xref: /linux/drivers/crypto/tegra/tegra-se-aes.c (revision 36110669ddf832e6c9ceba4dd203749d5be31d31)
1 // SPDX-License-Identifier: GPL-2.0-only
2 // SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
3 /*
4  * Crypto driver to handle block cipher algorithms using NVIDIA Security Engine.
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/module.h>
10 #include <linux/of_device.h>
11 #include <linux/platform_device.h>
12 
13 #include <crypto/aead.h>
14 #include <crypto/aes.h>
15 #include <crypto/engine.h>
16 #include <crypto/gcm.h>
17 #include <crypto/scatterwalk.h>
18 #include <crypto/xts.h>
19 #include <crypto/internal/aead.h>
20 #include <crypto/internal/hash.h>
21 #include <crypto/internal/skcipher.h>
22 
23 #include "tegra-se.h"
24 
25 struct tegra_aes_ctx {
26 	struct tegra_se *se;
27 	u32 alg;
28 	u32 ivsize;
29 	u32 key1_id;
30 	u32 key2_id;
31 };
32 
33 struct tegra_aes_reqctx {
34 	struct tegra_se_datbuf datbuf;
35 	bool encrypt;
36 	u32 config;
37 	u32 crypto_config;
38 	u32 len;
39 	u32 *iv;
40 };
41 
42 struct tegra_aead_ctx {
43 	struct tegra_se *se;
44 	unsigned int authsize;
45 	u32 alg;
46 	u32 keylen;
47 	u32 key_id;
48 };
49 
50 struct tegra_aead_reqctx {
51 	struct tegra_se_datbuf inbuf;
52 	struct tegra_se_datbuf outbuf;
53 	struct scatterlist *src_sg;
54 	struct scatterlist *dst_sg;
55 	unsigned int assoclen;
56 	unsigned int cryptlen;
57 	unsigned int authsize;
58 	bool encrypt;
59 	u32 config;
60 	u32 crypto_config;
61 	u32 key_id;
62 	u32 iv[4];
63 	u8 authdata[16];
64 };
65 
66 struct tegra_cmac_ctx {
67 	struct tegra_se *se;
68 	unsigned int alg;
69 	u32 key_id;
70 	struct crypto_shash *fallback_tfm;
71 };
72 
73 struct tegra_cmac_reqctx {
74 	struct scatterlist *src_sg;
75 	struct tegra_se_datbuf datbuf;
76 	struct tegra_se_datbuf residue;
77 	unsigned int total_len;
78 	unsigned int blk_size;
79 	unsigned int task;
80 	u32 crypto_config;
81 	u32 config;
82 	u32 key_id;
83 	u32 *iv;
84 	u32 result[CMAC_RESULT_REG_COUNT];
85 };
86 
87 /* increment counter (128-bit int) */
88 static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums)
89 {
90 	do {
91 		--bits;
92 		nums += counter[bits];
93 		counter[bits] = nums & 0xff;
94 		nums >>= 8;
95 	} while (bits && nums);
96 }
97 
98 static void tegra_cbc_iv_copyback(struct skcipher_request *req, struct tegra_aes_ctx *ctx)
99 {
100 	struct tegra_aes_reqctx *rctx = skcipher_request_ctx(req);
101 	unsigned int offset;
102 
103 	offset = req->cryptlen - ctx->ivsize;
104 
105 	if (rctx->encrypt)
106 		memcpy(req->iv, rctx->datbuf.buf + offset, ctx->ivsize);
107 	else
108 		scatterwalk_map_and_copy(req->iv, req->src, offset, ctx->ivsize, 0);
109 }
110 
111 static void tegra_aes_update_iv(struct skcipher_request *req, struct tegra_aes_ctx *ctx)
112 {
113 	int num;
114 
115 	if (ctx->alg == SE_ALG_CBC) {
116 		tegra_cbc_iv_copyback(req, ctx);
117 	} else if (ctx->alg == SE_ALG_CTR) {
118 		num = req->cryptlen / ctx->ivsize;
119 		if (req->cryptlen % ctx->ivsize)
120 			num++;
121 
122 		ctr_iv_inc(req->iv, ctx->ivsize, num);
123 	}
124 }
125 
126 static int tegra234_aes_crypto_cfg(u32 alg, bool encrypt)
127 {
128 	switch (alg) {
129 	case SE_ALG_CMAC:
130 	case SE_ALG_GMAC:
131 	case SE_ALG_GCM:
132 	case SE_ALG_GCM_FINAL:
133 		return 0;
134 	case SE_ALG_CBC:
135 		if (encrypt)
136 			return SE_CRYPTO_CFG_CBC_ENCRYPT;
137 		else
138 			return SE_CRYPTO_CFG_CBC_DECRYPT;
139 	case SE_ALG_ECB:
140 		if (encrypt)
141 			return SE_CRYPTO_CFG_ECB_ENCRYPT;
142 		else
143 			return SE_CRYPTO_CFG_ECB_DECRYPT;
144 	case SE_ALG_XTS:
145 		if (encrypt)
146 			return SE_CRYPTO_CFG_XTS_ENCRYPT;
147 		else
148 			return SE_CRYPTO_CFG_XTS_DECRYPT;
149 
150 	case SE_ALG_CTR:
151 		return SE_CRYPTO_CFG_CTR;
152 	case SE_ALG_CBC_MAC:
153 		return SE_CRYPTO_CFG_CBC_MAC;
154 
155 	default:
156 		break;
157 	}
158 
159 	return -EINVAL;
160 }
161 
162 static int tegra234_aes_cfg(u32 alg, bool encrypt)
163 {
164 	switch (alg) {
165 	case SE_ALG_CBC:
166 	case SE_ALG_ECB:
167 	case SE_ALG_XTS:
168 	case SE_ALG_CTR:
169 		if (encrypt)
170 			return SE_CFG_AES_ENCRYPT;
171 		else
172 			return SE_CFG_AES_DECRYPT;
173 
174 	case SE_ALG_GMAC:
175 		if (encrypt)
176 			return SE_CFG_GMAC_ENCRYPT;
177 		else
178 			return SE_CFG_GMAC_DECRYPT;
179 
180 	case SE_ALG_GCM:
181 		if (encrypt)
182 			return SE_CFG_GCM_ENCRYPT;
183 		else
184 			return SE_CFG_GCM_DECRYPT;
185 
186 	case SE_ALG_GCM_FINAL:
187 		if (encrypt)
188 			return SE_CFG_GCM_FINAL_ENCRYPT;
189 		else
190 			return SE_CFG_GCM_FINAL_DECRYPT;
191 
192 	case SE_ALG_CMAC:
193 		return SE_CFG_CMAC;
194 
195 	case SE_ALG_CBC_MAC:
196 		return SE_AES_ENC_ALG_AES_ENC |
197 		       SE_AES_DST_HASH_REG;
198 	}
199 	return -EINVAL;
200 }
201 
202 static unsigned int tegra_aes_prep_cmd(struct tegra_aes_ctx *ctx,
203 				       struct tegra_aes_reqctx *rctx)
204 {
205 	unsigned int data_count, res_bits, i = 0, j;
206 	struct tegra_se *se = ctx->se;
207 	u32 *cpuvaddr = se->cmdbuf->addr;
208 	dma_addr_t addr = rctx->datbuf.addr;
209 
210 	data_count = rctx->len / AES_BLOCK_SIZE;
211 	res_bits = (rctx->len % AES_BLOCK_SIZE) * 8;
212 
213 	/*
214 	 * Hardware processes data_count + 1 blocks.
