xref: /linux/drivers/crypto/stm32/stm32-cryp.c (revision 48dea9a700c8728cc31a1dd44588b97578de86ee)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) STMicroelectronics SA 2017
4  * Author: Fabien Dessenne <fabien.dessenne@st.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/delay.h>
9 #include <linux/interrupt.h>
10 #include <linux/iopoll.h>
11 #include <linux/module.h>
12 #include <linux/of_device.h>
13 #include <linux/platform_device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/reset.h>
16 
17 #include <crypto/aes.h>
18 #include <crypto/internal/des.h>
19 #include <crypto/engine.h>
20 #include <crypto/scatterwalk.h>
21 #include <crypto/internal/aead.h>
22 #include <crypto/internal/skcipher.h>
23 
24 #define DRIVER_NAME             "stm32-cryp"
25 
26 /* Bit [0] encrypt / decrypt */
27 #define FLG_ENCRYPT             BIT(0)
28 /* Bit [8..1] algo & operation mode */
29 #define FLG_AES                 BIT(1)
30 #define FLG_DES                 BIT(2)
31 #define FLG_TDES                BIT(3)
32 #define FLG_ECB                 BIT(4)
33 #define FLG_CBC                 BIT(5)
34 #define FLG_CTR                 BIT(6)
35 #define FLG_GCM                 BIT(7)
36 #define FLG_CCM                 BIT(8)
37 /* Mode mask = bits [15..0] */
38 #define FLG_MODE_MASK           GENMASK(15, 0)
39 /* Bit [31..16] status  */
40 #define FLG_CCM_PADDED_WA       BIT(16)
41 
42 /* Registers */
43 #define CRYP_CR                 0x00000000
44 #define CRYP_SR                 0x00000004
45 #define CRYP_DIN                0x00000008
46 #define CRYP_DOUT               0x0000000C
47 #define CRYP_DMACR              0x00000010
48 #define CRYP_IMSCR              0x00000014
49 #define CRYP_RISR               0x00000018
50 #define CRYP_MISR               0x0000001C
51 #define CRYP_K0LR               0x00000020
52 #define CRYP_K0RR               0x00000024
53 #define CRYP_K1LR               0x00000028
54 #define CRYP_K1RR               0x0000002C
55 #define CRYP_K2LR               0x00000030
56 #define CRYP_K2RR               0x00000034
57 #define CRYP_K3LR               0x00000038
58 #define CRYP_K3RR               0x0000003C
59 #define CRYP_IV0LR              0x00000040
60 #define CRYP_IV0RR              0x00000044
61 #define CRYP_IV1LR              0x00000048
62 #define CRYP_IV1RR              0x0000004C
63 #define CRYP_CSGCMCCM0R         0x00000050
64 #define CRYP_CSGCM0R            0x00000070
65 
66 /* Registers values */
67 #define CR_DEC_NOT_ENC          0x00000004
68 #define CR_TDES_ECB             0x00000000
69 #define CR_TDES_CBC             0x00000008
70 #define CR_DES_ECB              0x00000010
71 #define CR_DES_CBC              0x00000018
72 #define CR_AES_ECB              0x00000020
73 #define CR_AES_CBC              0x00000028
74 #define CR_AES_CTR              0x00000030
75 #define CR_AES_KP               0x00000038
76 #define CR_AES_GCM              0x00080000
77 #define CR_AES_CCM              0x00080008
78 #define CR_AES_UNKNOWN          0xFFFFFFFF
79 #define CR_ALGO_MASK            0x00080038
80 #define CR_DATA32               0x00000000
81 #define CR_DATA16               0x00000040
82 #define CR_DATA8                0x00000080
83 #define CR_DATA1                0x000000C0
84 #define CR_KEY128               0x00000000
85 #define CR_KEY192               0x00000100
86 #define CR_KEY256               0x00000200
87 #define CR_FFLUSH               0x00004000
88 #define CR_CRYPEN               0x00008000
89 #define CR_PH_INIT              0x00000000
90 #define CR_PH_HEADER            0x00010000
91 #define CR_PH_PAYLOAD           0x00020000
92 #define CR_PH_FINAL             0x00030000
93 #define CR_PH_MASK              0x00030000
94 #define CR_NBPBL_SHIFT          20
95 
96 #define SR_BUSY                 0x00000010
97 #define SR_OFNE                 0x00000004
98 
99 #define IMSCR_IN                BIT(0)
100 #define IMSCR_OUT               BIT(1)
101 
102 #define MISR_IN                 BIT(0)
103 #define MISR_OUT                BIT(1)
104 
105 /* Misc */
106 #define AES_BLOCK_32            (AES_BLOCK_SIZE / sizeof(u32))
107 #define GCM_CTR_INIT            2
108 #define _walked_in              (cryp->in_walk.offset - cryp->in_sg->offset)
109 #define _walked_out             (cryp->out_walk.offset - cryp->out_sg->offset)
110 #define CRYP_AUTOSUSPEND_DELAY	50
111 
112 struct stm32_cryp_caps {
113 	bool                    swap_final;
114 	bool                    padding_wa;
115 };
116 
117 struct stm32_cryp_ctx {
118 	struct crypto_engine_ctx enginectx;
119 	struct stm32_cryp       *cryp;
120 	int                     keylen;
121 	u32                     key[AES_KEYSIZE_256 / sizeof(u32)];
122 	unsigned long           flags;
123 };
124 
125 struct stm32_cryp_reqctx {
126 	unsigned long mode;
127 };
128 
129 struct stm32_cryp {
130 	struct list_head        list;
131 	struct device           *dev;
132 	void __iomem            *regs;
133 	struct clk              *clk;
134 	unsigned long           flags;
135 	u32                     irq_status;
136 	const struct stm32_cryp_caps *caps;
137 	struct stm32_cryp_ctx   *ctx;
138 
139 	struct crypto_engine    *engine;
140 
141 	struct skcipher_request *req;
142 	struct aead_request     *areq;
143 
144 	size_t                  authsize;
145 	size_t                  hw_blocksize;
146 
147 	size_t                  total_in;
148 	size_t                  total_in_save;
149 	size_t                  total_out;
150 	size_t                  total_out_save;
151 
152 	struct scatterlist      *in_sg;
153 	struct scatterlist      *out_sg;
154 	struct scatterlist      *out_sg_save;
155 
156 	struct scatterlist      in_sgl;
157 	struct scatterlist      out_sgl;
158 	bool                    sgs_copied;
159 
160 	int                     in_sg_len;
161 	int                     out_sg_len;
162 
163 	struct scatter_walk     in_walk;
164 	struct scatter_walk     out_walk;
165 
166 	u32                     last_ctr[4];
167 	u32                     gcm_ctr;
168 };
169 
170 struct stm32_cryp_list {
171 	struct list_head        dev_list;
172 	spinlock_t              lock; /* protect dev_list */
173 };
174 
175 static struct stm32_cryp_list cryp_list = {
176 	.dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
177 	.lock     = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
178 };
179 
180 static inline bool is_aes(struct stm32_cryp *cryp)
181 {
182 	return cryp->flags & FLG_AES;
183 }
184 
185 static inline bool is_des(struct stm32_cryp *cryp)
186 {
187 	return cryp->flags & FLG_DES;
188 }
189 
190 static inline bool is_tdes(struct stm32_cryp *cryp)
191 {
192 	return cryp->flags & FLG_TDES;
193 }
194 
195 static inline bool is_ecb(struct stm32_cryp *cryp)
196 {
197 	return cryp->flags & FLG_ECB;
198 }
199 
200 static inline bool is_cbc(struct stm32_cryp *cryp)
201 {
202 	return cryp->flags & FLG_CBC;
203 }
204 
205 static inline bool is_ctr(struct stm32_cryp *cryp)
206 {
207 	return cryp->flags & FLG_CTR;
208 }
209 
210 static inline bool is_gcm(struct stm32_cryp *cryp)
211 {
212 	return cryp->flags & FLG_GCM;
213 }
214 
215 static inline bool is_ccm(struct stm32_cryp *cryp)
216 {
217 	return cryp->flags & FLG_CCM;
218 }
219 
220 static inline bool is_encrypt(struct stm32_cryp *cryp)
221 {
222 	return cryp->flags & FLG_ENCRYPT;
223 }
224 
225 static inline bool is_decrypt(struct stm32_cryp *cryp)
226 {
227 	return !is_encrypt(cryp);
228 }
229 
230 static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
231 {
232 	return readl_relaxed(cryp->regs + ofst);
233 }
234 
235 static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
236 {
237 	writel_relaxed(val, cryp->regs + ofst);
238 }
239 
240 static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
241 {
242 	u32 status;
243 
