xref: /linux/drivers/crypto/stm32/stm32-cryp.c (revision d59fec29b131f30b27343d54bdf1071ee98eda8e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) STMicroelectronics SA 2017
4  * Author: Fabien Dessenne <fabien.dessenne@st.com>
5  * Ux500 support taken from snippets in the old Ux500 cryp driver
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/iopoll.h>
12 #include <linux/module.h>
13 #include <linux/of_device.h>
14 #include <linux/platform_device.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/reset.h>
17 
18 #include <crypto/aes.h>
19 #include <crypto/internal/des.h>
20 #include <crypto/engine.h>
21 #include <crypto/scatterwalk.h>
22 #include <crypto/internal/aead.h>
23 #include <crypto/internal/skcipher.h>
24 
25 #define DRIVER_NAME             "stm32-cryp"
26 
27 /* Bit [0] encrypt / decrypt */
28 #define FLG_ENCRYPT             BIT(0)
29 /* Bit [8..1] algo & operation mode */
30 #define FLG_AES                 BIT(1)
31 #define FLG_DES                 BIT(2)
32 #define FLG_TDES                BIT(3)
33 #define FLG_ECB                 BIT(4)
34 #define FLG_CBC                 BIT(5)
35 #define FLG_CTR                 BIT(6)
36 #define FLG_GCM                 BIT(7)
37 #define FLG_CCM                 BIT(8)
38 /* Mode mask = bits [15..0] */
39 #define FLG_MODE_MASK           GENMASK(15, 0)
40 /* Bit [31..16] status  */
41 
42 /* Registers */
43 #define CRYP_CR                 0x00000000
44 #define CRYP_SR                 0x00000004
45 #define CRYP_DIN                0x00000008
46 #define CRYP_DOUT               0x0000000C
47 #define CRYP_DMACR              0x00000010
48 #define CRYP_IMSCR              0x00000014
49 #define CRYP_RISR               0x00000018
50 #define CRYP_MISR               0x0000001C
51 #define CRYP_K0LR               0x00000020
52 #define CRYP_K0RR               0x00000024
53 #define CRYP_K1LR               0x00000028
54 #define CRYP_K1RR               0x0000002C
55 #define CRYP_K2LR               0x00000030
56 #define CRYP_K2RR               0x00000034
57 #define CRYP_K3LR               0x00000038
58 #define CRYP_K3RR               0x0000003C
59 #define CRYP_IV0LR              0x00000040
60 #define CRYP_IV0RR              0x00000044
61 #define CRYP_IV1LR              0x00000048
62 #define CRYP_IV1RR              0x0000004C
63 #define CRYP_CSGCMCCM0R         0x00000050
64 #define CRYP_CSGCM0R            0x00000070
65 
66 #define UX500_CRYP_CR		0x00000000
67 #define UX500_CRYP_SR		0x00000004
68 #define UX500_CRYP_DIN		0x00000008
69 #define UX500_CRYP_DINSIZE	0x0000000C
70 #define UX500_CRYP_DOUT		0x00000010
71 #define UX500_CRYP_DOUSIZE	0x00000014
72 #define UX500_CRYP_DMACR	0x00000018
73 #define UX500_CRYP_IMSC		0x0000001C
74 #define UX500_CRYP_RIS		0x00000020
75 #define UX500_CRYP_MIS		0x00000024
76 #define UX500_CRYP_K1L		0x00000028
77 #define UX500_CRYP_K1R		0x0000002C
78 #define UX500_CRYP_K2L		0x00000030
79 #define UX500_CRYP_K2R		0x00000034
80 #define UX500_CRYP_K3L		0x00000038
81 #define UX500_CRYP_K3R		0x0000003C
82 #define UX500_CRYP_K4L		0x00000040
83 #define UX500_CRYP_K4R		0x00000044
84 #define UX500_CRYP_IV0L		0x00000048
85 #define UX500_CRYP_IV0R		0x0000004C
86 #define UX500_CRYP_IV1L		0x00000050
87 #define UX500_CRYP_IV1R		0x00000054
88 
89 /* Registers values */
90 #define CR_DEC_NOT_ENC          0x00000004
91 #define CR_TDES_ECB             0x00000000
92 #define CR_TDES_CBC             0x00000008
93 #define CR_DES_ECB              0x00000010
94 #define CR_DES_CBC              0x00000018
95 #define CR_AES_ECB              0x00000020
96 #define CR_AES_CBC              0x00000028
97 #define CR_AES_CTR              0x00000030
98 #define CR_AES_KP               0x00000038 /* Not on Ux500 */
99 #define CR_AES_XTS              0x00000038 /* Only on Ux500 */
100 #define CR_AES_GCM              0x00080000
101 #define CR_AES_CCM              0x00080008
102 #define CR_AES_UNKNOWN          0xFFFFFFFF
103 #define CR_ALGO_MASK            0x00080038
104 #define CR_DATA32               0x00000000
105 #define CR_DATA16               0x00000040
106 #define CR_DATA8                0x00000080
107 #define CR_DATA1                0x000000C0
108 #define CR_KEY128               0x00000000
109 #define CR_KEY192               0x00000100
110 #define CR_KEY256               0x00000200
111 #define CR_KEYRDEN              0x00000400 /* Only on Ux500 */
112 #define CR_KSE                  0x00000800 /* Only on Ux500 */
113 #define CR_FFLUSH               0x00004000
114 #define CR_CRYPEN               0x00008000
115 #define CR_PH_INIT              0x00000000
116 #define CR_PH_HEADER            0x00010000
117 #define CR_PH_PAYLOAD           0x00020000
118 #define CR_PH_FINAL             0x00030000
119 #define CR_PH_MASK              0x00030000
120 #define CR_NBPBL_SHIFT          20
121 
122 #define SR_BUSY                 0x00000010
123 #define SR_OFNE                 0x00000004
124 
125 #define IMSCR_IN                BIT(0)
126 #define IMSCR_OUT               BIT(1)
127 
128 #define MISR_IN                 BIT(0)
129 #define MISR_OUT                BIT(1)
130 
131 /* Misc */
132 #define AES_BLOCK_32            (AES_BLOCK_SIZE / sizeof(u32))
133 #define GCM_CTR_INIT            2
134 #define CRYP_AUTOSUSPEND_DELAY	50
135 
136 struct stm32_cryp_caps {
137 	bool			aeads_support;
138 	bool			linear_aes_key;
139 	bool			kp_mode;
140 	bool			iv_protection;
141 	bool			swap_final;
142 	bool			padding_wa;
143 	u32			cr;
144 	u32			sr;
145 	u32			din;
146 	u32			dout;
147 	u32			imsc;
148 	u32			mis;
149 	u32			k1l;
150 	u32			k1r;
151 	u32			k3r;
152 	u32			iv0l;
153 	u32			iv0r;
154 	u32			iv1l;
155 	u32			iv1r;
156 };
157 
158 struct stm32_cryp_ctx {
159 	struct crypto_engine_ctx enginectx;
160 	struct stm32_cryp       *cryp;
161 	int                     keylen;
162 	__be32                  key[AES_KEYSIZE_256 / sizeof(u32)];
163 	unsigned long           flags;
164 };
165 
166 struct stm32_cryp_reqctx {
167 	unsigned long mode;
168 };
169 
170 struct stm32_cryp {
171 	struct list_head        list;
172 	struct device           *dev;
173 	void __iomem            *regs;
174 	struct clk              *clk;
175 	unsigned long           flags;
176 	u32                     irq_status;
177 	const struct stm32_cryp_caps *caps;
178 	struct stm32_cryp_ctx   *ctx;
179 
180 	struct crypto_engine    *engine;
181 
182 	struct skcipher_request *req;
183 	struct aead_request     *areq;
184 
185 	size_t                  authsize;
186 	size_t                  hw_blocksize;
187 
188 	size_t                  payload_in;
189 	size_t                  header_in;
190 	size_t                  payload_out;
191 
192 	struct scatterlist      *out_sg;
193 
194 	struct scatter_walk     in_walk;
195 	struct scatter_walk     out_walk;
196 
197 	__be32                  last_ctr[4];
198 	u32                     gcm_ctr;
199 };
200 
201 struct stm32_cryp_list {
202 	struct list_head        dev_list;
203 	spinlock_t              lock; /* protect dev_list */
204 };
205 
206 static struct stm32_cryp_list cryp_list = {
207 	.dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
208 	.lock     = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
209 };
210 
211 static inline bool is_aes(struct stm32_cryp *cryp)
212 {
213 	return cryp->flags & FLG_AES;
214 }
215 
216 static inline bool is_des(struct stm32_cryp *cryp)
217 {
218 	return cryp->flags & FLG_DES;
219 }
220 
