xref: /linux/drivers/crypto/stm32/stm32-hash.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of STM32 Crypto driver for Linux.
4  *
5  * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6  * Author(s): Lionel DEBIEVE <lionel.debieve@st.com> for STMicroelectronics.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/crypto.h>
11 #include <linux/delay.h>
12 #include <linux/dmaengine.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/iopoll.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/of_device.h>
19 #include <linux/platform_device.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/reset.h>
22 
23 #include <crypto/engine.h>
24 #include <crypto/hash.h>
25 #include <crypto/md5.h>
26 #include <crypto/scatterwalk.h>
27 #include <crypto/sha.h>
28 #include <crypto/internal/hash.h>
29 
30 #define HASH_CR				0x00
31 #define HASH_DIN			0x04
32 #define HASH_STR			0x08
33 #define HASH_IMR			0x20
34 #define HASH_SR				0x24
35 #define HASH_CSR(x)			(0x0F8 + ((x) * 0x04))
36 #define HASH_HREG(x)			(0x310 + ((x) * 0x04))
37 #define HASH_HWCFGR			0x3F0
38 #define HASH_VER			0x3F4
39 #define HASH_ID				0x3F8
40 
41 /* Control Register */
42 #define HASH_CR_INIT			BIT(2)
43 #define HASH_CR_DMAE			BIT(3)
44 #define HASH_CR_DATATYPE_POS		4
45 #define HASH_CR_MODE			BIT(6)
46 #define HASH_CR_MDMAT			BIT(13)
47 #define HASH_CR_DMAA			BIT(14)
48 #define HASH_CR_LKEY			BIT(16)
49 
50 #define HASH_CR_ALGO_SHA1		0x0
51 #define HASH_CR_ALGO_MD5		0x80
52 #define HASH_CR_ALGO_SHA224		0x40000
53 #define HASH_CR_ALGO_SHA256		0x40080
54 
55 /* Interrupt */
56 #define HASH_DINIE			BIT(0)
57 #define HASH_DCIE			BIT(1)
58 
59 /* Interrupt Mask */
60 #define HASH_MASK_CALC_COMPLETION	BIT(0)
61 #define HASH_MASK_DATA_INPUT		BIT(1)
62 
63 /* Context swap register */
64 #define HASH_CSR_REGISTER_NUMBER	53
65 
66 /* Status Flags */
67 #define HASH_SR_DATA_INPUT_READY	BIT(0)
68 #define HASH_SR_OUTPUT_READY		BIT(1)
69 #define HASH_SR_DMA_ACTIVE		BIT(2)
70 #define HASH_SR_BUSY			BIT(3)
71 
72 /* STR Register */
73 #define HASH_STR_NBLW_MASK		GENMASK(4, 0)
74 #define HASH_STR_DCAL			BIT(8)
75 
76 #define HASH_FLAGS_INIT			BIT(0)
77 #define HASH_FLAGS_OUTPUT_READY		BIT(1)
78 #define HASH_FLAGS_CPU			BIT(2)
79 #define HASH_FLAGS_DMA_READY		BIT(3)
80 #define HASH_FLAGS_DMA_ACTIVE		BIT(4)
81 #define HASH_FLAGS_HMAC_INIT		BIT(5)
82 #define HASH_FLAGS_HMAC_FINAL		BIT(6)
83 #define HASH_FLAGS_HMAC_KEY		BIT(7)
84 
85 #define HASH_FLAGS_FINAL		BIT(15)
86 #define HASH_FLAGS_FINUP		BIT(16)
87 #define HASH_FLAGS_ALGO_MASK		GENMASK(21, 18)
88 #define HASH_FLAGS_MD5			BIT(18)
89 #define HASH_FLAGS_SHA1			BIT(19)
90 #define HASH_FLAGS_SHA224		BIT(20)
91 #define HASH_FLAGS_SHA256		BIT(21)
92 #define HASH_FLAGS_ERRORS		BIT(22)
93 #define HASH_FLAGS_HMAC			BIT(23)
94 
95 #define HASH_OP_UPDATE			1
96 #define HASH_OP_FINAL			2
97 
98 enum stm32_hash_data_format {
99 	HASH_DATA_32_BITS		= 0x0,
100 	HASH_DATA_16_BITS		= 0x1,
101 	HASH_DATA_8_BITS		= 0x2,
102 	HASH_DATA_1_BIT			= 0x3
103 };
104 
105 #define HASH_BUFLEN			256
106 #define HASH_LONG_KEY			64
107 #define HASH_MAX_KEY_SIZE		(SHA256_BLOCK_SIZE * 8)
108 #define HASH_QUEUE_LENGTH		16
109 #define HASH_DMA_THRESHOLD		50
110 
111 #define HASH_AUTOSUSPEND_DELAY		50
112 
113 struct stm32_hash_ctx {
114 	struct crypto_engine_ctx enginectx;
115 	struct stm32_hash_dev	*hdev;
116 	unsigned long		flags;
117 
118 	u8			key[HASH_MAX_KEY_SIZE];
119 	int			keylen;
120 };
121 
122 struct stm32_hash_request_ctx {
123 	struct stm32_hash_dev	*hdev;
124 	unsigned long		flags;
125 	unsigned long		op;
126 
127 	u8 digest[SHA256_DIGEST_SIZE] __aligned(sizeof(u32));
128 	size_t			digcnt;
129 	size_t			bufcnt;
130 	size_t			buflen;
131 
132 	/* DMA */
133 	struct scatterlist	*sg;
134 	unsigned int		offset;
135 	unsigned int		total;
136 	struct scatterlist	sg_key;
137 
138 	dma_addr_t		dma_addr;
139 	size_t			dma_ct;
140 	int			nents;
141 
142 	u8			data_type;
143 
144 	u8 buffer[HASH_BUFLEN] __aligned(sizeof(u32));
145 
146 	/* Export Context */
147 	u32			*hw_context;
148 };
149 
150 struct stm32_hash_algs_info {
151 	struct ahash_alg	*algs_list;
152 	size_t			size;
153 };
154 
155 struct stm32_hash_pdata {
156 	struct stm32_hash_algs_info	*algs_info;
157 	size_t				algs_info_size;
158 };
159 
160 struct stm32_hash_dev {
161 	struct list_head	list;
162 	struct device		*dev;
163 	struct clk		*clk;
164 	struct reset_control	*rst;
165 	void __iomem		*io_base;
166 	phys_addr_t		phys_base;
167 	u32			dma_mode;
168 	u32			dma_maxburst;
169 
170 	struct ahash_request	*req;
171 	struct crypto_engine	*engine;
172 
173 	int			err;
174 	unsigned long		flags;
175 
176 	struct dma_chan		*dma_lch;
177 	struct completion	dma_completion;
178 
179 	const struct stm32_hash_pdata	*pdata;
180 };
181 
182 struct stm32_hash_drv {
183 	struct list_head	dev_list;
184 	spinlock_t		lock; /* List protection access */
185 };
186 
187 static struct stm32_hash_drv stm32_hash = {
188 	.dev_list = LIST_HEAD_INIT(stm32_hash.dev_list),
189 	.lock = __SPIN_LOCK_UNLOCKED(stm32_hash.lock),
190 };
191 
192 static void stm32_hash_dma_callback(void *param);
193 
194 static inline u32 stm32_hash_read(struct stm32_hash_dev *hdev, u32 offset)
195 {
196 	return readl_relaxed(hdev->io_base + offset);
197 }
198 
199 static inline void stm32_hash_write(struct stm32_hash_dev *hdev,
200 				    u32 offset, u32 value)
201 {
202 	writel_relaxed(value, hdev->io_base + offset);
203 }
204 
205 static inline int stm32_hash_wait_busy(struct stm32_hash_dev *hdev)
206 {
207 	u32 status;
208 
209 	return readl_relaxed_poll_timeout(hdev->io_base + HASH_SR, status,
210 				   !(status & HASH_SR_BUSY), 10, 10000);
211 }
212 
