xref: /linux/drivers/crypto/tegra/tegra-se-aes.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-only
2 // SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
3 /*
4  * Crypto driver to handle block cipher algorithms using NVIDIA Security Engine.
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/module.h>
10 #include <linux/of_device.h>
11 #include <linux/platform_device.h>
12 
13 #include <crypto/aead.h>
14 #include <crypto/aes.h>
15 #include <crypto/engine.h>
16 #include <crypto/gcm.h>
17 #include <crypto/scatterwalk.h>
18 #include <crypto/xts.h>
19 #include <crypto/internal/aead.h>
20 #include <crypto/internal/hash.h>
21 #include <crypto/internal/skcipher.h>
22 
23 #include "tegra-se.h"
24 
25 struct tegra_aes_ctx {
26 	struct tegra_se *se;
27 	u32 alg;
28 	u32 ivsize;
29 	u32 key1_id;
30 	u32 key2_id;
31 };
32 
33 struct tegra_aes_reqctx {
34 	struct tegra_se_datbuf datbuf;
35 	bool encrypt;
36 	u32 config;
37 	u32 crypto_config;
38 	u32 len;
39 	u32 *iv;
40 };
41 
42 struct tegra_aead_ctx {
43 	struct tegra_se *se;
44 	unsigned int authsize;
45 	u32 alg;
46 	u32 keylen;
47 	u32 key_id;
48 };
49 
50 struct tegra_aead_reqctx {
51 	struct tegra_se_datbuf inbuf;
52 	struct tegra_se_datbuf outbuf;
53 	struct scatterlist *src_sg;
54 	struct scatterlist *dst_sg;
55 	unsigned int assoclen;
56 	unsigned int cryptlen;
57 	unsigned int authsize;
58 	bool encrypt;
59 	u32 config;
60 	u32 crypto_config;
61 	u32 key_id;
62 	u32 iv[4];
63 	u8 authdata[16];
64 };
65 
66 struct tegra_cmac_ctx {
67 	struct tegra_se *se;
68 	unsigned int alg;
69 	u32 key_id;
70 	struct crypto_shash *fallback_tfm;
71 };
72 
73 struct tegra_cmac_reqctx {
74 	struct scatterlist *src_sg;
75 	struct tegra_se_datbuf datbuf;
76 	struct tegra_se_datbuf residue;
77 	unsigned int total_len;
78 	unsigned int blk_size;
79 	unsigned int task;
80 	u32 crypto_config;
81 	u32 config;
82 	u32 key_id;
83 	u32 *iv;
84 	u32 result[CMAC_RESULT_REG_COUNT];
85 };
86 
87 /* increment counter (128-bit int) */
88 static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums)
89 {
90 	do {
91 		--bits;
92 		nums += counter[bits];
93 		counter[bits] = nums & 0xff;
94 		nums >>= 8;
95 	} while (bits && nums);
96 }
97 
98 static void tegra_cbc_iv_copyback(struct skcipher_request *req, struct tegra_aes_ctx *ctx)
99 {
100 	struct tegra_aes_reqctx *rctx = skcipher_request_ctx(req);
101 	unsigned int offset;
102 
103 	offset = req->cryptlen - ctx->ivsize;
104 
105 	if (rctx->encrypt)
106 		memcpy(req->iv, rctx->datbuf.buf + offset, ctx->ivsize);
107 	else
108 		scatterwalk_map_and_copy(req->iv, req->src, offset, ctx->ivsize, 0);
109 }
110 
111 static void tegra_aes_update_iv(struct skcipher_request *req, struct tegra_aes_ctx *ctx)
112 {
113 	int num;
114 
115 	if (ctx->alg == SE_ALG_CBC) {
116 		tegra_cbc_iv_copyback(req, ctx);
117 	} else if (ctx->alg == SE_ALG_CTR) {
118 		num = req->cryptlen / ctx->ivsize;
119 		if (req->cryptlen % ctx->ivsize)
120 			num++;
121 
122 		ctr_iv_inc(req->iv, ctx->ivsize, num);
123 	}
124 }
125 
126 static int tegra234_aes_crypto_cfg(u32 alg, bool encrypt)
127 {
128 	switch (alg) {
129 	case SE_ALG_CMAC:
130 	case SE_ALG_GMAC:
131 	case SE_ALG_GCM:
132 	case SE_ALG_GCM_FINAL:
133 		return 0;
134 	case SE_ALG_CBC:
135 		if (encrypt)
136 			return SE_CRYPTO_CFG_CBC_ENCRYPT;
137 		else
138 			return SE_CRYPTO_CFG_CBC_DECRYPT;
139 	case SE_ALG_ECB:
140 		if (encrypt)
141 			return SE_CRYPTO_CFG_ECB_ENCRYPT;
142 		else
143 			return SE_CRYPTO_CFG_ECB_DECRYPT;
144 	case SE_ALG_XTS:
145 		if (encrypt)
146 			return SE_CRYPTO_CFG_XTS_ENCRYPT;
147 		else
148 			return SE_CRYPTO_CFG_XTS_DECRYPT;
149 
150 	case SE_ALG_CTR:
151 		return SE_CRYPTO_CFG_CTR;
152 	case SE_ALG_CBC_MAC:
153 		return SE_CRYPTO_CFG_CBC_MAC;
154 
155 	default:
156 		break;
157 	}
158 
159 	return -EINVAL;
160 }
161 
162 static int tegra234_aes_cfg(u32 alg, bool encrypt)
163 {
164 	switch (alg) {
165 	case SE_ALG_CBC:
166 	case SE_ALG_ECB:
167 	case SE_ALG_XTS:
168 	case SE_ALG_CTR:
169 		if (encrypt)
170 			return SE_CFG_AES_ENCRYPT;
171 		else
172 			return SE_CFG_AES_DECRYPT;
173 
174 	case SE_ALG_GMAC:
175 		if (encrypt)
176 			return SE_CFG_GMAC_ENCRYPT;
177 		else
178 			return SE_CFG_GMAC_DECRYPT;
179 
180 	case SE_ALG_GCM:
181 		if (encrypt)
182 			return SE_CFG_GCM_ENCRYPT;
183 		else
184 			return SE_CFG_GCM_DECRYPT;
185 
186 	case SE_ALG_GCM_FINAL:
187 		if (encrypt)
188 			return SE_CFG_GCM_FINAL_ENCRYPT;
189 		else
190 			return SE_CFG_GCM_FINAL_DECRYPT;
191 
192 	case SE_ALG_CMAC:
193 		return SE_CFG_CMAC;
194 
195 	case SE_ALG_CBC_MAC:
196 		return SE_AES_ENC_ALG_AES_ENC |
197 		       SE_AES_DST_HASH_REG;
198 	}
199 	return -EINVAL;
200 }
201 
202 static unsigned int tegra_aes_prep_cmd(struct tegra_aes_ctx *ctx,
203 				       struct tegra_aes_reqctx *rctx)
204 {
205 	unsigned int data_count, res_bits, i = 0, j;
206 	struct tegra_se *se = ctx->se;
207 	u32 *cpuvaddr = se->cmdbuf->addr;
208 	dma_addr_t addr = rctx->datbuf.addr;
209 
210 	data_count = rctx->len / AES_BLOCK_SIZE;
211 	res_bits = (rctx->len % AES_BLOCK_SIZE) * 8;
212 
213 	/*
214 	 * Hardware processes data_count + 1 blocks.