244 	return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
245 			!(status & SR_BUSY), 10, 100000);
246 }
247 
248 static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
249 {
250 	u32 status;
251 
252 	return readl_relaxed_poll_timeout(cryp->regs + CRYP_CR, status,
253 			!(status & CR_CRYPEN), 10, 100000);
254 }
255 
256 static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
257 {
258 	u32 status;
259 
260 	return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
261 			status & SR_OFNE, 10, 100000);
262 }
263 
264 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
265 
266 static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
267 {
268 	struct stm32_cryp *tmp, *cryp = NULL;
269 
270 	spin_lock_bh(&cryp_list.lock);
271 	if (!ctx->cryp) {
272 		list_for_each_entry(tmp, &cryp_list.dev_list, list) {
273 			cryp = tmp;
274 			break;
275 		}
276 		ctx->cryp = cryp;
277 	} else {
278 		cryp = ctx->cryp;
279 	}
280 
281 	spin_unlock_bh(&cryp_list.lock);
282 
283 	return cryp;
284 }
285 
286 static int stm32_cryp_check_aligned(struct scatterlist *sg, size_t total,
287 				    size_t align)
288 {
289 	int len = 0;
290 
291 	if (!total)
292 		return 0;
293 
294 	if (!IS_ALIGNED(total, align))
295 		return -EINVAL;
296 
297 	while (sg) {
298 		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
299 			return -EINVAL;
300 
301 		if (!IS_ALIGNED(sg->length, align))
302 			return -EINVAL;
303 
304 		len += sg->length;
305 		sg = sg_next(sg);
306 	}
307 
308 	if (len != total)
309 		return -EINVAL;
310 
311 	return 0;
312 }
313 
314 static int stm32_cryp_check_io_aligned(struct stm32_cryp *cryp)
315 {
316 	int ret;
317 
318 	ret = stm32_cryp_check_aligned(cryp->in_sg, cryp->total_in,
319 				       cryp->hw_blocksize);
320 	if (ret)
321 		return ret;
322 
323 	ret = stm32_cryp_check_aligned(cryp->out_sg, cryp->total_out,
324 				       cryp->hw_blocksize);
325 
326 	return ret;
327 }
328 
329 static void sg_copy_buf(void *buf, struct scatterlist *sg,
330 			unsigned int start, unsigned int nbytes, int out)
331 {
332 	struct scatter_walk walk;
333 
334 	if (!nbytes)
335 		return;
336 
337 	scatterwalk_start(&walk, sg);
338 	scatterwalk_advance(&walk, start);
339 	scatterwalk_copychunks(buf, &walk, nbytes, out);
340 	scatterwalk_done(&walk, out, 0);
341 }
342 
343 static int stm32_cryp_copy_sgs(struct stm32_cryp *cryp)
344 {
345 	void *buf_in, *buf_out;
346 	int pages, total_in, total_out;
347 
348 	if (!stm32_cryp_check_io_aligned(cryp)) {
349 		cryp->sgs_copied = 0;
350 		return 0;
351 	}
352 
353 	total_in = ALIGN(cryp->total_in, cryp->hw_blocksize);
354 	pages = total_in ? get_order(total_in) : 1;
355 	buf_in = (void *)__get_free_pages(GFP_ATOMIC, pages);
356 
357 	total_out = ALIGN(cryp->total_out, cryp->hw_blocksize);
358 	pages = total_out ? get_order(total_out) : 1;
359 	buf_out = (void *)__get_free_pages(GFP_ATOMIC, pages);
360 
361 	if (!buf_in || !buf_out) {
362 		dev_err(cryp->dev, "Can't allocate pages when unaligned\n");
363 		cryp->sgs_copied = 0;
364 		return -EFAULT;
365 	}
366 
367 	sg_copy_buf(buf_in, cryp->in_sg, 0, cryp->total_in, 0);
368 
369 	sg_init_one(&cryp->in_sgl, buf_in, total_in);
370 	cryp->in_sg = &cryp->in_sgl;
371 	cryp->in_sg_len = 1;
372 
373 	sg_init_one(&cryp->out_sgl, buf_out, total_out);
374 	cryp->out_sg_save = cryp->out_sg;
375 	cryp->out_sg = &cryp->out_sgl;
376 	cryp->out_sg_len = 1;
377 
378 	cryp->sgs_copied = 1;
379 
380 	return 0;
381 }
382 
383 static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, u32 *iv)
384 {
385 	if (!iv)
386 		return;
387 
388 	stm32_cryp_write(cryp, CRYP_IV0LR, cpu_to_be32(*iv++));
389 	stm32_cryp_write(cryp, CRYP_IV0RR, cpu_to_be32(*iv++));
390 
391 	if (is_aes(cryp)) {
392 		stm32_cryp_write(cryp, CRYP_IV1LR, cpu_to_be32(*iv++));
393 		stm32_cryp_write(cryp, CRYP_IV1RR, cpu_to_be32(*iv++));
394 	}
395 }
396 
397 static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
398 {
399 	struct skcipher_request *req = cryp->req;
400 	u32 *tmp = (void *)req->iv;
401 
402 	if (!tmp)
403 		return;
404 
405 	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0LR));
406 	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0RR));
407 
408 	if (is_aes(cryp)) {
409 		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1LR));
410 		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1RR));
411 	}
412 }
413 
414 static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
415 {
416 	unsigned int i;
417 	int r_id;
418 
419 	if (is_des(c)) {
420 		stm32_cryp_write(c, CRYP_K1LR, cpu_to_be32(c->ctx->key[0]));
421 		stm32_cryp_write(c, CRYP_K1RR, cpu_to_be32(c->ctx->key[1]));
422 	} else {
423 		r_id = CRYP_K3RR;
424 		for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
425 			stm32_cryp_write(c, r_id,
426 					 cpu_to_be32(c->ctx->key[i - 1]));
427 	}
428 }
429 
430 static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
431 {
432 	if (is_aes(cryp) && is_ecb(cryp))
433 		return CR_AES_ECB;
434 
435 	if (is_aes(cryp) && is_cbc(cryp))
436 		return CR_AES_CBC;
437 
438 	if (is_aes(cryp) && is_ctr(cryp))
439 		return CR_AES_CTR;
440 
441 	if (is_aes(cryp) && is_gcm(cryp))
442 		return CR_AES_GCM;
443 
444 	if (is_aes(cryp) && is_ccm(cryp))
445 		return CR_AES_CCM;
446 
447 	if (is_des(cryp) && is_ecb(cryp))
448 		return CR_DES_ECB;
449 
450 	if (is_des(cryp) && is_cbc(cryp))
451 		return CR_DES_CBC;
452 
453 	if (is_tdes(cryp) && is_ecb(cryp))
454 		return CR_TDES_ECB;
455 
456 	if (is_tdes(cryp) && is_cbc(cryp))
457 		return CR_TDES_CBC;
458 
459 	dev_err(cryp->dev, "Unknown mode\n");
460 	return CR_AES_UNKNOWN;
461 }
462 
463 static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
464 {
465 	return is_encrypt(cryp) ? cryp->areq->cryptlen :
466 				  cryp->areq->cryptlen - cryp->authsize;
467 }
468 
469 static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
470 {
471 	int ret;
472 	u32 iv[4];
473 
474 	/* Phase 1 : init */
475 	memcpy(iv, cryp->areq->iv, 12);
476 	iv[3] = cpu_to_be32(GCM_CTR_INIT);
477 	cryp->gcm_ctr = GCM_CTR_INIT;
478 	stm32_cryp_hw_write_iv(cryp, iv);
479 
480 	stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
481 
482 	/* Wait for end of processing */
483 	ret = stm32_cryp_wait_enable(cryp);
484 	if (ret)
485 		dev_err(cryp->dev, "Timeout (gcm init)\n");
486 
487 	return ret;
488 }
489 
490 static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
491 {
492 	int ret;
493 	u8 iv[AES_BLOCK_SIZE], b0[AES_BLOCK_SIZE];
494 	u32 *d;
495 	unsigned int i, textlen;
496 
497 	/* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
498 	memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
499 	memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
500 	iv[AES_BLOCK_SIZE - 1] = 1;
501 	stm32_cryp_hw_write_iv(cryp, (u32 *)iv);
502 
503 	/* Build B0 */
504 	memcpy(b0, iv, AES_BLOCK_SIZE);
505 
506 	b0[0] |= (8 * ((cryp->authsize - 2) / 2));
507 
508 	if (cryp->areq->assoclen)
509 		b0[0] |= 0x40;
510 
511 	textlen = stm32_cryp_get_input_text_len(cryp);
512 
513 	b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
514 	b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
515 
516 	/* Enable HW */
517 	stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
518 
519 	/* Write B0 */
520 	d = (u32 *)b0;
521 
522 	for (i = 0; i < AES_BLOCK_32; i++) {
523 		if (!cryp->caps->padding_wa)
524 			*d = cpu_to_be32(*d);
525 		stm32_cryp_write(cryp, CRYP_DIN, *d++);
526 	}
527 
528 	/* Wait for end of processing */
529 	ret = stm32_cryp_wait_enable(cryp);
530 	if (ret)
531 		dev_err(cryp->dev, "Timeout (ccm init)\n");
532 
533 	return ret;
534 }
535 
536 static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
537 {
538 	int ret;
539 	u32 cfg, hw_mode;
540 
541 	pm_runtime_get_sync(cryp->dev);
542 
543 	/* Disable interrupt */