213 static void stm32_hash_set_nblw(struct stm32_hash_dev *hdev, int length)
214 {
215 	u32 reg;
216 
217 	reg = stm32_hash_read(hdev, HASH_STR);
218 	reg &= ~(HASH_STR_NBLW_MASK);
219 	reg |= (8U * ((length) % 4U));
220 	stm32_hash_write(hdev, HASH_STR, reg);
221 }
222 
223 static int stm32_hash_write_key(struct stm32_hash_dev *hdev)
224 {
225 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
226 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
227 	u32 reg;
228 	int keylen = ctx->keylen;
229 	void *key = ctx->key;
230 
231 	if (keylen) {
232 		stm32_hash_set_nblw(hdev, keylen);
233 
234 		while (keylen > 0) {
235 			stm32_hash_write(hdev, HASH_DIN, *(u32 *)key);
236 			keylen -= 4;
237 			key += 4;
238 		}
239 
240 		reg = stm32_hash_read(hdev, HASH_STR);
241 		reg |= HASH_STR_DCAL;
242 		stm32_hash_write(hdev, HASH_STR, reg);
243 
244 		return -EINPROGRESS;
245 	}
246 
247 	return 0;
248 }
249 
250 static void stm32_hash_write_ctrl(struct stm32_hash_dev *hdev)
251 {
252 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
253 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
254 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
255 
256 	u32 reg = HASH_CR_INIT;
257 
258 	if (!(hdev->flags & HASH_FLAGS_INIT)) {
259 		switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
260 		case HASH_FLAGS_MD5:
261 			reg |= HASH_CR_ALGO_MD5;
262 			break;
263 		case HASH_FLAGS_SHA1:
264 			reg |= HASH_CR_ALGO_SHA1;
265 			break;
266 		case HASH_FLAGS_SHA224:
267 			reg |= HASH_CR_ALGO_SHA224;
268 			break;
269 		case HASH_FLAGS_SHA256:
270 			reg |= HASH_CR_ALGO_SHA256;
271 			break;
272 		default:
273 			reg |= HASH_CR_ALGO_MD5;
274 		}
275 
276 		reg |= (rctx->data_type << HASH_CR_DATATYPE_POS);
277 
278 		if (rctx->flags & HASH_FLAGS_HMAC) {
279 			hdev->flags |= HASH_FLAGS_HMAC;
280 			reg |= HASH_CR_MODE;
281 			if (ctx->keylen > HASH_LONG_KEY)
282 				reg |= HASH_CR_LKEY;
283 		}
284 
285 		stm32_hash_write(hdev, HASH_IMR, HASH_DCIE);
286 
287 		stm32_hash_write(hdev, HASH_CR, reg);
288 
289 		hdev->flags |= HASH_FLAGS_INIT;
290 
291 		dev_dbg(hdev->dev, "Write Control %x\n", reg);
292 	}
293 }
294 
295 static void stm32_hash_append_sg(struct stm32_hash_request_ctx *rctx)
296 {
297 	size_t count;
298 
299 	while ((rctx->bufcnt < rctx->buflen) && rctx->total) {
300 		count = min(rctx->sg->length - rctx->offset, rctx->total);
301 		count = min(count, rctx->buflen - rctx->bufcnt);
302 
303 		if (count <= 0) {
304 			if ((rctx->sg->length == 0) && !sg_is_last(rctx->sg)) {
305 				rctx->sg = sg_next(rctx->sg);
306 				continue;
307 			} else {
308 				break;
309 			}
310 		}
311 
312 		scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, rctx->sg,
313 					 rctx->offset, count, 0);
314 
315 		rctx->bufcnt += count;
316 		rctx->offset += count;
317 		rctx->total -= count;
318 
319 		if (rctx->offset == rctx->sg->length) {
320 			rctx->sg = sg_next(rctx->sg);
321 			if (rctx->sg)
322 				rctx->offset = 0;
323 			else
324 				rctx->total = 0;
325 		}
326 	}
327 }
328 
329 static int stm32_hash_xmit_cpu(struct stm32_hash_dev *hdev,
330 			       const u8 *buf, size_t length, int final)
331 {
332 	unsigned int count, len32;
333 	const u32 *buffer = (const u32 *)buf;
334 	u32 reg;
335 
336 	if (final)
337 		hdev->flags |= HASH_FLAGS_FINAL;
338 
339 	len32 = DIV_ROUND_UP(length, sizeof(u32));
340 
341 	dev_dbg(hdev->dev, "%s: length: %zd, final: %x len32 %i\n",
342 		__func__, length, final, len32);
343 
344 	hdev->flags |= HASH_FLAGS_CPU;
345 
346 	stm32_hash_write_ctrl(hdev);
347 
348 	if (stm32_hash_wait_busy(hdev))
349 		return -ETIMEDOUT;
350 
351 	if ((hdev->flags & HASH_FLAGS_HMAC) &&
352 	    (!(hdev->flags & HASH_FLAGS_HMAC_KEY))) {
353 		hdev->flags |= HASH_FLAGS_HMAC_KEY;
354 		stm32_hash_write_key(hdev);
355 		if (stm32_hash_wait_busy(hdev))
356 			return -ETIMEDOUT;
357 	}
358 
359 	for (count = 0; count < len32; count++)
360 		stm32_hash_write(hdev, HASH_DIN, buffer[count]);
361 
362 	if (final) {
363 		stm32_hash_set_nblw(hdev, length);
364 		reg = stm32_hash_read(hdev, HASH_STR);
365 		reg |= HASH_STR_DCAL;
366 		stm32_hash_write(hdev, HASH_STR, reg);
367 		if (hdev->flags & HASH_FLAGS_HMAC) {
368 			if (stm32_hash_wait_busy(hdev))
369 				return -ETIMEDOUT;
370 			stm32_hash_write_key(hdev);
371 		}
372 		return -EINPROGRESS;
373 	}
374 
375 	return 0;
376 }
377 
378 static int stm32_hash_update_cpu(struct stm32_hash_dev *hdev)
379 {
380 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
381 	int bufcnt, err = 0, final;
382 
383 	dev_dbg(hdev->dev, "%s flags %lx\n", __func__, rctx->flags);
384 
385 	final = (rctx->flags & HASH_FLAGS_FINUP);
386 
387 	while ((rctx->total >= rctx->buflen) ||
388 	       (rctx->bufcnt + rctx->total >= rctx->buflen)) {
389 		stm32_hash_append_sg(rctx);
390 		bufcnt = rctx->bufcnt;
391 		rctx->bufcnt = 0;
392 		err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt, 0);
393 	}
394 
395 	stm32_hash_append_sg(rctx);
396 
397 	if (final) {
398 		bufcnt = rctx->bufcnt;
399 		rctx->bufcnt = 0;
400 		err = stm32_hash_xmit_cpu(hdev, rctx->buffer, bufcnt,
401 					  (rctx->flags & HASH_FLAGS_FINUP));
402 	}
403 
404 	return err;
405 }
406 
407 static int stm32_hash_xmit_dma(struct stm32_hash_dev *hdev,
408 			       struct scatterlist *sg, int length, int mdma)
409 {
410 	struct dma_async_tx_descriptor *in_desc;
411 	dma_cookie_t cookie;
412 	u32 reg;
413 	int err;
414 
415 	in_desc = dmaengine_prep_slave_sg(hdev->dma_lch, sg, 1,
416 					  DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT |
417 					  DMA_CTRL_ACK);
418 	if (!in_desc) {
419 		dev_err(hdev->dev, "dmaengine_prep_slave error\n");
420 		return -ENOMEM;
421 	}
422 
423 	reinit_completion(&hdev->dma_completion);