215 	 * Reduce 1 block if there is no residue
216 	 */
217 	if (!res_bits)
218 		data_count--;
219 
220 	if (rctx->iv) {
221 		cpuvaddr[i++] = host1x_opcode_setpayload(SE_CRYPTO_CTR_REG_COUNT);
222 		cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->linear_ctr);
223 		for (j = 0; j < SE_CRYPTO_CTR_REG_COUNT; j++)
224 			cpuvaddr[i++] = rctx->iv[j];
225 	}
226 
227 	cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1);
228 	cpuvaddr[i++] = SE_LAST_BLOCK_VAL(data_count) |
229 			SE_LAST_BLOCK_RES_BITS(res_bits);
230 
231 	cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6);
232 	cpuvaddr[i++] = rctx->config;
233 	cpuvaddr[i++] = rctx->crypto_config;
234 
235 	/* Source address setting */
236 	cpuvaddr[i++] = lower_32_bits(addr);
237 	cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(addr)) | SE_ADDR_HI_SZ(rctx->len);
238 
239 	/* Destination address setting */
240 	cpuvaddr[i++] = lower_32_bits(addr);
241 	cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(addr)) |
242 			SE_ADDR_HI_SZ(rctx->len);
243 
244 	cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
245 	cpuvaddr[i++] = SE_AES_OP_WRSTALL | SE_AES_OP_LASTBUF |
246 			SE_AES_OP_START;
247 
248 	cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
249 	cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
250 			host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
251 
252 	dev_dbg(se->dev, "cfg %#x crypto cfg %#x\n", rctx->config, rctx->crypto_config);
253 
254 	return i;
255 }
256 
257 static int tegra_aes_do_one_req(struct crypto_engine *engine, void *areq)
258 {
259 	struct skcipher_request *req = container_of(areq, struct skcipher_request, base);
260 	struct tegra_aes_ctx *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
261 	struct tegra_aes_reqctx *rctx = skcipher_request_ctx(req);
262 	struct tegra_se *se = ctx->se;
263 	unsigned int cmdlen;
264 	int ret;
265 
266 	rctx->datbuf.buf = dma_alloc_coherent(se->dev, SE_AES_BUFLEN,
267 					      &rctx->datbuf.addr, GFP_KERNEL);
268 	if (!rctx->datbuf.buf)
269 		return -ENOMEM;
270 
271 	rctx->datbuf.size = SE_AES_BUFLEN;
272 	rctx->iv = (u32 *)req->iv;
273 	rctx->len = req->cryptlen;
274 
275 	/* Pad input to AES Block size */
276 	if (ctx->alg != SE_ALG_XTS) {
277 		if (rctx->len % AES_BLOCK_SIZE)
278 			rctx->len += AES_BLOCK_SIZE - (rctx->len % AES_BLOCK_SIZE);
279 	}
280 
281 	scatterwalk_map_and_copy(rctx->datbuf.buf, req->src, 0, req->cryptlen, 0);
282 
283 	/* Prepare the command and submit for execution */
284 	cmdlen = tegra_aes_prep_cmd(ctx, rctx);
285 	ret = tegra_se_host1x_submit(se, cmdlen);
286 
287 	/* Copy the result */
288 	tegra_aes_update_iv(req, ctx);
289 	scatterwalk_map_and_copy(rctx->datbuf.buf, req->dst, 0, req->cryptlen, 1);
290 
291 	/* Free the buffer */
292 	dma_free_coherent(ctx->se->dev, SE_AES_BUFLEN,
293 			  rctx->datbuf.buf, rctx->datbuf.addr);
294 
295 	crypto_finalize_skcipher_request(se->engine, req, ret);
296 
297 	return 0;
298 }
299 
300 static int tegra_aes_cra_init(struct crypto_skcipher *tfm)
301 {
302 	struct tegra_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
303 	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
304 	struct tegra_se_alg *se_alg;
305 	const char *algname;
306 	int ret;
307 
308 	se_alg = container_of(alg, struct tegra_se_alg, alg.skcipher.base);
309 
310 	crypto_skcipher_set_reqsize(tfm, sizeof(struct tegra_aes_reqctx));
311 
312 	ctx->ivsize = crypto_skcipher_ivsize(tfm);
313 	ctx->se = se_alg->se_dev;
314 	ctx->key1_id = 0;
315 	ctx->key2_id = 0;
316 
317 	algname = crypto_tfm_alg_name(&tfm->base);
318 	ret = se_algname_to_algid(algname);
319 	if (ret < 0) {
320 		dev_err(ctx->se->dev, "invalid algorithm\n");
321 		return ret;
322 	}
323 
324 	ctx->alg = ret;
325 
326 	return 0;
327 }
328 
329 static void tegra_aes_cra_exit(struct crypto_skcipher *tfm)
330 {
331 	struct tegra_aes_ctx *ctx = crypto_tfm_ctx(&tfm->base);
332 
333 	if (ctx->key1_id)
334 		tegra_key_invalidate(ctx->se, ctx->key1_id, ctx->alg);
335 
336 	if (ctx->key2_id)
337 		tegra_key_invalidate(ctx->se, ctx->key2_id, ctx->alg);
338 }
339 
340 static int tegra_aes_setkey(struct crypto_skcipher *tfm,
341 			    const u8 *key, u32 keylen)
342 {
343 	struct tegra_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
344 
345 	if (aes_check_keylen(keylen)) {
346 		dev_dbg(ctx->se->dev, "invalid key length (%d)\n", keylen);
347 		return -EINVAL;
348 	}
349 
350 	return tegra_key_submit(ctx->se, key, keylen, ctx->alg, &ctx->key1_id);
351 }
352 
353 static int tegra_xts_setkey(struct crypto_skcipher *tfm,
354 			    const u8 *key, u32 keylen)
355 {
356 	struct tegra_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
357 	u32 len = keylen / 2;
358 	int ret;
359 
360 	ret = xts_verify_key(tfm, key, keylen);
361 	if (ret || aes_check_keylen(len)) {
362 		dev_dbg(ctx->se->dev, "invalid key length (%d)\n", keylen);
363 		return -EINVAL;
364 	}
365 
366 	ret = tegra_key_submit(ctx->se, key, len,
367 			       ctx->alg, &ctx->key1_id);
368 	if (ret)
369 		return ret;
370 
371 	return tegra_key_submit(ctx->se, key + len, len,
372 			       ctx->alg, &ctx->key2_id);
373 
374 	return 0;
375 }
376 
377 static int tegra_aes_kac_manifest(u32 user, u32 alg, u32 keylen)
378 {
379 	int manifest;
380 
381 	manifest = SE_KAC_USER_NS;
382 
383 	switch (alg) {
384 	case SE_ALG_CBC:
385 	case SE_ALG_ECB:
386 	case SE_ALG_CTR:
387 		manifest |= SE_KAC_ENC;
388 		break;
389 	case SE_ALG_XTS:
390 		manifest |= SE_KAC_XTS;
391 		break;
392 	case SE_ALG_GCM:
393 		manifest |= SE_KAC_GCM;
394 		break;
395 	case SE_ALG_CMAC:
396 		manifest |= SE_KAC_CMAC;
397 		break;
398 	case SE_ALG_CBC_MAC:
399 		manifest |= SE_KAC_ENC;
400 		break;
401 	default:
402 		return -EINVAL;
403 	}
404 
405 	switch (keylen) {
406 	case AES_KEYSIZE_128:
407 		manifest |= SE_KAC_SIZE_128;
408 		break;
409 	case AES_KEYSIZE_192:
410 		manifest |= SE_KAC_SIZE_192;
411 		break;
412 	case AES_KEYSIZE_256:
413 		manifest |= SE_KAC_SIZE_256;
414 		break;
415 	default:
416 		return -EINVAL;
417 	}
418 
419 	return manifest;
420 }
421 
422 static int tegra_aes_crypt(struct skcipher_request *req, bool encrypt)
423 
424 {
425 	struct crypto_skcipher *tfm;
426 	struct tegra_aes_ctx *ctx;
427 	struct tegra_aes_reqctx *rctx;
428 
429 	tfm = crypto_skcipher_reqtfm(req);
430 	ctx  = crypto_skcipher_ctx(tfm);
431 	rctx = skcipher_request_ctx(req);
432 
433 	if (ctx->alg != SE_ALG_XTS) {
434 		if (!IS_ALIGNED(req->cryptlen, crypto_skcipher_blocksize(tfm))) {
435 			dev_dbg(ctx->se->dev, "invalid length (%d)", req->cryptlen);
436 			return -EINVAL;
437 		}
438 	} else if (req->cryptlen < XTS_BLOCK_SIZE) {
439 		dev_dbg(ctx->se->dev, "invalid length (%d)", req->cryptlen);
440 		return -EINVAL;
441 	}
442 
443 	if (!req->cryptlen)
444 		return 0;
445 
446 	rctx->encrypt = encrypt;
447 	rctx->config = tegra234_aes_cfg(ctx->alg, encrypt);
448 	rctx->crypto_config = tegra234_aes_crypto_cfg(ctx->alg, encrypt);
449 	rctx->crypto_config |= SE_AES_KEY_INDEX(ctx->key1_id);
450 
451 	if (ctx->key2_id)
452 		rctx->crypto_config |= SE_AES_KEY2_INDEX(ctx->key2_id);
453 
454 	return crypto_transfer_skcipher_request_to_engine(ctx->se->engine, req);
455 }
456 
457 static int tegra_aes_encrypt(struct skcipher_request *req)
458 {
459 	return tegra_aes_crypt(req, true);
460 }
461 
462 static int tegra_aes_decrypt(struct skcipher_request *req)
463 {
464 	return tegra_aes_crypt(req, false);
465 }
466 
467 static struct tegra_se_alg tegra_aes_algs[] = {
468 	{
469 		.alg.skcipher.op.do_one_request	= tegra_aes_do_one_req,
470 		.alg.skcipher.base = {
471 			.init = tegra_aes_cra_init,
472 			.exit = tegra_aes_cra_exit,
473 			.setkey	= tegra_aes_setkey,
474 			.encrypt = tegra_aes_encrypt,
475 			.decrypt = tegra_aes_decrypt,
476 			.min_keysize = AES_MIN_KEY_SIZE,
477 			.max_keysize = AES_MAX_KEY_SIZE,
478 			.ivsize	= AES_BLOCK_SIZE,
479 			.base = {
480 				.cra_name = "cbc(aes)",
481 				.cra_driver_name = "cbc-aes-tegra",
482 				.cra_priority = 500,
483 				.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC,
484 				.cra_blocksize = AES_BLOCK_SIZE,
485 				.cra_ctxsize = sizeof(struct tegra_aes_ctx),
486 				.cra_alignmask = 0xf,
487 				.cra_module = THIS_MODULE,
488 			},
489 		}
490 	}, {
491 		.alg.skcipher.op.do_one_request	= tegra_aes_do_one_req,
492 		.alg.skcipher.base = {
493 			.init = tegra_aes_cra_init,
494 			.exit = tegra_aes_cra_exit,
495 			.setkey	= tegra_aes_setkey,
496 			.encrypt = tegra_aes_encrypt,
497 			.decrypt = tegra_aes_decrypt,
498 			.min_keysize = AES_MIN_KEY_SIZE,
499 			.max_keysize = AES_MAX_KEY_SIZE,
500 			.base = {
501 				.cra_name = "ecb(aes)",
502 				.cra_driver_name = "ecb-aes-tegra",
503 				.cra_priority = 500,
504 				.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC,
505 				.cra_blocksize = AES_BLOCK_SIZE,
506 				.cra_ctxsize = sizeof(struct tegra_aes_ctx),
507 				.cra_alignmask = 0xf,
508 				.cra_module = THIS_MODULE,
509 			},
510 		}
511 	}, {
512 		.alg.skcipher.op.do_one_request	= tegra_aes_do_one_req,
513 		.alg.skcipher.base = {
514 			.init = tegra_aes_cra_init,
515 			.exit = tegra_aes_cra_exit,
516 			.setkey = tegra_aes_setkey,
517 			.encrypt = tegra_aes_encrypt,
518 			.decrypt = tegra_aes_decrypt,
519 			.min_keysize = AES_MIN_KEY_SIZE,
520 			.max_keysize = AES_MAX_KEY_SIZE,
521 			.ivsize	= AES_BLOCK_SIZE,
522 			.base = {
523 				.cra_name = "ctr(aes)",
524 				.cra_driver_name = "ctr-aes-tegra",
525 				.cra_priority = 500,
526 				.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC,
527 				.cra_blocksize = 1,
528 				.cra_ctxsize = sizeof(struct tegra_aes_ctx),
529 				.cra_alignmask = 0xf,
530 				.cra_module = THIS_MODULE,
531 			},
532 		}
533 	}, {
534 		.alg.skcipher.op.do_one_request	= tegra_aes_do_one_req,
535 		.alg.skcipher.base = {
536 			.init = tegra_aes_cra_init,
537 			.exit = tegra_aes_cra_exit,
538 			.setkey	= tegra_xts_setkey,
539 			.encrypt = tegra_aes_encrypt,
540 			.decrypt = tegra_aes_decrypt,
541 			.min_keysize = 2 * AES_MIN_KEY_SIZE,
542 			.max_keysize = 2 * AES_MAX_KEY_SIZE,
543 			.ivsize	= AES_BLOCK_SIZE,
544 			.base = {
545 				.cra_name = "xts(aes)",
546 				.cra_driver_name = "xts-aes-tegra",
547 				.cra_priority = 500,
548 				.cra_blocksize = AES_BLOCK_SIZE,
549 				.cra_ctxsize	   = sizeof(struct tegra_aes_ctx),
550 				.cra_alignmask	   = (__alignof__(u64) - 1),
551 				.cra_module	   = THIS_MODULE,
552 			},
553 		}
554 	},
555 };
556 
557 static unsigned int tegra_gmac_prep_cmd(struct tegra_aead_ctx *ctx,
558 					struct tegra_aead_reqctx *rctx)
559 {
560 	unsigned int data_count, res_bits, i = 0;
561 	struct tegra_se *se = ctx->se;
562 	u32 *cpuvaddr = se->cmdbuf->addr;
563 
564 	data_count = (rctx->assoclen / AES_BLOCK_SIZE);
565 	res_bits = (rctx->assoclen % AES_BLOCK_SIZE) * 8;
566 
567 	/*
568 	 * Hardware processes data_count + 1 blocks.