544 	stm32_cryp_write(cryp, CRYP_IMSCR, 0);
545 
546 	/* Set key */
547 	stm32_cryp_hw_write_key(cryp);
548 
549 	/* Set configuration */
550 	cfg = CR_DATA8 | CR_FFLUSH;
551 
552 	switch (cryp->ctx->keylen) {
553 	case AES_KEYSIZE_128:
554 		cfg |= CR_KEY128;
555 		break;
556 
557 	case AES_KEYSIZE_192:
558 		cfg |= CR_KEY192;
559 		break;
560 
561 	default:
562 	case AES_KEYSIZE_256:
563 		cfg |= CR_KEY256;
564 		break;
565 	}
566 
567 	hw_mode = stm32_cryp_get_hw_mode(cryp);
568 	if (hw_mode == CR_AES_UNKNOWN)
569 		return -EINVAL;
570 
571 	/* AES ECB/CBC decrypt: run key preparation first */
572 	if (is_decrypt(cryp) &&
573 	    ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
574 		stm32_cryp_write(cryp, CRYP_CR, cfg | CR_AES_KP | CR_CRYPEN);
575 
576 		/* Wait for end of processing */
577 		ret = stm32_cryp_wait_busy(cryp);
578 		if (ret) {
579 			dev_err(cryp->dev, "Timeout (key preparation)\n");
580 			return ret;
581 		}
582 	}
583 
584 	cfg |= hw_mode;
585 
586 	if (is_decrypt(cryp))
587 		cfg |= CR_DEC_NOT_ENC;
588 
589 	/* Apply config and flush (valid when CRYPEN = 0) */
590 	stm32_cryp_write(cryp, CRYP_CR, cfg);
591 
592 	switch (hw_mode) {
593 	case CR_AES_GCM:
594 	case CR_AES_CCM:
595 		/* Phase 1 : init */
596 		if (hw_mode == CR_AES_CCM)
597 			ret = stm32_cryp_ccm_init(cryp, cfg);
598 		else
599 			ret = stm32_cryp_gcm_init(cryp, cfg);
600 
601 		if (ret)
602 			return ret;
603 
604 		/* Phase 2 : header (authenticated data) */
605 		if (cryp->areq->assoclen) {
606 			cfg |= CR_PH_HEADER;
607 		} else if (stm32_cryp_get_input_text_len(cryp)) {
608 			cfg |= CR_PH_PAYLOAD;
609 			stm32_cryp_write(cryp, CRYP_CR, cfg);
610 		} else {
611 			cfg |= CR_PH_INIT;
612 		}
613 
614 		break;
615 
616 	case CR_DES_CBC:
617 	case CR_TDES_CBC:
618 	case CR_AES_CBC:
619 	case CR_AES_CTR:
620 		stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->req->iv);
621 		break;
622 
623 	default:
624 		break;
625 	}
626 
627 	/* Enable now */
628 	cfg |= CR_CRYPEN;
629 
630 	stm32_cryp_write(cryp, CRYP_CR, cfg);
631 
632 	cryp->flags &= ~FLG_CCM_PADDED_WA;
633 
634 	return 0;
635 }
636 
637 static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
638 {
639 	if (!err && (is_gcm(cryp) || is_ccm(cryp)))
640 		/* Phase 4 : output tag */
641 		err = stm32_cryp_read_auth_tag(cryp);
642 
643 	if (!err && (!(is_gcm(cryp) || is_ccm(cryp))))
644 		stm32_cryp_get_iv(cryp);
645 
646 	if (cryp->sgs_copied) {
647 		void *buf_in, *buf_out;
648 		int pages, len;
649 
650 		buf_in = sg_virt(&cryp->in_sgl);
651 		buf_out = sg_virt(&cryp->out_sgl);
652 
653 		sg_copy_buf(buf_out, cryp->out_sg_save, 0,
654 			    cryp->total_out_save, 1);
655 
656 		len = ALIGN(cryp->total_in_save, cryp->hw_blocksize);
657 		pages = len ? get_order(len) : 1;
658 		free_pages((unsigned long)buf_in, pages);
659 
660 		len = ALIGN(cryp->total_out_save, cryp->hw_blocksize);
661 		pages = len ? get_order(len) : 1;
662 		free_pages((unsigned long)buf_out, pages);
663 	}
664 
665 	pm_runtime_mark_last_busy(cryp->dev);
666 	pm_runtime_put_autosuspend(cryp->dev);
667 
668 	if (is_gcm(cryp) || is_ccm(cryp))
669 		crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
670 	else
671 		crypto_finalize_skcipher_request(cryp->engine, cryp->req,
672 						   err);
673 
674 	memset(cryp->ctx->key, 0, cryp->ctx->keylen);
675 }
676 
677 static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
678 {
679 	/* Enable interrupt and let the IRQ handler do everything */
680 	stm32_cryp_write(cryp, CRYP_IMSCR, IMSCR_IN | IMSCR_OUT);
681 
682 	return 0;
683 }
684 
685 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
686 static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
687 					 void *areq);
688 
689 static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm)
690 {
691 	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
692 
693 	crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
694 
695 	ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
696 	ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
697 	ctx->enginectx.op.unprepare_request = NULL;
698 	return 0;
699 }
700 
701 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
702 static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
703 				       void *areq);
704 
705 static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
706 {
707 	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
708 
709 	tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
710 
711 	ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
712 	ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
713 	ctx->enginectx.op.unprepare_request = NULL;
714 
715 	return 0;
716 }
717 
718 static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode)
719 {
720 	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
721 			crypto_skcipher_reqtfm(req));
722 	struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req);
723 	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
724 
725 	if (!cryp)
726 		return -ENODEV;
727 
728 	rctx->mode = mode;
729 
730 	return crypto_transfer_skcipher_request_to_engine(cryp->engine, req);
731 }
732 
733 static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
734 {
735 	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
736 	struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
737 	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
738 
739 	if (!cryp)
740 		return -ENODEV;
741 
742 	rctx->mode = mode;
743 
744 	return crypto_transfer_aead_request_to_engine(cryp->engine, req);
745 }
746 
747 static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key,
748 			     unsigned int keylen)
749 {
750 	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
751 
752 	memcpy(ctx->key, key, keylen);
753 	ctx->keylen = keylen;
754 
755 	return 0;
756 }
757 
758 static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
759 				 unsigned int keylen)
760 {
761 	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
762 	    keylen != AES_KEYSIZE_256)
763 		return -EINVAL;
764 	else
765 		return stm32_cryp_setkey(tfm, key, keylen);
766 }
767 
768 static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
769 				 unsigned int keylen)
770 {
771 	return verify_skcipher_des_key(tfm, key) ?:
772 	       stm32_cryp_setkey(tfm, key, keylen);
773 }
774 
775 static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key,
776 				  unsigned int keylen)
777 {
778 	return verify_skcipher_des3_key(tfm, key) ?:
779 	       stm32_cryp_setkey(tfm, key, keylen);
780 }
781 
782 static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
783 				      unsigned int keylen)
784 {
785 	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
786 
787 	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
788 	    keylen != AES_KEYSIZE_256)
789 		return -EINVAL;
790 
791 	memcpy(ctx->key, key, keylen);
792 	ctx->keylen = keylen;
793 
794 	return 0;
795 }
796 
797 static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
798 					  unsigned int authsize)
799 {
800 	return authsize == AES_BLOCK_SIZE ? 0 : -EINVAL;
801 }
802 
803 static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
804 					  unsigned int authsize)
805 {
806 	switch (authsize) {
807 	case 4:
808 	case 6:
809 	case 8:
810 	case 10:
811 	case 12:
812 	case 14:
813 	case 16:
814 		break;
815 	default:
816 		return -EINVAL;
817 	}
818 
819 	return 0;
820 }
821 
822 static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req)
823 {
824 	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
825 }
826 
827 static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req)
828 {
829 	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
830 }
831 
832 static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req)
833 {
834 	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