424 	in_desc->callback = stm32_hash_dma_callback;
425 	in_desc->callback_param = hdev;
426 
427 	hdev->flags |= HASH_FLAGS_FINAL;
428 	hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
429 
430 	reg = stm32_hash_read(hdev, HASH_CR);
431 
432 	if (mdma)
433 		reg |= HASH_CR_MDMAT;
434 	else
435 		reg &= ~HASH_CR_MDMAT;
436 
437 	reg |= HASH_CR_DMAE;
438 
439 	stm32_hash_write(hdev, HASH_CR, reg);
440 
441 	stm32_hash_set_nblw(hdev, length);
442 
443 	cookie = dmaengine_submit(in_desc);
444 	err = dma_submit_error(cookie);
445 	if (err)
446 		return -ENOMEM;
447 
448 	dma_async_issue_pending(hdev->dma_lch);
449 
450 	if (!wait_for_completion_timeout(&hdev->dma_completion,
451 					 msecs_to_jiffies(100)))
452 		err = -ETIMEDOUT;
453 
454 	if (dma_async_is_tx_complete(hdev->dma_lch, cookie,
455 				     NULL, NULL) != DMA_COMPLETE)
456 		err = -ETIMEDOUT;
457 
458 	if (err) {
459 		dev_err(hdev->dev, "DMA Error %i\n", err);
460 		dmaengine_terminate_all(hdev->dma_lch);
461 		return err;
462 	}
463 
464 	return -EINPROGRESS;
465 }
466 
467 static void stm32_hash_dma_callback(void *param)
468 {
469 	struct stm32_hash_dev *hdev = param;
470 
471 	complete(&hdev->dma_completion);
472 
473 	hdev->flags |= HASH_FLAGS_DMA_READY;
474 }
475 
476 static int stm32_hash_hmac_dma_send(struct stm32_hash_dev *hdev)
477 {
478 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
479 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
480 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
481 	int err;
482 
483 	if (ctx->keylen < HASH_DMA_THRESHOLD || (hdev->dma_mode == 1)) {
484 		err = stm32_hash_write_key(hdev);
485 		if (stm32_hash_wait_busy(hdev))
486 			return -ETIMEDOUT;
487 	} else {
488 		if (!(hdev->flags & HASH_FLAGS_HMAC_KEY))
489 			sg_init_one(&rctx->sg_key, ctx->key,
490 				    ALIGN(ctx->keylen, sizeof(u32)));
491 
492 		rctx->dma_ct = dma_map_sg(hdev->dev, &rctx->sg_key, 1,
493 					  DMA_TO_DEVICE);
494 		if (rctx->dma_ct == 0) {
495 			dev_err(hdev->dev, "dma_map_sg error\n");
496 			return -ENOMEM;
497 		}
498 
499 		err = stm32_hash_xmit_dma(hdev, &rctx->sg_key, ctx->keylen, 0);
500 
501 		dma_unmap_sg(hdev->dev, &rctx->sg_key, 1, DMA_TO_DEVICE);
502 	}
503 
504 	return err;
505 }
506 
507 static int stm32_hash_dma_init(struct stm32_hash_dev *hdev)
508 {
509 	struct dma_slave_config dma_conf;
510 	int err;
511 
512 	memset(&dma_conf, 0, sizeof(dma_conf));
513 
514 	dma_conf.direction = DMA_MEM_TO_DEV;
515 	dma_conf.dst_addr = hdev->phys_base + HASH_DIN;
516 	dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
517 	dma_conf.src_maxburst = hdev->dma_maxburst;
518 	dma_conf.dst_maxburst = hdev->dma_maxburst;
519 	dma_conf.device_fc = false;
520 
521 	hdev->dma_lch = dma_request_slave_channel(hdev->dev, "in");
522 	if (!hdev->dma_lch) {
523 		dev_err(hdev->dev, "Couldn't acquire a slave DMA channel.\n");
524 		return -EBUSY;
525 	}
526 
527 	err = dmaengine_slave_config(hdev->dma_lch, &dma_conf);
528 	if (err) {
529 		dma_release_channel(hdev->dma_lch);
530 		hdev->dma_lch = NULL;
531 		dev_err(hdev->dev, "Couldn't configure DMA slave.\n");
532 		return err;
533 	}
534 
535 	init_completion(&hdev->dma_completion);
536 
537 	return 0;
538 }
539 
540 static int stm32_hash_dma_send(struct stm32_hash_dev *hdev)
541 {
542 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
543 	struct scatterlist sg[1], *tsg;
544 	int err = 0, len = 0, reg, ncp = 0;
545 	unsigned int i;
546 	u32 *buffer = (void *)rctx->buffer;
547 
548 	rctx->sg = hdev->req->src;
549 	rctx->total = hdev->req->nbytes;
550 
551 	rctx->nents = sg_nents(rctx->sg);
552 
553 	if (rctx->nents < 0)
554 		return -EINVAL;
555 
556 	stm32_hash_write_ctrl(hdev);
557 
558 	if (hdev->flags & HASH_FLAGS_HMAC) {
559 		err = stm32_hash_hmac_dma_send(hdev);
560 		if (err != -EINPROGRESS)
561 			return err;
562 	}
563 
564 	for_each_sg(rctx->sg, tsg, rctx->nents, i) {
565 		len = sg->length;
566 
567 		sg[0] = *tsg;
568 		if (sg_is_last(sg)) {
569 			if (hdev->dma_mode == 1) {
570 				len = (ALIGN(sg->length, 16) - 16);
571 
572 				ncp = sg_pcopy_to_buffer(
573 					rctx->sg, rctx->nents,
574 					rctx->buffer, sg->length - len,
575 					rctx->total - sg->length + len);
576 
577 				sg->length = len;
578 			} else {
579 				if (!(IS_ALIGNED(sg->length, sizeof(u32)))) {
580 					len = sg->length;
581 					sg->length = ALIGN(sg->length,
582 							   sizeof(u32));
583 				}
584 			}
585 		}
586 
587 		rctx->dma_ct = dma_map_sg(hdev->dev, sg, 1,
588 					  DMA_TO_DEVICE);
589 		if (rctx->dma_ct == 0) {
590 			dev_err(hdev->dev, "dma_map_sg error\n");
591 			return -ENOMEM;
592 		}
593 
594 		err = stm32_hash_xmit_dma(hdev, sg, len,
595 					  !sg_is_last(sg));
596 
597 		dma_unmap_sg(hdev->dev, sg, 1, DMA_TO_DEVICE);
598 
599 		if (err == -ENOMEM)
600 			return err;
601 	}
602 
603 	if (hdev->dma_mode == 1) {
604 		if (stm32_hash_wait_busy(hdev))
605 			return -ETIMEDOUT;
606 		reg = stm32_hash_read(hdev, HASH_CR);
607 		reg &= ~HASH_CR_DMAE;
608 		reg |= HASH_CR_DMAA;
609 		stm32_hash_write(hdev, HASH_CR, reg);
610 
611 		if (ncp) {
612 			memset(buffer + ncp, 0,
613 			       DIV_ROUND_UP(ncp, sizeof(u32)) - ncp);
614 			writesl(hdev->io_base + HASH_DIN, buffer,
615 				DIV_ROUND_UP(ncp, sizeof(u32)));
616 		}
617 		stm32_hash_set_nblw(hdev, ncp);
618 		reg = stm32_hash_read(hdev, HASH_STR);
619 		reg |= HASH_STR_DCAL;
620 		stm32_hash_write(hdev, HASH_STR, reg);
621 		err = -EINPROGRESS;
622 	}
623 
624 	if (hdev->flags & HASH_FLAGS_HMAC) {
625 		if (stm32_hash_wait_busy(hdev))
626 			return -ETIMEDOUT;
627 		err = stm32_hash_hmac_dma_send(hdev);
628 	}
629 
630 	return err;
631 }
632 