569 	 * Reduce 1 block if there is no residue
570 	 */
571 	if (!res_bits)
572 		data_count--;
573 
574 	cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1);
575 	cpuvaddr[i++] = SE_LAST_BLOCK_VAL(data_count) |
576 			SE_LAST_BLOCK_RES_BITS(res_bits);
577 
578 	cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 4);
579 	cpuvaddr[i++] = rctx->config;
580 	cpuvaddr[i++] = rctx->crypto_config;
581 	cpuvaddr[i++] = lower_32_bits(rctx->inbuf.addr);
582 	cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->inbuf.addr)) |
583 			SE_ADDR_HI_SZ(rctx->assoclen);
584 
585 	cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
586 	cpuvaddr[i++] = SE_AES_OP_WRSTALL | SE_AES_OP_FINAL |
587 			SE_AES_OP_INIT | SE_AES_OP_LASTBUF |
588 			SE_AES_OP_START;
589 
590 	cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
591 	cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
592 			host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
593 
594 	return i;
595 }
596 
597 static unsigned int tegra_gcm_crypt_prep_cmd(struct tegra_aead_ctx *ctx,
598 					     struct tegra_aead_reqctx *rctx)
599 {
600 	unsigned int data_count, res_bits, i = 0, j;
601 	struct tegra_se *se = ctx->se;
602 	u32 *cpuvaddr = se->cmdbuf->addr, op;
603 
604 	data_count = (rctx->cryptlen / AES_BLOCK_SIZE);
605 	res_bits = (rctx->cryptlen % AES_BLOCK_SIZE) * 8;
606 	op = SE_AES_OP_WRSTALL | SE_AES_OP_FINAL |
607 	     SE_AES_OP_LASTBUF | SE_AES_OP_START;
608 
609 	/*
610 	 * If there is no assoc data,
611 	 * this will be the init command
612 	 */
613 	if (!rctx->assoclen)
614 		op |= SE_AES_OP_INIT;
615 
616 	/*
617 	 * Hardware processes data_count + 1 blocks.
618 	 * Reduce 1 block if there is no residue
619 	 */
620 	if (!res_bits)
621 		data_count--;
622 
623 	cpuvaddr[i++] = host1x_opcode_setpayload(SE_CRYPTO_CTR_REG_COUNT);
624 	cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->linear_ctr);
625 	for (j = 0; j < SE_CRYPTO_CTR_REG_COUNT; j++)
626 		cpuvaddr[i++] = rctx->iv[j];
627 
628 	cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1);
629 	cpuvaddr[i++] = SE_LAST_BLOCK_VAL(data_count) |
630 			SE_LAST_BLOCK_RES_BITS(res_bits);
631 
632 	cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6);
633 	cpuvaddr[i++] = rctx->config;
634 	cpuvaddr[i++] = rctx->crypto_config;
635 
636 	/* Source Address */
637 	cpuvaddr[i++] = lower_32_bits(rctx->inbuf.addr);
638 	cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->inbuf.addr)) |
639 			SE_ADDR_HI_SZ(rctx->cryptlen);
640 
641 	/* Destination Address */
642 	cpuvaddr[i++] = lower_32_bits(rctx->outbuf.addr);
643 	cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->outbuf.addr)) |
644 			SE_ADDR_HI_SZ(rctx->cryptlen);
645 
646 	cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
647 	cpuvaddr[i++] = op;
648 
649 	cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
650 	cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
651 			host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
652 
653 	dev_dbg(se->dev, "cfg %#x crypto cfg %#x\n", rctx->config, rctx->crypto_config);
654 	return i;
655 }
656 
657 static int tegra_gcm_prep_final_cmd(struct tegra_se *se, u32 *cpuvaddr,
658 				    struct tegra_aead_reqctx *rctx)
659 {
660 	unsigned int i = 0, j;
661 	u32 op;
662 
663 	op = SE_AES_OP_WRSTALL | SE_AES_OP_FINAL |
664 	     SE_AES_OP_LASTBUF | SE_AES_OP_START;
665 
666 	/*
667 	 * Set init for zero sized vector
668 	 */
669 	if (!rctx->assoclen && !rctx->cryptlen)
670 		op |= SE_AES_OP_INIT;
671 
672 	cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->aad_len, 2);
673 	cpuvaddr[i++] = rctx->assoclen * 8;
674 	cpuvaddr[i++] = 0;
675 
676 	cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->cryp_msg_len, 2);
677 	cpuvaddr[i++] = rctx->cryptlen * 8;
678 	cpuvaddr[i++] = 0;
679 
680 	cpuvaddr[i++] = host1x_opcode_setpayload(SE_CRYPTO_CTR_REG_COUNT);
681 	cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->linear_ctr);
682 	for (j = 0; j < SE_CRYPTO_CTR_REG_COUNT; j++)
683 		cpuvaddr[i++] = rctx->iv[j];
684 
685 	cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6);
686 	cpuvaddr[i++] = rctx->config;
687 	cpuvaddr[i++] = rctx->crypto_config;
688 	cpuvaddr[i++] = 0;
689 	cpuvaddr[i++] = 0;
690 
691 	/* Destination Address */
692 	cpuvaddr[i++] = lower_32_bits(rctx->outbuf.addr);
693 	cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->outbuf.addr)) |
694 			SE_ADDR_HI_SZ(0x10); /* HW always generates 128-bit tag */
695 
696 	cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
697 	cpuvaddr[i++] = op;
698 
699 	cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
700 	cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
701 			host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
702 
703 	dev_dbg(se->dev, "cfg %#x crypto cfg %#x\n", rctx->config, rctx->crypto_config);
704 
705 	return i;
706 }
707 
708 static int tegra_gcm_do_gmac(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx)
709 {
710 	struct tegra_se *se = ctx->se;
711 	unsigned int cmdlen;
712 
713 	scatterwalk_map_and_copy(rctx->inbuf.buf,
714 				 rctx->src_sg, 0, rctx->assoclen, 0);
715 
716 	rctx->config = tegra234_aes_cfg(SE_ALG_GMAC, rctx->encrypt);
717 	rctx->crypto_config = tegra234_aes_crypto_cfg(SE_ALG_GMAC, rctx->encrypt) |
718 			      SE_AES_KEY_INDEX(ctx->key_id);
719 
720 	cmdlen = tegra_gmac_prep_cmd(ctx, rctx);
721 
722 	return tegra_se_host1x_submit(se, cmdlen);
723 }
724 
725 static int tegra_gcm_do_crypt(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx)
726 {
727 	struct tegra_se *se = ctx->se;
728 	int cmdlen, ret;
729 
730 	scatterwalk_map_and_copy(rctx->inbuf.buf, rctx->src_sg,
731 				 rctx->assoclen, rctx->cryptlen, 0);
732 
733 	rctx->config = tegra234_aes_cfg(SE_ALG_GCM, rctx->encrypt);
734 	rctx->crypto_config = tegra234_aes_crypto_cfg(SE_ALG_GCM, rctx->encrypt) |
735 			      SE_AES_KEY_INDEX(ctx->key_id);
736 
737 	/* Prepare command and submit */
738 	cmdlen = tegra_gcm_crypt_prep_cmd(ctx, rctx);
739 	ret = tegra_se_host1x_submit(se, cmdlen);
740 	if (ret)
741 		return ret;
742 
743 	/* Copy the result */
744 	scatterwalk_map_and_copy(rctx->outbuf.buf, rctx->dst_sg,
745 				 rctx->assoclen, rctx->cryptlen, 1);
746 
747 	return 0;
748 }
749 
750 static int tegra_gcm_do_final(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx)
751 {
752 	struct tegra_se *se = ctx->se;
753 	u32 *cpuvaddr = se->cmdbuf->addr;
754 	int cmdlen, ret, offset;
755 
756 	rctx->config = tegra234_aes_cfg(SE_ALG_GCM_FINAL, rctx->encrypt);
757 	rctx->crypto_config = tegra234_aes_crypto_cfg(SE_ALG_GCM_FINAL, rctx->encrypt) |
758 			      SE_AES_KEY_INDEX(ctx->key_id);
759 
760 	/* Prepare command and submit */
761 	cmdlen = tegra_gcm_prep_final_cmd(se, cpuvaddr, rctx);
762 	ret = tegra_se_host1x_submit(se, cmdlen);
763 	if (ret)
764 		return ret;
765 
766 	if (rctx->encrypt) {
767 		/* Copy the result */
768 		offset = rctx->assoclen + rctx->cryptlen;
769 		scatterwalk_map_and_copy(rctx->outbuf.buf, rctx->dst_sg,
770 					 offset, rctx->authsize, 1);
771 	}
772 