835 }
836 
837 static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req)
838 {
839 	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
840 }
841 
842 static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req)
843 {
844 	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
845 }
846 
847 static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req)
848 {
849 	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
850 }
851 
852 static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
853 {
854 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
855 }
856 
857 static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
858 {
859 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
860 }
861 
862 static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
863 {
864 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
865 }
866 
867 static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
868 {
869 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
870 }
871 
872 static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req)
873 {
874 	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
875 }
876 
877 static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req)
878 {
879 	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
880 }
881 
882 static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req)
883 {
884 	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
885 }
886 
887 static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req)
888 {
889 	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
890 }
891 
892 static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req)
893 {
894 	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
895 }
896 
897 static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req)
898 {
899 	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
900 }
901 
902 static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req)
903 {
904 	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
905 }
906 
907 static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req)
908 {
909 	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
910 }
911 
912 static int stm32_cryp_prepare_req(struct skcipher_request *req,
913 				  struct aead_request *areq)
914 {
915 	struct stm32_cryp_ctx *ctx;
916 	struct stm32_cryp *cryp;
917 	struct stm32_cryp_reqctx *rctx;
918 	int ret;
919 
920 	if (!req && !areq)
921 		return -EINVAL;
922 
923 	ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) :
924 		    crypto_aead_ctx(crypto_aead_reqtfm(areq));
925 
926 	cryp = ctx->cryp;
927 
928 	if (!cryp)
929 		return -ENODEV;
930 
931 	rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq);
932 	rctx->mode &= FLG_MODE_MASK;
933 
934 	ctx->cryp = cryp;
935 
936 	cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
937 	cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
938 	cryp->ctx = ctx;
939 
940 	if (req) {
941 		cryp->req = req;
942 		cryp->areq = NULL;
943 		cryp->total_in = req->cryptlen;
944 		cryp->total_out = cryp->total_in;
945 	} else {
946 		/*
947 		 * Length of input and output data:
948 		 * Encryption case:
949 		 *  INPUT  =   AssocData  ||   PlainText
950 		 *          <- assoclen ->  <- cryptlen ->
951 		 *          <------- total_in ----------->
952 		 *
953 		 *  OUTPUT =   AssocData  ||  CipherText  ||   AuthTag
954 		 *          <- assoclen ->  <- cryptlen ->  <- authsize ->
955 		 *          <---------------- total_out ----------------->
956 		 *
957 		 * Decryption case:
958 		 *  INPUT  =   AssocData  ||  CipherText  ||  AuthTag
959 		 *          <- assoclen ->  <--------- cryptlen --------->
960 		 *                                          <- authsize ->
961 		 *          <---------------- total_in ------------------>
962 		 *
963 		 *  OUTPUT =   AssocData  ||   PlainText
964 		 *          <- assoclen ->  <- crypten - authsize ->
965 		 *          <---------- total_out ----------------->
966 		 */
967 		cryp->areq = areq;
968 		cryp->req = NULL;
969 		cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
970 		cryp->total_in = areq->assoclen + areq->cryptlen;
971 		if (is_encrypt(cryp))
972 			/* Append auth tag to output */
973 			cryp->total_out = cryp->total_in + cryp->authsize;
974 		else
975 			/* No auth tag in output */
976 			cryp->total_out = cryp->total_in - cryp->authsize;
977 	}
978 
979 	cryp->total_in_save = cryp->total_in;
980 	cryp->total_out_save = cryp->total_out;
981 
982 	cryp->in_sg = req ? req->src : areq->src;
983 	cryp->out_sg = req ? req->dst : areq->dst;
984 	cryp->out_sg_save = cryp->out_sg;
985 
986 	cryp->in_sg_len = sg_nents_for_len(cryp->in_sg, cryp->total_in);
987 	if (cryp->in_sg_len < 0) {
988 		dev_err(cryp->dev, "Cannot get in_sg_len\n");
989 		ret = cryp->in_sg_len;
990 		return ret;
991 	}
992 
993 	cryp->out_sg_len = sg_nents_for_len(cryp->out_sg, cryp->total_out);
994 	if (cryp->out_sg_len < 0) {
995 		dev_err(cryp->dev, "Cannot get out_sg_len\n");
996 		ret = cryp->out_sg_len;
997 		return ret;
998 	}
999 
1000 	ret = stm32_cryp_copy_sgs(cryp);
1001 	if (ret)
1002 		return ret;
1003 
1004 	scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1005 	scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1006 
1007 	if (is_gcm(cryp) || is_ccm(cryp)) {
1008 		/* In output, jump after assoc data */
1009 		scatterwalk_advance(&cryp->out_walk, cryp->areq->assoclen);
1010 		cryp->total_out -= cryp->areq->assoclen;
1011 	}
1012 
1013 	ret = stm32_cryp_hw_init(cryp);
1014 	return ret;
1015 }
1016 
1017 static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1018 					 void *areq)
1019 {
1020 	struct skcipher_request *req = container_of(areq,
1021 						      struct skcipher_request,
1022 						      base);
1023 
1024 	return stm32_cryp_prepare_req(req, NULL);
1025 }
1026 
1027 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1028 {
1029 	struct skcipher_request *req = container_of(areq,
1030 						      struct skcipher_request,
1031 						      base);
1032 	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
1033 			crypto_skcipher_reqtfm(req));
1034 	struct stm32_cryp *cryp = ctx->cryp;
1035 
1036 	if (!cryp)
1037 		return -ENODEV;
1038 
1039 	return stm32_cryp_cpu_start(cryp);
1040 }
1041 
1042 static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1043 {
1044 	struct aead_request *req = container_of(areq, struct aead_request,
1045 						base);
1046 
1047 	return stm32_cryp_prepare_req(NULL, req);
1048 }
1049 
1050 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1051 {
1052 	struct aead_request *req = container_of(areq, struct aead_request,
1053 						base);
1054 	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1055 	struct stm32_cryp *cryp = ctx->cryp;
1056 
1057 	if (!cryp)
1058 		return -ENODEV;
1059 
1060 	if (unlikely(!cryp->areq->assoclen &&
1061 		     !stm32_cryp_get_input_text_len(cryp))) {
1062 		/* No input data to process: get tag and finish */
1063 		stm32_cryp_finish_req(cryp, 0);
1064 		return 0;
1065 	}
1066 
1067 	return stm32_cryp_cpu_start(cryp);
1068 }
1069 
1070 static u32 *stm32_cryp_next_out(struct stm32_cryp *cryp, u32 *dst,
1071 				unsigned int n)
1072 {
1073 	scatterwalk_advance(&cryp->out_walk, n);
1074 
1075 	if (unlikely(cryp->out_sg->length == _walked_out)) {
1076 		cryp->out_sg = sg_next(cryp->out_sg);
1077 		if (cryp->out_sg) {
1078 			scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1079 			return (sg_virt(cryp->out_sg) + _walked_out);
1080 		}
1081 	}
1082 
1083 	return (u32 *)((u8 *)dst + n);
1084 }
1085 
1086 static u32 *stm32_cryp_next_in(struct stm32_cryp *cryp, u32 *src,
1087 			       unsigned int n)
1088 {
1089 	scatterwalk_advance(&cryp->in_walk, n);
1090 
1091 	if (unlikely(cryp->in_sg->length == _walked_in)) {