633 static struct stm32_hash_dev *stm32_hash_find_dev(struct stm32_hash_ctx *ctx)
634 {
635 	struct stm32_hash_dev *hdev = NULL, *tmp;
636 
637 	spin_lock_bh(&stm32_hash.lock);
638 	if (!ctx->hdev) {
639 		list_for_each_entry(tmp, &stm32_hash.dev_list, list) {
640 			hdev = tmp;
641 			break;
642 		}
643 		ctx->hdev = hdev;
644 	} else {
645 		hdev = ctx->hdev;
646 	}
647 
648 	spin_unlock_bh(&stm32_hash.lock);
649 
650 	return hdev;
651 }
652 
653 static bool stm32_hash_dma_aligned_data(struct ahash_request *req)
654 {
655 	struct scatterlist *sg;
656 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
657 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
658 	int i;
659 
660 	if (req->nbytes <= HASH_DMA_THRESHOLD)
661 		return false;
662 
663 	if (sg_nents(req->src) > 1) {
664 		if (hdev->dma_mode == 1)
665 			return false;
666 		for_each_sg(req->src, sg, sg_nents(req->src), i) {
667 			if ((!IS_ALIGNED(sg->length, sizeof(u32))) &&
668 			    (!sg_is_last(sg)))
669 				return false;
670 		}
671 	}
672 
673 	if (req->src->offset % 4)
674 		return false;
675 
676 	return true;
677 }
678 
679 static int stm32_hash_init(struct ahash_request *req)
680 {
681 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
682 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
683 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
684 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
685 
686 	rctx->hdev = hdev;
687 
688 	rctx->flags = HASH_FLAGS_CPU;
689 
690 	rctx->digcnt = crypto_ahash_digestsize(tfm);
691 	switch (rctx->digcnt) {
692 	case MD5_DIGEST_SIZE:
693 		rctx->flags |= HASH_FLAGS_MD5;
694 		break;
695 	case SHA1_DIGEST_SIZE:
696 		rctx->flags |= HASH_FLAGS_SHA1;
697 		break;
698 	case SHA224_DIGEST_SIZE:
699 		rctx->flags |= HASH_FLAGS_SHA224;
700 		break;
701 	case SHA256_DIGEST_SIZE:
702 		rctx->flags |= HASH_FLAGS_SHA256;
703 		break;
704 	default:
705 		return -EINVAL;
706 	}
707 
708 	rctx->bufcnt = 0;
709 	rctx->buflen = HASH_BUFLEN;
710 	rctx->total = 0;
711 	rctx->offset = 0;
712 	rctx->data_type = HASH_DATA_8_BITS;
713 
714 	memset(rctx->buffer, 0, HASH_BUFLEN);
715 
716 	if (ctx->flags & HASH_FLAGS_HMAC)
717 		rctx->flags |= HASH_FLAGS_HMAC;
718 
719 	dev_dbg(hdev->dev, "%s Flags %lx\n", __func__, rctx->flags);
720 
721 	return 0;
722 }
723 
724 static int stm32_hash_update_req(struct stm32_hash_dev *hdev)
725 {
726 	return stm32_hash_update_cpu(hdev);
727 }
728 
729 static int stm32_hash_final_req(struct stm32_hash_dev *hdev)
730 {
731 	struct ahash_request *req = hdev->req;
732 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
733 	int err;
734 	int buflen = rctx->bufcnt;
735 
736 	rctx->bufcnt = 0;
737 
738 	if (!(rctx->flags & HASH_FLAGS_CPU))
739 		err = stm32_hash_dma_send(hdev);
740 	else
741 		err = stm32_hash_xmit_cpu(hdev, rctx->buffer, buflen, 1);
742 
743 
744 	return err;
745 }
746 
747 static void stm32_hash_copy_hash(struct ahash_request *req)
748 {
749 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
750 	u32 *hash = (u32 *)rctx->digest;
751 	unsigned int i, hashsize;
752 
753 	switch (rctx->flags & HASH_FLAGS_ALGO_MASK) {
754 	case HASH_FLAGS_MD5:
755 		hashsize = MD5_DIGEST_SIZE;
756 		break;
757 	case HASH_FLAGS_SHA1:
758 		hashsize = SHA1_DIGEST_SIZE;
759 		break;
760 	case HASH_FLAGS_SHA224:
761 		hashsize = SHA224_DIGEST_SIZE;
762 		break;
763 	case HASH_FLAGS_SHA256:
764 		hashsize = SHA256_DIGEST_SIZE;
765 		break;
766 	default:
767 		return;
768 	}
769 
770 	for (i = 0; i < hashsize / sizeof(u32); i++)
771 		hash[i] = be32_to_cpu(stm32_hash_read(rctx->hdev,
772 						      HASH_HREG(i)));
773 }
774 
775 static int stm32_hash_finish(struct ahash_request *req)
776 {
777 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
778 
779 	if (!req->result)
780 		return -EINVAL;
781 
782 	memcpy(req->result, rctx->digest, rctx->digcnt);
783 
784 	return 0;
785 }
786 
787 static void stm32_hash_finish_req(struct ahash_request *req, int err)
788 {
789 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
790 	struct stm32_hash_dev *hdev = rctx->hdev;
791 
792 	if (!err && (HASH_FLAGS_FINAL & hdev->flags)) {
793 		stm32_hash_copy_hash(req);
794 		err = stm32_hash_finish(req);
795 		hdev->flags &= ~(HASH_FLAGS_FINAL | HASH_FLAGS_CPU |
796 				 HASH_FLAGS_INIT | HASH_FLAGS_DMA_READY |
797 				 HASH_FLAGS_OUTPUT_READY | HASH_FLAGS_HMAC |
798 				 HASH_FLAGS_HMAC_INIT | HASH_FLAGS_HMAC_FINAL |
799 				 HASH_FLAGS_HMAC_KEY);
800 	} else {
801 		rctx->flags |= HASH_FLAGS_ERRORS;
802 	}
803 
804 	pm_runtime_mark_last_busy(hdev->dev);
805 	pm_runtime_put_autosuspend(hdev->dev);
806 
807 	crypto_finalize_hash_request(hdev->engine, req, err);
808 }
809 
810 static int stm32_hash_hw_init(struct stm32_hash_dev *hdev,
811 			      struct stm32_hash_request_ctx *rctx)
812 {
813 	pm_runtime_get_sync(hdev->dev);
814 
815 	if (!(HASH_FLAGS_INIT & hdev->flags)) {
816 		stm32_hash_write(hdev, HASH_CR, HASH_CR_INIT);
817 		stm32_hash_write(hdev, HASH_STR, 0);
818 		stm32_hash_write(hdev, HASH_DIN, 0);
819 		stm32_hash_write(hdev, HASH_IMR, 0);
820 		hdev->err = 0;
821 	}
822 
823 	return 0;
824 }
825 
826 static int stm32_hash_one_request(struct crypto_engine *engine, void *areq);
827 static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq);
828 
829 static int stm32_hash_handle_queue(struct stm32_hash_dev *hdev,
830 				   struct ahash_request *req)
831 {
832 	return crypto_transfer_hash_request_to_engine(hdev->engine, req);
833 }
834 
835 static int stm32_hash_prepare_req(struct crypto_engine *engine, void *areq)
836 {
837 	struct ahash_request *req = container_of(areq, struct ahash_request,
838 						 base);
839 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
840 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