773 	return 0;
774 }
775 
776 static int tegra_gcm_do_verify(struct tegra_se *se, struct tegra_aead_reqctx *rctx)
777 {
778 	unsigned int offset;
779 	u8 mac[16];
780 
781 	offset = rctx->assoclen + rctx->cryptlen;
782 	scatterwalk_map_and_copy(mac, rctx->src_sg, offset, rctx->authsize, 0);
783 
784 	if (crypto_memneq(rctx->outbuf.buf, mac, rctx->authsize))
785 		return -EBADMSG;
786 
787 	return 0;
788 }
789 
790 static inline int tegra_ccm_check_iv(const u8 *iv)
791 {
792 	/* iv[0] gives value of q-1
793 	 * 2 <= q <= 8 as per NIST 800-38C notation
794 	 * 2 <= L <= 8, so 1 <= L' <= 7. as per rfc 3610 notation
795 	 */
796 	if (iv[0] < 1 || iv[0] > 7) {
797 		pr_debug("ccm_check_iv failed %d\n", iv[0]);
798 		return -EINVAL;
799 	}
800 
801 	return 0;
802 }
803 
804 static unsigned int tegra_cbcmac_prep_cmd(struct tegra_aead_ctx *ctx,
805 					  struct tegra_aead_reqctx *rctx)
806 {
807 	unsigned int data_count, i = 0;
808 	struct tegra_se *se = ctx->se;
809 	u32 *cpuvaddr = se->cmdbuf->addr;
810 
811 	data_count = (rctx->inbuf.size / AES_BLOCK_SIZE) - 1;
812 
813 	cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1);
814 	cpuvaddr[i++] = SE_LAST_BLOCK_VAL(data_count);
815 
816 	cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6);
817 	cpuvaddr[i++] = rctx->config;
818 	cpuvaddr[i++] = rctx->crypto_config;
819 
820 	cpuvaddr[i++] = lower_32_bits(rctx->inbuf.addr);
821 	cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->inbuf.addr)) |
822 			SE_ADDR_HI_SZ(rctx->inbuf.size);
823 
824 	cpuvaddr[i++] = lower_32_bits(rctx->outbuf.addr);
825 	cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->outbuf.addr)) |
826 			SE_ADDR_HI_SZ(0x10); /* HW always generates 128 bit tag */
827 
828 	cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
829 	cpuvaddr[i++] = SE_AES_OP_WRSTALL |
830 			SE_AES_OP_LASTBUF | SE_AES_OP_START;
831 
832 	cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
833 	cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
834 			host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
835 
836 	return i;
837 }
838 
839 static unsigned int tegra_ctr_prep_cmd(struct tegra_aead_ctx *ctx,
840 				       struct tegra_aead_reqctx *rctx)
841 {
842 	unsigned int i = 0, j;
843 	struct tegra_se *se = ctx->se;
844 	u32 *cpuvaddr = se->cmdbuf->addr;
845 
846 	cpuvaddr[i++] = host1x_opcode_setpayload(SE_CRYPTO_CTR_REG_COUNT);
847 	cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->linear_ctr);
848 	for (j = 0; j < SE_CRYPTO_CTR_REG_COUNT; j++)
849 		cpuvaddr[i++] = rctx->iv[j];
850 
851 	cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1);
852 	cpuvaddr[i++] = (rctx->inbuf.size / AES_BLOCK_SIZE) - 1;
853 	cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6);
854 	cpuvaddr[i++] = rctx->config;
855 	cpuvaddr[i++] = rctx->crypto_config;
856 
857 	/* Source address setting */
858 	cpuvaddr[i++] = lower_32_bits(rctx->inbuf.addr);
859 	cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->inbuf.addr)) |
860 			SE_ADDR_HI_SZ(rctx->inbuf.size);
861 
862 	/* Destination address setting */
863 	cpuvaddr[i++] = lower_32_bits(rctx->outbuf.addr);
864 	cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->outbuf.addr)) |
865 			SE_ADDR_HI_SZ(rctx->inbuf.size);
866 
867 	cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
868 	cpuvaddr[i++] = SE_AES_OP_WRSTALL | SE_AES_OP_LASTBUF |
869 			SE_AES_OP_START;
870 
871 	cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
872 	cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
873 			host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
874 
875 	dev_dbg(se->dev, "cfg %#x crypto cfg %#x\n",
876 		rctx->config, rctx->crypto_config);
877 
878 	return i;
879 }
880 
881 static int tegra_ccm_do_cbcmac(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx)
882 {
883 	struct tegra_se *se = ctx->se;
884 	int cmdlen;
885 
886 	rctx->config = tegra234_aes_cfg(SE_ALG_CBC_MAC, rctx->encrypt);
887 	rctx->crypto_config = tegra234_aes_crypto_cfg(SE_ALG_CBC_MAC,
888 						      rctx->encrypt) |
889 						      SE_AES_KEY_INDEX(ctx->key_id);
890 
891 	/* Prepare command and submit */
892 	cmdlen = tegra_cbcmac_prep_cmd(ctx, rctx);
893 
894 	return tegra_se_host1x_submit(se, cmdlen);
895 }
896 
897 static int tegra_ccm_set_msg_len(u8 *block, unsigned int msglen, int csize)
898 {
899 	__be32 data;
900 
901 	memset(block, 0, csize);
902 	block += csize;
903 
904 	if (csize >= 4)
905 		csize = 4;
906 	else if (msglen > (1 << (8 * csize)))
907 		return -EOVERFLOW;
908 
909 	data = cpu_to_be32(msglen);
910 	memcpy(block - csize, (u8 *)&data + 4 - csize, csize);
911 
912 	return 0;
913 }
914 
915 static int tegra_ccm_format_nonce(struct tegra_aead_reqctx *rctx, u8 *nonce)
916 {
917 	unsigned int q, t;
918 	u8 *q_ptr, *iv = (u8 *)rctx->iv;
919 
920 	memcpy(nonce, rctx->iv, 16);
921 
922 	/*** 1. Prepare Flags Octet ***/
923 
924 	/* Encode t (mac length) */
925 	t = rctx->authsize;
926 	nonce[0] |= (((t - 2) / 2) << 3);
927 
928 	/* Adata */
929 	if (rctx->assoclen)
930 		nonce[0] |= (1 << 6);
931 
932 	/*** Encode Q - message length ***/
933 	q = iv[0] + 1;
934 	q_ptr = nonce + 16 - q;
935 
936 	return tegra_ccm_set_msg_len(q_ptr, rctx->cryptlen, q);
937 }
938 
939 static int tegra_ccm_format_adata(u8 *adata, unsigned int a)
940 {
941 	int len = 0;
942 
943 	/* add control info for associated data
944 	 * RFC 3610 and NIST Special Publication 800-38C
945 	 */
946 	if (a < 65280) {
947 		*(__be16 *)adata = cpu_to_be16(a);
948 		len = 2;
949 	} else	{
950 		*(__be16 *)adata = cpu_to_be16(0xfffe);
951 		*(__be32 *)&adata[2] = cpu_to_be32(a);
952 		len = 6;
953 	}
954 
955 	return len;
956 }
957 
958 static int tegra_ccm_add_padding(u8 *buf, unsigned int len)
959 {
960 	unsigned int padlen = 16 - (len % 16);
961 	u8 padding[16] = {0};
962 
963 	if (padlen == 16)
964 		return 0;
965 
966 	memcpy(buf, padding, padlen);
967 
968 	return padlen;
969 }
970 
971 static int tegra_ccm_format_blocks(struct tegra_aead_reqctx *rctx)
972 {
973 	unsigned int alen = 0, offset = 0;
974 	u8 nonce[16], adata[16];
975 	int ret;
976 
977 	ret = tegra_ccm_format_nonce(rctx, nonce);
978 	if (ret)
979 		return ret;
980 
981 	memcpy(rctx->inbuf.buf, nonce, 16);
982 	offset = 16;
983 
984 	if (rctx->assoclen) {
985 		alen = tegra_ccm_format_adata(adata, rctx->assoclen);
986 		memcpy(rctx->inbuf.buf + offset, adata, alen);
987 		offset += alen;
988 
989 		scatterwalk_map_and_copy(rctx->inbuf.buf + offset,
990 					 rctx->src_sg, 0, rctx->assoclen, 0);
991 
992 		offset += rctx->assoclen;
993 		offset += tegra_ccm_add_padding(rctx->inbuf.buf + offset,
994 					 rctx->assoclen + alen);
995 	}
996 
997 	return offset;
998 }
999 
1000 static int tegra_ccm_mac_result(struct tegra_se *se, struct tegra_aead_reqctx *rctx)
1001 {
1002 	u32 result[16];
1003 	int i, ret;
1004 
1005 	/* Read and clear Result */
1006 	for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
1007 		result[i] = readl(se->base + se->hw->regs->result + (i * 4));
1008 
1009 	for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