1092 		cryp->in_sg = sg_next(cryp->in_sg);
1093 		if (cryp->in_sg) {
1094 			scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1095 			return (sg_virt(cryp->in_sg) + _walked_in);
1096 		}
1097 	}
1098 
1099 	return (u32 *)((u8 *)src + n);
1100 }
1101 
1102 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1103 {
1104 	u32 cfg, size_bit, *dst, d32;
1105 	u8 *d8;
1106 	unsigned int i, j;
1107 	int ret = 0;
1108 
1109 	/* Update Config */
1110 	cfg = stm32_cryp_read(cryp, CRYP_CR);
1111 
1112 	cfg &= ~CR_PH_MASK;
1113 	cfg |= CR_PH_FINAL;
1114 	cfg &= ~CR_DEC_NOT_ENC;
1115 	cfg |= CR_CRYPEN;
1116 
1117 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1118 
1119 	if (is_gcm(cryp)) {
1120 		/* GCM: write aad and payload size (in bits) */
1121 		size_bit = cryp->areq->assoclen * 8;
1122 		if (cryp->caps->swap_final)
1123 			size_bit = cpu_to_be32(size_bit);
1124 
1125 		stm32_cryp_write(cryp, CRYP_DIN, 0);
1126 		stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1127 
1128 		size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1129 				cryp->areq->cryptlen - AES_BLOCK_SIZE;
1130 		size_bit *= 8;
1131 		if (cryp->caps->swap_final)
1132 			size_bit = cpu_to_be32(size_bit);
1133 
1134 		stm32_cryp_write(cryp, CRYP_DIN, 0);
1135 		stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1136 	} else {
1137 		/* CCM: write CTR0 */
1138 		u8 iv[AES_BLOCK_SIZE];
1139 		u32 *iv32 = (u32 *)iv;
1140 
1141 		memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1142 		memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1143 
1144 		for (i = 0; i < AES_BLOCK_32; i++) {
1145 			if (!cryp->caps->padding_wa)
1146 				*iv32 = cpu_to_be32(*iv32);
1147 			stm32_cryp_write(cryp, CRYP_DIN, *iv32++);
1148 		}
1149 	}
1150 
1151 	/* Wait for output data */
1152 	ret = stm32_cryp_wait_output(cryp);
1153 	if (ret) {
1154 		dev_err(cryp->dev, "Timeout (read tag)\n");
1155 		return ret;
1156 	}
1157 
1158 	if (is_encrypt(cryp)) {
1159 		/* Get and write tag */
1160 		dst = sg_virt(cryp->out_sg) + _walked_out;
1161 
1162 		for (i = 0; i < AES_BLOCK_32; i++) {
1163 			if (cryp->total_out >= sizeof(u32)) {
1164 				/* Read a full u32 */
1165 				*dst = stm32_cryp_read(cryp, CRYP_DOUT);
1166 
1167 				dst = stm32_cryp_next_out(cryp, dst,
1168 							  sizeof(u32));
1169 				cryp->total_out -= sizeof(u32);
1170 			} else if (!cryp->total_out) {
1171 				/* Empty fifo out (data from input padding) */
1172 				stm32_cryp_read(cryp, CRYP_DOUT);
1173 			} else {
1174 				/* Read less than an u32 */
1175 				d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1176 				d8 = (u8 *)&d32;
1177 
1178 				for (j = 0; j < cryp->total_out; j++) {
1179 					*((u8 *)dst) = *(d8++);
1180 					dst = stm32_cryp_next_out(cryp, dst, 1);
1181 				}
1182 				cryp->total_out = 0;
1183 			}
1184 		}
1185 	} else {
1186 		/* Get and check tag */
1187 		u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1188 
1189 		scatterwalk_map_and_copy(in_tag, cryp->in_sg,
1190 					 cryp->total_in_save - cryp->authsize,
1191 					 cryp->authsize, 0);
1192 
1193 		for (i = 0; i < AES_BLOCK_32; i++)
1194 			out_tag[i] = stm32_cryp_read(cryp, CRYP_DOUT);
1195 
1196 		if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1197 			ret = -EBADMSG;
1198 	}
1199 
1200 	/* Disable cryp */
1201 	cfg &= ~CR_CRYPEN;
1202 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1203 
1204 	return ret;
1205 }
1206 
1207 static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1208 {
1209 	u32 cr;
1210 
1211 	if (unlikely(cryp->last_ctr[3] == 0xFFFFFFFF)) {
1212 		cryp->last_ctr[3] = 0;
1213 		cryp->last_ctr[2]++;
1214 		if (!cryp->last_ctr[2]) {
1215 			cryp->last_ctr[1]++;
1216 			if (!cryp->last_ctr[1])
1217 				cryp->last_ctr[0]++;
1218 		}
1219 
1220 		cr = stm32_cryp_read(cryp, CRYP_CR);
1221 		stm32_cryp_write(cryp, CRYP_CR, cr & ~CR_CRYPEN);
1222 
1223 		stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->last_ctr);
1224 
1225 		stm32_cryp_write(cryp, CRYP_CR, cr);
1226 	}
1227 
1228 	cryp->last_ctr[0] = stm32_cryp_read(cryp, CRYP_IV0LR);
1229 	cryp->last_ctr[1] = stm32_cryp_read(cryp, CRYP_IV0RR);
1230 	cryp->last_ctr[2] = stm32_cryp_read(cryp, CRYP_IV1LR);
1231 	cryp->last_ctr[3] = stm32_cryp_read(cryp, CRYP_IV1RR);
1232 }
1233 
1234 static bool stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1235 {
1236 	unsigned int i, j;
1237 	u32 d32, *dst;
1238 	u8 *d8;
1239 	size_t tag_size;
1240 
1241 	/* Do no read tag now (if any) */
1242 	if (is_encrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1243 		tag_size = cryp->authsize;
1244 	else
1245 		tag_size = 0;
1246 
1247 	dst = sg_virt(cryp->out_sg) + _walked_out;
1248 
1249 	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1250 		if (likely(cryp->total_out - tag_size >= sizeof(u32))) {
1251 			/* Read a full u32 */
1252 			*dst = stm32_cryp_read(cryp, CRYP_DOUT);
1253 
1254 			dst = stm32_cryp_next_out(cryp, dst, sizeof(u32));
1255 			cryp->total_out -= sizeof(u32);
1256 		} else if (cryp->total_out == tag_size) {
1257 			/* Empty fifo out (data from input padding) */
1258 			d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1259 		} else {
1260 			/* Read less than an u32 */
1261 			d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1262 			d8 = (u8 *)&d32;
1263 
1264 			for (j = 0; j < cryp->total_out - tag_size; j++) {
1265 				*((u8 *)dst) = *(d8++);
1266 				dst = stm32_cryp_next_out(cryp, dst, 1);
1267 			}
1268 			cryp->total_out = tag_size;
1269 		}
1270 	}
1271 
1272 	return !(cryp->total_out - tag_size) || !cryp->total_in;
1273 }
1274 
1275 static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1276 {
1277 	unsigned int i, j;
1278 	u32 *src;
1279 	u8 d8[4];
1280 	size_t tag_size;
1281 
1282 	/* Do no write tag (if any) */
1283 	if (is_decrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1284 		tag_size = cryp->authsize;
1285 	else
1286 		tag_size = 0;
1287 
1288 	src = sg_virt(cryp->in_sg) + _walked_in;
1289 
1290 	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1291 		if (likely(cryp->total_in - tag_size >= sizeof(u32))) {
1292 			/* Write a full u32 */
1293 			stm32_cryp_write(cryp, CRYP_DIN, *src);
1294 
1295 			src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1296 			cryp->total_in -= sizeof(u32);
1297 		} else if (cryp->total_in == tag_size) {
1298 			/* Write padding data */
1299 			stm32_cryp_write(cryp, CRYP_DIN, 0);
1300 		} else {
1301 			/* Write less than an u32 */
1302 			memset(d8, 0, sizeof(u32));
1303 			for (j = 0; j < cryp->total_in - tag_size; j++) {
1304 				d8[j] = *((u8 *)src);
1305 				src = stm32_cryp_next_in(cryp, src, 1);
1306 			}
1307 
1308 			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1309 			cryp->total_in = tag_size;
1310 		}
1311 	}
1312 }
1313 
1314 static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1315 {
1316 	int err;
1317 	u32 cfg, tmp[AES_BLOCK_32];
1318 	size_t total_in_ori = cryp->total_in;
1319 	struct scatterlist *out_sg_ori = cryp->out_sg;
1320 	unsigned int i;
1321 
1322 	/* 'Special workaround' procedure described in the datasheet */
1323 
1324 	/* a) disable ip */
1325 	stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1326 	cfg = stm32_cryp_read(cryp, CRYP_CR);
1327 	cfg &= ~CR_CRYPEN;
1328 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1329 
1330 	/* b) Update IV1R */
1331 	stm32_cryp_write(cryp, CRYP_IV1RR, cryp->gcm_ctr - 2);
1332 
1333 	/* c) change mode to CTR */
1334 	cfg &= ~CR_ALGO_MASK;
1335 	cfg |= CR_AES_CTR;
1336 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1337 
1338 	/* a) enable IP */
1339 	cfg |= CR_CRYPEN;
1340 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1341 
1342 	/* b) pad and write the last block */
1343 	stm32_cryp_irq_write_block(cryp);
1344 	cryp->total_in = total_in_ori;