841 	struct stm32_hash_request_ctx *rctx;
842 
843 	if (!hdev)
844 		return -ENODEV;
845 
846 	hdev->req = req;
847 
848 	rctx = ahash_request_ctx(req);
849 
850 	dev_dbg(hdev->dev, "processing new req, op: %lu, nbytes %d\n",
851 		rctx->op, req->nbytes);
852 
853 	return stm32_hash_hw_init(hdev, rctx);
854 }
855 
856 static int stm32_hash_one_request(struct crypto_engine *engine, void *areq)
857 {
858 	struct ahash_request *req = container_of(areq, struct ahash_request,
859 						 base);
860 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
861 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
862 	struct stm32_hash_request_ctx *rctx;
863 	int err = 0;
864 
865 	if (!hdev)
866 		return -ENODEV;
867 
868 	hdev->req = req;
869 
870 	rctx = ahash_request_ctx(req);
871 
872 	if (rctx->op == HASH_OP_UPDATE)
873 		err = stm32_hash_update_req(hdev);
874 	else if (rctx->op == HASH_OP_FINAL)
875 		err = stm32_hash_final_req(hdev);
876 
877 	if (err != -EINPROGRESS)
878 	/* done task will not finish it, so do it here */
879 		stm32_hash_finish_req(req, err);
880 
881 	return 0;
882 }
883 
884 static int stm32_hash_enqueue(struct ahash_request *req, unsigned int op)
885 {
886 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
887 	struct stm32_hash_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
888 	struct stm32_hash_dev *hdev = ctx->hdev;
889 
890 	rctx->op = op;
891 
892 	return stm32_hash_handle_queue(hdev, req);
893 }
894 
895 static int stm32_hash_update(struct ahash_request *req)
896 {
897 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
898 
899 	if (!req->nbytes || !(rctx->flags & HASH_FLAGS_CPU))
900 		return 0;
901 
902 	rctx->total = req->nbytes;
903 	rctx->sg = req->src;
904 	rctx->offset = 0;
905 
906 	if ((rctx->bufcnt + rctx->total < rctx->buflen)) {
907 		stm32_hash_append_sg(rctx);
908 		return 0;
909 	}
910 
911 	return stm32_hash_enqueue(req, HASH_OP_UPDATE);
912 }
913 
914 static int stm32_hash_final(struct ahash_request *req)
915 {
916 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
917 
918 	rctx->flags |= HASH_FLAGS_FINUP;
919 
920 	return stm32_hash_enqueue(req, HASH_OP_FINAL);
921 }
922 
923 static int stm32_hash_finup(struct ahash_request *req)
924 {
925 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
926 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
927 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
928 	int err1, err2;
929 
930 	rctx->flags |= HASH_FLAGS_FINUP;
931 
932 	if (hdev->dma_lch && stm32_hash_dma_aligned_data(req))
933 		rctx->flags &= ~HASH_FLAGS_CPU;
934 
935 	err1 = stm32_hash_update(req);
936 
937 	if (err1 == -EINPROGRESS || err1 == -EBUSY)
938 		return err1;
939 
940 	/*
941 	 * final() has to be always called to cleanup resources
942 	 * even if update() failed, except EINPROGRESS
943 	 */
944 	err2 = stm32_hash_final(req);
945 
946 	return err1 ?: err2;
947 }
948 
949 static int stm32_hash_digest(struct ahash_request *req)
950 {
951 	return stm32_hash_init(req) ?: stm32_hash_finup(req);
952 }
953 
954 static int stm32_hash_export(struct ahash_request *req, void *out)
955 {
956 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
957 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
958 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
959 	u32 *preg;
960 	unsigned int i;
961 
962 	pm_runtime_get_sync(hdev->dev);
963 
964 	while ((stm32_hash_read(hdev, HASH_SR) & HASH_SR_BUSY))
965 		cpu_relax();
966 
967 	rctx->hw_context = kmalloc_array(3 + HASH_CSR_REGISTER_NUMBER,
968 					 sizeof(u32),
969 					 GFP_KERNEL);
970 
971 	preg = rctx->hw_context;
972 
973 	*preg++ = stm32_hash_read(hdev, HASH_IMR);
974 	*preg++ = stm32_hash_read(hdev, HASH_STR);
975 	*preg++ = stm32_hash_read(hdev, HASH_CR);
976 	for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
977 		*preg++ = stm32_hash_read(hdev, HASH_CSR(i));
978 
979 	pm_runtime_mark_last_busy(hdev->dev);
980 	pm_runtime_put_autosuspend(hdev->dev);
981 
982 	memcpy(out, rctx, sizeof(*rctx));
983 
984 	return 0;
985 }
986 
987 static int stm32_hash_import(struct ahash_request *req, const void *in)
988 {
989 	struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
990 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
991 	struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
992 	const u32 *preg = in;
993 	u32 reg;
994 	unsigned int i;
995 
996 	memcpy(rctx, in, sizeof(*rctx));
997 
998 	preg = rctx->hw_context;
999 
1000 	pm_runtime_get_sync(hdev->dev);
1001 
1002 	stm32_hash_write(hdev, HASH_IMR, *preg++);
1003 	stm32_hash_write(hdev, HASH_STR, *preg++);
1004 	stm32_hash_write(hdev, HASH_CR, *preg);
1005 	reg = *preg++ | HASH_CR_INIT;
1006 	stm32_hash_write(hdev, HASH_CR, reg);
1007 
1008 	for (i = 0; i < HASH_CSR_REGISTER_NUMBER; i++)
1009 		stm32_hash_write(hdev, HASH_CSR(i), *preg++);
1010 
1011 	pm_runtime_mark_last_busy(hdev->dev);
1012 	pm_runtime_put_autosuspend(hdev->dev);
1013 
1014 	kfree(rctx->hw_context);
1015 
1016 	return 0;
1017 }
1018 
1019 static int stm32_hash_setkey(struct crypto_ahash *tfm,
1020 			     const u8 *key, unsigned int keylen)
1021 {
1022 	struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
1023 
1024 	if (keylen <= HASH_MAX_KEY_SIZE) {
1025 		memcpy(ctx->key, key, keylen);
1026 		ctx->keylen = keylen;
1027 	} else {
1028 		return -ENOMEM;
1029 	}
1030 
1031 	return 0;
1032 }
1033 
1034 static int stm32_hash_cra_init_algs(struct crypto_tfm *tfm,
1035 				    const char *algs_hmac_name)
1036 {
1037 	struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
1038 
1039 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1040 				 sizeof(struct stm32_hash_request_ctx));
1041 