221 static inline bool is_tdes(struct stm32_cryp *cryp)
222 {
223 	return cryp->flags & FLG_TDES;
224 }
225 
226 static inline bool is_ecb(struct stm32_cryp *cryp)
227 {
228 	return cryp->flags & FLG_ECB;
229 }
230 
231 static inline bool is_cbc(struct stm32_cryp *cryp)
232 {
233 	return cryp->flags & FLG_CBC;
234 }
235 
236 static inline bool is_ctr(struct stm32_cryp *cryp)
237 {
238 	return cryp->flags & FLG_CTR;
239 }
240 
241 static inline bool is_gcm(struct stm32_cryp *cryp)
242 {
243 	return cryp->flags & FLG_GCM;
244 }
245 
246 static inline bool is_ccm(struct stm32_cryp *cryp)
247 {
248 	return cryp->flags & FLG_CCM;
249 }
250 
251 static inline bool is_encrypt(struct stm32_cryp *cryp)
252 {
253 	return cryp->flags & FLG_ENCRYPT;
254 }
255 
256 static inline bool is_decrypt(struct stm32_cryp *cryp)
257 {
258 	return !is_encrypt(cryp);
259 }
260 
261 static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
262 {
263 	return readl_relaxed(cryp->regs + ofst);
264 }
265 
266 static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
267 {
268 	writel_relaxed(val, cryp->regs + ofst);
269 }
270 
271 static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
272 {
273 	u32 status;
274 
275 	return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
276 			!(status & SR_BUSY), 10, 100000);
277 }
278 
279 static inline void stm32_cryp_enable(struct stm32_cryp *cryp)
280 {
281 	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_CRYPEN,
282 		       cryp->regs + cryp->caps->cr);
283 }
284 
285 static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
286 {
287 	u32 status;
288 
289 	return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->cr, status,
290 			!(status & CR_CRYPEN), 10, 100000);
291 }
292 
293 static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
294 {
295 	u32 status;
296 
297 	return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
298 			status & SR_OFNE, 10, 100000);
299 }
300 
301 static inline void stm32_cryp_key_read_enable(struct stm32_cryp *cryp)
302 {
303 	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_KEYRDEN,
304 		       cryp->regs + cryp->caps->cr);
305 }
306 
307 static inline void stm32_cryp_key_read_disable(struct stm32_cryp *cryp)
308 {
309 	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) & ~CR_KEYRDEN,
310 		       cryp->regs + cryp->caps->cr);
311 }
312 
313 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
314 static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err);
315 
316 static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
317 {
318 	struct stm32_cryp *tmp, *cryp = NULL;
319 
320 	spin_lock_bh(&cryp_list.lock);
321 	if (!ctx->cryp) {
322 		list_for_each_entry(tmp, &cryp_list.dev_list, list) {
323 			cryp = tmp;
324 			break;
325 		}
326 		ctx->cryp = cryp;
327 	} else {
328 		cryp = ctx->cryp;
329 	}
330 
331 	spin_unlock_bh(&cryp_list.lock);
332 
333 	return cryp;
334 }
335 
336 static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, __be32 *iv)
337 {
338 	if (!iv)
339 		return;
340 
341 	stm32_cryp_write(cryp, cryp->caps->iv0l, be32_to_cpu(*iv++));
342 	stm32_cryp_write(cryp, cryp->caps->iv0r, be32_to_cpu(*iv++));
343 
344 	if (is_aes(cryp)) {
345 		stm32_cryp_write(cryp, cryp->caps->iv1l, be32_to_cpu(*iv++));
346 		stm32_cryp_write(cryp, cryp->caps->iv1r, be32_to_cpu(*iv++));
347 	}
348 }
349 
350 static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
351 {
352 	struct skcipher_request *req = cryp->req;
353 	__be32 *tmp = (void *)req->iv;
354 
355 	if (!tmp)
356 		return;
357 
358 	if (cryp->caps->iv_protection)
359 		stm32_cryp_key_read_enable(cryp);
360 
361 	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
362 	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
363 
364 	if (is_aes(cryp)) {
365 		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
366 		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
367 	}
368 
369 	if (cryp->caps->iv_protection)
370 		stm32_cryp_key_read_disable(cryp);
371 }
372 
373 /**
374  * ux500_swap_bits_in_byte() - mirror the bits in a byte
375  * @b: the byte to be mirrored
376  *
377  * The bits are swapped the following way:
378  *  Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and
379  *  nibble 2 (n2) bits 4-7.
380  *
381  *  Nibble 1 (n1):
382  *  (The "old" (moved) bit is replaced with a zero)
383  *  1. Move bit 6 and 7, 4 positions to the left.
384  *  2. Move bit 3 and 5, 2 positions to the left.
385  *  3. Move bit 1-4, 1 position to the left.
386  *
387  *  Nibble 2 (n2):
388  *  1. Move bit 0 and 1, 4 positions to the right.
389  *  2. Move bit 2 and 4, 2 positions to the right.
390  *  3. Move bit 3-6, 1 position to the right.
391  *
392  *  Combine the two nibbles to a complete and swapped byte.
393  */
394 static inline u8 ux500_swap_bits_in_byte(u8 b)
395 {
396 #define R_SHIFT_4_MASK  0xc0 /* Bits 6 and 7, right shift 4 */
397 #define R_SHIFT_2_MASK  0x28 /* (After right shift 4) Bits 3 and 5,
398 				  right shift 2 */
399 #define R_SHIFT_1_MASK  0x1e /* (After right shift 2) Bits 1-4,
400 				  right shift 1 */
401 #define L_SHIFT_4_MASK  0x03 /* Bits 0 and 1, left shift 4 */
402 #define L_SHIFT_2_MASK  0x14 /* (After left shift 4) Bits 2 and 4,
403 				  left shift 2 */
404 #define L_SHIFT_1_MASK  0x78 /* (After left shift 1) Bits 3-6,
405 				  left shift 1 */
406 
407 	u8 n1;
408 	u8 n2;
409 
410 	/* Swap most significant nibble */
411 	/* Right shift 4, bits 6 and 7 */
412 	n1 = ((b  & R_SHIFT_4_MASK) >> 4) | (b  & ~(R_SHIFT_4_MASK >> 4));
413 	/* Right shift 2, bits 3 and 5 */
414 	n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2));
415 	/* Right shift 1, bits 1-4 */
416 	n1 = (n1  & R_SHIFT_1_MASK) >> 1;
417 
418 	/* Swap least significant nibble */
419 	/* Left shift 4, bits 0 and 1 */
420 	n2 = ((b  & L_SHIFT_4_MASK) << 4) | (b  & ~(L_SHIFT_4_MASK << 4));
421 	/* Left shift 2, bits 2 and 4 */
422 	n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2));
423 	/* Left shift 1, bits 3-6 */
424 	n2 = (n2  & L_SHIFT_1_MASK) << 1;
425 
426 	return n1 | n2;
427 }
428 
429 /**
430  * ux500_swizzle_key() - Shuffle around words and bits in the AES key
431  * @in: key to swizzle
432  * @out: swizzled key
433  * @len: length of key, in bytes
434  *
435  * This "key swizzling procedure" is described in the examples in the
436  * DB8500 design specification. There is no real description of why
437  * the bits have been arranged like this in the hardware.
438  */
439 static inline void ux500_swizzle_key(const u8 *in, u8 *out, u32 len)
440 {
441 	int i = 0;
442 	int bpw = sizeof(u32);
443 	int j;
444 	int index = 0;
445 
446 	j = len - bpw;
447 	while (j >= 0) {
448 		for (i = 0; i < bpw; i++) {
449 			index = len - j - bpw + i;
450 			out[j + i] =
451 				ux500_swap_bits_in_byte(in[index]);
452 		}
453 		j -= bpw;
454 	}
455 }
456 
457 static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
458 {
459 	unsigned int i;
460 	int r_id;
461 
462 	if (is_des(c)) {
463 		stm32_cryp_write(c, c->caps->k1l, be32_to_cpu(c->ctx->key[0]));
464 		stm32_cryp_write(c, c->caps->k1r, be32_to_cpu(c->ctx->key[1]));
465 		return;
466 	}
467 
468 	/*
469 	 * On the Ux500 the AES key is considered as a single bit sequence
470 	 * of 128, 192 or 256 bits length. It is written linearly into the
471 	 * registers from K1L and down, and need to be processed to become
472 	 * a proper big-endian bit sequence.
