1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright(c) 2023 Intel Corporation. All rights reserved. */ 3 #include <linux/acpi.h> 4 #include <linux/xarray.h> 5 #include <linux/fw_table.h> 6 #include <linux/node.h> 7 #include <linux/overflow.h> 8 #include "cxlpci.h" 9 #include "cxlmem.h" 10 #include "core.h" 11 #include "cxl.h" 12 13 struct dsmas_entry { 14 struct range dpa_range; 15 u8 handle; 16 struct access_coordinate coord[ACCESS_COORDINATE_MAX]; 17 struct access_coordinate cdat_coord[ACCESS_COORDINATE_MAX]; 18 int entries; 19 int qos_class; 20 }; 21 22 static u32 cdat_normalize(u16 entry, u64 base, u8 type) 23 { 24 u32 value; 25 26 /* 27 * Check for invalid and overflow values 28 */ 29 if (entry == 0xffff || !entry) 30 return 0; 31 else if (base > (UINT_MAX / (entry))) 32 return 0; 33 34 /* 35 * CDAT fields follow the format of HMAT fields. See table 5 Device 36 * Scoped Latency and Bandwidth Information Structure in Coherent Device 37 * Attribute Table (CDAT) Specification v1.01. 38 */ 39 value = entry * base; 40 switch (type) { 41 case ACPI_HMAT_ACCESS_LATENCY: 42 case ACPI_HMAT_READ_LATENCY: 43 case ACPI_HMAT_WRITE_LATENCY: 44 value = DIV_ROUND_UP(value, 1000); 45 break; 46 default: 47 break; 48 } 49 return value; 50 } 51 52 static int cdat_dsmas_handler(union acpi_subtable_headers *header, void *arg, 53 const unsigned long end) 54 { 55 struct acpi_cdat_header *hdr = &header->cdat; 56 struct acpi_cdat_dsmas *dsmas; 57 int size = sizeof(*hdr) + sizeof(*dsmas); 58 struct xarray *dsmas_xa = arg; 59 struct dsmas_entry *dent; 60 u16 len; 61 int rc; 62 63 len = le16_to_cpu((__force __le16)hdr->length); 64 if (len != size || (unsigned long)hdr + len > end) { 65 pr_warn("Malformed DSMAS table length: (%u:%u)\n", size, len); 66 return -EINVAL; 67 } 68 69 /* Skip common header */ 70 dsmas = (struct acpi_cdat_dsmas *)(hdr + 1); 71 72 dent = kzalloc(sizeof(*dent), GFP_KERNEL); 73 if (!dent) 74 return -ENOMEM; 75 76 dent->handle = dsmas->dsmad_handle; 77 dent->dpa_range.start = le64_to_cpu((__force __le64)dsmas->dpa_base_address); 78 dent->dpa_range.end = le64_to_cpu((__force __le64)dsmas->dpa_base_address) + 79 le64_to_cpu((__force __le64)dsmas->dpa_length) - 1; 80 81 rc = xa_insert(dsmas_xa, dent->handle, dent, GFP_KERNEL); 82 if (rc) { 83 kfree(dent); 84 return rc; 85 } 86 87 return 0; 88 } 89 90 static void __cxl_access_coordinate_set(struct access_coordinate *coord, 91 int access, unsigned int val) 92 { 93 switch (access) { 94 case ACPI_HMAT_ACCESS_LATENCY: 95 coord->read_latency = val; 96 coord->write_latency = val; 97 break; 98 case ACPI_HMAT_READ_LATENCY: 99 coord->read_latency = val; 100 break; 101 case ACPI_HMAT_WRITE_LATENCY: 102 coord->write_latency = val; 103 break; 104 case ACPI_HMAT_ACCESS_BANDWIDTH: 105 coord->read_bandwidth = val; 106 coord->write_bandwidth = val; 107 break; 108 case ACPI_HMAT_READ_BANDWIDTH: 109 coord->read_bandwidth = val; 110 break; 111 case ACPI_HMAT_WRITE_BANDWIDTH: 112 coord->write_bandwidth = val; 113 break; 114 } 115 } 116 117 static void cxl_access_coordinate_set(struct access_coordinate *coord, 118 int access, unsigned int val) 119 { 120 for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) 121 __cxl_access_coordinate_set(&coord[i], access, val); 122 } 123 124 static int cdat_dslbis_handler(union acpi_subtable_headers *header, void *arg, 125 const unsigned long end) 126 { 127 struct acpi_cdat_header *hdr = &header->cdat; 128 struct acpi_cdat_dslbis *dslbis; 129 int size = sizeof(*hdr) + sizeof(*dslbis); 130 struct xarray *dsmas_xa = arg; 131 struct dsmas_entry *dent; 132 __le64 le_base; 133 __le16 le_val; 134 u64 val; 135 u16 len; 136 137 len = le16_to_cpu((__force __le16)hdr->length); 138 if (len != size || (unsigned long)hdr + len > end) { 139 pr_warn("Malformed DSLBIS table length: (%u:%u)\n", size, len); 140 return -EINVAL; 141 } 142 143 /* Skip common header */ 144 dslbis = (struct acpi_cdat_dslbis *)(hdr + 1); 145 146 /* Skip unrecognized data type */ 147 if (dslbis->data_type > ACPI_HMAT_WRITE_BANDWIDTH) 148 return 0; 149 150 /* Not a memory type, skip */ 151 if ((dslbis->flags & ACPI_HMAT_MEMORY_HIERARCHY) != ACPI_HMAT_MEMORY) 152 return 0; 153 154 dent = xa_load(dsmas_xa, dslbis->handle); 155 if (!dent) { 156 pr_warn("No matching DSMAS entry for DSLBIS entry.