1042 	ctx->keylen = 0;
1043 
1044 	if (algs_hmac_name)
1045 		ctx->flags |= HASH_FLAGS_HMAC;
1046 
1047 	ctx->enginectx.op.do_one_request = stm32_hash_one_request;
1048 	ctx->enginectx.op.prepare_request = stm32_hash_prepare_req;
1049 	ctx->enginectx.op.unprepare_request = NULL;
1050 	return 0;
1051 }
1052 
1053 static int stm32_hash_cra_init(struct crypto_tfm *tfm)
1054 {
1055 	return stm32_hash_cra_init_algs(tfm, NULL);
1056 }
1057 
1058 static int stm32_hash_cra_md5_init(struct crypto_tfm *tfm)
1059 {
1060 	return stm32_hash_cra_init_algs(tfm, "md5");
1061 }
1062 
1063 static int stm32_hash_cra_sha1_init(struct crypto_tfm *tfm)
1064 {
1065 	return stm32_hash_cra_init_algs(tfm, "sha1");
1066 }
1067 
1068 static int stm32_hash_cra_sha224_init(struct crypto_tfm *tfm)
1069 {
1070 	return stm32_hash_cra_init_algs(tfm, "sha224");
1071 }
1072 
1073 static int stm32_hash_cra_sha256_init(struct crypto_tfm *tfm)
1074 {
1075 	return stm32_hash_cra_init_algs(tfm, "sha256");
1076 }
1077 
1078 static irqreturn_t stm32_hash_irq_thread(int irq, void *dev_id)
1079 {
1080 	struct stm32_hash_dev *hdev = dev_id;
1081 
1082 	if (HASH_FLAGS_CPU & hdev->flags) {
1083 		if (HASH_FLAGS_OUTPUT_READY & hdev->flags) {
1084 			hdev->flags &= ~HASH_FLAGS_OUTPUT_READY;
1085 			goto finish;
1086 		}
1087 	} else if (HASH_FLAGS_DMA_READY & hdev->flags) {
1088 		if (HASH_FLAGS_DMA_ACTIVE & hdev->flags) {
1089 			hdev->flags &= ~HASH_FLAGS_DMA_ACTIVE;
1090 				goto finish;
1091 		}
1092 	}
1093 
1094 	return IRQ_HANDLED;
1095 
1096 finish:
1097 	/* Finish current request */
1098 	stm32_hash_finish_req(hdev->req, 0);
1099 
1100 	return IRQ_HANDLED;
1101 }
1102 
1103 static irqreturn_t stm32_hash_irq_handler(int irq, void *dev_id)
1104 {
1105 	struct stm32_hash_dev *hdev = dev_id;
1106 	u32 reg;
1107 
1108 	reg = stm32_hash_read(hdev, HASH_SR);
1109 	if (reg & HASH_SR_OUTPUT_READY) {
1110 		reg &= ~HASH_SR_OUTPUT_READY;
1111 		stm32_hash_write(hdev, HASH_SR, reg);
1112 		hdev->flags |= HASH_FLAGS_OUTPUT_READY;
1113 		/* Disable IT*/
1114 		stm32_hash_write(hdev, HASH_IMR, 0);
1115 		return IRQ_WAKE_THREAD;
1116 	}
1117 
1118 	return IRQ_NONE;
1119 }
1120 
1121 static struct ahash_alg algs_md5_sha1[] = {
1122 	{
1123 		.init = stm32_hash_init,
1124 		.update = stm32_hash_update,
1125 		.final = stm32_hash_final,
1126 		.finup = stm32_hash_finup,
1127 		.digest = stm32_hash_digest,
1128 		.export = stm32_hash_export,
1129 		.import = stm32_hash_import,
1130 		.halg = {
1131 			.digestsize = MD5_DIGEST_SIZE,
1132 			.statesize = sizeof(struct stm32_hash_request_ctx),
1133 			.base = {
1134 				.cra_name = "md5",
1135 				.cra_driver_name = "stm32-md5",
1136 				.cra_priority = 200,
1137 				.cra_flags = CRYPTO_ALG_ASYNC |
1138 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1139 				.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1140 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1141 				.cra_alignmask = 3,
1142 				.cra_init = stm32_hash_cra_init,
1143 				.cra_module = THIS_MODULE,
1144 			}
1145 		}
1146 	},
1147 	{
1148 		.init = stm32_hash_init,
1149 		.update = stm32_hash_update,
1150 		.final = stm32_hash_final,
1151 		.finup = stm32_hash_finup,
1152 		.digest = stm32_hash_digest,
1153 		.export = stm32_hash_export,
1154 		.import = stm32_hash_import,
1155 		.setkey = stm32_hash_setkey,
1156 		.halg = {
1157 			.digestsize = MD5_DIGEST_SIZE,
1158 			.statesize = sizeof(struct stm32_hash_request_ctx),
1159 			.base = {
1160 				.cra_name = "hmac(md5)",
1161 				.cra_driver_name = "stm32-hmac-md5",
1162 				.cra_priority = 200,
1163 				.cra_flags = CRYPTO_ALG_ASYNC |
1164 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1165 				.cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1166 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1167 				.cra_alignmask = 3,
1168 				.cra_init = stm32_hash_cra_md5_init,
1169 				.cra_module = THIS_MODULE,
1170 			}
1171 		}
1172 	},
1173 	{
1174 		.init = stm32_hash_init,
1175 		.update = stm32_hash_update,
1176 		.final = stm32_hash_final,
1177 		.finup = stm32_hash_finup,
1178 		.digest = stm32_hash_digest,
1179 		.export = stm32_hash_export,
1180 		.import = stm32_hash_import,
1181 		.halg = {
1182 			.digestsize = SHA1_DIGEST_SIZE,
1183 			.statesize = sizeof(struct stm32_hash_request_ctx),
1184 			.base = {
1185 				.cra_name = "sha1",
1186 				.cra_driver_name = "stm32-sha1",
1187 				.cra_priority = 200,
1188 				.cra_flags = CRYPTO_ALG_ASYNC |
1189 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1190 				.cra_blocksize = SHA1_BLOCK_SIZE,
1191 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1192 				.cra_alignmask = 3,
1193 				.cra_init = stm32_hash_cra_init,
1194 				.cra_module = THIS_MODULE,
1195 			}
1196 		}
1197 	},
1198 	{
1199 		.init = stm32_hash_init,
1200 		.update = stm32_hash_update,
1201 		.final = stm32_hash_final,
1202 		.finup = stm32_hash_finup,
1203 		.digest = stm32_hash_digest,
1204 		.export = stm32_hash_export,
1205 		.import = stm32_hash_import,
1206 		.setkey = stm32_hash_setkey,
1207 		.halg = {
1208 			.digestsize = SHA1_DIGEST_SIZE,
1209 			.statesize = sizeof(struct stm32_hash_request_ctx),
1210 			.base = {
1211 				.cra_name = "hmac(sha1)",
1212 				.cra_driver_name = "stm32-hmac-sha1",
1213 				.cra_priority = 200,
1214 				.cra_flags = CRYPTO_ALG_ASYNC |
1215 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1216 				.cra_blocksize = SHA1_BLOCK_SIZE,
1217 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1218 				.cra_alignmask = 3,
1219 				.cra_init = stm32_hash_cra_sha1_init,
1220 				.cra_module = THIS_MODULE,
1221 			}
1222 		}
1223 	},
1224 };
1225 
1226 static struct ahash_alg algs_sha224_sha256[] = {