1010 		writel(0, se->base + se->hw->regs->result + (i * 4));
1011 
1012 	if (rctx->encrypt) {
1013 		memcpy(rctx->authdata, result, rctx->authsize);
1014 	} else {
1015 		ret = crypto_memneq(rctx->authdata, result, rctx->authsize);
1016 		if (ret)
1017 			return -EBADMSG;
1018 	}
1019 
1020 	return 0;
1021 }
1022 
1023 static int tegra_ccm_ctr_result(struct tegra_se *se, struct tegra_aead_reqctx *rctx)
1024 {
1025 	/* Copy result */
1026 	scatterwalk_map_and_copy(rctx->outbuf.buf + 16, rctx->dst_sg,
1027 				 rctx->assoclen, rctx->cryptlen, 1);
1028 
1029 	if (rctx->encrypt)
1030 		scatterwalk_map_and_copy(rctx->outbuf.buf, rctx->dst_sg,
1031 					 rctx->assoclen + rctx->cryptlen,
1032 					 rctx->authsize, 1);
1033 	else
1034 		memcpy(rctx->authdata, rctx->outbuf.buf, rctx->authsize);
1035 
1036 	return 0;
1037 }
1038 
1039 static int tegra_ccm_compute_auth(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx)
1040 {
1041 	struct tegra_se *se = ctx->se;
1042 	struct scatterlist *sg;
1043 	int offset, ret;
1044 
1045 	offset = tegra_ccm_format_blocks(rctx);
1046 	if (offset < 0)
1047 		return -EINVAL;
1048 
1049 	/* Copy plain text to the buffer */
1050 	sg = rctx->encrypt ? rctx->src_sg : rctx->dst_sg;
1051 
1052 	scatterwalk_map_and_copy(rctx->inbuf.buf + offset,
1053 				 sg, rctx->assoclen,
1054 				 rctx->cryptlen, 0);
1055 	offset += rctx->cryptlen;
1056 	offset += tegra_ccm_add_padding(rctx->inbuf.buf + offset, rctx->cryptlen);
1057 
1058 	rctx->inbuf.size = offset;
1059 
1060 	ret = tegra_ccm_do_cbcmac(ctx, rctx);
1061 	if (ret)
1062 		return ret;
1063 
1064 	return tegra_ccm_mac_result(se, rctx);
1065 }
1066 
1067 static int tegra_ccm_do_ctr(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx)
1068 {
1069 	struct tegra_se *se = ctx->se;
1070 	unsigned int cmdlen, offset = 0;
1071 	struct scatterlist *sg = rctx->src_sg;
1072 	int ret;
1073 
1074 	rctx->config = tegra234_aes_cfg(SE_ALG_CTR, rctx->encrypt);
1075 	rctx->crypto_config = tegra234_aes_crypto_cfg(SE_ALG_CTR, rctx->encrypt) |
1076 			      SE_AES_KEY_INDEX(ctx->key_id);
1077 
1078 	/* Copy authdata in the top of buffer for encryption/decryption */
1079 	if (rctx->encrypt)
1080 		memcpy(rctx->inbuf.buf, rctx->authdata, rctx->authsize);
1081 	else
1082 		scatterwalk_map_and_copy(rctx->inbuf.buf, sg,
1083 					 rctx->assoclen + rctx->cryptlen,
1084 					 rctx->authsize, 0);
1085 
1086 	offset += rctx->authsize;
1087 	offset += tegra_ccm_add_padding(rctx->inbuf.buf + offset, rctx->authsize);
1088 
1089 	/* If there is no cryptlen, proceed to submit the task */
1090 	if (rctx->cryptlen) {
1091 		scatterwalk_map_and_copy(rctx->inbuf.buf + offset, sg,
1092 					 rctx->assoclen, rctx->cryptlen, 0);
1093 		offset += rctx->cryptlen;
1094 		offset += tegra_ccm_add_padding(rctx->inbuf.buf + offset, rctx->cryptlen);
1095 	}
1096 
1097 	rctx->inbuf.size = offset;
1098 
1099 	/* Prepare command and submit */
1100 	cmdlen = tegra_ctr_prep_cmd(ctx, rctx);
1101 	ret = tegra_se_host1x_submit(se, cmdlen);
1102 	if (ret)
1103 		return ret;
1104 
1105 	return tegra_ccm_ctr_result(se, rctx);
1106 }
1107 
1108 static int tegra_ccm_crypt_init(struct aead_request *req, struct tegra_se *se,
1109 				struct tegra_aead_reqctx *rctx)
1110 {
1111 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1112 	u8 *iv = (u8 *)rctx->iv;
1113 	int ret, i;
1114 
1115 	rctx->src_sg = req->src;
1116 	rctx->dst_sg = req->dst;
1117 	rctx->assoclen = req->assoclen;
1118 	rctx->authsize = crypto_aead_authsize(tfm);
1119 
1120 	memcpy(iv, req->iv, 16);
1121 
1122 	ret = tegra_ccm_check_iv(iv);
1123 	if (ret)
1124 		return ret;
1125 
1126 	/* Note: rfc 3610 and NIST 800-38C require counter (ctr_0) of
1127 	 * zero to encrypt auth tag.
1128 	 * req->iv has the formatted ctr_0 (i.e. Flags || N || 0).
1129 	 */
1130 	memset(iv + 15 - iv[0], 0, iv[0] + 1);
1131 
1132 	/* Clear any previous result */
1133 	for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
1134 		writel(0, se->base + se->hw->regs->result + (i * 4));
1135 
1136 	return 0;
1137 }
1138 
1139 static int tegra_ccm_do_one_req(struct crypto_engine *engine, void *areq)
1140 {
1141 	struct aead_request *req = container_of(areq, struct aead_request, base);
1142 	struct tegra_aead_reqctx *rctx = aead_request_ctx(req);
1143 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1144 	struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm);
1145 	struct tegra_se *se = ctx->se;
1146 	int ret;
1147 
1148 	/* Allocate buffers required */
1149 	rctx->inbuf.buf = dma_alloc_coherent(ctx->se->dev, SE_AES_BUFLEN,
1150 					     &rctx->inbuf.addr, GFP_KERNEL);
1151 	if (!rctx->inbuf.buf)
1152 		return -ENOMEM;
1153 
1154 	rctx->inbuf.size = SE_AES_BUFLEN;
1155 
1156 	rctx->outbuf.buf = dma_alloc_coherent(ctx->se->dev, SE_AES_BUFLEN,
1157 					      &rctx->outbuf.addr, GFP_KERNEL);
1158 	if (!rctx->outbuf.buf) {
1159 		ret = -ENOMEM;
1160 		goto outbuf_err;
1161 	}
1162 
1163 	rctx->outbuf.size = SE_AES_BUFLEN;
1164 
1165 	ret = tegra_ccm_crypt_init(req, se, rctx);
1166 	if (ret)
1167 		goto out;
1168 
1169 	if (rctx->encrypt) {
1170 		rctx->cryptlen = req->cryptlen;
1171 
1172 		/* CBC MAC Operation */
1173 		ret = tegra_ccm_compute_auth(ctx, rctx);
1174 		if (ret)
1175 			goto out;
1176 
1177 		/* CTR operation */
1178 		ret = tegra_ccm_do_ctr(ctx, rctx);
1179 		if (ret)
1180 			goto out;
1181 	} else {
1182 		rctx->cryptlen = req->cryptlen - ctx->authsize;
1183 
1184 		/* CTR operation */
1185 		ret = tegra_ccm_do_ctr(ctx, rctx);
1186 		if (ret)
1187 			goto out;
1188 
1189 		/* CBC MAC Operation */
1190 		ret = tegra_ccm_compute_auth(ctx, rctx);
1191 		if (ret)
1192 			goto out;
1193 	}
1194 
1195 out:
1196 	dma_free_coherent(ctx->se->dev, SE_AES_BUFLEN,
1197 			  rctx->outbuf.buf, rctx->outbuf.addr);
1198 
1199 outbuf_err:
1200 	dma_free_coherent(ctx->se->dev, SE_AES_BUFLEN,
1201 			  rctx->inbuf.buf, rctx->inbuf.addr);
1202 
1203 	crypto_finalize_aead_request(ctx->se->engine, req, ret);
1204 
1205 	return 0;
1206 }
1207 
1208 static int tegra_gcm_do_one_req(struct crypto_engine *engine, void *areq)
1209 {
1210 	struct aead_request *req = container_of(areq, struct aead_request, base);
1211 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1212 	struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm);
1213 	struct tegra_aead_reqctx *rctx = aead_request_ctx(req);
1214 	int ret;
1215 
1216 	/* Allocate buffers required */
1217 	rctx->inbuf.buf = dma_alloc_coherent(ctx->se->dev, SE_AES_BUFLEN,
1218 					     &rctx->inbuf.addr, GFP_KERNEL);
1219 	if (!rctx->inbuf.buf)
1220 		return -ENOMEM;
1221 
1222 	rctx->inbuf.size = SE_AES_BUFLEN;
1223 
1224 	rctx->outbuf.buf = dma_alloc_coherent(ctx->se->dev, SE_AES_BUFLEN,
1225 					      &rctx->outbuf.addr, GFP_KERNEL);
1226 	if (!rctx->outbuf.buf) {
1227 		ret = -ENOMEM;
1228 		goto outbuf_err;
1229 	}
1230 
1231 	rctx->outbuf.size = SE_AES_BUFLEN;
1232 
1233 	rctx->src_sg = req->src;
1234 	rctx->dst_sg = req->dst;
1235 	rctx->assoclen = req->assoclen;