\n"); 157 return 0; 158 } 159 160 le_base = (__force __le64)dslbis->entry_base_unit; 161 le_val = (__force __le16)dslbis->entry[0]; 162 val = cdat_normalize(le16_to_cpu(le_val), le64_to_cpu(le_base), 163 dslbis->data_type); 164 165 cxl_access_coordinate_set(dent->cdat_coord, dslbis->data_type, val); 166 167 return 0; 168 } 169 170 static int cdat_table_parse_output(int rc) 171 { 172 if (rc < 0) 173 return rc; 174 if (rc == 0) 175 return -ENOENT; 176 177 return 0; 178 } 179 180 static int cxl_cdat_endpoint_process(struct cxl_port *port, 181 struct xarray *dsmas_xa) 182 { 183 int rc; 184 185 rc = cdat_table_parse(ACPI_CDAT_TYPE_DSMAS, cdat_dsmas_handler, 186 dsmas_xa, port->cdat.table, port->cdat.length); 187 rc = cdat_table_parse_output(rc); 188 if (rc) 189 return rc; 190 191 rc = cdat_table_parse(ACPI_CDAT_TYPE_DSLBIS, cdat_dslbis_handler, 192 dsmas_xa, port->cdat.table, port->cdat.length); 193 return cdat_table_parse_output(rc); 194 } 195 196 static int cxl_port_perf_data_calculate(struct cxl_port *port, 197 struct xarray *dsmas_xa) 198 { 199 struct access_coordinate ep_c[ACCESS_COORDINATE_MAX]; 200 struct dsmas_entry *dent; 201 int valid_entries = 0; 202 unsigned long index; 203 int rc; 204 205 rc = cxl_endpoint_get_perf_coordinates(port, ep_c); 206 if (rc) { 207 dev_dbg(&port->dev, "Failed to retrieve ep perf coordinates.\n"); 208 return rc; 209 } 210 211 struct cxl_root *cxl_root __free(put_cxl_root) = find_cxl_root(port); 212 213 if (!cxl_root) 214 return -ENODEV; 215 216 if (!cxl_root->ops || !cxl_root->ops->qos_class) 217 return -EOPNOTSUPP; 218 219 xa_for_each(dsmas_xa, index, dent) { 220 int qos_class; 221 222 cxl_coordinates_combine(dent->coord, dent->cdat_coord, ep_c); 223 dent->entries = 1; 224 rc = cxl_root->ops->qos_class(cxl_root, 225 &dent->coord[ACCESS_COORDINATE_CPU], 226 1, &qos_class); 227 if (rc != 1) 228 continue; 229 230 valid_entries++; 231 dent->qos_class = qos_class; 232 } 233 234 if (!valid_entries) 235 return -ENOENT; 236 237 return 0; 238 } 239 240 static void update_perf_entry(struct device *dev, struct dsmas_entry *dent, 241 struct cxl_dpa_perf *dpa_perf) 242 { 243 for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) { 244 dpa_perf->coord[i] = dent->coord[i]; 245 dpa_perf->cdat_coord[i] = dent->cdat_coord[i]; 246 } 247 dpa_perf->dpa_range = dent->dpa_range; 248 dpa_perf->qos_class = dent->qos_class; 249 dev_dbg(dev, 250 "DSMAS: dpa: %#llx qos: %d read_bw: %d write_bw %d read_lat: %d write_lat: %d\n", 251 dent->dpa_range.start, dpa_perf->qos_class, 252 dent->coord[ACCESS_COORDINATE_CPU].read_bandwidth, 253 dent->coord[ACCESS_COORDINATE_CPU].write_bandwidth, 254 dent->coord[ACCESS_COORDINATE_CPU].read_latency, 255 dent->coord[ACCESS_COORDINATE_CPU].write_latency); 256 } 257 258 static void cxl_memdev_set_qos_class(struct cxl_dev_state *cxlds, 259 struct xarray *dsmas_xa) 260 { 261 struct cxl_memdev_state *mds = to_cxl_memdev_state(cxlds); 262 struct device *dev = cxlds->dev; 263 struct range pmem_range = { 264 .start = cxlds->pmem_res.start, 265 .end = cxlds->pmem_res.end, 266 }; 267 struct range ram_range = { 268 .start = cxlds->ram_res.start, 269 .end = cxlds->ram_res.end, 270 }; 271 struct dsmas_entry *dent; 272 unsigned long index; 273 274 xa_for_each(dsmas_xa, index, dent) { 275 if (resource_size(&cxlds->ram_res) && 276 range_contains(&ram_range, &dent->dpa_range)) 277 update_perf_entry(dev, dent, &mds->ram_perf); 278 else if (resource_size(&cxlds->pmem_res) && 279 range_contains(&pmem_range, &dent->dpa_range)) 280 update_perf_entry(dev, dent, &mds->pmem_perf); 