473 	 */
474 	if (is_aes(c) && c->caps->linear_aes_key) {
475 		u32 tmpkey[8];
476 
477 		ux500_swizzle_key((u8 *)c->ctx->key,
478 				  (u8 *)tmpkey, c->ctx->keylen);
479 
480 		r_id = c->caps->k1l;
481 		for (i = 0; i < c->ctx->keylen / sizeof(u32); i++, r_id += 4)
482 			stm32_cryp_write(c, r_id, tmpkey[i]);
483 
484 		return;
485 	}
486 
487 	r_id = c->caps->k3r;
488 	for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
489 		stm32_cryp_write(c, r_id, be32_to_cpu(c->ctx->key[i - 1]));
490 }
491 
492 static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
493 {
494 	if (is_aes(cryp) && is_ecb(cryp))
495 		return CR_AES_ECB;
496 
497 	if (is_aes(cryp) && is_cbc(cryp))
498 		return CR_AES_CBC;
499 
500 	if (is_aes(cryp) && is_ctr(cryp))
501 		return CR_AES_CTR;
502 
503 	if (is_aes(cryp) && is_gcm(cryp))
504 		return CR_AES_GCM;
505 
506 	if (is_aes(cryp) && is_ccm(cryp))
507 		return CR_AES_CCM;
508 
509 	if (is_des(cryp) && is_ecb(cryp))
510 		return CR_DES_ECB;
511 
512 	if (is_des(cryp) && is_cbc(cryp))
513 		return CR_DES_CBC;
514 
515 	if (is_tdes(cryp) && is_ecb(cryp))
516 		return CR_TDES_ECB;
517 
518 	if (is_tdes(cryp) && is_cbc(cryp))
519 		return CR_TDES_CBC;
520 
521 	dev_err(cryp->dev, "Unknown mode\n");
522 	return CR_AES_UNKNOWN;
523 }
524 
525 static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
526 {
527 	return is_encrypt(cryp) ? cryp->areq->cryptlen :
528 				  cryp->areq->cryptlen - cryp->authsize;
529 }
530 
531 static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
532 {
533 	int ret;
534 	__be32 iv[4];
535 
536 	/* Phase 1 : init */
537 	memcpy(iv, cryp->areq->iv, 12);
538 	iv[3] = cpu_to_be32(GCM_CTR_INIT);
539 	cryp->gcm_ctr = GCM_CTR_INIT;
540 	stm32_cryp_hw_write_iv(cryp, iv);
541 
542 	stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
543 
544 	/* Wait for end of processing */
545 	ret = stm32_cryp_wait_enable(cryp);
546 	if (ret) {
547 		dev_err(cryp->dev, "Timeout (gcm init)\n");
548 		return ret;
549 	}
550 
551 	/* Prepare next phase */
552 	if (cryp->areq->assoclen) {
553 		cfg |= CR_PH_HEADER;
554 		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
555 	} else if (stm32_cryp_get_input_text_len(cryp)) {
556 		cfg |= CR_PH_PAYLOAD;
557 		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
558 	}
559 
560 	return 0;
561 }
562 
563 static void stm32_crypt_gcmccm_end_header(struct stm32_cryp *cryp)
564 {
565 	u32 cfg;
566 	int err;
567 
568 	/* Check if whole header written */
569 	if (!cryp->header_in) {
570 		/* Wait for completion */
571 		err = stm32_cryp_wait_busy(cryp);
572 		if (err) {
573 			dev_err(cryp->dev, "Timeout (gcm/ccm header)\n");
574 			stm32_cryp_write(cryp, cryp->caps->imsc, 0);
575 			stm32_cryp_finish_req(cryp, err);
576 			return;
577 		}
578 
579 		if (stm32_cryp_get_input_text_len(cryp)) {
580 			/* Phase 3 : payload */
581 			cfg = stm32_cryp_read(cryp, cryp->caps->cr);
582 			cfg &= ~CR_CRYPEN;
583 			stm32_cryp_write(cryp, cryp->caps->cr, cfg);
584 
585 			cfg &= ~CR_PH_MASK;
586 			cfg |= CR_PH_PAYLOAD | CR_CRYPEN;
587 			stm32_cryp_write(cryp, cryp->caps->cr, cfg);
588 		} else {
589 			/*
590 			 * Phase 4 : tag.
591 			 * Nothing to read, nothing to write, caller have to
592 			 * end request
593 			 */
594 		}
595 	}
596 }
597 
598 static void stm32_cryp_write_ccm_first_header(struct stm32_cryp *cryp)
599 {
600 	size_t written;
601 	size_t len;
602 	u32 alen = cryp->areq->assoclen;
603 	u32 block[AES_BLOCK_32] = {0};
604 	u8 *b8 = (u8 *)block;
605 
606 	if (alen <= 65280) {
607 		/* Write first u32 of B1 */
608 		b8[0] = (alen >> 8) & 0xFF;
609 		b8[1] = alen & 0xFF;
610 		len = 2;
611 	} else {
612 		/* Build the two first u32 of B1 */
613 		b8[0] = 0xFF;
614 		b8[1] = 0xFE;
615 		b8[2] = (alen & 0xFF000000) >> 24;
616 		b8[3] = (alen & 0x00FF0000) >> 16;
617 		b8[4] = (alen & 0x0000FF00) >> 8;
618 		b8[5] = alen & 0x000000FF;
619 		len = 6;
620 	}
621 
622 	written = min_t(size_t, AES_BLOCK_SIZE - len, alen);
623 
624 	scatterwalk_copychunks((char *)block + len, &cryp->in_walk, written, 0);
625 
626 	writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
627 
628 	cryp->header_in -= written;
629 
630 	stm32_crypt_gcmccm_end_header(cryp);
631 }
632 
633 static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
634 {
635 	int ret;
636 	u32 iv_32[AES_BLOCK_32], b0_32[AES_BLOCK_32];
637 	u8 *iv = (u8 *)iv_32, *b0 = (u8 *)b0_32;
638 	__be32 *bd;
639 	u32 *d;
640 	unsigned int i, textlen;
641 
642 	/* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
643 	memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
644 	memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
645 	iv[AES_BLOCK_SIZE - 1] = 1;
646 	stm32_cryp_hw_write_iv(cryp, (__be32 *)iv);
647 
648 	/* Build B0 */
649 	memcpy(b0, iv, AES_BLOCK_SIZE);
650 
651 	b0[0] |= (8 * ((cryp->authsize - 2) / 2));
652 
653 	if (cryp->areq->assoclen)
654 		b0[0] |= 0x40;
655 
656 	textlen = stm32_cryp_get_input_text_len(cryp);
657 
658 	b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
659 	b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
660 
661 	/* Enable HW */
662 	stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
663 
664 	/* Write B0 */
665 	d = (u32 *)b0;
666 	bd = (__be32 *)b0;
667 
668 	for (i = 0; i < AES_BLOCK_32; i++) {
669 		u32 xd = d[i];
670 
671 		if (!cryp->caps->padding_wa)
672 			xd = be32_to_cpu(bd[i]);
673 		stm32_cryp_write(cryp, cryp->caps->din, xd);
674 	}
675 
676 	/* Wait for end of processing */
677 	ret = stm32_cryp_wait_enable(cryp);
678 	if (ret) {
679 		dev_err(cryp->dev, "Timeout (ccm init)\n");
680 		return ret;
681 	}
682 
683 	/* Prepare next phase */
684 	if (cryp->areq->assoclen) {
685 		cfg |= CR_PH_HEADER | CR_CRYPEN;
686 		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
687 
688 		/* Write first (special) block (may move to next phase [payload]) */
689 		stm32_cryp_write_ccm_first_header(cryp);
690 	} else if (stm32_cryp_get_input_text_len(cryp)) {
691 		cfg |= CR_PH_PAYLOAD;
692 		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
693 	}
694 
695 	return 0;
696 }
697 
698 static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
699 {
700 	int ret;
701 	u32 cfg, hw_mode;
702 
703 	pm_runtime_get_sync(cryp->dev);
704 
705 	/* Disable interrupt */
706 	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
707 
708 	/* Set configuration */
709 	cfg = CR_DATA8 | CR_FFLUSH;
710 
711 	switch (cryp->ctx->keylen) {
712 	case AES_KEYSIZE_128:
713 		cfg |= CR_KEY128;
714 		break;
715 
716 	case AES_KEYSIZE_192:
717 		cfg |= CR_KEY192;
718 		break;
719 
720 	default:
721 	case AES_KEYSIZE_256:
722 		cfg |= CR_KEY256;
723 		break;
724 	}
725 
726 	hw_mode = stm32_cryp_get_hw_mode(cryp);
727 	if (hw_mode == CR_AES_UNKNOWN)
728 		return -EINVAL;
729 
730 	/* AES ECB/CBC decrypt: run key preparation first */
731 	if (is_decrypt(cryp) &&
732 	    ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
733 		/* Configure in key preparation mode */
734 		if (cryp->caps->kp_mode)
735 			stm32_cryp_write(cryp, cryp->caps->cr,
736 				cfg | CR_AES_KP);
737 		else
738 			stm32_cryp_write(cryp,
739 				cryp->caps->cr, cfg | CR_AES_ECB | CR_KSE);
740 
741 		/* Set key only after full configuration done */
742 		stm32_cryp_hw_write_key(cryp);
743 
744 		/* Start prepare key */
745 		stm32_cryp_enable(cryp);
746 		/* Wait for end of processing */
747 		ret = stm32_cryp_wait_busy(cryp);
748 		if (ret) {
749 			dev_err(cryp->dev, "Timeout (key preparation)\n");
750 			return ret;
751 		}
752 
753 		cfg |= hw_mode | CR_DEC_NOT_ENC;
754 
755 		/* Apply updated config (Decrypt + algo) and flush */
756 		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
757 	} else {
758 		cfg |= hw_mode;
759 		if (is_decrypt(cryp))
760 			cfg |= CR_DEC_NOT_ENC;
761 
762 		/* Apply config and flush */
763 		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
764 
765 		/* Set key only after configuration done */
766 		stm32_cryp_hw_write_key(cryp);
767 	}
768 
769 	switch (hw_mode) {
770 	case CR_AES_GCM:
771 	case CR_AES_CCM:
772 		/* Phase 1 : init */
773 		if (hw_mode == CR_AES_CCM)
774 			ret = stm32_cryp_ccm_init(cryp, cfg);
775 		else
776 			ret = stm32_cryp_gcm_init(cryp, cfg);
777 
778 		if (ret)
779 			return ret;
780 
781 		break;
782 
783 	case CR_DES_CBC:
784 	case CR_TDES_CBC:
785 	case CR_AES_CBC:
786 	case CR_AES_CTR:
787 		stm32_cryp_hw_write_iv(cryp, (__be32 *)cryp->req->iv);
788 		break;
789 
790 	default:
791 		break;
792 	}
793 
794 	/* Enable now */
795 	stm32_cryp_enable(cryp);
796 
797 	return 0;
798 }
799 
800 static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
801 {
802 	if (!err && (is_gcm(cryp) || is_ccm(cryp)))
803 		/* Phase 4 : output tag */
804 		err = stm32_cryp_read_auth_tag(cryp);
805 
806 	if (!err && (!(is_gcm(cryp) || is_ccm(cryp) || is_ecb(cryp))))
807 		stm32_cryp_get_iv(cryp);
808 
809 	pm_runtime_mark_last_busy(cryp->dev);
810 	pm_runtime_put_autosuspend(cryp->dev);
811 
812 	if (is_gcm(cryp) || is_ccm(cryp))
813 		crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
814 	else
815 		crypto_finalize_skcipher_request(cryp->engine, cryp->req,
816 						   err);
817 }
818 
819 static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
820 {
821 	/* Enable interrupt and let the IRQ handler do everything */
822 	stm32_cryp_write(cryp, cryp->caps->imsc, IMSCR_IN | IMSCR_OUT);
823 
824 	return 0;
825 }
826 
827 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
828 static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
829 					 void *areq);
830 
831 static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm)
832 {
833 	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
834 
835 	crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
836 
837 	ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
838 	ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
839 	ctx->enginectx.op.unprepare_request = NULL;
840 	return 0;
841 }
842 
843 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
844 static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
845 				       void *areq);
846 
847 static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
848 {
849 	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
850 
851 	tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
852 
853 	ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
854 	ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
855 	ctx->enginectx.op.unprepare_request = NULL;
856 
857 	return 0;
858 }
859 
860 static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode)
861 {
862 	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
863 			crypto_skcipher_reqtfm(req));
864 	struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req);
865 	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
866 
867 	if (!cryp)
868 		return -ENODEV;
869 
870 	rctx->mode = mode;
871 
872 	return crypto_transfer_skcipher_request_to_engine(cryp->engine, req);
873 }
874 
875 static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
876 {
877 	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
878 	struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
879 	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
880 
881 	if (!cryp)
882 		return -ENODEV;
883 
884 	rctx->mode = mode;
885 
886 	return crypto_transfer_aead_request_to_engine(cryp->engine, req);
887 }
888 
889 static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key,
890 			     unsigned int keylen)
891 {
892 	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
893 
894 	memcpy(ctx->key, key, keylen);
895 	ctx->keylen = keylen;
896 
897 	return 0;
898 }
899 
900 static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
901 				 unsigned int keylen)
902 {
903 	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
904 	    keylen != AES_KEYSIZE_256)
905 		return -EINVAL;
906 	else
907 		return stm32_cryp_setkey(tfm, key, keylen);
908 }
909 
910 static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
911 				 unsigned int keylen)
912 {
913 	return verify_skcipher_des_key(tfm, key) ?:
914 	       stm32_cryp_setkey(tfm, key, keylen);
915 }
916 
917 static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key,
918 				  unsigned int keylen)
919 {
920 	return verify_skcipher_des3_key(tfm, key) ?:
921 	       stm32_cryp_setkey(tfm, key, keylen);
922 }
923 
924 static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
925 				      unsigned int keylen)
926 {
927 	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
928 
929 	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
930 	    keylen != AES_KEYSIZE_256)
931 		return -EINVAL;
932 
933 	memcpy(ctx->key, key, keylen);
934 	ctx->keylen = keylen;
935 
936 	return 0;
937 }
938 
939 static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
940 					  unsigned int authsize)
941 {
942 	switch (authsize) {
943 	case 4:
944 	case 8:
945 	case 12:
946 	case 13:
947 	case 14:
948 	case 15:
949 	case 16:
950 		break;
951 	default:
952 		return -EINVAL;
953 	}
954 
955 	return 0;
956 }
957 
958 static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
959 					  unsigned int authsize)
960 {
961 	switch (authsize) {
962 	case 4:
963 	case 6:
964 	case 8:
965 	case 10:
966 	case 12:
967 	case 14:
968 	case 16:
969 		break;
970 	default:
971 		return -EINVAL;
972 	}
973 
974 	return 0;
975 }
976 
977 static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req)
978 {
979 	if (req->cryptlen % AES_BLOCK_SIZE)
980 		return -EINVAL;
981 
982 	if (req->cryptlen == 0)
983 		return 0;
984 
985 	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
986 }
987 
988 static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req)
989 {
990 	if (req->cryptlen % AES_BLOCK_SIZE)
991 		return -EINVAL;
992 
993 	if (req->cryptlen == 0)
994 		return 0;
995 
996 	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
997 }
998 
999 static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req)
1000 {
1001 	if (req->cryptlen % AES_BLOCK_SIZE)
1002 		return -EINVAL;
1003 
1004 	if (req->cryptlen == 0)
1005 		return 0;
1006 
1007 	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
1008 }
1009 
1010 static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req)
1011 {
1012 	if (req->cryptlen % AES_BLOCK_SIZE)
1013 		return -EINVAL;
1014 
1015 	if (req->cryptlen == 0)
1016 		return 0;
1017 
1018 	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
1019 }
1020 
1021 static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req)
1022 {
1023 	if (req->cryptlen == 0)
1024 		return 0;
1025 
1026 	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
1027 }
1028 
1029 static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req)
1030 {
1031 	if (req->cryptlen == 0)
1032 		return 0;
1033 
1034 	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
1035 }
1036 
1037 static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
1038 {
1039 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
1040 }
1041 
1042 static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
1043 {
1044 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
1045 }
1046 
1047 static inline int crypto_ccm_check_iv(const u8 *iv)
1048 {
1049 	/* 2 <= L <= 8, so 1 <= L' <= 7. */
1050 	if (iv[0] < 1 || iv[0] > 7)
1051 		return -EINVAL;
1052 
1053 	return 0;
1054 }
1055 
1056 static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
1057 {
1058 	int err;
1059 
1060 	err = crypto_ccm_check_iv(req->iv);
1061 	if (err)
1062 		return err;
1063 
1064 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
1065 }
1066 
1067 static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
1068 {
1069 	int err;
1070 
1071 	err = crypto_ccm_check_iv(req->iv);
1072 	if (err)
1073 		return err;
1074 
1075 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
1076 }
1077 
1078 static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req)
1079 {
1080 	if (req->cryptlen % DES_BLOCK_SIZE)
1081 		return -EINVAL;
1082 
1083 	if (req->cryptlen == 0)
1084 		return 0;
1085 
1086 	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
1087 }
1088 
1089 static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req)
1090 {
1091 	if (req->cryptlen % DES_BLOCK_SIZE)
1092 		return -EINVAL;
1093 
1094 	if (req->cryptlen == 0)
1095 		return 0;
1096 
1097 	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
1098 }
1099 
1100 static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req)
1101 {
1102 	if (req->cryptlen % DES_BLOCK_SIZE)
1103 		return -EINVAL;
1104 
1105 	if (req->cryptlen == 0)
1106 		return 0;
1107 
1108 	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
1109 }
1110 