1345 	err = stm32_cryp_wait_output(cryp);
1346 	if (err) {
1347 		dev_err(cryp->dev, "Timeout (write gcm header)\n");
1348 		return stm32_cryp_finish_req(cryp, err);
1349 	}
1350 
1351 	/* c) get and store encrypted data */
1352 	stm32_cryp_irq_read_data(cryp);
1353 	scatterwalk_map_and_copy(tmp, out_sg_ori,
1354 				 cryp->total_in_save - total_in_ori,
1355 				 total_in_ori, 0);
1356 
1357 	/* d) change mode back to AES GCM */
1358 	cfg &= ~CR_ALGO_MASK;
1359 	cfg |= CR_AES_GCM;
1360 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1361 
1362 	/* e) change phase to Final */
1363 	cfg &= ~CR_PH_MASK;
1364 	cfg |= CR_PH_FINAL;
1365 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1366 
1367 	/* f) write padded data */
1368 	for (i = 0; i < AES_BLOCK_32; i++) {
1369 		if (cryp->total_in)
1370 			stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1371 		else
1372 			stm32_cryp_write(cryp, CRYP_DIN, 0);
1373 
1374 		cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1375 	}
1376 
1377 	/* g) Empty fifo out */
1378 	err = stm32_cryp_wait_output(cryp);
1379 	if (err) {
1380 		dev_err(cryp->dev, "Timeout (write gcm header)\n");
1381 		return stm32_cryp_finish_req(cryp, err);
1382 	}
1383 
1384 	for (i = 0; i < AES_BLOCK_32; i++)
1385 		stm32_cryp_read(cryp, CRYP_DOUT);
1386 
1387 	/* h) run the he normal Final phase */
1388 	stm32_cryp_finish_req(cryp, 0);
1389 }
1390 
1391 static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1392 {
1393 	u32 cfg, payload_bytes;
1394 
1395 	/* disable ip, set NPBLB and reneable ip */
1396 	cfg = stm32_cryp_read(cryp, CRYP_CR);
1397 	cfg &= ~CR_CRYPEN;
1398 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1399 
1400 	payload_bytes = is_decrypt(cryp) ? cryp->total_in - cryp->authsize :
1401 					   cryp->total_in;
1402 	cfg |= (cryp->hw_blocksize - payload_bytes) << CR_NBPBL_SHIFT;
1403 	cfg |= CR_CRYPEN;
1404 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1405 }
1406 
1407 static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1408 {
1409 	int err = 0;
1410 	u32 cfg, iv1tmp;
1411 	u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32], tmp[AES_BLOCK_32];
1412 	size_t last_total_out, total_in_ori = cryp->total_in;
1413 	struct scatterlist *out_sg_ori = cryp->out_sg;
1414 	unsigned int i;
1415 
1416 	/* 'Special workaround' procedure described in the datasheet */
1417 	cryp->flags |= FLG_CCM_PADDED_WA;
1418 
1419 	/* a) disable ip */
1420 	stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1421 
1422 	cfg = stm32_cryp_read(cryp, CRYP_CR);
1423 	cfg &= ~CR_CRYPEN;
1424 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1425 
1426 	/* b) get IV1 from CRYP_CSGCMCCM7 */
1427 	iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1428 
1429 	/* c) Load CRYP_CSGCMCCMxR */
1430 	for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1431 		cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1432 
1433 	/* d) Write IV1R */
1434 	stm32_cryp_write(cryp, CRYP_IV1RR, iv1tmp);
1435 
1436 	/* e) change mode to CTR */
1437 	cfg &= ~CR_ALGO_MASK;
1438 	cfg |= CR_AES_CTR;
1439 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1440 
1441 	/* a) enable IP */
1442 	cfg |= CR_CRYPEN;
1443 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1444 
1445 	/* b) pad and write the last block */
1446 	stm32_cryp_irq_write_block(cryp);
1447 	cryp->total_in = total_in_ori;
1448 	err = stm32_cryp_wait_output(cryp);
1449 	if (err) {
1450 		dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1451 		return stm32_cryp_finish_req(cryp, err);
1452 	}
1453 
1454 	/* c) get and store decrypted data */
1455 	last_total_out = cryp->total_out;
1456 	stm32_cryp_irq_read_data(cryp);
1457 
1458 	memset(tmp, 0, sizeof(tmp));
1459 	scatterwalk_map_and_copy(tmp, out_sg_ori,
1460 				 cryp->total_out_save - last_total_out,
1461 				 last_total_out, 0);
1462 
1463 	/* d) Load again CRYP_CSGCMCCMxR */
1464 	for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1465 		cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1466 
1467 	/* e) change mode back to AES CCM */
1468 	cfg &= ~CR_ALGO_MASK;
1469 	cfg |= CR_AES_CCM;
1470 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1471 
1472 	/* f) change phase to header */
1473 	cfg &= ~CR_PH_MASK;
1474 	cfg |= CR_PH_HEADER;
1475 	stm32_cryp_write(cryp, CRYP_CR, cfg);
1476 
1477 	/* g) XOR and write padded data */
1478 	for (i = 0; i < ARRAY_SIZE(tmp); i++) {
1479 		tmp[i] ^= cstmp1[i];
1480 		tmp[i] ^= cstmp2[i];
1481 		stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1482 	}
1483 
1484 	/* h) wait for completion */
1485 	err = stm32_cryp_wait_busy(cryp);
1486 	if (err)
1487 		dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1488 
1489 	/* i) run the he normal Final phase */
1490 	stm32_cryp_finish_req(cryp, err);
1491 }
1492 
1493 static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1494 {
1495 	if (unlikely(!cryp->total_in)) {
1496 		dev_warn(cryp->dev, "No more data to process\n");
1497 		return;
1498 	}
1499 
1500 	if (unlikely(cryp->total_in < AES_BLOCK_SIZE &&
1501 		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1502 		     is_encrypt(cryp))) {
1503 		/* Padding for AES GCM encryption */
1504 		if (cryp->caps->padding_wa)
1505 			/* Special case 1 */
1506 			return stm32_cryp_irq_write_gcm_padded_data(cryp);
1507 
1508 		/* Setting padding bytes (NBBLB) */
1509 		stm32_cryp_irq_set_npblb(cryp);
1510 	}
1511 
1512 	if (unlikely((cryp->total_in - cryp->authsize < AES_BLOCK_SIZE) &&
1513 		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1514 		     is_decrypt(cryp))) {
1515 		/* Padding for AES CCM decryption */
1516 		if (cryp->caps->padding_wa)
1517 			/* Special case 2 */
1518 			return stm32_cryp_irq_write_ccm_padded_data(cryp);
1519 
1520 		/* Setting padding bytes (NBBLB) */
1521 		stm32_cryp_irq_set_npblb(cryp);
1522 	}
1523 
1524 	if (is_aes(cryp) && is_ctr(cryp))
1525 		stm32_cryp_check_ctr_counter(cryp);
1526 
1527 	stm32_cryp_irq_write_block(cryp);
1528 }
1529 
1530 static void stm32_cryp_irq_write_gcm_header(struct stm32_cryp *cryp)
1531 {
1532 	int err;
1533 	unsigned int i, j;
1534 	u32 cfg, *src;
1535 
1536 	src = sg_virt(cryp->in_sg) + _walked_in;
1537 
1538 	for (i = 0; i < AES_BLOCK_32; i++) {
1539 		stm32_cryp_write(cryp, CRYP_DIN, *src);
1540 
1541 		src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1542 		cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1543 
1544 		/* Check if whole header written */
1545 		if ((cryp->total_in_save - cryp->total_in) ==
1546 				cryp->areq->assoclen) {
1547 			/* Write padding if needed */
1548 			for (j = i + 1; j < AES_BLOCK_32; j++)
1549 				stm32_cryp_write(cryp, CRYP_DIN, 0);
1550 
1551 			/* Wait for completion */
1552 			err = stm32_cryp_wait_busy(cryp);
1553 			if (err) {
1554 				dev_err(cryp->dev, "Timeout (gcm header)\n");
1555 				return stm32_cryp_finish_req(cryp, err);
1556 			}
1557 
1558 			if (stm32_cryp_get_input_text_len(cryp)) {
1559 				/* Phase 3 : payload */
1560 				cfg = stm32_cryp_read(cryp, CRYP_CR);
1561 				cfg &= ~CR_CRYPEN;
1562 				stm32_cryp_write(cryp, CRYP_CR, cfg);
1563 
1564 				cfg &= ~CR_PH_MASK;
1565 				cfg |= CR_PH_PAYLOAD;
1566 				cfg |= CR_CRYPEN;
1567 				stm32_cryp_write(cryp, CRYP_CR, cfg);
1568 			} else {
1569 				/* Phase 4 : tag */
1570 				stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1571 				stm32_cryp_finish_req(cryp, 0);
1572 			}
1573 
1574 			break;
1575 		}
1576 
1577 		if (!cryp->total_in)
1578 			break;
1579 	}
1580 }
1581 
1582 static void stm32_cryp_irq_write_ccm_header(struct stm32_cryp *cryp)
1583 {
1584 	int err;
1585 	unsigned int i = 0, j, k;
1586 	u32 alen, cfg, *src;
1587 	u8 d8[4];
1588 
1589 	src = sg_virt(cryp->in_sg) + _walked_in;
1590 	alen = cryp->areq->assoclen;