281 else 282 dev_dbg(dev, "no partition for dsmas dpa: %#llx\n", 283 dent->dpa_range.start); 284 } 285 } 286 287 static int match_cxlrd_qos_class(struct device *dev, void *data) 288 { 289 int dev_qos_class = *(int *)data; 290 struct cxl_root_decoder *cxlrd; 291 292 if (!is_root_decoder(dev)) 293 return 0; 294 295 cxlrd = to_cxl_root_decoder(dev); 296 if (cxlrd->qos_class == CXL_QOS_CLASS_INVALID) 297 return 0; 298 299 if (cxlrd->qos_class == dev_qos_class) 300 return 1; 301 302 return 0; 303 } 304 305 static void reset_dpa_perf(struct cxl_dpa_perf *dpa_perf) 306 { 307 *dpa_perf = (struct cxl_dpa_perf) { 308 .qos_class = CXL_QOS_CLASS_INVALID, 309 }; 310 } 311 312 static bool cxl_qos_match(struct cxl_port *root_port, 313 struct cxl_dpa_perf *dpa_perf) 314 { 315 if (dpa_perf->qos_class == CXL_QOS_CLASS_INVALID) 316 return false; 317 318 if (!device_for_each_child(&root_port->dev, &dpa_perf->qos_class, 319 match_cxlrd_qos_class)) 320 return false; 321 322 return true; 323 } 324 325 static int match_cxlrd_hb(struct device *dev, void *data) 326 { 327 struct device *host_bridge = data; 328 struct cxl_switch_decoder *cxlsd; 329 struct cxl_root_decoder *cxlrd; 330 331 if (!is_root_decoder(dev)) 332 return 0; 333 334 cxlrd = to_cxl_root_decoder(dev); 335 cxlsd = &cxlrd->cxlsd; 336 337 guard(rwsem_read)(&cxl_region_rwsem); 338 for (int i = 0; i < cxlsd->nr_targets; i++) { 339 if (host_bridge == cxlsd->target[i]->dport_dev) 340 return 1; 341 } 342 343 return 0; 344 } 345 346 static int cxl_qos_class_verify(struct cxl_memdev *cxlmd) 347 { 348 struct cxl_dev_state *cxlds = cxlmd->cxlds; 349 struct cxl_memdev_state *mds = to_cxl_memdev_state(cxlds); 350 struct cxl_port *root_port; 351 int rc; 352 353 struct cxl_root *cxl_root __free(put_cxl_root) = 354 find_cxl_root(cxlmd->endpoint); 355 356 if (!cxl_root) 357 return -ENODEV; 358 359 root_port = &cxl_root->port; 360 361 /* Check that the QTG IDs are all sane between end device and root decoders */ 362 if (!cxl_qos_match(root_port, &mds->ram_perf)) 363 reset_dpa_perf(&mds->ram_perf); 364 if (!cxl_qos_match(root_port, &mds->pmem_perf)) 365 reset_dpa_perf(&mds->pmem_perf); 366 367 /* Check to make sure that the device's host bridge is under a root decoder */ 368 rc = device_for_each_child(&root_port->dev, 369 cxlmd->endpoint->host_bridge, match_cxlrd_hb); 370 if (!rc) { 371 reset_dpa_perf(&mds->ram_perf); 372 reset_dpa_perf(&mds->pmem_perf); 373 } 374 375 return rc; 376 } 377 378 static void discard_dsmas(struct xarray *xa) 379 { 380 unsigned long index; 381 void *ent; 382 383 xa_for_each(xa, index, ent) { 384 xa_erase(xa, index); 385 kfree(ent); 386 } 387 xa_destroy(xa); 388 } 389 DEFINE_FREE(dsmas, struct xarray *, if (_T) discard_dsmas(_T)) 390 391 void cxl_endpoint_parse_cdat(struct cxl_port *port) 392 { 393 struct cxl_memdev *cxlmd = to_cxl_memdev(port->uport_dev); 394 struct cxl_dev_state *cxlds = cxlmd->cxlds; 395 struct xarray __dsmas_xa; 396 struct xarray *dsmas_xa __free(dsmas) = &__dsmas_xa; 397 int rc; 398 399 xa_init(&__dsmas_xa); 400 if (!port->cdat.table) 401 return; 402 403 rc = cxl_cdat_endpoint_process(port, dsmas_xa); 404 if (rc < 0) { 405 dev_dbg(&port->dev, "Failed to parse CDAT: %d\n", rc); 406 return; 407 } 408 409 rc = cxl_port_perf_data_calculate(port, dsmas_xa); 410 if (rc) { 411 dev_dbg(&port->dev, "Failed to do perf coord calculations.