215 	 * Reduce 1 block if there is no residue
216 	 */
217 	if (!res_bits)
218 		data_count--;
219 
220 	if (rctx->iv) {
221 		cpuvaddr[i++] = host1x_opcode_setpayload(SE_CRYPTO_CTR_REG_COUNT);
222 		cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->linear_ctr);
223 		for (j = 0; j < SE_CRYPTO_CTR_REG_COUNT; j++)
224 			cpuvaddr[i++] = rctx->iv[j];
225 	}
226 
227 	cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1);
228 	cpuvaddr[i++] = SE_LAST_BLOCK_VAL(data_count) |
229 			SE_LAST_BLOCK_RES_BITS(res_bits);
230 
231 	cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6);
232 	cpuvaddr[i++] = rctx->config;
233 	cpuvaddr[i++] = rctx->crypto_config;
234 
235 	/* Source address setting */
236 	cpuvaddr[i++] = lower_32_bits(addr);
237 	cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(addr)) | SE_ADDR_HI_SZ(rctx->len);
238 
239 	/* Destination address setting */
240 	cpuvaddr[i++] = lower_32_bits(addr);
241 	cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(addr)) |
242 			SE_ADDR_HI_SZ(rctx->len);
243 
244 	cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
245 	cpuvaddr[i++] = SE_AES_OP_WRSTALL | SE_AES_OP_LASTBUF |
246 			SE_AES_OP_START;
247 
248 	cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
249 	cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
250 			host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
251 
252 	dev_dbg(se->dev, "cfg %#x crypto cfg %#x\n", rctx->config, rctx->crypto_config);
253 
254 	return i;
255 }
256 
257 static int tegra_aes_do_one_req(struct crypto_engine *engine, void *areq)
258 {
259 	struct skcipher_request *req = container_of(areq, struct skcipher_request, base);
260 	struct tegra_aes_ctx *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
261 	struct tegra_aes_reqctx *rctx = skcipher_request_ctx(req);
262 	struct tegra_se *se = ctx->se;
263 	unsigned int cmdlen;
264 	int ret;
265 
266 	rctx->datbuf.buf = dma_alloc_coherent(se->dev, SE_AES_BUFLEN,
267 					      &rctx->datbuf.addr, GFP_KERNEL);
268 	if (!rctx->datbuf.buf)
269 		return -ENOMEM;
270 
271 	rctx->datbuf.size = SE_AES_BUFLEN;
272 	rctx->iv = (u32 *)req->iv;
273 	rctx->len = req->cryptlen;
274 
275 	/* Pad input to AES Block size */
276 	if (ctx->alg != SE_ALG_XTS) {
277 		if (rctx->len % AES_BLOCK_SIZE)
278 			rctx->len += AES_BLOCK_SIZE - (rctx->len % AES_BLOCK_SIZE);
279 	}
280 
281 	scatterwalk_map_and_copy(rctx->datbuf.buf, req->src, 0, req->cryptlen, 0);
282 
283 	/* Prepare the command and submit for execution */
284 	cmdlen = tegra_aes_prep_cmd(ctx, rctx);
285 	ret = tegra_se_host1x_submit(se, cmdlen);
286 
287 	/* Copy the result */
288 	tegra_aes_update_iv(req, ctx);
289 	scatterwalk_map_and_copy(rctx->datbuf.buf, req->dst, 0, req->cryptlen, 1);
290 
291 	/* Free the buffer */
292 	dma_free_coherent(ctx->se->dev, SE_AES_BUFLEN,
293 			  rctx->datbuf.buf, rctx->datbuf.addr);
294 
295 	crypto_finalize_skcipher_request(se->engine, req, ret);
296 
297 	return 0;
298 }
299 
300 static int tegra_aes_cra_init(struct crypto_skcipher *tfm)
301 {
302 	struct tegra_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
303 	struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
304 	struct tegra_se_alg *se_alg;
305 	const char *algname;
306 	int ret;
307 
308 	se_alg = container_of(alg, struct tegra_se_alg, alg.skcipher.base);
309 
310 	crypto_skcipher_set_reqsize(tfm, sizeof(struct tegra_aes_reqctx));
311 
312 	ctx->ivsize = crypto_skcipher_ivsize(tfm);
313 	ctx->se = se_alg->se_dev;
314 	ctx->key1_id = 0;
315 	ctx->key2_id = 0;
316 
317 	algname = crypto_tfm_alg_name(&tfm->base);
318 	ret = se_algname_to_algid(algname);
319 	if (ret < 0) {
320 		dev_err(ctx->se->dev, "invalid algorithm\n");
321 		return ret;
322 	}
323 
324 	ctx->alg = ret;
325 
326 	return 0;
327 }
328 
329 static void tegra_aes_cra_exit(struct crypto_skcipher *tfm)
330 {
331 	struct tegra_aes_ctx *ctx = crypto_tfm_ctx(&tfm->base);
332 
333 	if (ctx->key1_id)
334 		tegra_key_invalidate(ctx->se, ctx->key1_id, ctx->alg);
335 
336 	if (ctx->key2_id)
337 		tegra_key_invalidate(ctx->se, ctx->key2_id, ctx->alg);
338 }
339 
340 static int tegra_aes_setkey(struct crypto_skcipher *tfm,
341 			    const u8 *key, u32 keylen)
342 {
343 	struct tegra_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
344 
345 	if (aes_check_keylen(keylen)) {
346 		dev_dbg(ctx->se->dev, "invalid key length (%d)\n", keylen);
347 		return -EINVAL;
348 	}
349 
350 	return tegra_key_submit(ctx->se, key, keylen, ctx->alg, &ctx->key1_id);
351 }
352 
353 static int tegra_xts_setkey(struct crypto_skcipher *tfm,
354 			    const u8 *key, u32 keylen)
355 {
356 	struct tegra_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
357 	u32 len = keylen / 2;
358 	int ret;
359 
360 	ret = xts_verify_key(tfm, key, keylen);
361 	if (ret || aes_check_keylen(len)) {
362 		dev_dbg(ctx->se->dev, "invalid key length (%d)\n", keylen);
363 		return -EINVAL;
364 	}
365 
366 	ret = tegra_key_submit(ctx->se, key, len,
367 			       ctx->alg, &ctx->key1_id);
368 	if (ret)
369 		return ret;
370 
371 	return tegra_key_submit(ctx->se, key + len, len,
372 			       ctx->alg, &ctx->key2_id);
373 
374 	return 0;
375 }
376 
377 static int tegra_aes_kac_manifest(u32 user, u32 alg, u32 keylen)
378 {
379 	int manifest;
380 
381 	manifest = SE_KAC_USER_NS;
382 
383 	switch (alg) {
384 	case SE_ALG_CBC:
385 	case SE_ALG_ECB:
386 	case SE_ALG_CTR:
387 		manifest |= SE_KAC_ENC;
388 		break;
389 	case SE_ALG_XTS:
390 		manifest |= SE_KAC_XTS;
391 		break;
392 	case SE_ALG_GCM:
393 		manifest |= SE_KAC_GCM;
394 		break;
395 	case SE_ALG_CMAC:
396 		manifest |= SE_KAC_CMAC;
397 		break;
398 	case SE_ALG_CBC_MAC:
399 		manifest |= SE_KAC_ENC;
400 		break;
401 	default:
402 		return -EINVAL;
403 	}
404 
405 	switch (keylen) {
406 	case AES_KEYSIZE_128:
407 		manifest |= SE_KAC_SIZE_128;
408 		break;
409 	case AES_KEYSIZE_192:
410 		manifest |= SE_KAC_SIZE_192;
411 		break;
412 	case AES_KEYSIZE_256:
413 		manifest |= SE_KAC_SIZE_256;
414 		break;
415 	default:
416 		return -EINVAL;
417 	}
418 
419 	return manifest;
420 }
421 
422 static int tegra_aes_crypt(struct skcipher_request *req, bool encrypt)
423 
424 {
425 	struct crypto_skcipher *tfm;
426 	struct tegra_aes_ctx *ctx;
427 	struct tegra_aes_reqctx *rctx;
428 
429 	tfm = crypto_skcipher_reqtfm(req);
430 	ctx  = crypto_skcipher_ctx(tfm);
431 	rctx = skcipher_request_ctx(req);
432 
433 	if (ctx->alg != SE_ALG_XTS) {
434 		if (!IS_ALIGNED(req->cryptlen, crypto_skcipher_blocksize(tfm))) {
435 			dev_dbg(ctx->se->dev, "invalid length (%d)", req->cryptlen);
436 			return -EINVAL;
437 		}
438 	} else if (req->cryptlen < XTS_BLOCK_SIZE) {
439 		dev_dbg(ctx->se->dev, "invalid length (%d)", req->cryptlen);
440 		return -EINVAL;
441 	}
442 
443 	if (!req->cryptlen)
444 		return 0;
445 
446 	rctx->encrypt = encrypt;
447 	rctx->config = tegra234_aes_cfg(ctx->alg, encrypt);
448 	rctx->crypto_config = tegra234_aes_crypto_cfg(ctx->alg, encrypt);
449 	rctx->crypto_config |= SE_AES_KEY_INDEX(ctx->key1_id);
450 
451 	if (ctx->key2_id)
452 		rctx->crypto_config |= SE_AES_KEY2_INDEX(ctx->key2_id);
453 
454 	return crypto_transfer_skcipher_request_to_engine(ctx->se->engine, req);
455 }
456 
457 static int tegra_aes_encrypt(struct skcipher_request *req)
458 {
459 	return tegra_aes_crypt(req, true);
460 }
461 
462 static int tegra_aes_decrypt(struct skcipher_request *req)
463 {
464 	return tegra_aes_crypt(req, false);
465 }
466 
467 static struct tegra_se_alg tegra_aes_algs[] = {
468 	{
469 		.alg.skcipher.op.do_one_request	= tegra_aes_do_one_req,
470 		.alg.skcipher.base = {
471 			.init = tegra_aes_cra_init,
472 			.exit = tegra_aes_cra_exit,
473 			.setkey	= tegra_aes_setkey,
474 			.encrypt = tegra_aes_encrypt,
475 			.decrypt = tegra_aes_decrypt,
476 			.min_keysize = AES_MIN_KEY_SIZE,
477 			.max_keysize = AES_MAX_KEY_SIZE,
478 			.ivsize	= AES_BLOCK_SIZE,
479 			.base = {
480 				.cra_name = "cbc(aes)",
481 				.cra_driver_name = "cbc-aes-tegra",
482 				.cra_priority = 500,
483 				.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC,
484 				.cra_blocksize = AES_BLOCK_SIZE,
485 				.cra_ctxsize = sizeof(struct tegra_aes_ctx),
486 				.cra_alignmask = 0xf,
487 				.cra_module = THIS_MODULE,
488 			},
489 		}
490 	}, {
491 		.alg.skcipher.op.do_one_request	= tegra_aes_do_one_req,
492 		.alg.skcipher.base = {
493 			.init = tegra_aes_cra_init,
494 			.exit = tegra_aes_cra_exit,
495 			.setkey	= tegra_aes_setkey,
496 			.encrypt = tegra_aes_encrypt,
497 			.decrypt = tegra_aes_decrypt,
498 			.min_keysize = AES_MIN_KEY_SIZE,
499 			.max_keysize = AES_MAX_KEY_SIZE,
500 			.base = {
501 				.cra_name = "ecb(aes)",
502 				.cra_driver_name = "ecb-aes-tegra",
503 				.cra_priority = 500,
504 				.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC,
505 				.cra_blocksize = AES_BLOCK_SIZE,
506 				.cra_ctxsize = sizeof(struct tegra_aes_ctx),
507 				.cra_alignmask = 0xf,
508 				.cra_module = THIS_MODULE,
509 			},
510 		}
511 	}, {
512 		.alg.skcipher.op.do_one_request	= tegra_aes_do_one_req,
513 		.alg.skcipher.base = {
514 			.init = tegra_aes_cra_init,
515 			.exit = tegra_aes_cra_exit,
516 			.setkey = tegra_aes_setkey,
517 			.encrypt = tegra_aes_encrypt,
518 			.decrypt = tegra_aes_decrypt,
519 			.min_keysize = AES_MIN_KEY_SIZE,
520 			.max_keysize = AES_MAX_KEY_SIZE,
521 			.ivsize	= AES_BLOCK_SIZE,
522 			.base = {
523 				.cra_name = "ctr(aes)",
524 				.cra_driver_name = "ctr-aes-tegra",
525 				.cra_priority = 500,
526 				.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC,
527 				.cra_blocksize = 1,
528 				.cra_ctxsize = sizeof(struct tegra_aes_ctx),
529 				.cra_alignmask = 0xf,
530 				.cra_module = THIS_MODULE,
531 			},
532 		}
533 	}, {
534 		.alg.skcipher.op.do_one_request	= tegra_aes_do_one_req,
535 		.alg.skcipher.base = {
536 			.init = tegra_aes_cra_init,
537 			.exit = tegra_aes_cra_exit,
538 			.setkey	= tegra_xts_setkey,
539 			.encrypt = tegra_aes_encrypt,
540 			.decrypt = tegra_aes_decrypt,
541 			.min_keysize = 2 * AES_MIN_KEY_SIZE,
542 			.max_keysize = 2 * AES_MAX_KEY_SIZE,
543 			.ivsize	= AES_BLOCK_SIZE,
544 			.base = {
545 				.cra_name = "xts(aes)",
546 				.cra_driver_name = "xts-aes-tegra",
547 				.cra_priority = 500,
548 				.cra_blocksize = AES_BLOCK_SIZE,
549 				.cra_ctxsize	   = sizeof(struct tegra_aes_ctx),
550 				.cra_alignmask	   = (__alignof__(u64) - 1),
551 				.cra_module	   = THIS_MODULE,
552 			},
553 		}
554 	},
555 };
556 
557 static unsigned int tegra_gmac_prep_cmd(struct tegra_aead_ctx *ctx,
558 					struct tegra_aead_reqctx *rctx)
559 {
560 	unsigned int data_count, res_bits, i = 0;
561 	struct tegra_se *se = ctx->se;
562 	u32 *cpuvaddr = se->cmdbuf->addr;
563 
564 	data_count = (rctx->assoclen / AES_BLOCK_SIZE);
565 	res_bits = (rctx->assoclen % AES_BLOCK_SIZE) * 8;
566 
567 	/*
568 	 * Hardware processes data_count + 1 blocks.