1111 static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req)
1112 {
1113 	if (req->cryptlen % DES_BLOCK_SIZE)
1114 		return -EINVAL;
1115 
1116 	if (req->cryptlen == 0)
1117 		return 0;
1118 
1119 	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
1120 }
1121 
1122 static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req)
1123 {
1124 	if (req->cryptlen % DES_BLOCK_SIZE)
1125 		return -EINVAL;
1126 
1127 	if (req->cryptlen == 0)
1128 		return 0;
1129 
1130 	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
1131 }
1132 
1133 static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req)
1134 {
1135 	if (req->cryptlen % DES_BLOCK_SIZE)
1136 		return -EINVAL;
1137 
1138 	if (req->cryptlen == 0)
1139 		return 0;
1140 
1141 	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
1142 }
1143 
1144 static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req)
1145 {
1146 	if (req->cryptlen % DES_BLOCK_SIZE)
1147 		return -EINVAL;
1148 
1149 	if (req->cryptlen == 0)
1150 		return 0;
1151 
1152 	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
1153 }
1154 
1155 static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req)
1156 {
1157 	if (req->cryptlen % DES_BLOCK_SIZE)
1158 		return -EINVAL;
1159 
1160 	if (req->cryptlen == 0)
1161 		return 0;
1162 
1163 	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
1164 }
1165 
1166 static int stm32_cryp_prepare_req(struct skcipher_request *req,
1167 				  struct aead_request *areq)
1168 {
1169 	struct stm32_cryp_ctx *ctx;
1170 	struct stm32_cryp *cryp;
1171 	struct stm32_cryp_reqctx *rctx;
1172 	struct scatterlist *in_sg;
1173 	int ret;
1174 
1175 	if (!req && !areq)
1176 		return -EINVAL;
1177 
1178 	ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) :
1179 		    crypto_aead_ctx(crypto_aead_reqtfm(areq));
1180 
1181 	cryp = ctx->cryp;
1182 
1183 	if (!cryp)
1184 		return -ENODEV;
1185 
1186 	rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq);
1187 	rctx->mode &= FLG_MODE_MASK;
1188 
1189 	ctx->cryp = cryp;
1190 
1191 	cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
1192 	cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
1193 	cryp->ctx = ctx;
1194 
1195 	if (req) {
1196 		cryp->req = req;
1197 		cryp->areq = NULL;
1198 		cryp->header_in = 0;
1199 		cryp->payload_in = req->cryptlen;
1200 		cryp->payload_out = req->cryptlen;
1201 		cryp->authsize = 0;
1202 	} else {
1203 		/*
1204 		 * Length of input and output data:
1205 		 * Encryption case:
1206 		 *  INPUT  = AssocData   ||     PlainText
1207 		 *          <- assoclen ->  <- cryptlen ->
1208 		 *
1209 		 *  OUTPUT = AssocData    ||   CipherText   ||      AuthTag
1210 		 *          <- assoclen ->  <-- cryptlen -->  <- authsize ->
1211 		 *
1212 		 * Decryption case:
1213 		 *  INPUT  =  AssocData     ||    CipherTex   ||       AuthTag
1214 		 *          <- assoclen --->  <---------- cryptlen ---------->
1215 		 *
1216 		 *  OUTPUT = AssocData    ||               PlainText
1217 		 *          <- assoclen ->  <- cryptlen - authsize ->
1218 		 */
1219 		cryp->areq = areq;
1220 		cryp->req = NULL;
1221 		cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
1222 		if (is_encrypt(cryp)) {
1223 			cryp->payload_in = areq->cryptlen;
1224 			cryp->header_in = areq->assoclen;
1225 			cryp->payload_out = areq->cryptlen;
1226 		} else {
1227 			cryp->payload_in = areq->cryptlen - cryp->authsize;
1228 			cryp->header_in = areq->assoclen;
1229 			cryp->payload_out = cryp->payload_in;
1230 		}
1231 	}
1232 
1233 	in_sg = req ? req->src : areq->src;
1234 	scatterwalk_start(&cryp->in_walk, in_sg);
1235 
1236 	cryp->out_sg = req ? req->dst : areq->dst;
1237 	scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1238 
1239 	if (is_gcm(cryp) || is_ccm(cryp)) {
1240 		/* In output, jump after assoc data */
1241 		scatterwalk_copychunks(NULL, &cryp->out_walk, cryp->areq->assoclen, 2);
1242 	}
1243 
1244 	if (is_ctr(cryp))
1245 		memset(cryp->last_ctr, 0, sizeof(cryp->last_ctr));
1246 
1247 	ret = stm32_cryp_hw_init(cryp);
1248 	return ret;
1249 }
1250 
1251 static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1252 					 void *areq)
1253 {
1254 	struct skcipher_request *req = container_of(areq,
1255 						      struct skcipher_request,
1256 						      base);
1257 
1258 	return stm32_cryp_prepare_req(req, NULL);
1259 }
1260 
1261 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1262 {
1263 	struct skcipher_request *req = container_of(areq,
1264 						      struct skcipher_request,
1265 						      base);
1266 	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
1267 			crypto_skcipher_reqtfm(req));
1268 	struct stm32_cryp *cryp = ctx->cryp;
1269 
1270 	if (!cryp)
1271 		return -ENODEV;
1272 
1273 	return stm32_cryp_cpu_start(cryp);
1274 }
1275 
1276 static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1277 {
1278 	struct aead_request *req = container_of(areq, struct aead_request,
1279 						base);
1280 
1281 	return stm32_cryp_prepare_req(NULL, req);
1282 }
1283 
1284 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1285 {
1286 	struct aead_request *req = container_of(areq, struct aead_request,
1287 						base);
1288 	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1289 	struct stm32_cryp *cryp = ctx->cryp;
1290 
1291 	if (!cryp)
1292 		return -ENODEV;
1293 
1294 	if (unlikely(!cryp->payload_in && !cryp->header_in)) {
1295 		/* No input data to process: get tag and finish */
1296 		stm32_cryp_finish_req(cryp, 0);
1297 		return 0;
1298 	}
1299 
1300 	return stm32_cryp_cpu_start(cryp);
1301 }
1302 
1303 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1304 {
1305 	u32 cfg, size_bit;
1306 	unsigned int i;
1307 	int ret = 0;
1308 
1309 	/* Update Config */
1310 	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1311 
1312 	cfg &= ~CR_PH_MASK;
1313 	cfg |= CR_PH_FINAL;
1314 	cfg &= ~CR_DEC_NOT_ENC;
1315 	cfg |= CR_CRYPEN;
1316 
1317 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1318 
1319 	if (is_gcm(cryp)) {
1320 		/* GCM: write aad and payload size (in bits) */
1321 		size_bit = cryp->areq->assoclen * 8;
1322 		if (cryp->caps->swap_final)
1323 			size_bit = (__force u32)cpu_to_be32(size_bit);
1324 
1325 		stm32_cryp_write(cryp, cryp->caps->din, 0);
1326 		stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1327 
1328 		size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1329 				cryp->areq->cryptlen - cryp->authsize;
1330 		size_bit *= 8;
1331 		if (cryp->caps->swap_final)
1332 			size_bit = (__force u32)cpu_to_be32(size_bit);
1333 
1334 		stm32_cryp_write(cryp, cryp->caps->din, 0);
1335 		stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1336 	} else {
1337 		/* CCM: write CTR0 */
1338 		u32 iv32[AES_BLOCK_32];
1339 		u8 *iv = (u8 *)iv32;
1340 		__be32 *biv = (__be32 *)iv32;
1341 
1342 		memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1343 		memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1344 
1345 		for (i = 0; i < AES_BLOCK_32; i++) {
1346 			u32 xiv = iv32[i];
1347 
1348 			if (!cryp->caps->padding_wa)
1349 				xiv = be32_to_cpu(biv[i]);
1350 			stm32_cryp_write(cryp, cryp->caps->din, xiv);
1351 		}
1352 	}
1353 
1354 	/* Wait for output data */
1355 	ret = stm32_cryp_wait_output(cryp);
1356 	if (ret) {
1357 		dev_err(cryp->dev, "Timeout (read tag)\n");
1358 		return ret;
1359 	}
1360 
1361 	if (is_encrypt(cryp)) {
1362 		u32 out_tag[AES_BLOCK_32];
1363 
1364 		/* Get and write tag */
1365 		readsl(cryp->regs + cryp->caps->dout, out_tag, AES_BLOCK_32);
1366 		scatterwalk_copychunks(out_tag, &cryp->out_walk, cryp->authsize, 1);
1367 	} else {
1368 		/* Get and check tag */
1369 		u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1370 
1371 		scatterwalk_copychunks(in_tag, &cryp->in_walk, cryp->authsize, 0);
1372 		readsl(cryp->regs + cryp->caps->dout, out_tag, AES_BLOCK_32);
1373 
1374 		if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1375 			ret = -EBADMSG;
1376 	}
1377 
1378 	/* Disable cryp */
1379 	cfg &= ~CR_CRYPEN;
1380 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1381 
1382 	return ret;
1383 }
1384 
1385 static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1386 {
1387 	u32 cr;
1388 
1389 	if (unlikely(cryp->last_ctr[3] == cpu_to_be32(0xFFFFFFFF))) {
1390 		/*
1391 		 * In this case, we need to increment manually the ctr counter,
1392 		 * as HW doesn't handle the U32 carry.