\n"); 412 return; 413 } 414 415 cxl_memdev_set_qos_class(cxlds, dsmas_xa); 416 cxl_qos_class_verify(cxlmd); 417 cxl_memdev_update_perf(cxlmd); 418 } 419 EXPORT_SYMBOL_NS_GPL(cxl_endpoint_parse_cdat, CXL); 420 421 static int cdat_sslbis_handler(union acpi_subtable_headers *header, void *arg, 422 const unsigned long end) 423 { 424 struct acpi_cdat_sslbis_table { 425 struct acpi_cdat_header header; 426 struct acpi_cdat_sslbis sslbis_header; 427 struct acpi_cdat_sslbe entries[]; 428 } *tbl = (struct acpi_cdat_sslbis_table *)header; 429 int size = sizeof(header->cdat) + sizeof(tbl->sslbis_header); 430 struct acpi_cdat_sslbis *sslbis; 431 struct cxl_port *port = arg; 432 struct device *dev = &port->dev; 433 int remain, entries, i; 434 u16 len; 435 436 len = le16_to_cpu((__force __le16)header->cdat.length); 437 remain = len - size; 438 if (!remain || remain % sizeof(tbl->entries[0]) || 439 (unsigned long)header + len > end) { 440 dev_warn(dev, "Malformed SSLBIS table length: (%u)\n", len); 441 return -EINVAL; 442 } 443 444 sslbis = &tbl->sslbis_header; 445 /* Unrecognized data type, we can skip */ 446 if (sslbis->data_type > ACPI_HMAT_WRITE_BANDWIDTH) 447 return 0; 448 449 entries = remain / sizeof(tbl->entries[0]); 450 if (struct_size(tbl, entries, entries) != len) 451 return -EINVAL; 452 453 for (i = 0; i < entries; i++) { 454 u16 x = le16_to_cpu((__force __le16)tbl->entries[i].portx_id); 455 u16 y = le16_to_cpu((__force __le16)tbl->entries[i].porty_id); 456 __le64 le_base; 457 __le16 le_val; 458 struct cxl_dport *dport; 459 unsigned long index; 460 u16 dsp_id; 461 u64 val; 462 463 switch (x) { 464 case ACPI_CDAT_SSLBIS_US_PORT: 465 dsp_id = y; 466 break; 467 case ACPI_CDAT_SSLBIS_ANY_PORT: 468 switch (y) { 469 case ACPI_CDAT_SSLBIS_US_PORT: 470 dsp_id = x; 471 break; 472 case ACPI_CDAT_SSLBIS_ANY_PORT: 473 dsp_id = ACPI_CDAT_SSLBIS_ANY_PORT; 474 break; 475 default: 476 dsp_id = y; 477 break; 478 } 479 break; 480 default: 481 dsp_id = x; 482 break; 483 } 484 485 le_base = (__force __le64)tbl->sslbis_header.entry_base_unit; 486 le_val = (__force __le16)tbl->entries[i].latency_or_bandwidth; 487 val = cdat_normalize(le16_to_cpu(le_val), le64_to_cpu(le_base), 488 sslbis->data_type); 489 490 xa_for_each(&port->dports, index, dport) { 491 if (dsp_id == ACPI_CDAT_SSLBIS_ANY_PORT || 492 dsp_id == dport->port_id) { 493 cxl_access_coordinate_set(dport->coord, 494 sslbis->data_type, 495 val); 496 } 497 } 498 } 499 500 return 0; 501 } 502 503 void cxl_switch_parse_cdat(struct cxl_port *port) 504 { 505 int rc; 506 507 if (!port->cdat.table) 508 return; 509 510 rc = cdat_table_parse(ACPI_CDAT_TYPE_SSLBIS, cdat_sslbis_handler, 511 port, port->cdat.table, port->cdat.length); 512 rc = cdat_table_parse_output(rc); 513 if (rc) 514 dev_dbg(&port->dev, "Failed to parse SSLBIS: %d\n", rc); 515 } 516 EXPORT_SYMBOL_NS_GPL(cxl_switch_parse_cdat, CXL); 517 518 static void __cxl_coordinates_combine(struct access_coordinate *out, 519 struct access_coordinate *c1, 520 struct access_coordinate *c2) 521 { 522 if (c1->write_bandwidth && c2->write_bandwidth) 523 out->write_bandwidth = min(c1->write_bandwidth, 524 c2->write_bandwidth); 525 out->write_latency = c1->write_latency + c2->write_latency; 526 527 if (c1->read_bandwidth && c2->read_bandwidth) 528 out->read_bandwidth = min(c1->read_bandwidth, 529 c2->read_bandwidth); 530 out->read_latency = c1->read_latency + c2->read_latency; 531 } 532 533 /** 534 * cxl_coordinates_combine - Combine the two input coordinates 535 * 536 * @out: Output coordinate of c1 and c2 combined 537 * @c1: input coordinates 538 * @c2: input coordinates 539 */ 540 void cxl_coordinates_combine(struct access_coordinate *out, 541 struct access_coordinate *c1, 542 struct access_coordinate *c2) 543 { 544 for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) 545 __cxl_coordinates_combine(&out[i], &c1[i], &c2[i]); 546 } 547 548 MODULE_IMPORT_NS(CXL); 549 550 static void cxl_bandwidth_add(struct access_coordinate *coord, 551 struct access_coordinate *c1, 552 struct access_coordinate *c2) 553 { 554 for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) { 555 coord[i].read_bandwidth = c1[i].read_bandwidth + 556 c2[i].read_bandwidth; 557 coord[i].write_bandwidth = c1[i].write_bandwidth + 558 c2[i].write_bandwidth; 559 } 560 } 561 562 static bool dpa_perf_contains(struct cxl_dpa_perf *perf, 563 struct resource *dpa_res) 564 { 565 struct range dpa = { 566 .start = dpa_res->start, 567 .end = dpa_res->end, 568 }; 569 570 