569 	 * Reduce 1 block if there is no residue
570 	 */
571 	if (!res_bits)
572 		data_count--;
573 
574 	cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1);
575 	cpuvaddr[i++] = SE_LAST_BLOCK_VAL(data_count) |
576 			SE_LAST_BLOCK_RES_BITS(res_bits);
577 
578 	cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 4);
579 	cpuvaddr[i++] = rctx->config;
580 	cpuvaddr[i++] = rctx->crypto_config;
581 	cpuvaddr[i++] = lower_32_bits(rctx->inbuf.addr);
582 	cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->inbuf.addr)) |
583 			SE_ADDR_HI_SZ(rctx->assoclen);
584 
585 	cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
586 	cpuvaddr[i++] = SE_AES_OP_WRSTALL | SE_AES_OP_FINAL |
587 			SE_AES_OP_INIT | SE_AES_OP_LASTBUF |
588 			SE_AES_OP_START;
589 
590 	cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
591 	cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
592 			host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
593 
594 	return i;
595 }
596 
597 static unsigned int tegra_gcm_crypt_prep_cmd(struct tegra_aead_ctx *ctx,
598 					     struct tegra_aead_reqctx *rctx)
599 {
600 	unsigned int data_count, res_bits, i = 0, j;
601 	struct tegra_se *se = ctx->se;
602 	u32 *cpuvaddr = se->cmdbuf->addr, op;
603 
604 	data_count = (rctx->cryptlen / AES_BLOCK_SIZE);
605 	res_bits = (rctx->cryptlen % AES_BLOCK_SIZE) * 8;
606 	op = SE_AES_OP_WRSTALL | SE_AES_OP_FINAL |
607 	     SE_AES_OP_LASTBUF | SE_AES_OP_START;
608 
609 	/*
610 	 * If there is no assoc data,
611 	 * this will be the init command
612 	 */
613 	if (!rctx->assoclen)
614 		op |= SE_AES_OP_INIT;
615 
616 	/*
617 	 * Hardware processes data_count + 1 blocks.
618 	 * Reduce 1 block if there is no residue
619 	 */
620 	if (!res_bits)
621 		data_count--;
622 
623 	cpuvaddr[i++] = host1x_opcode_setpayload(SE_CRYPTO_CTR_REG_COUNT);
624 	cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->linear_ctr);
625 	for (j = 0; j < SE_CRYPTO_CTR_REG_COUNT; j++)
626 		cpuvaddr[i++] = rctx->iv[j];
627 
628 	cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1);
629 	cpuvaddr[i++] = SE_LAST_BLOCK_VAL(data_count) |
630 			SE_LAST_BLOCK_RES_BITS(res_bits);
631 
632 	cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6);
633 	cpuvaddr[i++] = rctx->config;
634 	cpuvaddr[i++] = rctx->crypto_config;
635 
636 	/* Source Address */
637 	cpuvaddr[i++] = lower_32_bits(rctx->inbuf.addr);
638 	cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->inbuf.addr)) |
639 			SE_ADDR_HI_SZ(rctx->cryptlen);
640 
641 	/* Destination Address */
642 	cpuvaddr[i++] = lower_32_bits(rctx->outbuf.addr);
643 	cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->outbuf.addr)) |
644 			SE_ADDR_HI_SZ(rctx->cryptlen);
645 
646 	cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
647 	cpuvaddr[i++] = op;
648 
649 	cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
650 	cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
651 			host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
652 
653 	dev_dbg(se->dev, "cfg %#x crypto cfg %#x\n", rctx->config, rctx->crypto_config);
654 	return i;
655 }
656 
657 static int tegra_gcm_prep_final_cmd(struct tegra_se *se, u32 *cpuvaddr,
658 				    struct tegra_aead_reqctx *rctx)
659 {
660 	unsigned int i = 0, j;
661 	u32 op;
662 
663 	op = SE_AES_OP_WRSTALL | SE_AES_OP_FINAL |
664 	     SE_AES_OP_LASTBUF | SE_AES_OP_START;
665 
666 	/*
667 	 * Set init for zero sized vector
668 	 */
669 	if (!rctx->assoclen && !rctx->cryptlen)
670 		op |= SE_AES_OP_INIT;
671 
672 	cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->aad_len, 2);
673 	cpuvaddr[i++] = rctx->assoclen * 8;
674 	cpuvaddr[i++] = 0;
675 
676 	cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->cryp_msg_len, 2);
677 	cpuvaddr[i++] = rctx->cryptlen * 8;
678 	cpuvaddr[i++] = 0;
679 
680 	cpuvaddr[i++] = host1x_opcode_setpayload(SE_CRYPTO_CTR_REG_COUNT);
681 	cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->linear_ctr);
682 	for (j = 0; j < SE_CRYPTO_CTR_REG_COUNT; j++)
683 		cpuvaddr[i++] = rctx->iv[j];
684 
685 	cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6);
686 	cpuvaddr[i++] = rctx->config;
687 	cpuvaddr[i++] = rctx->crypto_config;
688 	cpuvaddr[i++] = 0;
689 	cpuvaddr[i++] = 0;
690 
691 	/* Destination Address */
692 	cpuvaddr[i++] = lower_32_bits(rctx->outbuf.addr);
693 	cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->outbuf.addr)) |
694 			SE_ADDR_HI_SZ(0x10); /* HW always generates 128-bit tag */
695 
696 	cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
697 	cpuvaddr[i++] = op;
698 
699 	cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
700 	cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
701 			host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
702 
703 	dev_dbg(se->dev, "cfg %#x crypto cfg %#x\n", rctx->config, rctx->crypto_config);
704 
705 	return i;
706 }
707 
708 static int tegra_gcm_do_gmac(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx)
709 {
710 	struct tegra_se *se = ctx->se;
711 	unsigned int cmdlen;
712 
713 	scatterwalk_map_and_copy(rctx->inbuf.buf,
714 				 rctx->src_sg, 0, rctx->assoclen, 0);
715 
716 	rctx->config = tegra234_aes_cfg(SE_ALG_GMAC, rctx->encrypt);
717 	rctx->crypto_config = tegra234_aes_crypto_cfg(SE_ALG_GMAC, rctx->encrypt) |
718 			      SE_AES_KEY_INDEX(ctx->key_id);
719 
720 	cmdlen = tegra_gmac_prep_cmd(ctx, rctx);
721 
722 	return tegra_se_host1x_submit(se, cmdlen);
723 }
724 
725 static int tegra_gcm_do_crypt(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx)
726 {
727 	struct tegra_se *se = ctx->se;
728 	int cmdlen, ret;
729 
730 	scatterwalk_map_and_copy(rctx->inbuf.buf, rctx->src_sg,
731 				 rctx->assoclen, rctx->cryptlen, 0);
732 
733 	rctx->config = tegra234_aes_cfg(SE_ALG_GCM, rctx->encrypt);
734 	rctx->crypto_config = tegra234_aes_crypto_cfg(SE_ALG_GCM, rctx->encrypt) |
735 			      SE_AES_KEY_INDEX(ctx->key_id);
736 
737 	/* Prepare command and submit */
738 	cmdlen = tegra_gcm_crypt_prep_cmd(ctx, rctx);
739 	ret = tegra_se_host1x_submit(se, cmdlen);
740 	if (ret)
741 		return ret;
742 
743 	/* Copy the result */
744 	scatterwalk_map_and_copy(rctx->outbuf.buf, rctx->dst_sg,
745 				 rctx->assoclen, rctx->cryptlen, 1);
746 
747 	return 0;
748 }
749 
750 static int tegra_gcm_do_final(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx)
751 {
752 	struct tegra_se *se = ctx->se;
753 	u32 *cpuvaddr = se->cmdbuf->addr;
754 	int cmdlen, ret, offset;
755 
756 	rctx->config = tegra234_aes_cfg(SE_ALG_GCM_FINAL, rctx->encrypt);
757 	rctx->crypto_config = tegra234_aes_crypto_cfg(SE_ALG_GCM_FINAL, rctx->encrypt) |
758 			      SE_AES_KEY_INDEX(ctx->key_id);
759 
760 	/* Prepare command and submit */
761 	cmdlen = tegra_gcm_prep_final_cmd(se, cpuvaddr, rctx);
762 	ret = tegra_se_host1x_submit(se, cmdlen);
763 	if (ret)
764 		return ret;
765 
766 	if (rctx->encrypt) {
767 		/* Copy the result */
768 		offset = rctx->assoclen + rctx->cryptlen;
769 		scatterwalk_map_and_copy(rctx->outbuf.buf, rctx->dst_sg,
770 					 offset, rctx->authsize, 1);
771 	}
772 
773 	return 0;