1591 
1592 	if (!_walked_in) {
1593 		if (cryp->areq->assoclen <= 65280) {
1594 			/* Write first u32 of B1 */
1595 			d8[0] = (alen >> 8) & 0xFF;
1596 			d8[1] = alen & 0xFF;
1597 			d8[2] = *((u8 *)src);
1598 			src = stm32_cryp_next_in(cryp, src, 1);
1599 			d8[3] = *((u8 *)src);
1600 			src = stm32_cryp_next_in(cryp, src, 1);
1601 
1602 			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1603 			i++;
1604 
1605 			cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1606 		} else {
1607 			/* Build the two first u32 of B1 */
1608 			d8[0] = 0xFF;
1609 			d8[1] = 0xFE;
1610 			d8[2] = alen & 0xFF000000;
1611 			d8[3] = alen & 0x00FF0000;
1612 
1613 			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1614 			i++;
1615 
1616 			d8[0] = alen & 0x0000FF00;
1617 			d8[1] = alen & 0x000000FF;
1618 			d8[2] = *((u8 *)src);
1619 			src = stm32_cryp_next_in(cryp, src, 1);
1620 			d8[3] = *((u8 *)src);
1621 			src = stm32_cryp_next_in(cryp, src, 1);
1622 
1623 			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1624 			i++;
1625 
1626 			cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1627 		}
1628 	}
1629 
1630 	/* Write next u32 */
1631 	for (; i < AES_BLOCK_32; i++) {
1632 		/* Build an u32 */
1633 		memset(d8, 0, sizeof(u32));
1634 		for (k = 0; k < sizeof(u32); k++) {
1635 			d8[k] = *((u8 *)src);
1636 			src = stm32_cryp_next_in(cryp, src, 1);
1637 
1638 			cryp->total_in -= min_t(size_t, 1, cryp->total_in);
1639 			if ((cryp->total_in_save - cryp->total_in) == alen)
1640 				break;
1641 		}
1642 
1643 		stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1644 
1645 		if ((cryp->total_in_save - cryp->total_in) == alen) {
1646 			/* Write padding if needed */
1647 			for (j = i + 1; j < AES_BLOCK_32; j++)
1648 				stm32_cryp_write(cryp, CRYP_DIN, 0);
1649 
1650 			/* Wait for completion */
1651 			err = stm32_cryp_wait_busy(cryp);
1652 			if (err) {
1653 				dev_err(cryp->dev, "Timeout (ccm header)\n");
1654 				return stm32_cryp_finish_req(cryp, err);
1655 			}
1656 
1657 			if (stm32_cryp_get_input_text_len(cryp)) {
1658 				/* Phase 3 : payload */
1659 				cfg = stm32_cryp_read(cryp, CRYP_CR);
1660 				cfg &= ~CR_CRYPEN;
1661 				stm32_cryp_write(cryp, CRYP_CR, cfg);
1662 
1663 				cfg &= ~CR_PH_MASK;
1664 				cfg |= CR_PH_PAYLOAD;
1665 				cfg |= CR_CRYPEN;
1666 				stm32_cryp_write(cryp, CRYP_CR, cfg);
1667 			} else {
1668 				/* Phase 4 : tag */
1669 				stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1670 				stm32_cryp_finish_req(cryp, 0);
1671 			}
1672 
1673 			break;
1674 		}
1675 	}
1676 }
1677 
1678 static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1679 {
1680 	struct stm32_cryp *cryp = arg;
1681 	u32 ph;
1682 
1683 	if (cryp->irq_status & MISR_OUT)
1684 		/* Output FIFO IRQ: read data */
1685 		if (unlikely(stm32_cryp_irq_read_data(cryp))) {
1686 			/* All bytes processed, finish */
1687 			stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1688 			stm32_cryp_finish_req(cryp, 0);
1689 			return IRQ_HANDLED;
1690 		}
1691 
1692 	if (cryp->irq_status & MISR_IN) {
1693 		if (is_gcm(cryp)) {
1694 			ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1695 			if (unlikely(ph == CR_PH_HEADER))
1696 				/* Write Header */
1697 				stm32_cryp_irq_write_gcm_header(cryp);
1698 			else
1699 				/* Input FIFO IRQ: write data */
1700 				stm32_cryp_irq_write_data(cryp);
1701 			cryp->gcm_ctr++;
1702 		} else if (is_ccm(cryp)) {
1703 			ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1704 			if (unlikely(ph == CR_PH_HEADER))
1705 				/* Write Header */
1706 				stm32_cryp_irq_write_ccm_header(cryp);
1707 			else
1708 				/* Input FIFO IRQ: write data */
1709 				stm32_cryp_irq_write_data(cryp);
1710 		} else {
1711 			/* Input FIFO IRQ: write data */
1712 			stm32_cryp_irq_write_data(cryp);
1713 		}
1714 	}
1715 
1716 	return IRQ_HANDLED;
1717 }
1718 
1719 static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1720 {
1721 	struct stm32_cryp *cryp = arg;
1722 
1723 	cryp->irq_status = stm32_cryp_read(cryp, CRYP_MISR);
1724 
1725 	return IRQ_WAKE_THREAD;
1726 }
1727 
1728 static struct skcipher_alg crypto_algs[] = {
1729 {
1730 	.base.cra_name		= "ecb(aes)",
1731 	.base.cra_driver_name	= "stm32-ecb-aes",
1732 	.base.cra_priority	= 200,
1733 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1734 	.base.cra_blocksize	= AES_BLOCK_SIZE,
1735 	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1736 	.base.cra_alignmask	= 0xf,
1737 	.base.cra_module	= THIS_MODULE,
1738 
1739 	.init			= stm32_cryp_init_tfm,
1740 	.min_keysize		= AES_MIN_KEY_SIZE,
1741 	.max_keysize		= AES_MAX_KEY_SIZE,
1742 	.setkey			= stm32_cryp_aes_setkey,
1743 	.encrypt		= stm32_cryp_aes_ecb_encrypt,
1744 	.decrypt		= stm32_cryp_aes_ecb_decrypt,
1745 },
1746 {
1747 	.base.cra_name		= "cbc(aes)",
1748 	.base.cra_driver_name	= "stm32-cbc-aes",
1749 	.base.cra_priority	= 200,
1750 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1751 	.base.cra_blocksize	= AES_BLOCK_SIZE,
1752 	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1753 	.base.cra_alignmask	= 0xf,
1754 	.base.cra_module	= THIS_MODULE,
1755 
1756 	.init			= stm32_cryp_init_tfm,
1757 	.min_keysize		= AES_MIN_KEY_SIZE,
1758 	.max_keysize		= AES_MAX_KEY_SIZE,
1759 	.ivsize			= AES_BLOCK_SIZE,
1760 	.setkey			= stm32_cryp_aes_setkey,
1761 	.encrypt		= stm32_cryp_aes_cbc_encrypt,
1762 	.decrypt		= stm32_cryp_aes_cbc_decrypt,
1763 },
1764 {
1765 	.base.cra_name		= "ctr(aes)",
1766 	.base.cra_driver_name	= "stm32-ctr-aes",
1767 	.base.cra_priority	= 200,
1768 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1769 	.base.cra_blocksize	= 1,
1770 	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1771 	.base.cra_alignmask	= 0xf,
1772 	.base.cra_module	= THIS_MODULE,
1773 
1774 	.init			= stm32_cryp_init_tfm,
1775 	.min_keysize		= AES_MIN_KEY_SIZE,
1776 	.max_keysize		= AES_MAX_KEY_SIZE,
1777 	.ivsize			= AES_BLOCK_SIZE,
1778 	.setkey			= stm32_cryp_aes_setkey,
1779 	.encrypt		= stm32_cryp_aes_ctr_encrypt,
1780 	.decrypt		= stm32_cryp_aes_ctr_decrypt,
1781 },
1782 {
1783 	.base.cra_name		= "ecb(des)",
1784 	.base.cra_driver_name	= "stm32-ecb-des",
1785 	.base.cra_priority	= 200,
1786 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1787 	.base.cra_blocksize	= DES_BLOCK_SIZE,
1788 	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1789 	.base.cra_alignmask	= 0xf,
1790 	.base.cra_module	= THIS_MODULE,
1791 
1792 	.init			= stm32_cryp_init_tfm,
1793 	.min_keysize		= DES_BLOCK_SIZE,
1794 	.max_keysize		= DES_BLOCK_SIZE,
1795 	.setkey			= stm32_cryp_des_setkey,
1796 	.encrypt		= stm32_cryp_des_ecb_encrypt,
1797 	.decrypt		= stm32_cryp_des_ecb_decrypt,
1798 },
1799 {
1800 	.base.cra_name		= "cbc(des)",
1801 	.base.cra_driver_name	= "stm32-cbc-des",
1802 	.base.cra_priority	= 200,
1803 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1804 	.base.cra_blocksize	= DES_BLOCK_SIZE,
1805 	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1806 	.base.cra_alignmask	= 0xf,
1807 	.base.cra_module	= THIS_MODULE,
1808 
1809 	.init			= stm32_cryp_init_tfm,
1810 	.min_keysize		= DES_BLOCK_SIZE,
1811 	.max_keysize		= DES_BLOCK_SIZE,
1812 	.ivsize			= DES_BLOCK_SIZE,
1813 	.setkey			= stm32_cryp_des_setkey,
1814 	.encrypt		= stm32_cryp_des_cbc_encrypt,
1815 	.decrypt		= stm32_cryp_des_cbc_decrypt,
1816 },
1817 {
1818 	.base.cra_name		= "ecb(des3_ede)",
1819 	.base.cra_driver_name	= "stm32-ecb-des3",
1820 	.base.cra_priority	= 200,
1821 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1822 	.base.cra_blocksize	= DES_BLOCK_SIZE,
1823 	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1824 	.base.cra_alignmask	= 0xf,
1825 	.base.cra_module	= THIS_MODULE,
1826 
1827 	.init			= stm32_cryp_init_tfm,
1828 	.min_keysize		= 3 * DES_BLOCK_SIZE,