return range_contains(&perf->dpa_range, &dpa); 571 } 572 573 static struct cxl_dpa_perf *cxled_get_dpa_perf(struct cxl_endpoint_decoder *cxled, 574 enum cxl_decoder_mode mode) 575 { 576 struct cxl_memdev *cxlmd = cxled_to_memdev(cxled); 577 struct cxl_memdev_state *mds = to_cxl_memdev_state(cxlmd->cxlds); 578 struct cxl_dpa_perf *perf; 579 580 switch (mode) { 581 case CXL_DECODER_RAM: 582 perf = &mds->ram_perf; 583 break; 584 case CXL_DECODER_PMEM: 585 perf = &mds->pmem_perf; 586 break; 587 default: 588 return ERR_PTR(-EINVAL); 589 } 590 591 if (!dpa_perf_contains(perf, cxled->dpa_res)) 592 return ERR_PTR(-EINVAL); 593 594 return perf; 595 } 596 597 /* 598 * Transient context for containing the current calculation of bandwidth when 599 * doing walking the port hierarchy to deal with shared upstream link. 600 */ 601 struct cxl_perf_ctx { 602 struct access_coordinate coord[ACCESS_COORDINATE_MAX]; 603 struct cxl_port *port; 604 }; 605 606 /** 607 * cxl_endpoint_gather_bandwidth - collect all the endpoint bandwidth in an xarray 608 * @cxlr: CXL region for the bandwidth calculation 609 * @cxled: endpoint decoder to start on 610 * @usp_xa: (output) the xarray that collects all the bandwidth coordinates 611 * indexed by the upstream device with data of 'struct cxl_perf_ctx'. 612 * @gp_is_root: (output) bool of whether the grandparent is cxl root. 613 * 614 * Return: 0 for success or -errno 615 * 616 * Collects aggregated endpoint bandwidth and store the bandwidth in 617 * an xarray indexed by the upstream device of the switch or the RP 618 * device. Each endpoint consists the minimum of the bandwidth from DSLBIS 619 * from the endpoint CDAT, the endpoint upstream link bandwidth, and the 620 * bandwidth from the SSLBIS of the switch CDAT for the switch upstream port to 621 * the downstream port that's associated with the endpoint. If the 622 * device is directly connected to a RP, then no SSLBIS is involved. 623 */ 624 static int cxl_endpoint_gather_bandwidth(struct cxl_region *cxlr, 625 struct cxl_endpoint_decoder *cxled, 626 struct xarray *usp_xa, 627 bool *gp_is_root) 628 { 629 struct cxl_port *endpoint = to_cxl_port(cxled->cxld.dev.parent); 630 struct cxl_port *parent_port = to_cxl_port(endpoint->dev.parent); 631 struct cxl_port *gp_port = to_cxl_port(parent_port->dev.parent); 632 struct access_coordinate pci_coord[ACCESS_COORDINATE_MAX]; 633 struct access_coordinate sw_coord[ACCESS_COORDINATE_MAX]; 634 struct access_coordinate ep_coord[ACCESS_COORDINATE_MAX]; 635 struct cxl_memdev *cxlmd = cxled_to_memdev(cxled); 636 struct cxl_dev_state *cxlds = cxlmd->cxlds; 637 struct pci_dev *pdev = to_pci_dev(cxlds->dev); 638 struct cxl_perf_ctx *perf_ctx; 639 struct cxl_dpa_perf *perf; 640 unsigned long index; 641 void *ptr; 642 int rc; 643 644 if (cxlds->rcd) 645 return -ENODEV; 646 647 perf = cxled_get_dpa_perf(cxled, cxlr->mode); 648 if (IS_ERR(perf)) 649 return PTR_ERR(perf); 650 651 gp_port = to_cxl_port(parent_port->dev.parent); 652 *gp_is_root = is_cxl_root(gp_port); 653 654 /* 655 * If the grandparent is cxl root, then index is the root port, 656 * otherwise it's the parent switch upstream device. 657 */ 658 if (*gp_is_root) 659 index = (unsigned long)endpoint->parent_dport->dport_dev; 660 else 661 index = (unsigned long)parent_port->uport_dev; 662 663 perf_ctx = xa_load(usp_xa, index); 664 if (!perf_ctx) { 665 struct cxl_perf_ctx *c __free(kfree) = 666 kzalloc(sizeof(*perf_ctx), GFP_KERNEL); 667 668 if (!c) 669 return -ENOMEM; 670 ptr = xa_store(usp_xa, index, c, GFP_KERNEL); 671 if (xa_is_err(ptr)) 672 return xa_err(ptr); 673 perf_ctx = no_free_ptr(c); 674 perf_ctx->port = parent_port; 675 } 676 677 /* Direct upstream link from EP bandwidth */ 678 rc = cxl_pci_get_bandwidth(pdev, pci_coord); 679 if (rc < 0) 680 return rc; 681 682 /* 683 * Min of upstream link bandwidth and Endpoint CDAT bandwidth from 684 * DSLBIS. 