774 }
775 
776 static int tegra_gcm_do_verify(struct tegra_se *se, struct tegra_aead_reqctx *rctx)
777 {
778 	unsigned int offset;
779 	u8 mac[16];
780 
781 	offset = rctx->assoclen + rctx->cryptlen;
782 	scatterwalk_map_and_copy(mac, rctx->src_sg, offset, rctx->authsize, 0);
783 
784 	if (crypto_memneq(rctx->outbuf.buf, mac, rctx->authsize))
785 		return -EBADMSG;
786 
787 	return 0;
788 }
789 
790 static inline int tegra_ccm_check_iv(const u8 *iv)
791 {
792 	/* iv[0] gives value of q-1
793 	 * 2 <= q <= 8 as per NIST 800-38C notation
794 	 * 2 <= L <= 8, so 1 <= L' <= 7. as per rfc 3610 notation
795 	 */
796 	if (iv[0] < 1 || iv[0] > 7) {
797 		pr_debug("ccm_check_iv failed %d\n", iv[0]);
798 		return -EINVAL;
799 	}
800 
801 	return 0;
802 }
803 
804 static unsigned int tegra_cbcmac_prep_cmd(struct tegra_aead_ctx *ctx,
805 					  struct tegra_aead_reqctx *rctx)
806 {
807 	unsigned int data_count, i = 0;
808 	struct tegra_se *se = ctx->se;
809 	u32 *cpuvaddr = se->cmdbuf->addr;
810 
811 	data_count = (rctx->inbuf.size / AES_BLOCK_SIZE) - 1;
812 
813 	cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1);
814 	cpuvaddr[i++] = SE_LAST_BLOCK_VAL(data_count);
815 
816 	cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6);
817 	cpuvaddr[i++] = rctx->config;
818 	cpuvaddr[i++] = rctx->crypto_config;
819 
820 	cpuvaddr[i++] = lower_32_bits(rctx->inbuf.addr);
821 	cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->inbuf.addr)) |
822 			SE_ADDR_HI_SZ(rctx->inbuf.size);
823 
824 	cpuvaddr[i++] = lower_32_bits(rctx->outbuf.addr);
825 	cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->outbuf.addr)) |
826 			SE_ADDR_HI_SZ(0x10); /* HW always generates 128 bit tag */
827 
828 	cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
829 	cpuvaddr[i++] = SE_AES_OP_WRSTALL |
830 			SE_AES_OP_LASTBUF | SE_AES_OP_START;
831 
832 	cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
833 	cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
834 			host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
835 
836 	return i;
837 }
838 
839 static unsigned int tegra_ctr_prep_cmd(struct tegra_aead_ctx *ctx,
840 				       struct tegra_aead_reqctx *rctx)
841 {
842 	unsigned int i = 0, j;
843 	struct tegra_se *se = ctx->se;
844 	u32 *cpuvaddr = se->cmdbuf->addr;
845 
846 	cpuvaddr[i++] = host1x_opcode_setpayload(SE_CRYPTO_CTR_REG_COUNT);
847 	cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->linear_ctr);
848 	for (j = 0; j < SE_CRYPTO_CTR_REG_COUNT; j++)
849 		cpuvaddr[i++] = rctx->iv[j];
850 
851 	cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1);
852 	cpuvaddr[i++] = (rctx->inbuf.size / AES_BLOCK_SIZE) - 1;
853 	cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6);
854 	cpuvaddr[i++] = rctx->config;
855 	cpuvaddr[i++] = rctx->crypto_config;
856 
857 	/* Source address setting */
858 	cpuvaddr[i++] = lower_32_bits(rctx->inbuf.addr);
859 	cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->inbuf.addr)) |
860 			SE_ADDR_HI_SZ(rctx->inbuf.size);
861 
862 	/* Destination address setting */
863 	cpuvaddr[i++] = lower_32_bits(rctx->outbuf.addr);
864 	cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->outbuf.addr)) |
865 			SE_ADDR_HI_SZ(rctx->inbuf.size);
866 
867 	cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
868 	cpuvaddr[i++] = SE_AES_OP_WRSTALL | SE_AES_OP_LASTBUF |
869 			SE_AES_OP_START;
870 
871 	cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
872 	cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
873 			host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
874 
875 	dev_dbg(se->dev, "cfg %#x crypto cfg %#x\n",
876 		rctx->config, rctx->crypto_config);
877 
878 	return i;
879 }
880 
881 static int tegra_ccm_do_cbcmac(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx)
882 {
883 	struct tegra_se *se = ctx->se;
884 	int cmdlen;
885 
886 	rctx->config = tegra234_aes_cfg(SE_ALG_CBC_MAC, rctx->encrypt);
887 	rctx->crypto_config = tegra234_aes_crypto_cfg(SE_ALG_CBC_MAC,
888 						      rctx->encrypt) |
889 						      SE_AES_KEY_INDEX(ctx->key_id);
890 
891 	/* Prepare command and submit */
892 	cmdlen = tegra_cbcmac_prep_cmd(ctx, rctx);
893 
894 	return tegra_se_host1x_submit(se, cmdlen);
895 }
896 
897 static int tegra_ccm_set_msg_len(u8 *block, unsigned int msglen, int csize)
898 {
899 	__be32 data;
900 
901 	memset(block, 0, csize);
902 	block += csize;
903 
904 	if (csize >= 4)
905 		csize = 4;
906 	else if (msglen > (1 << (8 * csize)))
907 		return -EOVERFLOW;
908 
909 	data = cpu_to_be32(msglen);
910 	memcpy(block - csize, (u8 *)&data + 4 - csize, csize);
911 
912 	return 0;
913 }
914 
915 static int tegra_ccm_format_nonce(struct tegra_aead_reqctx *rctx, u8 *nonce)
916 {
917 	unsigned int q, t;
918 	u8 *q_ptr, *iv = (u8 *)rctx->iv;
919 
920 	memcpy(nonce, rctx->iv, 16);
921 
922 	/*** 1. Prepare Flags Octet ***/
923 
924 	/* Encode t (mac length) */
925 	t = rctx->authsize;
926 	nonce[0] |= (((t - 2) / 2) << 3);
927 
928 	/* Adata */
929 	if (rctx->assoclen)
930 		nonce[0] |= (1 << 6);
931 
932 	/*** Encode Q - message length ***/
933 	q = iv[0] + 1;
934 	q_ptr = nonce + 16 - q;
935 
936 	return tegra_ccm_set_msg_len(q_ptr, rctx->cryptlen, q);
937 }
938 
939 static int tegra_ccm_format_adata(u8 *adata, unsigned int a)
940 {
941 	int len = 0;
942 
943 	/* add control info for associated data
944 	 * RFC 3610 and NIST Special Publication 800-38C
945 	 */
946 	if (a < 65280) {
947 		*(__be16 *)adata = cpu_to_be16(a);
948 		len = 2;
949 	} else	{
950 		*(__be16 *)adata = cpu_to_be16(0xfffe);
951 		*(__be32 *)&adata[2] = cpu_to_be32(a);
952 		len = 6;
953 	}
954 
955 	return len;
956 }
957 
958 static int tegra_ccm_add_padding(u8 *buf, unsigned int len)
959 {
960 	unsigned int padlen = 16 - (len % 16);
961 	u8 padding[16] = {0};
962 
963 	if (padlen == 16)
964 		return 0;
965 
966 	memcpy(buf, padding, padlen);
967 
968 	return padlen;
969 }
970 
971 static int tegra_ccm_format_blocks(struct tegra_aead_reqctx *rctx)
972 {
973 	unsigned int alen = 0, offset = 0;
974 	u8 nonce[16], adata[16];
975 	int ret;
976 
977 	ret = tegra_ccm_format_nonce(rctx, nonce);
978 	if (ret)
979 		return ret;
980 
981 	memcpy(rctx->inbuf.buf, nonce, 16);
982 	offset = 16;
983 
984 	if (rctx->assoclen) {
985 		alen = tegra_ccm_format_adata(adata, rctx->assoclen);
986 		memcpy(rctx->inbuf.buf + offset, adata, alen);
987 		offset += alen;
988 
989 		scatterwalk_map_and_copy(rctx->inbuf.buf + offset,
990 					 rctx->src_sg, 0, rctx->assoclen, 0);
991 
992 		offset += rctx->assoclen;
993 		offset += tegra_ccm_add_padding(rctx->inbuf.buf + offset,
994 					 rctx->assoclen + alen);
995 	}
996 
997 	return offset;
998 }
999 
1000 static int tegra_ccm_mac_result(struct tegra_se *se, struct tegra_aead_reqctx *rctx)
1001 {
1002 	u32 result[16];
1003 	int i, ret;
1004 
1005 	/* Read and clear Result */
1006 	for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
1007 		result[i] = readl(se->base + se->hw->regs->result + (i * 4));
1008 
1009 	for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