1393 		 */
1394 		crypto_inc((u8 *)cryp->last_ctr, sizeof(cryp->last_ctr));
1395 
1396 		cr = stm32_cryp_read(cryp, cryp->caps->cr);
1397 		stm32_cryp_write(cryp, cryp->caps->cr, cr & ~CR_CRYPEN);
1398 
1399 		stm32_cryp_hw_write_iv(cryp, cryp->last_ctr);
1400 
1401 		stm32_cryp_write(cryp, cryp->caps->cr, cr);
1402 	}
1403 
1404 	/* The IV registers are BE  */
1405 	cryp->last_ctr[0] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
1406 	cryp->last_ctr[1] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
1407 	cryp->last_ctr[2] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
1408 	cryp->last_ctr[3] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
1409 }
1410 
1411 static void stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1412 {
1413 	u32 block[AES_BLOCK_32];
1414 
1415 	readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
1416 	scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1417 							     cryp->payload_out), 1);
1418 	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1419 				   cryp->payload_out);
1420 }
1421 
1422 static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1423 {
1424 	u32 block[AES_BLOCK_32] = {0};
1425 
1426 	scatterwalk_copychunks(block, &cryp->in_walk, min_t(size_t, cryp->hw_blocksize,
1427 							    cryp->payload_in), 0);
1428 	writesl(cryp->regs + cryp->caps->din, block, cryp->hw_blocksize / sizeof(u32));
1429 	cryp->payload_in -= min_t(size_t, cryp->hw_blocksize, cryp->payload_in);
1430 }
1431 
1432 static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1433 {
1434 	int err;
1435 	u32 cfg, block[AES_BLOCK_32] = {0};
1436 	unsigned int i;
1437 
1438 	/* 'Special workaround' procedure described in the datasheet */
1439 
1440 	/* a) disable ip */
1441 	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
1442 	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1443 	cfg &= ~CR_CRYPEN;
1444 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1445 
1446 	/* b) Update IV1R */
1447 	stm32_cryp_write(cryp, cryp->caps->iv1r, cryp->gcm_ctr - 2);
1448 
1449 	/* c) change mode to CTR */
1450 	cfg &= ~CR_ALGO_MASK;
1451 	cfg |= CR_AES_CTR;
1452 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1453 
1454 	/* a) enable IP */
1455 	cfg |= CR_CRYPEN;
1456 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1457 
1458 	/* b) pad and write the last block */
1459 	stm32_cryp_irq_write_block(cryp);
1460 	/* wait end of process */
1461 	err = stm32_cryp_wait_output(cryp);
1462 	if (err) {
1463 		dev_err(cryp->dev, "Timeout (write gcm last data)\n");
1464 		return stm32_cryp_finish_req(cryp, err);
1465 	}
1466 
1467 	/* c) get and store encrypted data */
1468 	/*
1469 	 * Same code as stm32_cryp_irq_read_data(), but we want to store
1470 	 * block value
1471 	 */
1472 	readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
1473 
1474 	scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1475 							     cryp->payload_out), 1);
1476 	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1477 				   cryp->payload_out);
1478 
1479 	/* d) change mode back to AES GCM */
1480 	cfg &= ~CR_ALGO_MASK;
1481 	cfg |= CR_AES_GCM;
1482 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1483 
1484 	/* e) change phase to Final */
1485 	cfg &= ~CR_PH_MASK;
1486 	cfg |= CR_PH_FINAL;
1487 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1488 
1489 	/* f) write padded data */
1490 	writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
1491 
1492 	/* g) Empty fifo out */
1493 	err = stm32_cryp_wait_output(cryp);
1494 	if (err) {
1495 		dev_err(cryp->dev, "Timeout (write gcm padded data)\n");
1496 		return stm32_cryp_finish_req(cryp, err);
1497 	}
1498 
1499 	for (i = 0; i < AES_BLOCK_32; i++)
1500 		stm32_cryp_read(cryp, cryp->caps->dout);
1501 
1502 	/* h) run the he normal Final phase */
1503 	stm32_cryp_finish_req(cryp, 0);
1504 }
1505 
1506 static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1507 {
1508 	u32 cfg;
1509 
1510 	/* disable ip, set NPBLB and reneable ip */
1511 	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1512 	cfg &= ~CR_CRYPEN;
1513 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1514 
1515 	cfg |= (cryp->hw_blocksize - cryp->payload_in) << CR_NBPBL_SHIFT;
1516 	cfg |= CR_CRYPEN;
1517 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1518 }
1519 
1520 static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1521 {
1522 	int err = 0;
1523 	u32 cfg, iv1tmp;
1524 	u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32];
1525 	u32 block[AES_BLOCK_32] = {0};
1526 	unsigned int i;
1527 
1528 	/* 'Special workaround' procedure described in the datasheet */
1529 
1530 	/* a) disable ip */
1531 	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
1532 
1533 	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1534 	cfg &= ~CR_CRYPEN;
1535 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1536 
1537 	/* b) get IV1 from CRYP_CSGCMCCM7 */
1538 	iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1539 
1540 	/* c) Load CRYP_CSGCMCCMxR */
1541 	for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1542 		cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1543 
1544 	/* d) Write IV1R */
1545 	stm32_cryp_write(cryp, cryp->caps->iv1r, iv1tmp);
1546 
1547 	/* e) change mode to CTR */
1548 	cfg &= ~CR_ALGO_MASK;
1549 	cfg |= CR_AES_CTR;
1550 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1551 
1552 	/* a) enable IP */
1553 	cfg |= CR_CRYPEN;
1554 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1555 
1556 	/* b) pad and write the last block */
1557 	stm32_cryp_irq_write_block(cryp);
1558 	/* wait end of process */
1559 	err = stm32_cryp_wait_output(cryp);
1560 	if (err) {
1561 		dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
1562 		return stm32_cryp_finish_req(cryp, err);
1563 	}
1564 
1565 	/* c) get and store decrypted data */
1566 	/*
1567 	 * Same code as stm32_cryp_irq_read_data(), but we want to store
1568 	 * block value
1569 	 */
1570 	readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
1571 
1572 	scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1573 							     cryp->payload_out), 1);
1574 	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize, cryp->payload_out);
1575 
1576 	/* d) Load again CRYP_CSGCMCCMxR */
1577 	for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1578 		cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1579 
1580 	/* e) change mode back to AES CCM */
1581 	cfg &= ~CR_ALGO_MASK;
1582 	cfg |= CR_AES_CCM;
1583 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1584 
1585 	/* f) change phase to header */
1586 	cfg &= ~CR_PH_MASK;
1587 	cfg |= CR_PH_HEADER;
1588 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1589 
1590 	/* g) XOR and write padded data */
1591 	for (i = 0; i < ARRAY_SIZE(block); i++) {
1592 		block[i] ^= cstmp1[i];
1593 		block[i] ^= cstmp2[i];
1594 		stm32_cryp_write(cryp, cryp->caps->din, block[i]);
1595 	}
1596 
1597 	/* h) wait for completion */
1598 	err = stm32_cryp_wait_busy(cryp);
1599 	if (err)
1600 		dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
1601 
1602 	/* i) run the he normal Final phase */
1603 	stm32_cryp_finish_req(cryp, err);
1604 }
1605 
1606 static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1607 {
1608 	if (unlikely(!cryp->payload_in)) {
1609 		dev_warn(cryp->dev, "No more data to process\n");
1610 		return;
1611 	}
1612 
1613 	if (unlikely(cryp->payload_in < AES_BLOCK_SIZE &&
1614 		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1615 		     is_encrypt(cryp))) {
1616 		/* Padding for AES GCM encryption */
1617 		if (cryp->caps->padding_wa) {
1618 			/* Special case 1 */
1619 			stm32_cryp_irq_write_gcm_padded_data(cryp);
1620 			return;
1621 		}
1622 
1623 		/* Setting padding bytes (NBBLB) */
1624 		stm32_cryp_irq_set_npblb(cryp);
1625 	}
1626 