685 */ 686 cxl_coordinates_combine(ep_coord, pci_coord, perf->cdat_coord); 687 688 /* 689 * If grandparent port is root, then there's no switch involved and 690 * the endpoint is connected to a root port. 691 */ 692 if (!*gp_is_root) { 693 /* 694 * Retrieve the switch SSLBIS for switch downstream port 695 * associated with the endpoint bandwidth. 696 */ 697 rc = cxl_port_get_switch_dport_bandwidth(endpoint, sw_coord); 698 if (rc) 699 return rc; 700 701 /* 702 * Min of the earlier coordinates with the switch SSLBIS 703 * bandwidth 704 */ 705 cxl_coordinates_combine(ep_coord, ep_coord, sw_coord); 706 } 707 708 /* 709 * Aggregate the computed bandwidth with the current aggregated bandwidth 710 * of the endpoints with the same switch upstream device or RP. 711 */ 712 cxl_bandwidth_add(perf_ctx->coord, perf_ctx->coord, ep_coord); 713 714 return 0; 715 } 716 717 static void free_perf_xa(struct xarray *xa) 718 { 719 struct cxl_perf_ctx *ctx; 720 unsigned long index; 721 722 if (!xa) 723 return; 724 725 xa_for_each(xa, index, ctx) 726 kfree(ctx); 727 xa_destroy(xa); 728 kfree(xa); 729 } 730 DEFINE_FREE(free_perf_xa, struct xarray *, if (_T) free_perf_xa(_T)) 731 732 /** 733 * cxl_switch_gather_bandwidth - collect all the bandwidth at switch level in an xarray 734 * @cxlr: The region being operated on 735 * @input_xa: xarray indexed by upstream device of a switch with data of 'struct 736 * cxl_perf_ctx' 737 * @gp_is_root: (output) bool of whether the grandparent is cxl root. 738 * 739 * Return: a xarray of resulting cxl_perf_ctx per parent switch or root port 740 * or ERR_PTR(-errno) 741 * 742 * Iterate through the xarray. Take the minimum of the downstream calculated 743 * bandwidth, the upstream link bandwidth, and the SSLBIS of the upstream 744 * switch if exists. Sum the resulting bandwidth under the switch upstream 745 * device or a RP device. The function can be iterated over multiple switches 746 * if the switches are present. 747 */ 748 static struct xarray *cxl_switch_gather_bandwidth(struct cxl_region *cxlr, 749 struct xarray *input_xa, 750 bool *gp_is_root) 751 { 752 struct xarray *res_xa __free(free_perf_xa) = 753 kzalloc(sizeof(*res_xa), GFP_KERNEL); 754 struct access_coordinate coords[ACCESS_COORDINATE_MAX]; 755 struct cxl_perf_ctx *ctx, *us_ctx; 756 unsigned long index, us_index; 757 int dev_count = 0; 758 int gp_count = 0; 759 void *ptr; 760 int rc; 761 762 if (!res_xa) 763 return ERR_PTR(-ENOMEM); 764 xa_init(res_xa); 765 766 xa_for_each(input_xa, index, ctx) { 767 struct device *dev = (struct device *)index; 768 struct cxl_port *port = ctx->port; 769 struct cxl_port *parent_port = to_cxl_port(port->dev.parent); 770 struct cxl_port *gp_port = to_cxl_port(parent_port->dev.parent); 771 struct cxl_dport *dport = port->parent_dport; 772 bool is_root = false; 773 774 dev_count++; 775 if (is_cxl_root(gp_port)) { 776 is_root = true; 777 gp_count++; 778 } 779 780 /* 781 * If the grandparent is cxl root, then index is the root port, 782 * otherwise it's the parent switch upstream device. 783 */ 784 if (is_root) 785 us_index = (unsigned long)port->parent_dport->dport_dev; 786 else 787 us_index = (unsigned long)parent_port->uport_dev; 788 789 us_ctx = xa_load(res_xa, us_index); 790 if (!us_ctx) { 791 struct cxl_perf_ctx *n __free(kfree) = 792 kzalloc(sizeof(*n), GFP_KERNEL); 793 794 if (!n) 795 return ERR_PTR(-ENOMEM); 796 797 ptr = xa_store(res_xa, us_index, n, GFP_KERNEL); 798 if (xa_is_err(ptr)) 799 return ERR_PTR(xa_err(ptr)); 800 us_ctx = no_free_ptr(n); 801 us_ctx->port = parent_port; 802 } 803 804 /* 805 * If the device isn't an upstream PCIe port, there's something 806 * wrong with the topology. 807 */ 808 if (!dev_is_pci(dev)) 809 return ERR_PTR(-EINVAL); 810 811 /* Retrieve the upstream link bandwidth */ 812 rc = cxl_pci_get_bandwidth(to_pci_dev(dev), coords); 813 if (rc) 814 return ERR_PTR(-ENXIO); 815 816 /* 817 * Take the min of downstream bandwidth and the upstream link 818 * bandwidth. 