1010 		writel(0, se->base + se->hw->regs->result + (i * 4));
1011 
1012 	if (rctx->encrypt) {
1013 		memcpy(rctx->authdata, result, rctx->authsize);
1014 	} else {
1015 		ret = crypto_memneq(rctx->authdata, result, rctx->authsize);
1016 		if (ret)
1017 			return -EBADMSG;
1018 	}
1019 
1020 	return 0;
1021 }
1022 
1023 static int tegra_ccm_ctr_result(struct tegra_se *se, struct tegra_aead_reqctx *rctx)
1024 {
1025 	/* Copy result */
1026 	scatterwalk_map_and_copy(rctx->outbuf.buf + 16, rctx->dst_sg,
1027 				 rctx->assoclen, rctx->cryptlen, 1);
1028 
1029 	if (rctx->encrypt)
1030 		scatterwalk_map_and_copy(rctx->outbuf.buf, rctx->dst_sg,
1031 					 rctx->assoclen + rctx->cryptlen,
1032 					 rctx->authsize, 1);
1033 	else
1034 		memcpy(rctx->authdata, rctx->outbuf.buf, rctx->authsize);
1035 
1036 	return 0;
1037 }
1038 
1039 static int tegra_ccm_compute_auth(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx)
1040 {
1041 	struct tegra_se *se = ctx->se;
1042 	struct scatterlist *sg;
1043 	int offset, ret;
1044 
1045 	offset = tegra_ccm_format_blocks(rctx);
1046 	if (offset < 0)
1047 		return -EINVAL;
1048 
1049 	/* Copy plain text to the buffer */
1050 	sg = rctx->encrypt ? rctx->src_sg : rctx->dst_sg;
1051 
1052 	scatterwalk_map_and_copy(rctx->inbuf.buf + offset,
1053 				 sg, rctx->assoclen,
1054 				 rctx->cryptlen, 0);
1055 	offset += rctx->cryptlen;
1056 	offset += tegra_ccm_add_padding(rctx->inbuf.buf + offset, rctx->cryptlen);
1057 
1058 	rctx->inbuf.size = offset;
1059 
1060 	ret = tegra_ccm_do_cbcmac(ctx, rctx);
1061 	if (ret)
1062 		return ret;
1063 
1064 	return tegra_ccm_mac_result(se, rctx);
1065 }
1066 
1067 static int tegra_ccm_do_ctr(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx)
1068 {
1069 	struct tegra_se *se = ctx->se;
1070 	unsigned int cmdlen, offset = 0;
1071 	struct scatterlist *sg = rctx->src_sg;
1072 	int ret;
1073 
1074 	rctx->config = tegra234_aes_cfg(SE_ALG_CTR, rctx->encrypt);
1075 	rctx->crypto_config = tegra234_aes_crypto_cfg(SE_ALG_CTR, rctx->encrypt) |
1076 			      SE_AES_KEY_INDEX(ctx->key_id);
1077 
1078 	/* Copy authdata in the top of buffer for encryption/decryption */
1079 	if (rctx->encrypt)
1080 		memcpy(rctx->inbuf.buf, rctx->authdata, rctx->authsize);
1081 	else
1082 		scatterwalk_map_and_copy(rctx->inbuf.buf, sg,
1083 					 rctx->assoclen + rctx->cryptlen,
1084 					 rctx->authsize, 0);
1085 
1086 	offset += rctx->authsize;
1087 	offset += tegra_ccm_add_padding(rctx->inbuf.buf + offset, rctx->authsize);
1088 
1089 	/* If there is no cryptlen, proceed to submit the task */
1090 	if (rctx->cryptlen) {
1091 		scatterwalk_map_and_copy(rctx->inbuf.buf + offset, sg,
1092 					 rctx->assoclen, rctx->cryptlen, 0);
1093 		offset += rctx->cryptlen;
1094 		offset += tegra_ccm_add_padding(rctx->inbuf.buf + offset, rctx->cryptlen);
1095 	}
1096 
1097 	rctx->inbuf.size = offset;
1098 
1099 	/* Prepare command and submit */
1100 	cmdlen = tegra_ctr_prep_cmd(ctx, rctx);
1101 	ret = tegra_se_host1x_submit(se, cmdlen);
1102 	if (ret)
1103 		return ret;
1104 
1105 	return tegra_ccm_ctr_result(se, rctx);
1106 }
1107 
1108 static int tegra_ccm_crypt_init(struct aead_request *req, struct tegra_se *se,
1109 				struct tegra_aead_reqctx *rctx)
1110 {
1111 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1112 	u8 *iv = (u8 *)rctx->iv;
1113 	int ret, i;
1114 
1115 	rctx->src_sg = req->src;
1116 	rctx->dst_sg = req->dst;
1117 	rctx->assoclen = req->assoclen;
1118 	rctx->authsize = crypto_aead_authsize(tfm);
1119 
1120 	memcpy(iv, req->iv, 16);
1121 
1122 	ret = tegra_ccm_check_iv(iv);
1123 	if (ret)
1124 		return ret;
1125 
1126 	/* Note: rfc 3610 and NIST 800-38C require counter (ctr_0) of
1127 	 * zero to encrypt auth tag.
1128 	 * req->iv has the formatted ctr_0 (i.e. Flags || N || 0).
1129 	 */
1130 	memset(iv + 15 - iv[0], 0, iv[0] + 1);
1131 
1132 	/* Clear any previous result */
1133 	for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
1134 		writel(0, se->base + se->hw->regs->result + (i * 4));
1135 
1136 	return 0;
1137 }
1138 
1139 static int tegra_ccm_do_one_req(struct crypto_engine *engine, void *areq)
1140 {
1141 	struct aead_request *req = container_of(areq, struct aead_request, base);
1142 	struct tegra_aead_reqctx *rctx = aead_request_ctx(req);
1143 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1144 	struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm);
1145 	struct tegra_se *se = ctx->se;
1146 	int ret;
1147 
1148 	/* Allocate buffers required */
1149 	rctx->inbuf.buf = dma_alloc_coherent(ctx->se->dev, SE_AES_BUFLEN,
1150 					     &rctx->inbuf.addr, GFP_KERNEL);
1151 	if (!rctx->inbuf.buf)
1152 		return -ENOMEM;
1153 
1154 	rctx->inbuf.size = SE_AES_BUFLEN;
1155 
1156 	rctx->outbuf.buf = dma_alloc_coherent(ctx->se->dev, SE_AES_BUFLEN,
1157 					      &rctx->outbuf.addr, GFP_KERNEL);
1158 	if (!rctx->outbuf.buf) {
1159 		ret = -ENOMEM;
1160 		goto outbuf_err;
1161 	}
1162 
1163 	rctx->outbuf.size = SE_AES_BUFLEN;
1164 
1165 	ret = tegra_ccm_crypt_init(req, se, rctx);
1166 	if (ret)
1167 		goto out;
1168 
1169 	if (rctx->encrypt) {
1170 		rctx->cryptlen = req->cryptlen;
1171 
1172 		/* CBC MAC Operation */
1173 		ret = tegra_ccm_compute_auth(ctx, rctx);
1174 		if (ret)
1175 			goto out;
1176 
1177 		/* CTR operation */
1178 		ret = tegra_ccm_do_ctr(ctx, rctx);
1179 		if (ret)
1180 			goto out;
1181 	} else {
1182 		rctx->cryptlen = req->cryptlen - ctx->authsize;
1183 		if (ret)
1184 			goto out;
1185 
1186 		/* CTR operation */
1187 		ret = tegra_ccm_do_ctr(ctx, rctx);
1188 		if (ret)
1189 			goto out;
1190 
1191 		/* CBC MAC Operation */
1192 		ret = tegra_ccm_compute_auth(ctx, rctx);
1193 		if (ret)
1194 			goto out;
1195 	}
1196 
1197 out:
1198 	dma_free_coherent(ctx->se->dev, SE_AES_BUFLEN,
1199 			  rctx->outbuf.buf, rctx->outbuf.addr);
1200 
1201 outbuf_err:
1202 	dma_free_coherent(ctx->se->dev, SE_AES_BUFLEN,
1203 			  rctx->inbuf.buf, rctx->inbuf.addr);
1204 
1205 	crypto_finalize_aead_request(ctx->se->engine, req, ret);
1206 
1207 	return 0;
1208 }
1209 
1210 static int tegra_gcm_do_one_req(struct crypto_engine *engine, void *areq)
1211 {
1212 	struct aead_request *req = container_of(areq, struct aead_request, base);
1213 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1214 	struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm);
1215 	struct tegra_aead_reqctx *rctx = aead_request_ctx(req);
1216 	int ret;
1217 
1218 	/* Allocate buffers required */
1219 	rctx->inbuf.buf = dma_alloc_coherent(ctx->se->dev, SE_AES_BUFLEN,
1220 					     &rctx->inbuf.addr, GFP_KERNEL);
1221 	if (!rctx->inbuf.buf)
1222 		return -ENOMEM;
1223 
1224 	rctx->inbuf.size = SE_AES_BUFLEN;
1225 
1226 	rctx->outbuf.buf = dma_alloc_coherent(ctx->se->dev, SE_AES_BUFLEN,
1227 					      &rctx->outbuf.addr, GFP_KERNEL);
1228 	if (!rctx->outbuf.buf) {
1229 		ret = -ENOMEM;
1230 		goto outbuf_err;
1231 	}
1232 
1233 	rctx->outbuf.size = SE_AES_BUFLEN;
1234 
1235 	rctx->src_sg = req->src;
1236 	rctx->dst_sg = req->dst;
1237 	rctx->assoclen = req->assoclen;