1627 	if (unlikely((cryp->payload_in < AES_BLOCK_SIZE) &&
1628 		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1629 		     is_decrypt(cryp))) {
1630 		/* Padding for AES CCM decryption */
1631 		if (cryp->caps->padding_wa) {
1632 			/* Special case 2 */
1633 			stm32_cryp_irq_write_ccm_padded_data(cryp);
1634 			return;
1635 		}
1636 
1637 		/* Setting padding bytes (NBBLB) */
1638 		stm32_cryp_irq_set_npblb(cryp);
1639 	}
1640 
1641 	if (is_aes(cryp) && is_ctr(cryp))
1642 		stm32_cryp_check_ctr_counter(cryp);
1643 
1644 	stm32_cryp_irq_write_block(cryp);
1645 }
1646 
1647 static void stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp *cryp)
1648 {
1649 	u32 block[AES_BLOCK_32] = {0};
1650 	size_t written;
1651 
1652 	written = min_t(size_t, AES_BLOCK_SIZE, cryp->header_in);
1653 
1654 	scatterwalk_copychunks(block, &cryp->in_walk, written, 0);
1655 
1656 	writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
1657 
1658 	cryp->header_in -= written;
1659 
1660 	stm32_crypt_gcmccm_end_header(cryp);
1661 }
1662 
1663 static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1664 {
1665 	struct stm32_cryp *cryp = arg;
1666 	u32 ph;
1667 	u32 it_mask = stm32_cryp_read(cryp, cryp->caps->imsc);
1668 
1669 	if (cryp->irq_status & MISR_OUT)
1670 		/* Output FIFO IRQ: read data */
1671 		stm32_cryp_irq_read_data(cryp);
1672 
1673 	if (cryp->irq_status & MISR_IN) {
1674 		if (is_gcm(cryp) || is_ccm(cryp)) {
1675 			ph = stm32_cryp_read(cryp, cryp->caps->cr) & CR_PH_MASK;
1676 			if (unlikely(ph == CR_PH_HEADER))
1677 				/* Write Header */
1678 				stm32_cryp_irq_write_gcmccm_header(cryp);
1679 			else
1680 				/* Input FIFO IRQ: write data */
1681 				stm32_cryp_irq_write_data(cryp);
1682 			if (is_gcm(cryp))
1683 				cryp->gcm_ctr++;
1684 		} else {
1685 			/* Input FIFO IRQ: write data */
1686 			stm32_cryp_irq_write_data(cryp);
1687 		}
1688 	}
1689 
1690 	/* Mask useless interrupts */
1691 	if (!cryp->payload_in && !cryp->header_in)
1692 		it_mask &= ~IMSCR_IN;
1693 	if (!cryp->payload_out)
1694 		it_mask &= ~IMSCR_OUT;
1695 	stm32_cryp_write(cryp, cryp->caps->imsc, it_mask);
1696 
1697 	if (!cryp->payload_in && !cryp->header_in && !cryp->payload_out)
1698 		stm32_cryp_finish_req(cryp, 0);
1699 
1700 	return IRQ_HANDLED;
1701 }
1702 
1703 static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1704 {
1705 	struct stm32_cryp *cryp = arg;
1706 
1707 	cryp->irq_status = stm32_cryp_read(cryp, cryp->caps->mis);
1708 
1709 	return IRQ_WAKE_THREAD;
1710 }
1711 
1712 static struct skcipher_alg crypto_algs[] = {
1713 {
1714 	.base.cra_name		= "ecb(aes)",
1715 	.base.cra_driver_name	= "stm32-ecb-aes",
1716 	.base.cra_priority	= 200,
1717 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1718 	.base.cra_blocksize	= AES_BLOCK_SIZE,
1719 	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1720 	.base.cra_alignmask	= 0,
1721 	.base.cra_module	= THIS_MODULE,
1722 
1723 	.init			= stm32_cryp_init_tfm,
1724 	.min_keysize		= AES_MIN_KEY_SIZE,
1725 	.max_keysize		= AES_MAX_KEY_SIZE,
1726 	.setkey			= stm32_cryp_aes_setkey,
1727 	.encrypt		= stm32_cryp_aes_ecb_encrypt,
1728 	.decrypt		= stm32_cryp_aes_ecb_decrypt,
1729 },
1730 {
1731 	.base.cra_name		= "cbc(aes)",
1732 	.base.cra_driver_name	= "stm32-cbc-aes",
1733 	.base.cra_priority	= 200,
1734 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1735 	.base.cra_blocksize	= AES_BLOCK_SIZE,
1736 	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1737 	.base.cra_alignmask	= 0,
1738 	.base.cra_module	= THIS_MODULE,
1739 
1740 	.init			= stm32_cryp_init_tfm,
1741 	.min_keysize		= AES_MIN_KEY_SIZE,
1742 	.max_keysize		= AES_MAX_KEY_SIZE,
1743 	.ivsize			= AES_BLOCK_SIZE,
1744 	.setkey			= stm32_cryp_aes_setkey,
1745 	.encrypt		= stm32_cryp_aes_cbc_encrypt,
1746 	.decrypt		= stm32_cryp_aes_cbc_decrypt,
1747 },
1748 {
1749 	.base.cra_name		= "ctr(aes)",
1750 	.base.cra_driver_name	= "stm32-ctr-aes",
1751 	.base.cra_priority	= 200,
1752 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1753 	.base.cra_blocksize	= 1,
1754 	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1755 	.base.cra_alignmask	= 0,
1756 	.base.cra_module	= THIS_MODULE,
1757 
1758 	.init			= stm32_cryp_init_tfm,
1759 	.min_keysize		= AES_MIN_KEY_SIZE,
1760 	.max_keysize		= AES_MAX_KEY_SIZE,
1761 	.ivsize			= AES_BLOCK_SIZE,
1762 	.setkey			= stm32_cryp_aes_setkey,
1763 	.encrypt		= stm32_cryp_aes_ctr_encrypt,
1764 	.decrypt		= stm32_cryp_aes_ctr_decrypt,
1765 },
1766 {
1767 	.base.cra_name		= "ecb(des)",
1768 	.base.cra_driver_name	= "stm32-ecb-des",
1769 	.base.cra_priority	= 200,
1770 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1771 	.base.cra_blocksize	= DES_BLOCK_SIZE,
1772 	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1773 	.base.cra_alignmask	= 0,
1774 	.base.cra_module	= THIS_MODULE,
1775 
1776 	.init			= stm32_cryp_init_tfm,
1777 	.min_keysize		= DES_BLOCK_SIZE,
1778 	.max_keysize		= DES_BLOCK_SIZE,
1779 	.setkey			= stm32_cryp_des_setkey,
1780 	.encrypt		= stm32_cryp_des_ecb_encrypt,
1781 	.decrypt		= stm32_cryp_des_ecb_decrypt,
1782 },
1783 {
1784 	.base.cra_name		= "cbc(des)",
1785 	.base.cra_driver_name	= "stm32-cbc-des",
1786 	.base.cra_priority	= 200,
1787 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1788 	.base.cra_blocksize	= DES_BLOCK_SIZE,
1789 	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1790 	.base.cra_alignmask	= 0,
1791 	.base.cra_module	= THIS_MODULE,
1792 
1793 	.init			= stm32_cryp_init_tfm,
1794 	.min_keysize		= DES_BLOCK_SIZE,
1795 	.max_keysize		= DES_BLOCK_SIZE,
1796 	.ivsize			= DES_BLOCK_SIZE,
1797 	.setkey			= stm32_cryp_des_setkey,
1798 	.encrypt		= stm32_cryp_des_cbc_encrypt,
1799 	.decrypt		= stm32_cryp_des_cbc_decrypt,
1800 },
1801 {
1802 	.base.cra_name		= "ecb(des3_ede)",
1803 	.base.cra_driver_name	= "stm32-ecb-des3",
1804 	.base.cra_priority	= 200,
1805 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1806 	.base.cra_blocksize	= DES_BLOCK_SIZE,
1807 	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1808 	.base.cra_alignmask	= 0,
1809 	.base.cra_module	= THIS_MODULE,
1810 
1811 	.init			= stm32_cryp_init_tfm,
1812 	.min_keysize		= 3 * DES_BLOCK_SIZE,
1813 	.max_keysize		= 3 * DES_BLOCK_SIZE,
1814 	.setkey			= stm32_cryp_tdes_setkey,
1815 	.encrypt		= stm32_cryp_tdes_ecb_encrypt,
1816 	.decrypt		= stm32_cryp_tdes_ecb_decrypt,
1817 },
1818 {
1819 	.base.cra_name		= "cbc(des3_ede)",
1820 	.base.cra_driver_name	= "stm32-cbc-des3",
1821 	.base.cra_priority	= 200,
1822 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1823 	.base.cra_blocksize	= DES_BLOCK_SIZE,
1824 	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1825 	.base.cra_alignmask	= 0,
1826 	.base.cra_module	= THIS_MODULE,
1827 
1828 	.init			= stm32_cryp_init_tfm,
1829 	.min_keysize		= 3 * DES_BLOCK_SIZE,
1830 	.max_keysize		= 3 * DES_BLOCK_SIZE,
1831 	.ivsize			= DES_BLOCK_SIZE,
1832 	.setkey			= stm32_cryp_tdes_setkey,
1833 	.encrypt		= stm32_cryp_tdes_cbc_encrypt,
1834 	.decrypt		= stm32_cryp_tdes_cbc_decrypt,
1835 },
1836 };
1837 
1838 static struct aead_alg aead_algs[] = {
1839 {
1840 	.setkey		= stm32_cryp_aes_aead_setkey,
1841 	.setauthsize	= stm32_cryp_aes_gcm_setauthsize,
1842 	.encrypt	= stm32_cryp_aes_gcm_encrypt,
1843 	.decrypt	= stm32_cryp_aes_gcm_decrypt,
1844 	.init		= stm32_cryp_aes_aead_init,
1845 	.ivsize		= 12,
1846 	.maxauthsize	= AES_BLOCK_SIZE,
1847 
1848 	.base = {
1849 		.cra_name		= "gcm(aes)",
1850 		.cra_driver_name	= "stm32-gcm-aes",
1851 		.cra_priority		= 200,
1852 		.cra_flags		= CRYPTO_ALG_ASYNC,
1853 		.cra_blocksize		= 1,
1854 		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1855 		.cra_alignmask		= 0,
1856 		.cra_module		= THIS_MODULE,
1857 	},
1858 },
1859 {
1860 	.setkey		= stm32_cryp_aes_aead_setkey,
1861 	.setauthsize	= stm32_cryp_aes_ccm_setauthsize,