819 */ 820 cxl_coordinates_combine(coords, coords, ctx->coord); 821 822 /* 823 * Take the min of the calculated bandwdith and the upstream 824 * switch SSLBIS bandwidth if there's a parent switch 825 */ 826 if (!is_root) 827 cxl_coordinates_combine(coords, coords, dport->coord); 828 829 /* 830 * Aggregate the calculated bandwidth common to an upstream 831 * switch. 832 */ 833 cxl_bandwidth_add(us_ctx->coord, us_ctx->coord, coords); 834 } 835 836 /* Asymmetric topology detected. */ 837 if (gp_count) { 838 if (gp_count != dev_count) { 839 dev_dbg(&cxlr->dev, 840 "Asymmetric hierarchy detected, bandwidth not updated\n"); 841 return ERR_PTR(-EOPNOTSUPP); 842 } 843 *gp_is_root = true; 844 } 845 846 return no_free_ptr(res_xa); 847 } 848 849 /** 850 * cxl_rp_gather_bandwidth - handle the root port level bandwidth collection 851 * @xa: the xarray that holds the cxl_perf_ctx that has the bandwidth calculated 852 * below each root port device. 853 * 854 * Return: xarray that holds cxl_perf_ctx per host bridge or ERR_PTR(-errno) 855 */ 856 static struct xarray *cxl_rp_gather_bandwidth(struct xarray *xa) 857 { 858 struct xarray *hb_xa __free(free_perf_xa) = 859 kzalloc(sizeof(*hb_xa), GFP_KERNEL); 860 struct cxl_perf_ctx *ctx; 861 unsigned long index; 862 863 if (!hb_xa) 864 return ERR_PTR(-ENOMEM); 865 xa_init(hb_xa); 866 867 xa_for_each(xa, index, ctx) { 868 struct cxl_port *port = ctx->port; 869 unsigned long hb_index = (unsigned long)port->uport_dev; 870 struct cxl_perf_ctx *hb_ctx; 871 void *ptr; 872 873 hb_ctx = xa_load(hb_xa, hb_index); 874 if (!hb_ctx) { 875 struct cxl_perf_ctx *n __free(kfree) = 876 kzalloc(sizeof(*n), GFP_KERNEL); 877 878 if (!n) 879 return ERR_PTR(-ENOMEM); 880 ptr = xa_store(hb_xa, hb_index, n, GFP_KERNEL); 881 if (xa_is_err(ptr)) 882 return ERR_PTR(xa_err(ptr)); 883 hb_ctx = no_free_ptr(n); 884 hb_ctx->port = port; 885 } 886 887 cxl_bandwidth_add(hb_ctx->coord, hb_ctx->coord, ctx->coord); 888 } 889 890 return no_free_ptr(hb_xa); 891 } 892 893 /** 894 * cxl_hb_gather_bandwidth - handle the host bridge level bandwidth collection 895 * @xa: the xarray that holds the cxl_perf_ctx that has the bandwidth calculated 896 * below each host bridge. 897 * 898 * Return: xarray that holds cxl_perf_ctx per ACPI0017 device or ERR_PTR(-errno) 899 */ 900 static struct xarray *cxl_hb_gather_bandwidth(struct xarray *xa) 901 { 902 struct xarray *mw_xa __free(free_perf_xa) = 903 kzalloc(sizeof(*mw_xa), GFP_KERNEL); 904 struct cxl_perf_ctx *ctx; 905 unsigned long index; 906 907 if (!mw_xa) 908 return ERR_PTR(-ENOMEM); 909 xa_init(mw_xa); 910 911 xa_for_each(xa, index, ctx) { 912 struct cxl_port *port = ctx->port; 913 struct cxl_port *parent_port; 914 struct cxl_perf_ctx *mw_ctx; 915 struct cxl_dport *dport; 916 unsigned long mw_index; 917 void *ptr; 918 919 parent_port = to_cxl_port(port->dev.parent); 920 mw_index = (unsigned long)parent_port->uport_dev; 921 922 mw_ctx = xa_load(mw_xa, mw_index); 923 if (!mw_ctx) { 924 struct cxl_perf_ctx *n __free(kfree) = 925 kzalloc(sizeof(*n), GFP_KERNEL); 926 927 if (!n) 928 return ERR_PTR(-ENOMEM); 929 ptr = xa_store(mw_xa, mw_index, n, GFP_KERNEL); 930 if (xa_is_err(ptr)) 931 return ERR_PTR(xa_err(ptr)); 932 mw_ctx = no_free_ptr(n); 933 } 934 935 dport = port->parent_dport; 936 cxl_coordinates_combine(ctx->coord, ctx->coord, dport->coord); 937 cxl_bandwidth_add(mw_ctx->coord, mw_ctx->coord, ctx->coord); 938 } 939 940 return no_free_ptr(mw_xa); 941 } 942 943 /** 944 * cxl_region_update_bandwidth - Update the bandwidth access coordinates of a region 945 * @cxlr: The region being operated on 946 * @input_xa: xarray holds cxl_perf_ctx wht calculated bandwidth per ACPI0017 instance 947 */ 948 static void cxl_region_update_bandwidth(struct cxl_region *cxlr, 949 struct xarray *input_xa) 950 { 951 struct access_coordinate coord[ACCESS_COORDINATE_MAX]; 952 struct cxl_perf_ctx *ctx; 953 unsigned long index; 954 955 memset(coord, 