1238 	rctx->authsize = crypto_aead_authsize(tfm);
1239 
1240 	if (rctx->encrypt)
1241 		rctx->cryptlen = req->cryptlen;
1242 	else
1243 		rctx->cryptlen = req->cryptlen - ctx->authsize;
1244 
1245 	memcpy(rctx->iv, req->iv, GCM_AES_IV_SIZE);
1246 	rctx->iv[3] = (1 << 24);
1247 
1248 	/* If there is associated data perform GMAC operation */
1249 	if (rctx->assoclen) {
1250 		ret = tegra_gcm_do_gmac(ctx, rctx);
1251 		if (ret)
1252 			goto out;
1253 	}
1254 
1255 	/* GCM Encryption/Decryption operation */
1256 	if (rctx->cryptlen) {
1257 		ret = tegra_gcm_do_crypt(ctx, rctx);
1258 		if (ret)
1259 			goto out;
1260 	}
1261 
1262 	/* GCM_FINAL operation */
1263 	ret = tegra_gcm_do_final(ctx, rctx);
1264 	if (ret)
1265 		goto out;
1266 
1267 	if (!rctx->encrypt)
1268 		ret = tegra_gcm_do_verify(ctx->se, rctx);
1269 
1270 out:
1271 	dma_free_coherent(ctx->se->dev, SE_AES_BUFLEN,
1272 			  rctx->outbuf.buf, rctx->outbuf.addr);
1273 
1274 outbuf_err:
1275 	dma_free_coherent(ctx->se->dev, SE_AES_BUFLEN,
1276 			  rctx->inbuf.buf, rctx->inbuf.addr);
1277 
1278 	/* Finalize the request if there are no errors */
1279 	crypto_finalize_aead_request(ctx->se->engine, req, ret);
1280 
1281 	return 0;
1282 }
1283 
1284 static int tegra_aead_cra_init(struct crypto_aead *tfm)
1285 {
1286 	struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm);
1287 	struct aead_alg *alg = crypto_aead_alg(tfm);
1288 	struct tegra_se_alg *se_alg;
1289 	const char *algname;
1290 	int ret;
1291 
1292 	algname = crypto_tfm_alg_name(&tfm->base);
1293 
1294 	se_alg = container_of(alg, struct tegra_se_alg, alg.aead.base);
1295 
1296 	crypto_aead_set_reqsize(tfm, sizeof(struct tegra_aead_reqctx));
1297 
1298 	ctx->se = se_alg->se_dev;
1299 	ctx->key_id = 0;
1300 
1301 	ret = se_algname_to_algid(algname);
1302 	if (ret < 0) {
1303 		dev_err(ctx->se->dev, "invalid algorithm\n");
1304 		return ret;
1305 	}
1306 
1307 	ctx->alg = ret;
1308 
1309 	return 0;
1310 }
1311 
1312 static int tegra_ccm_setauthsize(struct crypto_aead *tfm,  unsigned int authsize)
1313 {
1314 	struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm);
1315 
1316 	switch (authsize) {
1317 	case 4:
1318 	case 6:
1319 	case 8:
1320 	case 10:
1321 	case 12:
1322 	case 14:
1323 	case 16:
1324 		break;
1325 	default:
1326 		return -EINVAL;
1327 	}
1328 
1329 	ctx->authsize = authsize;
1330 
1331 	return 0;
1332 }
1333 
1334 static int tegra_gcm_setauthsize(struct crypto_aead *tfm,  unsigned int authsize)
1335 {
1336 	struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm);
1337 	int ret;
1338 
1339 	ret = crypto_gcm_check_authsize(authsize);
1340 	if (ret)
1341 		return ret;
1342 
1343 	ctx->authsize = authsize;
1344 
1345 	return 0;
1346 }
1347 
1348 static void tegra_aead_cra_exit(struct crypto_aead *tfm)
1349 {
1350 	struct tegra_aead_ctx *ctx = crypto_tfm_ctx(&tfm->base);
1351 
1352 	if (ctx->key_id)
1353 		tegra_key_invalidate(ctx->se, ctx->key_id, ctx->alg);
1354 }
1355 
1356 static int tegra_aead_crypt(struct aead_request *req, bool encrypt)
1357 {
1358 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1359 	struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm);
1360 	struct tegra_aead_reqctx *rctx = aead_request_ctx(req);
1361 
1362 	rctx->encrypt = encrypt;
1363 
1364 	return crypto_transfer_aead_request_to_engine(ctx->se->engine, req);
1365 }
1366 
1367 static int tegra_aead_encrypt(struct aead_request *req)
1368 {
1369 	return tegra_aead_crypt(req, true);
1370 }
1371 
1372 static int tegra_aead_decrypt(struct aead_request *req)
1373 {
1374 	return tegra_aead_crypt(req, false);
1375 }
1376 
1377 static int tegra_aead_setkey(struct crypto_aead *tfm,
1378 			     const u8 *key, u32 keylen)
1379 {
1380 	struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm);
1381 
1382 	if (aes_check_keylen(keylen)) {
1383 		dev_dbg(ctx->se->dev, "invalid key length (%d)\n", keylen);
1384 		return -EINVAL;
1385 	}
1386 
1387 	return tegra_key_submit(ctx->se, key, keylen, ctx->alg, &ctx->key_id);
1388 }
1389 
1390 static unsigned int tegra_cmac_prep_cmd(struct tegra_cmac_ctx *ctx,
1391 					struct tegra_cmac_reqctx *rctx)
1392 {
1393 	unsigned int data_count, res_bits = 0, i = 0, j;
1394 	struct tegra_se *se = ctx->se;
1395 	u32 *cpuvaddr = se->cmdbuf->addr, op;
1396 
1397 	data_count = (rctx->datbuf.size / AES_BLOCK_SIZE);
1398 
1399 	op = SE_AES_OP_WRSTALL | SE_AES_OP_START | SE_AES_OP_LASTBUF;
1400 
1401 	if (!(rctx->task & SHA_UPDATE)) {
1402 		op |= SE_AES_OP_FINAL;
1403 		res_bits = (rctx->datbuf.size % AES_BLOCK_SIZE) * 8;
1404 	}
1405 
1406 	if (!res_bits && data_count)
1407 		data_count--;
1408 
1409 	if (rctx->task & SHA_FIRST) {
1410 		rctx->task &= ~SHA_FIRST;
1411 
1412 		cpuvaddr[i++] = host1x_opcode_setpayload(SE_CRYPTO_CTR_REG_COUNT);
1413 		cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->linear_ctr);
1414 		/* Load 0 IV */
1415 		for (j = 0; j < SE_CRYPTO_CTR_REG_COUNT; j++)
1416 			cpuvaddr[i++] = 0;
1417 	}
1418 
1419 	cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1);
1420 	cpuvaddr[i++] = SE_LAST_BLOCK_VAL(data_count) |
1421 			SE_LAST_BLOCK_RES_BITS(res_bits);
1422 
1423 	cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6);
1424 	cpuvaddr[i++] = rctx->config;
1425 	cpuvaddr[i++] = rctx->crypto_config;
1426 
1427 	/* Source Address */
1428 	cpuvaddr[i++] = lower_32_bits(rctx->datbuf.addr);
1429 	cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->datbuf.addr)) |
1430 			SE_ADDR_HI_SZ(rctx->datbuf.size);
1431 	cpuvaddr[i++] = 0;
1432 	cpuvaddr[i++] = SE_ADDR_HI_SZ(AES_BLOCK_SIZE);
1433 
1434 	cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
1435 	cpuvaddr[i++] = op;
1436 
1437 	cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
1438 	cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
1439 			host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
1440 
1441 	return i;
1442 }
1443 
1444 static void tegra_cmac_copy_result(struct tegra_se *se, struct tegra_cmac_reqctx *rctx)
1445 {
1446 	int i;
1447 
1448 	for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
1449 		rctx->result[i] = readl(se->base + se->hw->regs->result + (i * 4));
1450 }
1451 
1452 static void tegra_cmac_paste_result(struct tegra_se *se, struct tegra_cmac_reqctx *rctx)
1453 {
1454 	int i;
1455 
1456 	for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
1457 		writel(rctx->result[i],
1458 		       se->base + se->hw->regs->result + (i * 4));
1459 }
1460 
1461 static int tegra_cmac_do_update(struct ahash_request *req)
1462 {
1463 	struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
1464 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1465 	struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
1466 	struct tegra_se *se = ctx->se;
1467 	unsigned int nblks, nresidue, cmdlen;
1468 	int ret;
1469 
1470 	if (!req->nbytes)
1471 		return 0;
1472 
1473 	nresidue = (req->nbytes + rctx->residue.size) % rctx->blk_size;
1474 	nblks = (req->nbytes + rctx->residue.size) / rctx->blk_size;
1475 
1476 	/*
1477 	 * Reserve the last block as residue during final() to process.