1862 	.encrypt	= stm32_cryp_aes_ccm_encrypt,
1863 	.decrypt	= stm32_cryp_aes_ccm_decrypt,
1864 	.init		= stm32_cryp_aes_aead_init,
1865 	.ivsize		= AES_BLOCK_SIZE,
1866 	.maxauthsize	= AES_BLOCK_SIZE,
1867 
1868 	.base = {
1869 		.cra_name		= "ccm(aes)",
1870 		.cra_driver_name	= "stm32-ccm-aes",
1871 		.cra_priority		= 200,
1872 		.cra_flags		= CRYPTO_ALG_ASYNC,
1873 		.cra_blocksize		= 1,
1874 		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1875 		.cra_alignmask		= 0,
1876 		.cra_module		= THIS_MODULE,
1877 	},
1878 },
1879 };
1880 
1881 static const struct stm32_cryp_caps ux500_data = {
1882 	.aeads_support = false,
1883 	.linear_aes_key = true,
1884 	.kp_mode = false,
1885 	.iv_protection = true,
1886 	.swap_final = true,
1887 	.padding_wa = true,
1888 	.cr = UX500_CRYP_CR,
1889 	.sr = UX500_CRYP_SR,
1890 	.din = UX500_CRYP_DIN,
1891 	.dout = UX500_CRYP_DOUT,
1892 	.imsc = UX500_CRYP_IMSC,
1893 	.mis = UX500_CRYP_MIS,
1894 	.k1l = UX500_CRYP_K1L,
1895 	.k1r = UX500_CRYP_K1R,
1896 	.k3r = UX500_CRYP_K3R,
1897 	.iv0l = UX500_CRYP_IV0L,
1898 	.iv0r = UX500_CRYP_IV0R,
1899 	.iv1l = UX500_CRYP_IV1L,
1900 	.iv1r = UX500_CRYP_IV1R,
1901 };
1902 
1903 static const struct stm32_cryp_caps f7_data = {
1904 	.aeads_support = true,
1905 	.linear_aes_key = false,
1906 	.kp_mode = true,
1907 	.iv_protection = false,
1908 	.swap_final = true,
1909 	.padding_wa = true,
1910 	.cr = CRYP_CR,
1911 	.sr = CRYP_SR,
1912 	.din = CRYP_DIN,
1913 	.dout = CRYP_DOUT,
1914 	.imsc = CRYP_IMSCR,
1915 	.mis = CRYP_MISR,
1916 	.k1l = CRYP_K1LR,
1917 	.k1r = CRYP_K1RR,
1918 	.k3r = CRYP_K3RR,
1919 	.iv0l = CRYP_IV0LR,
1920 	.iv0r = CRYP_IV0RR,
1921 	.iv1l = CRYP_IV1LR,
1922 	.iv1r = CRYP_IV1RR,
1923 };
1924 
1925 static const struct stm32_cryp_caps mp1_data = {
1926 	.aeads_support = true,
1927 	.linear_aes_key = false,
1928 	.kp_mode = true,
1929 	.iv_protection = false,
1930 	.swap_final = false,
1931 	.padding_wa = false,
1932 	.cr = CRYP_CR,
1933 	.sr = CRYP_SR,
1934 	.din = CRYP_DIN,
1935 	.dout = CRYP_DOUT,
1936 	.imsc = CRYP_IMSCR,
1937 	.mis = CRYP_MISR,
1938 	.k1l = CRYP_K1LR,
1939 	.k1r = CRYP_K1RR,
1940 	.k3r = CRYP_K3RR,
1941 	.iv0l = CRYP_IV0LR,
1942 	.iv0r = CRYP_IV0RR,
1943 	.iv1l = CRYP_IV1LR,
1944 	.iv1r = CRYP_IV1RR,
1945 };
1946 
1947 static const struct of_device_id stm32_dt_ids[] = {
1948 	{ .compatible = "stericsson,ux500-cryp", .data = &ux500_data},
1949 	{ .compatible = "st,stm32f756-cryp", .data = &f7_data},
1950 	{ .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1951 	{},
1952 };
1953 MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1954 
1955 static int stm32_cryp_probe(struct platform_device *pdev)
1956 {
1957 	struct device *dev = &pdev->dev;
1958 	struct stm32_cryp *cryp;
1959 	struct reset_control *rst;
1960 	int irq, ret;
1961 
1962 	cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1963 	if (!cryp)
1964 		return -ENOMEM;
1965 
1966 	cryp->caps = of_device_get_match_data(dev);
1967 	if (!cryp->caps)
1968 		return -ENODEV;
1969 
1970 	cryp->dev = dev;
1971 
1972 	cryp->regs = devm_platform_ioremap_resource(pdev, 0);
1973 	if (IS_ERR(cryp->regs))
1974 		return PTR_ERR(cryp->regs);
1975 
1976 	irq = platform_get_irq(pdev, 0);
1977 	if (irq < 0)
1978 		return irq;
1979 
1980 	ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1981 					stm32_cryp_irq_thread, IRQF_ONESHOT,
1982 					dev_name(dev), cryp);
1983 	if (ret) {
1984 		dev_err(dev, "Cannot grab IRQ\n");
1985 		return ret;
1986 	}
1987 
1988 	cryp->clk = devm_clk_get(dev, NULL);
1989 	if (IS_ERR(cryp->clk)) {
1990 		dev_err_probe(dev, PTR_ERR(cryp->clk), "Could not get clock\n");
1991 
1992 		return PTR_ERR(cryp->clk);
1993 	}
1994 
1995 	ret = clk_prepare_enable(cryp->clk);
1996 	if (ret) {
1997 		dev_err(cryp->dev, "Failed to enable clock\n");
1998 		return ret;
1999 	}
2000 
2001 	pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
2002 	pm_runtime_use_autosuspend(dev);
2003 
2004 	pm_runtime_get_noresume(dev);
2005 	pm_runtime_set_active(dev);
2006 	pm_runtime_enable(dev);
2007 
2008 	rst = devm_reset_control_get(dev, NULL);
2009 	if (IS_ERR(rst)) {
2010 		ret = PTR_ERR(rst);
2011 		if (ret == -EPROBE_DEFER)
2012 			goto err_rst;
2013 	} else {
2014 		reset_control_assert(rst);
2015 		udelay(2);
2016 		reset_control_deassert(rst);
2017 	}
2018 
2019 	platform_set_drvdata(pdev, cryp);
2020 
2021 	spin_lock(&cryp_list.lock);
2022 	list_add(&cryp->list, &cryp_list.dev_list);
2023 	spin_unlock(&cryp_list.lock);
2024 
2025 	/* Initialize crypto engine */
2026 	cryp->engine = crypto_engine_alloc_init(dev, 1);
2027 	if (!cryp->engine) {
2028 		dev_err(dev, "Could not init crypto engine\n");
2029 		ret = -ENOMEM;
2030 		goto err_engine1;
2031 	}
2032 
2033 	ret = crypto_engine_start(cryp->engine);
2034 	if (ret) {
2035 		dev_err(dev, "Could not start crypto engine\n");
2036 		goto err_engine2;
2037 	}
2038 
2039 	ret = crypto_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2040 	if (ret) {
2041 		dev_err(dev, "Could not register algs\n");
2042 		goto err_algs;
2043 	}
2044 
2045 	if (cryp->caps->aeads_support) {
2046 		ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2047 		if (ret)
2048 			goto err_aead_algs;
2049 	}
2050 
2051 	dev_info(dev, "Initialized\n");
2052 
2053 	pm_runtime_put_sync(dev);
2054 
2055 	return 0;
2056 
2057 err_aead_algs:
2058 	crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2059 err_algs:
2060 err_engine2:
2061 	crypto_engine_exit(cryp->engine);
2062 err_engine1:
2063 	spin_lock(&cryp_list.lock);
2064 	list_del(&cryp->list);
2065 	spin_unlock(&cryp_list.lock);
2066 err_rst:
2067 	pm_runtime_disable(dev);
2068 	pm_runtime_put_noidle(dev);
2069 
2070 	clk_disable_unprepare(cryp->clk);
2071 
2072 	return ret;
2073 }
2074 
2075 static int stm32_cryp_remove(struct platform_device *pdev)
2076 {
2077 	struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2078 	int ret;
2079 
2080 	if (!cryp)
2081 		return -ENODEV;
2082 
2083 	ret = pm_runtime_resume_and_get(cryp->dev);
2084 	if (ret < 0)
2085 		return ret;
2086 
2087 	if (cryp->caps->aeads_support)
2088 		crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2089 	crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2090 
2091 	crypto_engine_exit(cryp->engine);
2092 
2093 	spin_lock(&cryp_list.lock);
2094 	list_del(&cryp->list);
2095 	spin_unlock(&cryp_list.lock);
2096 
2097 	pm_runtime_disable(cryp->dev);
2098 	pm_runtime_put_noidle(cryp->dev);
2099 
2100 	clk_disable_unprepare(cryp->clk);
2101 
2102 	return 0;
2103 }
2104 
2105 #ifdef CONFIG_PM
2106 static int stm32_cryp_runtime_suspend(struct device *dev)
2107 {
2108 	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2109 
2110 	clk_disable_unprepare(cryp->clk);
2111 
2112 	return 0;
2113 }
2114 
2115 static int stm32_cryp_runtime_resume(struct device *dev)
2116 {
2117 	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2118 	int ret;
2119 
2120 	ret = clk_prepare_enable(cryp->clk);
2121 	if (ret) {
2122 		dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2123 		return ret;
2124 	}
2125 
2126 	return 0;
2127 }
2128 #endif
2129 
2130 static const struct dev_pm_ops stm32_cryp_pm_ops = {
2131 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2132 				pm_runtime_force_resume)
2133 	SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2134 			   stm32_cryp_runtime_resume, NULL)
2135 };
2136 
2137 static struct platform_driver stm32_cryp_driver = {
2138 	.probe  = stm32_cryp_probe,
2139 	.remove = stm32_cryp_remove,
2140 	.driver = {
2141 		.name           = DRIVER_NAME,
2142 		.pm		= &stm32_cryp_pm_ops,
2143 		.of_match_table = stm32_dt_ids,
2144 	},
2145 };
2146 
2147 module_platform_driver(stm32_cryp_driver);
2148 
2149 MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2150 MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2151 MODULE_LICENSE("GPL");
2152