0, sizeof(coord)); 956 xa_for_each(input_xa, index, ctx) 957 cxl_bandwidth_add(coord, coord, ctx->coord); 958 959 for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) { 960 cxlr->coord[i].read_bandwidth = coord[i].read_bandwidth; 961 cxlr->coord[i].write_bandwidth = coord[i].write_bandwidth; 962 } 963 } 964 965 /** 966 * cxl_region_shared_upstream_bandwidth_update - Recalculate the bandwidth for 967 * the region 968 * @cxlr: the cxl region to recalculate 969 * 970 * The function walks the topology from bottom up and calculates the bandwidth. It 971 * starts at the endpoints, processes at the switches if any, processes at the rootport 972 * level, at the host bridge level, and finally aggregates at the region. 973 */ 974 void cxl_region_shared_upstream_bandwidth_update(struct cxl_region *cxlr) 975 { 976 struct xarray *working_xa; 977 int root_count = 0; 978 bool is_root; 979 int rc; 980 981 lockdep_assert_held(&cxl_dpa_rwsem); 982 983 struct xarray *usp_xa __free(free_perf_xa) = 984 kzalloc(sizeof(*usp_xa), GFP_KERNEL); 985 986 if (!usp_xa) 987 return; 988 989 xa_init(usp_xa); 990 991 /* Collect bandwidth data from all the endpoints. */ 992 for (int i = 0; i < cxlr->params.nr_targets; i++) { 993 struct cxl_endpoint_decoder *cxled = cxlr->params.targets[i]; 994 995 is_root = false; 996 rc = cxl_endpoint_gather_bandwidth(cxlr, cxled, usp_xa, &is_root); 997 if (rc) 998 return; 999 root_count += is_root; 1000 } 1001 1002 /* Detect asymmetric hierarchy with some direct attached endpoints. */ 1003 if (root_count && root_count != cxlr->params.nr_targets) { 1004 dev_dbg(&cxlr->dev, 1005 "Asymmetric hierarchy detected, bandwidth not updated\n"); 1006 return; 1007 } 1008 1009 /* 1010 * Walk up one or more switches to deal with the bandwidth of the 1011 * switches if they exist. Endpoints directly attached to RPs skip 1012 * over this part. 1013 */ 1014 if (!root_count) { 1015 do { 1016 working_xa = cxl_switch_gather_bandwidth(cxlr, usp_xa, 1017 &is_root); 1018 if (IS_ERR(working_xa)) 1019 return; 1020 free_perf_xa(usp_xa); 1021 usp_xa = working_xa; 1022 } while (!is_root); 1023 } 1024 1025 /* Handle the bandwidth at the root port of the hierarchy */ 1026 working_xa = cxl_rp_gather_bandwidth(usp_xa); 1027 if (IS_ERR(working_xa)) 1028 return; 1029 free_perf_xa(usp_xa); 1030 usp_xa = working_xa; 1031 1032 /* Handle the bandwidth at the host bridge of the hierarchy */ 1033 working_xa = cxl_hb_gather_bandwidth(usp_xa); 1034 if (IS_ERR(working_xa)) 1035 return; 1036 free_perf_xa(usp_xa); 1037 usp_xa = working_xa; 1038 1039 /* 1040 * Aggregate all the bandwidth collected per CFMWS (ACPI0017) and 1041 * update the region bandwidth with the final calculated values. 1042 */ 1043 cxl_region_update_bandwidth(cxlr, usp_xa); 1044 } 1045 1046 void cxl_region_perf_data_calculate(struct cxl_region *cxlr, 1047 struct cxl_endpoint_decoder *cxled) 1048 { 1049 struct cxl_dpa_perf *perf; 1050 1051 lockdep_assert_held(&cxl_dpa_rwsem); 1052 1053 perf = cxled_get_dpa_perf(cxled, cxlr->mode); 1054 if (IS_ERR(perf)) 1055 return; 1056 1057 for (int i = 0; i < ACCESS_COORDINATE_MAX; i++) { 1058 /* Get total bandwidth and the worst latency for the cxl region */ 1059 cxlr->coord[i].read_latency = max_t(unsigned int, 1060 cxlr->coord[i].read_latency, 1061 perf->coord[i].read_latency); 1062 cxlr->coord[i].write_latency = max_t(unsigned int, 1063 cxlr->coord[i].write_latency, 1064 perf->coord[i].write_latency); 1065 cxlr->coord[i].read_bandwidth += perf->coord[i].read_bandwidth; 1066 cxlr->coord[i].write_bandwidth += perf->coord[i].write_bandwidth; 1067 } 1068 } 1069 1070 int cxl_update_hmat_access_coordinates(int nid, struct cxl_region *cxlr, 1071 enum access_coordinate_class access) 1072 { 1073 return hmat_update_target_coordinates(nid, &cxlr->coord[access], access); 1074 } 1075 1076 bool cxl_need_node_perf_attrs_update(int nid) 1077 { 1078 return !acpi_node_backed_by_real_pxm(nid); 1079 } 1080