1227 	{
1228 		.init = stm32_hash_init,
1229 		.update = stm32_hash_update,
1230 		.final = stm32_hash_final,
1231 		.finup = stm32_hash_finup,
1232 		.digest = stm32_hash_digest,
1233 		.export = stm32_hash_export,
1234 		.import = stm32_hash_import,
1235 		.halg = {
1236 			.digestsize = SHA224_DIGEST_SIZE,
1237 			.statesize = sizeof(struct stm32_hash_request_ctx),
1238 			.base = {
1239 				.cra_name = "sha224",
1240 				.cra_driver_name = "stm32-sha224",
1241 				.cra_priority = 200,
1242 				.cra_flags = CRYPTO_ALG_ASYNC |
1243 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1244 				.cra_blocksize = SHA224_BLOCK_SIZE,
1245 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1246 				.cra_alignmask = 3,
1247 				.cra_init = stm32_hash_cra_init,
1248 				.cra_module = THIS_MODULE,
1249 			}
1250 		}
1251 	},
1252 	{
1253 		.init = stm32_hash_init,
1254 		.update = stm32_hash_update,
1255 		.final = stm32_hash_final,
1256 		.finup = stm32_hash_finup,
1257 		.digest = stm32_hash_digest,
1258 		.setkey = stm32_hash_setkey,
1259 		.export = stm32_hash_export,
1260 		.import = stm32_hash_import,
1261 		.halg = {
1262 			.digestsize = SHA224_DIGEST_SIZE,
1263 			.statesize = sizeof(struct stm32_hash_request_ctx),
1264 			.base = {
1265 				.cra_name = "hmac(sha224)",
1266 				.cra_driver_name = "stm32-hmac-sha224",
1267 				.cra_priority = 200,
1268 				.cra_flags = CRYPTO_ALG_ASYNC |
1269 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1270 				.cra_blocksize = SHA224_BLOCK_SIZE,
1271 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1272 				.cra_alignmask = 3,
1273 				.cra_init = stm32_hash_cra_sha224_init,
1274 				.cra_module = THIS_MODULE,
1275 			}
1276 		}
1277 	},
1278 	{
1279 		.init = stm32_hash_init,
1280 		.update = stm32_hash_update,
1281 		.final = stm32_hash_final,
1282 		.finup = stm32_hash_finup,
1283 		.digest = stm32_hash_digest,
1284 		.export = stm32_hash_export,
1285 		.import = stm32_hash_import,
1286 		.halg = {
1287 			.digestsize = SHA256_DIGEST_SIZE,
1288 			.statesize = sizeof(struct stm32_hash_request_ctx),
1289 			.base = {
1290 				.cra_name = "sha256",
1291 				.cra_driver_name = "stm32-sha256",
1292 				.cra_priority = 200,
1293 				.cra_flags = CRYPTO_ALG_ASYNC |
1294 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1295 				.cra_blocksize = SHA256_BLOCK_SIZE,
1296 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1297 				.cra_alignmask = 3,
1298 				.cra_init = stm32_hash_cra_init,
1299 				.cra_module = THIS_MODULE,
1300 			}
1301 		}
1302 	},
1303 	{
1304 		.init = stm32_hash_init,
1305 		.update = stm32_hash_update,
1306 		.final = stm32_hash_final,
1307 		.finup = stm32_hash_finup,
1308 		.digest = stm32_hash_digest,
1309 		.export = stm32_hash_export,
1310 		.import = stm32_hash_import,
1311 		.setkey = stm32_hash_setkey,
1312 		.halg = {
1313 			.digestsize = SHA256_DIGEST_SIZE,
1314 			.statesize = sizeof(struct stm32_hash_request_ctx),
1315 			.base = {
1316 				.cra_name = "hmac(sha256)",
1317 				.cra_driver_name = "stm32-hmac-sha256",
1318 				.cra_priority = 200,
1319 				.cra_flags = CRYPTO_ALG_ASYNC |
1320 					CRYPTO_ALG_KERN_DRIVER_ONLY,
1321 				.cra_blocksize = SHA256_BLOCK_SIZE,
1322 				.cra_ctxsize = sizeof(struct stm32_hash_ctx),
1323 				.cra_alignmask = 3,
1324 				.cra_init = stm32_hash_cra_sha256_init,
1325 				.cra_module = THIS_MODULE,
1326 			}
1327 		}
1328 	},
1329 };
1330 
1331 static int stm32_hash_register_algs(struct stm32_hash_dev *hdev)
1332 {
1333 	unsigned int i, j;
1334 	int err;
1335 
1336 	for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1337 		for (j = 0; j < hdev->pdata->algs_info[i].size; j++) {
1338 			err = crypto_register_ahash(
1339 				&hdev->pdata->algs_info[i].algs_list[j]);
1340 			if (err)
1341 				goto err_algs;
1342 		}
1343 	}
1344 
1345 	return 0;
1346 err_algs:
1347 	dev_err(hdev->dev, "Algo %d : %d failed\n", i, j);
1348 	for (; i--; ) {
1349 		for (; j--;)
1350 			crypto_unregister_ahash(
1351 				&hdev->pdata->algs_info[i].algs_list[j]);
1352 	}
1353 
1354 	return err;
1355 }
1356 
1357 static int stm32_hash_unregister_algs(struct stm32_hash_dev *hdev)
1358 {
1359 	unsigned int i, j;
1360 
1361 	for (i = 0; i < hdev->pdata->algs_info_size; i++) {
1362 		for (j = 0; j < hdev->pdata->algs_info[i].size; j++)
1363 			crypto_unregister_ahash(
1364 				&hdev->pdata->algs_info[i].algs_list[j]);
1365 	}
1366 
1367 	return 0;
1368 }
1369 
1370 static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f4[] = {
1371 	{
1372 		.algs_list	= algs_md5_sha1,
1373 		.size		= ARRAY_SIZE(algs_md5_sha1),
1374 	},
1375 };
1376 
1377 static const struct stm32_hash_pdata stm32_hash_pdata_stm32f4 = {
1378 	.algs_info	= stm32_hash_algs_info_stm32f4,
1379 	.algs_info_size	= ARRAY_SIZE(stm32_hash_algs_info_stm32f4),
1380 };
1381 
1382 static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f7[] = {
1383 	{
1384 		.algs_list	= algs_md5_sha1,
1385 		.size		= ARRAY_SIZE(algs_md5_sha1),
1386 	},
1387 	{
1388 		.algs_list	= algs_sha224_sha256,
1389 		.size		= ARRAY_SIZE(algs_sha224_sha256),
1390 	},
1391 };
1392 
1393 static const struct stm32_hash_pdata stm32_hash_pdata_stm32f7 = {
1394 	.algs_info	= stm32_hash_algs_info_stm32f7,
1395 	.algs_info_size	= ARRAY_SIZE(stm32_hash_algs_info_stm32f7),
1396 };
1397 
1398 static const struct of_device_id stm32_hash_of_match[] = {
1399 	{
1400 		.compatible = "st,stm32f456-hash",
1401 		.data = &stm32_hash_pdata_stm32f4,
1402 	},
1403 	{
1404 		.compatible = "st,stm32f756-hash",
1405 		.data = &stm32_hash_pdata_stm32f7,
1406 	},
1407 	{},
1408 };
1409 
1410 MODULE_DEVICE_TABLE(of, stm32_hash_of_match);
1411 
1412 static int stm32_hash_get_of_match(struct stm32_hash_dev *hdev,
