 956 { 957 struct access_coordinate coord[ACCESS_COORDINATE_MAX]; 958 struct cxl_perf_ctx *ctx; 959 unsigned long index; 960 961 memset(coord, 0, sizeof(coord)); 962 xa_for_each(input_xa, index, ctx) 963 cxl_bandwidth_add(coord, coord, ctx->coord); 964 965 for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) { 966 cxlr->coord[i].read_bandwidth = coord[i].read_bandwidth; 967 cxlr->coord[i].write_bandwidth = coord[i].write_bandwidth; 968 } 969 } 970 971 /** 972 * cxl_region_shared_upstream_bandwidth_update - Recalculate the bandwidth for 973 * the region 974 * @cxlr: the cxl region to recalculate 975 * 976 * The function walks the topology from bottom up and calculates the bandwidth. It 977 * starts at the endpoints, processes at the switches if any, processes at the rootport 978 * level, at the host bridge level, and finally aggregates at the region. 979 */ 980 void cxl_region_shared_upstream_bandwidth_update(struct cxl_region *cxlr) 981 { 982 struct xarray *working_xa; 983 int root_count = 0; 984 bool is_root; 985 int rc; 986 987 lockdep_assert_held(&cxl_rwsem.dpa); 988 989 struct xarray *usp_xa __free(free_perf_xa) = 990 kzalloc(sizeof(*usp_xa), GFP_KERNEL); 991 992 if (!usp_xa) 993 return; 994 995 xa_init(usp_xa); 996 997 /* Collect bandwidth data from all the endpoints. */ 998 for (int i = 0; i < cxlr->params.nr_targets; i++) { 999 struct cxl_endpoint_decoder *cxled = cxlr->params.targets[i]; 1000 1001 is_root = false; 1002 rc = cxl_endpoint_gather_bandwidth(cxlr, cxled, usp_xa, &is_root); 1003 if (rc) 1004 return; 1005 root_count += is_root; 1006 } 1007 1008 /* Detect asymmetric hierarchy with some direct attached endpoints. */ 1009 if (root_count && root_count != cxlr->params.nr_targets) { 1010 dev_dbg(&cxlr->dev, 1011 "Asymmetric hierarchy detected, bandwidth not updated\n"); 1012 return; 1013 } 1014 1015 /* 1016 * Walk up one or more switches to deal with the bandwidth of the 1017 * switches if they exist. Endpoints directly attached to RPs skip 1018 * over this part. 1019 */ 1020 if (!root_count) { 1021 do { 1022 working_xa = cxl_switch_gather_bandwidth(cxlr, usp_xa, 1023 &is_root); 1024 if (IS_ERR(working_xa)) 1025 return; 1026 free_perf_xa(usp_xa); 1027 usp_xa = working_xa; 1028 } while (!is_root); 1029 } 1030 1031 /* Handle the bandwidth at the root port of the hierarchy */ 1032 working_xa = cxl_rp_gather_bandwidth(usp_xa); 1033 if (IS_ERR(working_xa)) 1034 return; 1035 free_perf_xa(usp_xa); 1036 usp_xa = working_xa; 1037 1038 /* Handle the bandwidth at the host bridge of the hierarchy */ 1039 working_xa = cxl_hb_gather_bandwidth(usp_xa); 1040 if (IS_ERR(working_xa)) 1041 return; 1042 free_perf_xa(usp_xa); 1043 usp_xa = working_xa; 1044 1045 /* 1046 * Aggregate all the bandwidth collected per CFMWS (ACPI0017) and 1047 * update the region bandwidth with the final calculated values. 1048 */ 1049 cxl_region_update_bandwidth(cxlr, usp_xa); 1050 } 1051 1052 void cxl_region_perf_data_calculate(struct cxl_region *cxlr, 1053 struct cxl_endpoint_decoder *cxled) 1054 { 1055 struct cxl_dpa_perf *perf; 1056 1057 lockdep_assert_held(&cxl_rwsem.dpa); 1058 1059 perf = cxled_get_dpa_perf(cxled); 1060 if (IS_ERR(perf)) 1061 return; 1062 1063 for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) { 1064 /* Get total bandwidth and the worst latency for the cxl region */ 1065 cxlr->coord[i].read_latency = max_t(unsigned int, 1066 cxlr->coord[i].read_latency, 1067 perf->coord[i].read_latency); 1068 cxlr->coord[i].write_latency = max_t(unsigned int, 1069 cxlr->coord[i].write_latency, 1070 perf->coord[i].write_latency); 1071 cxlr->coord[i].read_bandwidth += perf->coord[i].read_bandwidth; 1072 cxlr->coord[i].write_bandwidth += perf->coord[i].write_bandwidth; 1073 } 1074 } 1075