1478 	 */
1479 	if (!nresidue && nblks) {
1480 		nresidue += rctx->blk_size;
1481 		nblks--;
1482 	}
1483 
1484 	rctx->src_sg = req->src;
1485 	rctx->datbuf.size = (req->nbytes + rctx->residue.size) - nresidue;
1486 	rctx->total_len += rctx->datbuf.size;
1487 	rctx->config = tegra234_aes_cfg(SE_ALG_CMAC, 0);
1488 	rctx->crypto_config = SE_AES_KEY_INDEX(ctx->key_id);
1489 
1490 	/*
1491 	 * Keep one block and residue bytes in residue and
1492 	 * return. The bytes will be processed in final()
1493 	 */
1494 	if (nblks < 1) {
1495 		scatterwalk_map_and_copy(rctx->residue.buf + rctx->residue.size,
1496 					 rctx->src_sg, 0, req->nbytes, 0);
1497 
1498 		rctx->residue.size += req->nbytes;
1499 		return 0;
1500 	}
1501 
1502 	/* Copy the previous residue first */
1503 	if (rctx->residue.size)
1504 		memcpy(rctx->datbuf.buf, rctx->residue.buf, rctx->residue.size);
1505 
1506 	scatterwalk_map_and_copy(rctx->datbuf.buf + rctx->residue.size,
1507 				 rctx->src_sg, 0, req->nbytes - nresidue, 0);
1508 
1509 	scatterwalk_map_and_copy(rctx->residue.buf, rctx->src_sg,
1510 				 req->nbytes - nresidue, nresidue, 0);
1511 
1512 	/* Update residue value with the residue after current block */
1513 	rctx->residue.size = nresidue;
1514 
1515 	/*
1516 	 * If this is not the first 'update' call, paste the previous copied
1517 	 * intermediate results to the registers so that it gets picked up.
1518 	 * This is to support the import/export functionality.
1519 	 */
1520 	if (!(rctx->task & SHA_FIRST))
1521 		tegra_cmac_paste_result(ctx->se, rctx);
1522 
1523 	cmdlen = tegra_cmac_prep_cmd(ctx, rctx);
1524 
1525 	ret = tegra_se_host1x_submit(se, cmdlen);
1526 	/*
1527 	 * If this is not the final update, copy the intermediate results
1528 	 * from the registers so that it can be used in the next 'update'
1529 	 * call. This is to support the import/export functionality.
1530 	 */
1531 	if (!(rctx->task & SHA_FINAL))
1532 		tegra_cmac_copy_result(ctx->se, rctx);
1533 
1534 	return ret;
1535 }
1536 
1537 static int tegra_cmac_do_final(struct ahash_request *req)
1538 {
1539 	struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
1540 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1541 	struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
1542 	struct tegra_se *se = ctx->se;
1543 	u32 *result = (u32 *)req->result;
1544 	int ret = 0, i, cmdlen;
1545 
1546 	if (!req->nbytes && !rctx->total_len && ctx->fallback_tfm) {
1547 		return crypto_shash_tfm_digest(ctx->fallback_tfm,
1548 					rctx->datbuf.buf, 0, req->result);
1549 	}
1550 
1551 	memcpy(rctx->datbuf.buf, rctx->residue.buf, rctx->residue.size);
1552 	rctx->datbuf.size = rctx->residue.size;
1553 	rctx->total_len += rctx->residue.size;
1554 	rctx->config = tegra234_aes_cfg(SE_ALG_CMAC, 0);
1555 
1556 	/* Prepare command and submit */
1557 	cmdlen = tegra_cmac_prep_cmd(ctx, rctx);
1558 	ret = tegra_se_host1x_submit(se, cmdlen);
1559 	if (ret)
1560 		goto out;
1561 
1562 	/* Read and clear Result register */
1563 	for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
1564 		result[i] = readl(se->base + se->hw->regs->result + (i * 4));
1565 
1566 	for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
1567 		writel(0, se->base + se->hw->regs->result + (i * 4));
1568 
1569 out:
1570 	dma_free_coherent(se->dev, SE_SHA_BUFLEN,
1571 			  rctx->datbuf.buf, rctx->datbuf.addr);
1572 	dma_free_coherent(se->dev, crypto_ahash_blocksize(tfm) * 2,
1573 			  rctx->residue.buf, rctx->residue.addr);
1574 	return ret;
1575 }
1576 
1577 static int tegra_cmac_do_one_req(struct crypto_engine *engine, void *areq)
1578 {
1579 	struct ahash_request *req = ahash_request_cast(areq);
1580 	struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
1581 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1582 	struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
1583 	struct tegra_se *se = ctx->se;
1584 	int ret;
1585 
1586 	if (rctx->task & SHA_UPDATE) {
1587 		ret = tegra_cmac_do_update(req);
1588 		rctx->task &= ~SHA_UPDATE;
1589 	}
1590 
1591 	if (rctx->task & SHA_FINAL) {
1592 		ret = tegra_cmac_do_final(req);
1593 		rctx->task &= ~SHA_FINAL;
1594 	}
1595 
1596 	crypto_finalize_hash_request(se->engine, req, ret);
1597 
1598 	return 0;
1599 }
1600 
1601 static void tegra_cmac_init_fallback(struct crypto_ahash *tfm, struct tegra_cmac_ctx *ctx,
1602 				     const char *algname)
1603 {
1604 	unsigned int statesize;
1605 
1606 	ctx->fallback_tfm = crypto_alloc_shash(algname, 0, CRYPTO_ALG_NEED_FALLBACK);
1607 
1608 	if (IS_ERR(ctx->fallback_tfm)) {
1609 		dev_warn(ctx->se->dev, "failed to allocate fallback for %s\n", algname);
1610 		ctx->fallback_tfm = NULL;
1611 		return;
1612 	}
1613 
1614 	statesize = crypto_shash_statesize(ctx->fallback_tfm);
1615 
1616 	if (statesize > sizeof(struct tegra_cmac_reqctx))
1617 		crypto_ahash_set_statesize(tfm, statesize);
1618 }
1619 
1620 static int tegra_cmac_cra_init(struct crypto_tfm *tfm)
1621 {
1622 	struct tegra_cmac_ctx *ctx = crypto_tfm_ctx(tfm);
1623 	struct crypto_ahash *ahash_tfm = __crypto_ahash_cast(tfm);
1624 	struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
1625 	struct tegra_se_alg *se_alg;
1626 	const char *algname;
1627 	int ret;
1628 
1629 	algname = crypto_tfm_alg_name(tfm);
1630 	se_alg = container_of(alg, struct tegra_se_alg, alg.ahash.base);
1631 
1632 	crypto_ahash_set_reqsize(ahash_tfm, sizeof(struct tegra_cmac_reqctx));
1633 
1634 	ctx->se = se_alg->se_dev;
1635 	ctx->key_id = 0;
1636 
1637 	ret = se_algname_to_algid(algname);
1638 	if (ret < 0) {
1639 		dev_err(ctx->se->dev, "invalid algorithm\n");
1640 		return ret;
1641 	}
1642 
1643 	ctx->alg = ret;
1644 
1645 	tegra_cmac_init_fallback(ahash_tfm, ctx, algname);
1646 
1647 	return 0;
1648 }
1649 
1650 static void tegra_cmac_cra_exit(struct crypto_tfm *tfm)
1651 {
1652 	struct tegra_cmac_ctx *ctx = crypto_tfm_ctx(tfm);
1653 
1654 	if (ctx->fallback_tfm)
1655 		crypto_free_shash(ctx->fallback_tfm);
1656 
1657 	tegra_key_invalidate(ctx->se, ctx->key_id, ctx->alg);
1658 }
1659 
1660 static int tegra_cmac_init(struct ahash_request *req)
1661 {
1662 	struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
1663 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1664 	struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
1665 	struct tegra_se *se = ctx->se;
1666 	int i;
1667 
1668 	rctx->total_len = 0;
1669 	rctx->datbuf.size = 0;
1670 	rctx->residue.size = 0;
1671 	rctx->task = SHA_FIRST;
1672 	rctx->blk_size = crypto_ahash_blocksize(tfm);
1673 
1674 	rctx->residue.buf = dma_alloc_coherent(se->dev, rctx->blk_size * 2,
1675 					       &rctx->residue.addr, GFP_KERNEL);
1676 	if (!rctx->residue.buf)
1677 		goto resbuf_fail;
1678 
1679 	rctx->residue.size = 0;
1680 
1681 	rctx->datbuf.buf = dma_alloc_coherent(se->dev, SE_SHA_BUFLEN,
1682 					      &rctx->datbuf.addr, GFP_KERNEL);
1683 	if (!rctx->datbuf.buf)
1684 		goto datbuf_fail;
1685 
1686 	rctx->datbuf.size = 0;
1687 
1688 	/* Clear any previous result */
1689 	for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
1690 		writel(0, se->base + se->hw->regs->result + (i * 4));
1691 
1692 	return 0;
1693 
1694 datbuf_fail:
1695 	dma_free_coherent(se->dev, rctx->blk_size, rctx->residue.buf,
1696 			  rctx->residue.addr);
1697 resbuf_fail:
1698 	return -ENOMEM;
1699 }
1700 