1413 				   struct device *dev)
1414 {
1415 	hdev->pdata = of_device_get_match_data(dev);
1416 	if (!hdev->pdata) {
1417 		dev_err(dev, "no compatible OF match\n");
1418 		return -EINVAL;
1419 	}
1420 
1421 	if (of_property_read_u32(dev->of_node, "dma-maxburst",
1422 				 &hdev->dma_maxburst)) {
1423 		dev_info(dev, "dma-maxburst not specified, using 0\n");
1424 		hdev->dma_maxburst = 0;
1425 	}
1426 
1427 	return 0;
1428 }
1429 
1430 static int stm32_hash_probe(struct platform_device *pdev)
1431 {
1432 	struct stm32_hash_dev *hdev;
1433 	struct device *dev = &pdev->dev;
1434 	struct resource *res;
1435 	int ret, irq;
1436 
1437 	hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL);
1438 	if (!hdev)
1439 		return -ENOMEM;
1440 
1441 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1442 	hdev->io_base = devm_ioremap_resource(dev, res);
1443 	if (IS_ERR(hdev->io_base))
1444 		return PTR_ERR(hdev->io_base);
1445 
1446 	hdev->phys_base = res->start;
1447 
1448 	ret = stm32_hash_get_of_match(hdev, dev);
1449 	if (ret)
1450 		return ret;
1451 
1452 	irq = platform_get_irq(pdev, 0);
1453 	if (irq < 0)
1454 		return irq;
1455 
1456 	ret = devm_request_threaded_irq(dev, irq, stm32_hash_irq_handler,
1457 					stm32_hash_irq_thread, IRQF_ONESHOT,
1458 					dev_name(dev), hdev);
1459 	if (ret) {
1460 		dev_err(dev, "Cannot grab IRQ\n");
1461 		return ret;
1462 	}
1463 
1464 	hdev->clk = devm_clk_get(&pdev->dev, NULL);
1465 	if (IS_ERR(hdev->clk)) {
1466 		dev_err(dev, "failed to get clock for hash (%lu)\n",
1467 			PTR_ERR(hdev->clk));
1468 		return PTR_ERR(hdev->clk);
1469 	}
1470 
1471 	ret = clk_prepare_enable(hdev->clk);
1472 	if (ret) {
1473 		dev_err(dev, "failed to enable hash clock (%d)\n", ret);
1474 		return ret;
1475 	}
1476 
1477 	pm_runtime_set_autosuspend_delay(dev, HASH_AUTOSUSPEND_DELAY);
1478 	pm_runtime_use_autosuspend(dev);
1479 
1480 	pm_runtime_get_noresume(dev);
1481 	pm_runtime_set_active(dev);
1482 	pm_runtime_enable(dev);
1483 
1484 	hdev->rst = devm_reset_control_get(&pdev->dev, NULL);
1485 	if (!IS_ERR(hdev->rst)) {
1486 		reset_control_assert(hdev->rst);
1487 		udelay(2);
1488 		reset_control_deassert(hdev->rst);
1489 	}
1490 
1491 	hdev->dev = dev;
1492 
1493 	platform_set_drvdata(pdev, hdev);
1494 
1495 	ret = stm32_hash_dma_init(hdev);
1496 	if (ret)
1497 		dev_dbg(dev, "DMA mode not available\n");
1498 
1499 	spin_lock(&stm32_hash.lock);
1500 	list_add_tail(&hdev->list, &stm32_hash.dev_list);
1501 	spin_unlock(&stm32_hash.lock);
1502 
1503 	/* Initialize crypto engine */
1504 	hdev->engine = crypto_engine_alloc_init(dev, 1);
1505 	if (!hdev->engine) {
1506 		ret = -ENOMEM;
1507 		goto err_engine;
1508 	}
1509 
1510 	ret = crypto_engine_start(hdev->engine);
1511 	if (ret)
1512 		goto err_engine_start;
1513 
1514 	hdev->dma_mode = stm32_hash_read(hdev, HASH_HWCFGR);
1515 
1516 	/* Register algos */
1517 	ret = stm32_hash_register_algs(hdev);
1518 	if (ret)
1519 		goto err_algs;
1520 
1521 	dev_info(dev, "Init HASH done HW ver %x DMA mode %u\n",
1522 		 stm32_hash_read(hdev, HASH_VER), hdev->dma_mode);
1523 
1524 	pm_runtime_put_sync(dev);
1525 
1526 	return 0;
1527 
1528 err_algs:
1529 err_engine_start:
1530 	crypto_engine_exit(hdev->engine);
1531 err_engine:
1532 	spin_lock(&stm32_hash.lock);
1533 	list_del(&hdev->list);
1534 	spin_unlock(&stm32_hash.lock);
1535 
1536 	if (hdev->dma_lch)
1537 		dma_release_channel(hdev->dma_lch);
1538 
1539 	pm_runtime_disable(dev);
1540 	pm_runtime_put_noidle(dev);
1541 
1542 	clk_disable_unprepare(hdev->clk);
1543 
1544 	return ret;
1545 }
1546 
1547 static int stm32_hash_remove(struct platform_device *pdev)
1548 {
1549 	struct stm32_hash_dev *hdev;
1550 	int ret;
1551 
1552 	hdev = platform_get_drvdata(pdev);
1553 	if (!hdev)
1554 		return -ENODEV;
1555 
1556 	ret = pm_runtime_get_sync(hdev->dev);
1557 	if (ret < 0)
1558 		return ret;
1559 
1560 	stm32_hash_unregister_algs(hdev);
1561 
1562 	crypto_engine_exit(hdev->engine);
1563 
1564 	spin_lock(&stm32_hash.lock);
1565 	list_del(&hdev->list);
1566 	spin_unlock(&stm32_hash.lock);
1567 
1568 	if (hdev->dma_lch)
1569 		dma_release_channel(hdev->dma_lch);
1570 
1571 	pm_runtime_disable(hdev->dev);
1572 	pm_runtime_put_noidle(hdev->dev);
1573 
1574 	clk_disable_unprepare(hdev->clk);
1575 
1576 	return 0;
1577 }
1578 
1579 #ifdef CONFIG_PM
1580 static int stm32_hash_runtime_suspend(struct device *dev)
1581 {
1582 	struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
1583 
1584 	clk_disable_unprepare(hdev->clk);
1585 
1586 	return 0;
1587 }
1588 
1589 static int stm32_hash_runtime_resume(struct device *dev)
1590 {
1591 	struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
1592 	int ret;
1593 
1594 	ret = clk_prepare_enable(hdev->clk);
1595 	if (ret) {
1596 		dev_err(hdev->dev, "Failed to prepare_enable clock\n");
1597 		return ret;
1598 	}
1599 
1600 	return 0;
1601 }
1602 #endif
1603 
1604 static const struct dev_pm_ops stm32_hash_pm_ops = {
1605 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1606 				pm_runtime_force_resume)
1607 	SET_RUNTIME_PM_OPS(stm32_hash_runtime_suspend,
1608 			   stm32_hash_runtime_resume, NULL)
1609 };
1610 
1611 static struct platform_driver stm32_hash_driver = {
1612 	.probe		= stm32_hash_probe,
1613 	.remove		= stm32_hash_remove,
1614 	.driver		= {
1615 		.name	= "stm32-hash",
1616 		.pm = &stm32_hash_pm_ops,
1617 		.of_match_table	= stm32_hash_of_match,
1618 	}
1619 };
1620 
1621 module_platform_driver(stm32_hash_driver);
1622 
1623 MODULE_DESCRIPTION("STM32 SHA1/224/256 & MD5 (HMAC) hw accelerator driver");
1624 MODULE_AUTHOR("Lionel Debieve <lionel.debieve@st.com>");
1625 MODULE_LICENSE("GPL v2");
1626