1236 	rctx->authsize = crypto_aead_authsize(tfm);
1237 
1238 	if (rctx->encrypt)
1239 		rctx->cryptlen = req->cryptlen;
1240 	else
1241 		rctx->cryptlen = req->cryptlen - ctx->authsize;
1242 
1243 	memcpy(rctx->iv, req->iv, GCM_AES_IV_SIZE);
1244 	rctx->iv[3] = (1 << 24);
1245 
1246 	/* If there is associated data perform GMAC operation */
1247 	if (rctx->assoclen) {
1248 		ret = tegra_gcm_do_gmac(ctx, rctx);
1249 		if (ret)
1250 			goto out;
1251 	}
1252 
1253 	/* GCM Encryption/Decryption operation */
1254 	if (rctx->cryptlen) {
1255 		ret = tegra_gcm_do_crypt(ctx, rctx);
1256 		if (ret)
1257 			goto out;
1258 	}
1259 
1260 	/* GCM_FINAL operation */
1261 	ret = tegra_gcm_do_final(ctx, rctx);
1262 	if (ret)
1263 		goto out;
1264 
1265 	if (!rctx->encrypt)
1266 		ret = tegra_gcm_do_verify(ctx->se, rctx);
1267 
1268 out:
1269 	dma_free_coherent(ctx->se->dev, SE_AES_BUFLEN,
1270 			  rctx->outbuf.buf, rctx->outbuf.addr);
1271 
1272 outbuf_err:
1273 	dma_free_coherent(ctx->se->dev, SE_AES_BUFLEN,
1274 			  rctx->inbuf.buf, rctx->inbuf.addr);
1275 
1276 	/* Finalize the request if there are no errors */
1277 	crypto_finalize_aead_request(ctx->se->engine, req, ret);
1278 
1279 	return 0;
1280 }
1281 
1282 static int tegra_aead_cra_init(struct crypto_aead *tfm)
1283 {
1284 	struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm);
1285 	struct aead_alg *alg = crypto_aead_alg(tfm);
1286 	struct tegra_se_alg *se_alg;
1287 	const char *algname;
1288 	int ret;
1289 
1290 	algname = crypto_tfm_alg_name(&tfm->base);
1291 
1292 	se_alg = container_of(alg, struct tegra_se_alg, alg.aead.base);
1293 
1294 	crypto_aead_set_reqsize(tfm, sizeof(struct tegra_aead_reqctx));
1295 
1296 	ctx->se = se_alg->se_dev;
1297 	ctx->key_id = 0;
1298 
1299 	ret = se_algname_to_algid(algname);
1300 	if (ret < 0) {
1301 		dev_err(ctx->se->dev, "invalid algorithm\n");
1302 		return ret;
1303 	}
1304 
1305 	ctx->alg = ret;
1306 
1307 	return 0;
1308 }
1309 
1310 static int tegra_ccm_setauthsize(struct crypto_aead *tfm,  unsigned int authsize)
1311 {
1312 	struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm);
1313 
1314 	switch (authsize) {
1315 	case 4:
1316 	case 6:
1317 	case 8:
1318 	case 10:
1319 	case 12:
1320 	case 14:
1321 	case 16:
1322 		break;
1323 	default:
1324 		return -EINVAL;
1325 	}
1326 
1327 	ctx->authsize = authsize;
1328 
1329 	return 0;
1330 }
1331 
1332 static int tegra_gcm_setauthsize(struct crypto_aead *tfm,  unsigned int authsize)
1333 {
1334 	struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm);
1335 	int ret;
1336 
1337 	ret = crypto_gcm_check_authsize(authsize);
1338 	if (ret)
1339 		return ret;
1340 
1341 	ctx->authsize = authsize;
1342 
1343 	return 0;
1344 }
1345 
1346 static void tegra_aead_cra_exit(struct crypto_aead *tfm)
1347 {
1348 	struct tegra_aead_ctx *ctx = crypto_tfm_ctx(&tfm->base);
1349 
1350 	if (ctx->key_id)
1351 		tegra_key_invalidate(ctx->se, ctx->key_id, ctx->alg);
1352 }
1353 
1354 static int tegra_aead_crypt(struct aead_request *req, bool encrypt)
1355 {
1356 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1357 	struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm);
1358 	struct tegra_aead_reqctx *rctx = aead_request_ctx(req);
1359 
1360 	rctx->encrypt = encrypt;
1361 
1362 	return crypto_transfer_aead_request_to_engine(ctx->se->engine, req);
1363 }
1364 
1365 static int tegra_aead_encrypt(struct aead_request *req)
1366 {
1367 	return tegra_aead_crypt(req, true);
1368 }
1369 
1370 static int tegra_aead_decrypt(struct aead_request *req)
1371 {
1372 	return tegra_aead_crypt(req, false);
1373 }
1374 
1375 static int tegra_aead_setkey(struct crypto_aead *tfm,
1376 			     const u8 *key, u32 keylen)
1377 {
1378 	struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm);
1379 
1380 	if (aes_check_keylen(keylen)) {
1381 		dev_dbg(ctx->se->dev, "invalid key length (%d)\n", keylen);
1382 		return -EINVAL;
1383 	}
1384 
1385 	return tegra_key_submit(ctx->se, key, keylen, ctx->alg, &ctx->key_id);
1386 }
1387 
1388 static unsigned int tegra_cmac_prep_cmd(struct tegra_cmac_ctx *ctx,
1389 					struct tegra_cmac_reqctx *rctx)
1390 {
1391 	unsigned int data_count, res_bits = 0, i = 0, j;
1392 	struct tegra_se *se = ctx->se;
1393 	u32 *cpuvaddr = se->cmdbuf->addr, op;
1394 
1395 	data_count = (rctx->datbuf.size / AES_BLOCK_SIZE);
1396 
1397 	op = SE_AES_OP_WRSTALL | SE_AES_OP_START | SE_AES_OP_LASTBUF;
1398 
1399 	if (!(rctx->task & SHA_UPDATE)) {
1400 		op |= SE_AES_OP_FINAL;
1401 		res_bits = (rctx->datbuf.size % AES_BLOCK_SIZE) * 8;
1402 	}
1403 
1404 	if (!res_bits && data_count)
1405 		data_count--;
1406 
1407 	if (rctx->task & SHA_FIRST) {
1408 		rctx->task &= ~SHA_FIRST;
1409 
1410 		cpuvaddr[i++] = host1x_opcode_setpayload(SE_CRYPTO_CTR_REG_COUNT);
1411 		cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->linear_ctr);
1412 		/* Load 0 IV */
1413 		for (j = 0; j < SE_CRYPTO_CTR_REG_COUNT; j++)
1414 			cpuvaddr[i++] = 0;
1415 	}
1416 
1417 	cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1);
1418 	cpuvaddr[i++] = SE_LAST_BLOCK_VAL(data_count) |
1419 			SE_LAST_BLOCK_RES_BITS(res_bits);
1420 
1421 	cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6);
1422 	cpuvaddr[i++] = rctx->config;
1423 	cpuvaddr[i++] = rctx->crypto_config;
1424 
1425 	/* Source Address */
1426 	cpuvaddr[i++] = lower_32_bits(rctx->datbuf.addr);
1427 	cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->datbuf.addr)) |
1428 			SE_ADDR_HI_SZ(rctx->datbuf.size);
1429 	cpuvaddr[i++] = 0;
1430 	cpuvaddr[i++] = SE_ADDR_HI_SZ(AES_BLOCK_SIZE);
1431 
1432 	cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
1433 	cpuvaddr[i++] = op;
1434 
1435 	cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
1436 	cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
1437 			host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
1438 
1439 	return i;
1440 }
1441 
1442 static void tegra_cmac_copy_result(struct tegra_se *se, struct tegra_cmac_reqctx *rctx)
1443 {
1444 	int i;
1445 
1446 	for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
1447 		rctx->result[i] = readl(se->base + se->hw->regs->result + (i * 4));
1448 }
1449 
1450 static void tegra_cmac_paste_result(struct tegra_se *se, struct tegra_cmac_reqctx *rctx)
1451 {
1452 	int i;
1453 
1454 	for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
1455 		writel(rctx->result[i],
1456 		       se->base + se->hw->regs->result + (i * 4));
1457 }
1458 
1459 static int tegra_cmac_do_update(struct ahash_request *req)
1460 {
1461 	struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
1462 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1463 	struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
1464 	struct tegra_se *se = ctx->se;
1465 	unsigned int nblks, nresidue, cmdlen;
1466 	int ret;
1467 
1468 	if (!req->nbytes)
1469 		return 0;
1470 
1471 	nresidue = (req->nbytes + rctx->residue.size) % rctx->blk_size;
1472 	nblks = (req->nbytes + rctx->residue.size) / rctx->blk_size;
1473 
1474 	/*
1475 	 * Reserve the last block as residue during final() to process.