1701 static int tegra_cmac_setkey(struct crypto_ahash *tfm, const u8 *key,
1702 			     unsigned int keylen)
1703 {
1704 	struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
1705 
1706 	if (aes_check_keylen(keylen)) {
1707 		dev_dbg(ctx->se->dev, "invalid key length (%d)\n", keylen);
1708 		return -EINVAL;
1709 	}
1710 
1711 	if (ctx->fallback_tfm)
1712 		crypto_shash_setkey(ctx->fallback_tfm, key, keylen);
1713 
1714 	return tegra_key_submit(ctx->se, key, keylen, ctx->alg, &ctx->key_id);
1715 }
1716 
1717 static int tegra_cmac_update(struct ahash_request *req)
1718 {
1719 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1720 	struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
1721 	struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
1722 
1723 	rctx->task |= SHA_UPDATE;
1724 
1725 	return crypto_transfer_hash_request_to_engine(ctx->se->engine, req);
1726 }
1727 
1728 static int tegra_cmac_final(struct ahash_request *req)
1729 {
1730 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1731 	struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
1732 	struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
1733 
1734 	rctx->task |= SHA_FINAL;
1735 
1736 	return crypto_transfer_hash_request_to_engine(ctx->se->engine, req);
1737 }
1738 
1739 static int tegra_cmac_finup(struct ahash_request *req)
1740 {
1741 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1742 	struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
1743 	struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
1744 
1745 	rctx->task |= SHA_UPDATE | SHA_FINAL;
1746 
1747 	return crypto_transfer_hash_request_to_engine(ctx->se->engine, req);
1748 }
1749 
1750 static int tegra_cmac_digest(struct ahash_request *req)
1751 {
1752 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1753 	struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
1754 	struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
1755 
1756 	tegra_cmac_init(req);
1757 	rctx->task |= SHA_UPDATE | SHA_FINAL;
1758 
1759 	return crypto_transfer_hash_request_to_engine(ctx->se->engine, req);
1760 }
1761 
1762 static int tegra_cmac_export(struct ahash_request *req, void *out)
1763 {
1764 	struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
1765 
1766 	memcpy(out, rctx, sizeof(*rctx));
1767 
1768 	return 0;
1769 }
1770 
1771 static int tegra_cmac_import(struct ahash_request *req, const void *in)
1772 {
1773 	struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
1774 
1775 	memcpy(rctx, in, sizeof(*rctx));
1776 
1777 	return 0;
1778 }
1779 
1780 static struct tegra_se_alg tegra_aead_algs[] = {
1781 	{
1782 		.alg.aead.op.do_one_request = tegra_gcm_do_one_req,
1783 		.alg.aead.base = {
1784 			.init = tegra_aead_cra_init,
1785 			.exit = tegra_aead_cra_exit,
1786 			.setkey = tegra_aead_setkey,
1787 			.setauthsize = tegra_gcm_setauthsize,
1788 			.encrypt = tegra_aead_encrypt,
1789 			.decrypt = tegra_aead_decrypt,
1790 			.maxauthsize = AES_BLOCK_SIZE,
1791 			.ivsize	= GCM_AES_IV_SIZE,
1792 			.base = {
1793 				.cra_name = "gcm(aes)",
1794 				.cra_driver_name = "gcm-aes-tegra",
1795 				.cra_priority = 500,
1796 				.cra_blocksize = 1,
1797 				.cra_ctxsize = sizeof(struct tegra_aead_ctx),
1798 				.cra_alignmask = 0xf,
1799 				.cra_module = THIS_MODULE,
1800 			},
1801 		}
1802 	}, {
1803 		.alg.aead.op.do_one_request = tegra_ccm_do_one_req,
1804 		.alg.aead.base = {
1805 			.init = tegra_aead_cra_init,
1806 			.exit = tegra_aead_cra_exit,
1807 			.setkey	= tegra_aead_setkey,
1808 			.setauthsize = tegra_ccm_setauthsize,
1809 			.encrypt = tegra_aead_encrypt,
1810 			.decrypt = tegra_aead_decrypt,
1811 			.maxauthsize = AES_BLOCK_SIZE,
1812 			.ivsize	= AES_BLOCK_SIZE,
1813 			.chunksize = AES_BLOCK_SIZE,
1814 			.base = {
1815 				.cra_name = "ccm(aes)",
1816 				.cra_driver_name = "ccm-aes-tegra",
1817 				.cra_priority = 500,
1818 				.cra_blocksize = 1,
1819 				.cra_ctxsize = sizeof(struct tegra_aead_ctx),
1820 				.cra_alignmask = 0xf,
1821 				.cra_module = THIS_MODULE,
1822 			},
1823 		}
1824 	}
1825 };
1826 
1827 static struct tegra_se_alg tegra_cmac_algs[] = {
1828 	{
1829 		.alg.ahash.op.do_one_request = tegra_cmac_do_one_req,
1830 		.alg.ahash.base = {
1831 			.init = tegra_cmac_init,
1832 			.setkey	= tegra_cmac_setkey,
1833 			.update = tegra_cmac_update,
1834 			.final = tegra_cmac_final,
1835 			.finup = tegra_cmac_finup,
1836 			.digest = tegra_cmac_digest,
1837 			.export = tegra_cmac_export,
1838 			.import = tegra_cmac_import,
1839 			.halg.digestsize = AES_BLOCK_SIZE,
1840 			.halg.statesize = sizeof(struct tegra_cmac_reqctx),
1841 			.halg.base = {
1842 				.cra_name = "cmac(aes)",
1843 				.cra_driver_name = "tegra-se-cmac",
1844 				.cra_priority = 300,
1845 				.cra_flags = CRYPTO_ALG_TYPE_AHASH,
1846 				.cra_blocksize = AES_BLOCK_SIZE,
1847 				.cra_ctxsize = sizeof(struct tegra_cmac_ctx),
1848 				.cra_alignmask = 0,
1849 				.cra_module = THIS_MODULE,
1850 				.cra_init = tegra_cmac_cra_init,
1851 				.cra_exit = tegra_cmac_cra_exit,
1852 			}
1853 		}
1854 	}
1855 };
1856 
1857 int tegra_init_aes(struct tegra_se *se)
1858 {
1859 	struct aead_engine_alg *aead_alg;
1860 	struct ahash_engine_alg *ahash_alg;
1861 	struct skcipher_engine_alg *sk_alg;
1862 	int i, ret;
1863 
1864 	se->manifest = tegra_aes_kac_manifest;
1865 
1866 	for (i = 0; i < ARRAY_SIZE(tegra_aes_algs); i++) {
1867 		sk_alg = &tegra_aes_algs[i].alg.skcipher;
1868 		tegra_aes_algs[i].se_dev = se;
1869 
1870 		ret = crypto_engine_register_skcipher(sk_alg);
1871 		if (ret) {
1872 			dev_err(se->dev, "failed to register %s\n",
1873 				sk_alg->base.base.cra_name);
1874 			goto err_aes;
1875 		}
1876 	}
1877 
1878 	for (i = 0; i < ARRAY_SIZE(tegra_aead_algs); i++) {
1879 		aead_alg = &tegra_aead_algs[i].alg.aead;
1880 		tegra_aead_algs[i].se_dev = se;
1881 
1882 		ret = crypto_engine_register_aead(aead_alg);
1883 		if (ret) {
1884 			dev_err(se->dev, "failed to register %s\n",
1885 				aead_alg->base.base.cra_name);
1886 			goto err_aead;
1887 		}
1888 	}
1889 
1890 	for (i = 0; i < ARRAY_SIZE(tegra_cmac_algs); i++) {
1891 		ahash_alg = &tegra_cmac_algs[i].alg.ahash;
1892 		tegra_cmac_algs[i].se_dev = se;
1893 
1894 		ret = crypto_engine_register_ahash(ahash_alg);
1895 		if (ret) {
1896 			dev_err(se->dev, "failed to register %s\n",
1897 				ahash_alg->base.halg.base.cra_name);
1898 			goto err_cmac;
1899 		}
1900 	}
1901 
1902 	return 0;
1903 
1904 err_cmac:
1905 	while (i--)
1906 		crypto_engine_unregister_ahash(&tegra_cmac_algs[i].alg.ahash);
1907 
1908 	i = ARRAY_SIZE(tegra_aead_algs);
1909 err_aead:
1910 	while (i--)
1911 		crypto_engine_unregister_aead(&tegra_aead_algs[i].alg.aead);
1912 
1913 	i = ARRAY_SIZE(tegra_aes_algs);
1914 err_aes:
1915 	while (i--)
1916 		crypto_engine_unregister_skcipher(&tegra_aes_algs[i].alg.skcipher);
1917 
1918 	return ret;
1919 }
1920 
1921 void tegra_deinit_aes(struct tegra_se *se)
1922 {
1923 	int i;
1924 
1925 	for (i = 0; i < ARRAY_SIZE(tegra_aes_algs); i++)
1926 		crypto_engine_unregister_skcipher(&tegra_aes_algs[i].alg.skcipher);
1927 
1928 	for (i = 0; i < ARRAY_SIZE(tegra_aead_algs); i++)
1929 		crypto_engine_unregister_aead(&tegra_aead_algs[i].alg.aead);
1930 
1931 	for (i = 0; i < ARRAY_SIZE(tegra_cmac_algs); i++)
1932 		crypto_engine_unregister_ahash(&tegra_cmac_algs[i].alg.ahash);
1933 }
1934