1829 	.max_keysize		= 3 * DES_BLOCK_SIZE,
1830 	.setkey			= stm32_cryp_tdes_setkey,
1831 	.encrypt		= stm32_cryp_tdes_ecb_encrypt,
1832 	.decrypt		= stm32_cryp_tdes_ecb_decrypt,
1833 },
1834 {
1835 	.base.cra_name		= "cbc(des3_ede)",
1836 	.base.cra_driver_name	= "stm32-cbc-des3",
1837 	.base.cra_priority	= 200,
1838 	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1839 	.base.cra_blocksize	= DES_BLOCK_SIZE,
1840 	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1841 	.base.cra_alignmask	= 0xf,
1842 	.base.cra_module	= THIS_MODULE,
1843 
1844 	.init			= stm32_cryp_init_tfm,
1845 	.min_keysize		= 3 * DES_BLOCK_SIZE,
1846 	.max_keysize		= 3 * DES_BLOCK_SIZE,
1847 	.ivsize			= DES_BLOCK_SIZE,
1848 	.setkey			= stm32_cryp_tdes_setkey,
1849 	.encrypt		= stm32_cryp_tdes_cbc_encrypt,
1850 	.decrypt		= stm32_cryp_tdes_cbc_decrypt,
1851 },
1852 };
1853 
1854 static struct aead_alg aead_algs[] = {
1855 {
1856 	.setkey		= stm32_cryp_aes_aead_setkey,
1857 	.setauthsize	= stm32_cryp_aes_gcm_setauthsize,
1858 	.encrypt	= stm32_cryp_aes_gcm_encrypt,
1859 	.decrypt	= stm32_cryp_aes_gcm_decrypt,
1860 	.init		= stm32_cryp_aes_aead_init,
1861 	.ivsize		= 12,
1862 	.maxauthsize	= AES_BLOCK_SIZE,
1863 
1864 	.base = {
1865 		.cra_name		= "gcm(aes)",
1866 		.cra_driver_name	= "stm32-gcm-aes",
1867 		.cra_priority		= 200,
1868 		.cra_flags		= CRYPTO_ALG_ASYNC,
1869 		.cra_blocksize		= 1,
1870 		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1871 		.cra_alignmask		= 0xf,
1872 		.cra_module		= THIS_MODULE,
1873 	},
1874 },
1875 {
1876 	.setkey		= stm32_cryp_aes_aead_setkey,
1877 	.setauthsize	= stm32_cryp_aes_ccm_setauthsize,
1878 	.encrypt	= stm32_cryp_aes_ccm_encrypt,
1879 	.decrypt	= stm32_cryp_aes_ccm_decrypt,
1880 	.init		= stm32_cryp_aes_aead_init,
1881 	.ivsize		= AES_BLOCK_SIZE,
1882 	.maxauthsize	= AES_BLOCK_SIZE,
1883 
1884 	.base = {
1885 		.cra_name		= "ccm(aes)",
1886 		.cra_driver_name	= "stm32-ccm-aes",
1887 		.cra_priority		= 200,
1888 		.cra_flags		= CRYPTO_ALG_ASYNC,
1889 		.cra_blocksize		= 1,
1890 		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1891 		.cra_alignmask		= 0xf,
1892 		.cra_module		= THIS_MODULE,
1893 	},
1894 },
1895 };
1896 
1897 static const struct stm32_cryp_caps f7_data = {
1898 	.swap_final = true,
1899 	.padding_wa = true,
1900 };
1901 
1902 static const struct stm32_cryp_caps mp1_data = {
1903 	.swap_final = false,
1904 	.padding_wa = false,
1905 };
1906 
1907 static const struct of_device_id stm32_dt_ids[] = {
1908 	{ .compatible = "st,stm32f756-cryp", .data = &f7_data},
1909 	{ .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1910 	{},
1911 };
1912 MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1913 
1914 static int stm32_cryp_probe(struct platform_device *pdev)
1915 {
1916 	struct device *dev = &pdev->dev;
1917 	struct stm32_cryp *cryp;
1918 	struct reset_control *rst;
1919 	int irq, ret;
1920 
1921 	cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1922 	if (!cryp)
1923 		return -ENOMEM;
1924 
1925 	cryp->caps = of_device_get_match_data(dev);
1926 	if (!cryp->caps)
1927 		return -ENODEV;
1928 
1929 	cryp->dev = dev;
1930 
1931 	cryp->regs = devm_platform_ioremap_resource(pdev, 0);
1932 	if (IS_ERR(cryp->regs))
1933 		return PTR_ERR(cryp->regs);
1934 
1935 	irq = platform_get_irq(pdev, 0);
1936 	if (irq < 0)
1937 		return irq;
1938 
1939 	ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1940 					stm32_cryp_irq_thread, IRQF_ONESHOT,
1941 					dev_name(dev), cryp);
1942 	if (ret) {
1943 		dev_err(dev, "Cannot grab IRQ\n");
1944 		return ret;
1945 	}
1946 
1947 	cryp->clk = devm_clk_get(dev, NULL);
1948 	if (IS_ERR(cryp->clk)) {
1949 		dev_err(dev, "Could not get clock\n");
1950 		return PTR_ERR(cryp->clk);
1951 	}
1952 
1953 	ret = clk_prepare_enable(cryp->clk);
1954 	if (ret) {
1955 		dev_err(cryp->dev, "Failed to enable clock\n");
1956 		return ret;
1957 	}
1958 
1959 	pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
1960 	pm_runtime_use_autosuspend(dev);
1961 
1962 	pm_runtime_get_noresume(dev);
1963 	pm_runtime_set_active(dev);
1964 	pm_runtime_enable(dev);
1965 
1966 	rst = devm_reset_control_get(dev, NULL);
1967 	if (!IS_ERR(rst)) {
1968 		reset_control_assert(rst);
1969 		udelay(2);
1970 		reset_control_deassert(rst);
1971 	}
1972 
1973 	platform_set_drvdata(pdev, cryp);
1974 
1975 	spin_lock(&cryp_list.lock);
1976 	list_add(&cryp->list, &cryp_list.dev_list);
1977 	spin_unlock(&cryp_list.lock);
1978 
1979 	/* Initialize crypto engine */
1980 	cryp->engine = crypto_engine_alloc_init(dev, 1);
1981 	if (!cryp->engine) {
1982 		dev_err(dev, "Could not init crypto engine\n");
1983 		ret = -ENOMEM;
1984 		goto err_engine1;
1985 	}
1986 
1987 	ret = crypto_engine_start(cryp->engine);
1988 	if (ret) {
1989 		dev_err(dev, "Could not start crypto engine\n");
1990 		goto err_engine2;
1991 	}
1992 
1993 	ret = crypto_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
1994 	if (ret) {
1995 		dev_err(dev, "Could not register algs\n");
1996 		goto err_algs;
1997 	}
1998 
1999 	ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2000 	if (ret)
2001 		goto err_aead_algs;
2002 
2003 	dev_info(dev, "Initialized\n");
2004 
2005 	pm_runtime_put_sync(dev);
2006 
2007 	return 0;
2008 
2009 err_aead_algs:
2010 	crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2011 err_algs:
2012 err_engine2:
2013 	crypto_engine_exit(cryp->engine);
2014 err_engine1:
2015 	spin_lock(&cryp_list.lock);
2016 	list_del(&cryp->list);
2017 	spin_unlock(&cryp_list.lock);
2018 
2019 	pm_runtime_disable(dev);
2020 	pm_runtime_put_noidle(dev);
2021 	pm_runtime_disable(dev);
2022 	pm_runtime_put_noidle(dev);
2023 
2024 	clk_disable_unprepare(cryp->clk);
2025 
2026 	return ret;
2027 }
2028 
2029 static int stm32_cryp_remove(struct platform_device *pdev)
2030 {
2031 	struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2032 	int ret;
2033 
2034 	if (!cryp)
2035 		return -ENODEV;
2036 
2037 	ret = pm_runtime_get_sync(cryp->dev);
2038 	if (ret < 0)
2039 		return ret;
2040 
2041 	crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2042 	crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2043 
2044 	crypto_engine_exit(cryp->engine);
2045 
2046 	spin_lock(&cryp_list.lock);
2047 	list_del(&cryp->list);
2048 	spin_unlock(&cryp_list.lock);
2049 
2050 	pm_runtime_disable(cryp->dev);
2051 	pm_runtime_put_noidle(cryp->dev);
2052 
2053 	clk_disable_unprepare(cryp->clk);
2054 
2055 	return 0;
2056 }
2057 
2058 #ifdef CONFIG_PM
2059 static int stm32_cryp_runtime_suspend(struct device *dev)
2060 {
2061 	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2062 
2063 	clk_disable_unprepare(cryp->clk);
2064 
2065 	return 0;
2066 }
2067 
2068 static int stm32_cryp_runtime_resume(struct device *dev)
2069 {
2070 	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2071 	int ret;
2072 
2073 	ret = clk_prepare_enable(cryp->clk);
2074 	if (ret) {
2075 		dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2076 		return ret;
2077 	}
2078 
2079 	return 0;
2080 }
2081 #endif
2082 
2083 static const struct dev_pm_ops stm32_cryp_pm_ops = {
2084 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2085 				pm_runtime_force_resume)
2086 	SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2087 			   stm32_cryp_runtime_resume, NULL)
2088 };
2089 
2090 static struct platform_driver stm32_cryp_driver = {
2091 	.probe  = stm32_cryp_probe,
2092 	.remove = stm32_cryp_remove,
2093 	.driver = {
2094 		.name           = DRIVER_NAME,
2095 		.pm		= &stm32_cryp_pm_ops,
2096 		.of_match_table = stm32_dt_ids,
2097 	},
2098 };
2099 
2100 module_platform_driver(stm32_cryp_driver);
2101 
2102 MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2103 MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2104 MODULE_LICENSE("GPL");
2105