1476 	 */
1477 	if (!nresidue && nblks) {
1478 		nresidue += rctx->blk_size;
1479 		nblks--;
1480 	}
1481 
1482 	rctx->src_sg = req->src;
1483 	rctx->datbuf.size = (req->nbytes + rctx->residue.size) - nresidue;
1484 	rctx->total_len += rctx->datbuf.size;
1485 	rctx->config = tegra234_aes_cfg(SE_ALG_CMAC, 0);
1486 	rctx->crypto_config = SE_AES_KEY_INDEX(ctx->key_id);
1487 
1488 	/*
1489 	 * Keep one block and residue bytes in residue and
1490 	 * return. The bytes will be processed in final()
1491 	 */
1492 	if (nblks < 1) {
1493 		scatterwalk_map_and_copy(rctx->residue.buf + rctx->residue.size,
1494 					 rctx->src_sg, 0, req->nbytes, 0);
1495 
1496 		rctx->residue.size += req->nbytes;
1497 		return 0;
1498 	}
1499 
1500 	/* Copy the previous residue first */
1501 	if (rctx->residue.size)
1502 		memcpy(rctx->datbuf.buf, rctx->residue.buf, rctx->residue.size);
1503 
1504 	scatterwalk_map_and_copy(rctx->datbuf.buf + rctx->residue.size,
1505 				 rctx->src_sg, 0, req->nbytes - nresidue, 0);
1506 
1507 	scatterwalk_map_and_copy(rctx->residue.buf, rctx->src_sg,
1508 				 req->nbytes - nresidue, nresidue, 0);
1509 
1510 	/* Update residue value with the residue after current block */
1511 	rctx->residue.size = nresidue;
1512 
1513 	/*
1514 	 * If this is not the first 'update' call, paste the previous copied
1515 	 * intermediate results to the registers so that it gets picked up.
1516 	 * This is to support the import/export functionality.
1517 	 */
1518 	if (!(rctx->task & SHA_FIRST))
1519 		tegra_cmac_paste_result(ctx->se, rctx);
1520 
1521 	cmdlen = tegra_cmac_prep_cmd(ctx, rctx);
1522 
1523 	ret = tegra_se_host1x_submit(se, cmdlen);
1524 	/*
1525 	 * If this is not the final update, copy the intermediate results
1526 	 * from the registers so that it can be used in the next 'update'
1527 	 * call. This is to support the import/export functionality.
1528 	 */
1529 	if (!(rctx->task & SHA_FINAL))
1530 		tegra_cmac_copy_result(ctx->se, rctx);
1531 
1532 	return ret;
1533 }
1534 
1535 static int tegra_cmac_do_final(struct ahash_request *req)
1536 {
1537 	struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
1538 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1539 	struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
1540 	struct tegra_se *se = ctx->se;
1541 	u32 *result = (u32 *)req->result;
1542 	int ret = 0, i, cmdlen;
1543 
1544 	if (!req->nbytes && !rctx->total_len && ctx->fallback_tfm) {
1545 		return crypto_shash_tfm_digest(ctx->fallback_tfm,
1546 					rctx->datbuf.buf, 0, req->result);
1547 	}
1548 
1549 	memcpy(rctx->datbuf.buf, rctx->residue.buf, rctx->residue.size);
1550 	rctx->datbuf.size = rctx->residue.size;
1551 	rctx->total_len += rctx->residue.size;
1552 	rctx->config = tegra234_aes_cfg(SE_ALG_CMAC, 0);
1553 
1554 	/* Prepare command and submit */
1555 	cmdlen = tegra_cmac_prep_cmd(ctx, rctx);
1556 	ret = tegra_se_host1x_submit(se, cmdlen);
1557 	if (ret)
1558 		goto out;
1559 
1560 	/* Read and clear Result register */
1561 	for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
1562 		result[i] = readl(se->base + se->hw->regs->result + (i * 4));
1563 
1564 	for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
1565 		writel(0, se->base + se->hw->regs->result + (i * 4));
1566 
1567 out:
1568 	dma_free_coherent(se->dev, SE_SHA_BUFLEN,
1569 			  rctx->datbuf.buf, rctx->datbuf.addr);
1570 	dma_free_coherent(se->dev, crypto_ahash_blocksize(tfm) * 2,
1571 			  rctx->residue.buf, rctx->residue.addr);
1572 	return ret;
1573 }
1574 
1575 static int tegra_cmac_do_one_req(struct crypto_engine *engine, void *areq)
1576 {
1577 	struct ahash_request *req = ahash_request_cast(areq);
1578 	struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
1579 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1580 	struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
1581 	struct tegra_se *se = ctx->se;
1582 	int ret;
1583 
1584 	if (rctx->task & SHA_UPDATE) {
1585 		ret = tegra_cmac_do_update(req);
1586 		rctx->task &= ~SHA_UPDATE;
1587 	}
1588 
1589 	if (rctx->task & SHA_FINAL) {
1590 		ret = tegra_cmac_do_final(req);
1591 		rctx->task &= ~SHA_FINAL;
1592 	}
1593 
1594 	crypto_finalize_hash_request(se->engine, req, ret);
1595 
1596 	return 0;
1597 }
1598 
1599 static void tegra_cmac_init_fallback(struct crypto_ahash *tfm, struct tegra_cmac_ctx *ctx,
1600 				     const char *algname)
1601 {
1602 	unsigned int statesize;
1603 
1604 	ctx->fallback_tfm = crypto_alloc_shash(algname, 0, CRYPTO_ALG_NEED_FALLBACK);
1605 
1606 	if (IS_ERR(ctx->fallback_tfm)) {
1607 		dev_warn(ctx->se->dev, "failed to allocate fallback for %s\n", algname);
1608 		ctx->fallback_tfm = NULL;
1609 		return;
1610 	}
1611 
1612 	statesize = crypto_shash_statesize(ctx->fallback_tfm);
1613 
1614 	if (statesize > sizeof(struct tegra_cmac_reqctx))
1615 		crypto_ahash_set_statesize(tfm, statesize);
1616 }
1617 
1618 static int tegra_cmac_cra_init(struct crypto_tfm *tfm)
1619 {
1620 	struct tegra_cmac_ctx *ctx = crypto_tfm_ctx(tfm);
1621 	struct crypto_ahash *ahash_tfm = __crypto_ahash_cast(tfm);
1622 	struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
1623 	struct tegra_se_alg *se_alg;
1624 	const char *algname;
1625 	int ret;
1626 
1627 	algname = crypto_tfm_alg_name(tfm);
1628 	se_alg = container_of(alg, struct tegra_se_alg, alg.ahash.base);
1629 
1630 	crypto_ahash_set_reqsize(ahash_tfm, sizeof(struct tegra_cmac_reqctx));
1631 
1632 	ctx->se = se_alg->se_dev;
1633 	ctx->key_id = 0;
1634 
1635 	ret = se_algname_to_algid(algname);
1636 	if (ret < 0) {
1637 		dev_err(ctx->se->dev, "invalid algorithm\n");
1638 		return ret;
1639 	}
1640 
1641 	ctx->alg = ret;
1642 
1643 	tegra_cmac_init_fallback(ahash_tfm, ctx, algname);
1644 
1645 	return 0;
1646 }
1647 
1648 static void tegra_cmac_cra_exit(struct crypto_tfm *tfm)
1649 {
1650 	struct tegra_cmac_ctx *ctx = crypto_tfm_ctx(tfm);
1651 
1652 	if (ctx->fallback_tfm)
1653 		crypto_free_shash(ctx->fallback_tfm);
1654 
1655 	tegra_key_invalidate(ctx->se, ctx->key_id, ctx->alg);
1656 }
1657 
1658 static int tegra_cmac_init(struct ahash_request *req)
1659 {
1660 	struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
1661 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1662 	struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
1663 	struct tegra_se *se = ctx->se;
1664 	int i;
1665 
1666 	rctx->total_len = 0;
1667 	rctx->datbuf.size = 0;
1668 	rctx->residue.size = 0;
1669 	rctx->task = SHA_FIRST;
1670 	rctx->blk_size = crypto_ahash_blocksize(tfm);
1671 
1672 	rctx->residue.buf = dma_alloc_coherent(se->dev, rctx->blk_size * 2,
1673 					       &rctx->residue.addr, GFP_KERNEL);
1674 	if (!rctx->residue.buf)
1675 		goto resbuf_fail;
1676 
1677 	rctx->residue.size = 0;
1678 
1679 	rctx->datbuf.buf = dma_alloc_coherent(se->dev, SE_SHA_BUFLEN,
1680 					      &rctx->datbuf.addr, GFP_KERNEL);
1681 	if (!rctx->datbuf.buf)
1682 		goto datbuf_fail;
1683 
1684 	rctx->datbuf.size = 0;
1685 
1686 	/* Clear any previous result */
1687 	for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
1688 		writel(0, se->base + se->hw->regs->result + (i * 4));
1689 
1690 	return 0;
1691 
1692 datbuf_fail:
1693 	dma_free_coherent(se->dev, rctx->blk_size, rctx->residue.buf,
1694 			  rctx->residue.addr);
1695 resbuf_fail:
1696 	return -ENOMEM;
1697 }
1698 
1699 static int tegra_cmac_setkey(struct crypto_ahash *tfm, const u8 *key,
1700 			     unsigned int keylen)
1701 {
1702 	struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
1703 
1704 	if (aes_check_keylen(keylen)) {
1705 		dev_dbg(ctx->se->dev, "invalid key length (%d)\n", keylen);
1706 		return -EINVAL;
1707 	}
1708 
1709 	if (ctx->fallback_tfm)
1710 		crypto_shash_setkey(ctx->fallback_tfm, key, keylen);
1711 
1712 	return tegra_key_submit(ctx->se, key, keylen, ctx->alg, &ctx->key_id);
1713 }
1714 
1715 static int tegra_cmac_update(struct ahash_request *req)
1716 {
1717 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1718 	struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
1719 	struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
1720 
1721 	rctx->task |= SHA_UPDATE;
1722 
1723 	return crypto_transfer_hash_request_to_engine(ctx->se->engine, req);
1724 }
1725 
1726 static int tegra_cmac_final(struct ahash_request *req)
1727 {
1728 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1729 	struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
1730 	struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
1731 
1732 	rctx->task |= SHA_FINAL;
1733 
1734 	return crypto_transfer_hash_request_to_engine(ctx->se->engine, req);
1735 }
1736 
1737 static int tegra_cmac_finup(struct ahash_request *req)
1738 {
1739 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1740 	struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
1741 	struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
1742 
1743 	rctx->task |= SHA_UPDATE | SHA_FINAL;
1744 
1745 	return crypto_transfer_hash_request_to_engine(ctx->se->engine, req);
1746 }
1747 
1748 static int tegra_cmac_digest(struct ahash_request *req)
1749 {
1750 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1751 	struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
1752 	struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
1753 
1754 	tegra_cmac_init(req);
1755 	rctx->task |= SHA_UPDATE | SHA_FINAL;
1756 
1757 	return crypto_transfer_hash_request_to_engine(ctx->se->engine, req);
1758 }
1759 
1760 static int tegra_cmac_export(struct ahash_request *req, void *out)
1761 {
1762 	struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
1763 
1764 	memcpy(out, rctx, sizeof(*rctx));
1765 
1766 	return 0;
1767 }
1768 
1769 static int tegra_cmac_import(struct ahash_request *req, const void *in)
1770 {
1771 	struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
1772 
1773 	memcpy(rctx, in, sizeof(*rctx));
1774 
1775 	return 0;
1776 }
1777 
1778 static struct tegra_se_alg tegra_aead_algs[] = {
1779 	{
1780 		.alg.aead.op.do_one_request = tegra_gcm_do_one_req,
1781 		.alg.aead.base = {
1782 			.init = tegra_aead_cra_init,
1783 			.exit = tegra_aead_cra_exit,
1784 			.setkey = tegra_aead_setkey,
1785 			.setauthsize = tegra_gcm_setauthsize,
1786 			.encrypt = tegra_aead_encrypt,
1787 			.decrypt = tegra_aead_decrypt,
1788 			.maxauthsize = AES_BLOCK_SIZE,
1789 			.ivsize	= GCM_AES_IV_SIZE,
1790 			.base = {
1791 				.cra_name = "gcm(aes)",
1792 				.cra_driver_name = "gcm-aes-tegra",
1793 				.cra_priority = 500,
1794 				.cra_blocksize = 1,
1795 				.cra_ctxsize = sizeof(struct tegra_aead_ctx),
1796 				.cra_alignmask = 0xf,
1797 				.cra_module = THIS_MODULE,
1798 			},
1799 		}
1800 	}, {
1801 		.alg.aead.op.do_one_request = tegra_ccm_do_one_req,
1802 		.alg.aead.base = {
1803 			.init = tegra_aead_cra_init,
1804 			.exit = tegra_aead_cra_exit,
1805 			.setkey	= tegra_aead_setkey,
1806 			.setauthsize = tegra_ccm_setauthsize,
1807 			.encrypt = tegra_aead_encrypt,
1808 			.decrypt = tegra_aead_decrypt,
1809 			.maxauthsize = AES_BLOCK_SIZE,
1810 			.ivsize	= AES_BLOCK_SIZE,
1811 			.chunksize = AES_BLOCK_SIZE,
1812 			.base = {
1813 				.cra_name = "ccm(aes)",
1814 				.cra_driver_name = "ccm-aes-tegra",
1815 				.cra_priority = 500,
1816 				.cra_blocksize = 1,
1817 				.cra_ctxsize = sizeof(struct tegra_aead_ctx),
1818 				.cra_alignmask = 0xf,
1819 				.cra_module = THIS_MODULE,
1820 			},
1821 		}
1822 	}
1823 };
1824 
1825 static struct tegra_se_alg tegra_cmac_algs[] = {
1826 	{
1827 		.alg.ahash.op.do_one_request = tegra_cmac_do_one_req,
1828 		.alg.ahash.base = {
1829 			.init = tegra_cmac_init,
1830 			.setkey	= tegra_cmac_setkey,
1831 			.update = tegra_cmac_update,
1832 			.final = tegra_cmac_final,
1833 			.finup = tegra_cmac_finup,
1834 			.digest = tegra_cmac_digest,
1835 			.export = tegra_cmac_export,
1836 			.import = tegra_cmac_import,
1837 			.halg.digestsize = AES_BLOCK_SIZE,
1838 			.halg.statesize = sizeof(struct tegra_cmac_reqctx),
1839 			.halg.base = {
1840 				.cra_name = "cmac(aes)",
1841 				.cra_driver_name = "tegra-se-cmac",
1842 				.cra_priority = 300,
1843 				.cra_flags = CRYPTO_ALG_TYPE_AHASH,
1844 				.cra_blocksize = AES_BLOCK_SIZE,
1845 				.cra_ctxsize = sizeof(struct tegra_cmac_ctx),
1846 				.cra_alignmask = 0,
1847 				.cra_module = THIS_MODULE,
1848 				.cra_init = tegra_cmac_cra_init,
1849 				.cra_exit = tegra_cmac_cra_exit,
1850 			}
1851 		}
1852 	}
1853 };
1854 
1855 int tegra_init_aes(struct tegra_se *se)
1856 {
1857 	struct aead_engine_alg *aead_alg;
1858 	struct ahash_engine_alg *ahash_alg;
1859 	struct skcipher_engine_alg *sk_alg;
1860 	int i, ret;
1861 
1862 	se->manifest = tegra_aes_kac_manifest;
1863 
1864 	for (i = 0; i < ARRAY_SIZE(tegra_aes_algs); i++) {
1865 		sk_alg = &tegra_aes_algs[i].alg.skcipher;
1866 		tegra_aes_algs[i].se_dev = se;
1867 
1868 		ret = crypto_engine_register_skcipher(sk_alg);
1869 		if (ret) {
1870 			dev_err(se->dev, "failed to register %s\n",
1871 				sk_alg->base.base.cra_name);
1872 			goto err_aes;
1873 		}
1874 	}
1875 
1876 	for (i = 0; i < ARRAY_SIZE(tegra_aead_algs); i++) {
1877 		aead_alg = &tegra_aead_algs[i].alg.aead;
1878 		tegra_aead_algs[i].se_dev = se;
1879 
1880 		ret = crypto_engine_register_aead(aead_alg);
1881 		if (ret) {
1882 			dev_err(se->dev, "failed to register %s\n",
1883 				aead_alg->base.base.cra_name);
1884 			goto err_aead;
1885 		}
1886 	}
1887 
1888 	for (i = 0; i < ARRAY_SIZE(tegra_cmac_algs); i++) {
1889 		ahash_alg = &tegra_cmac_algs[i].alg.ahash;
1890 		tegra_cmac_algs[i].se_dev = se;
1891 
1892 		ret = crypto_engine_register_ahash(ahash_alg);
1893 		if (ret) {
1894 			dev_err(se->dev, "failed to register %s\n",
1895 				ahash_alg->base.halg.base.cra_name);
1896 			goto err_cmac;
1897 		}
1898 	}
1899 
1900 	return 0;
1901 
1902 err_cmac:
1903 	while (i--)
1904 		crypto_engine_unregister_ahash(&tegra_cmac_algs[i].alg.ahash);
1905 
1906 	i = ARRAY_SIZE(tegra_aead_algs);
1907 err_aead:
1908 	while (i--)
1909 		crypto_engine_unregister_aead(&tegra_aead_algs[i].alg.aead);
1910 
1911 	i = ARRAY_SIZE(tegra_aes_algs);
1912 err_aes:
1913 	while (i--)
1914 		crypto_engine_unregister_skcipher(&tegra_aes_algs[i].alg.skcipher);
1915 
1916 	return ret;
1917 }
1918 
1919 void tegra_deinit_aes(struct tegra_se *se)
1920 {
1921 	int i;
1922 
1923 	for (i = 0; i < ARRAY_SIZE(tegra_aes_algs); i++)
1924 		crypto_engine_unregister_skcipher(&tegra_aes_algs[i].alg.skcipher);
1925 
1926 	for (i = 0; i < ARRAY_SIZE(tegra_aead_algs); i++)
1927 		crypto_engine_unregister_aead(&tegra_aead_algs[i].alg.aead);
1928 
1929 	for (i = 0; i < ARRAY_SIZE(tegra_cmac_algs); i++)
1930 		crypto_engine_unregister_ahash(&tegra_cmac_algs[i].alg.ahash);
1931 }
1932