xref: /linux/drivers/crypto/stm32/stm32-cryp.c (revision 34dc1baba215b826e454b8d19e4f24adbeb7d00d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) STMicroelectronics SA 2017
4  * Author: Fabien Dessenne <fabien.dessenne@st.com>
5  * Ux500 support taken from snippets in the old Ux500 cryp driver
6  */
7 
8 #include <crypto/aes.h>
9 #include <crypto/engine.h>
10 #include <crypto/internal/aead.h>
11 #include <crypto/internal/des.h>
12 #include <crypto/internal/skcipher.h>
13 #include <crypto/scatterwalk.h>
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/err.h>
17 #include <linux/iopoll.h>
18 #include <linux/interrupt.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/reset.h>
25 #include <linux/string.h>
26 
27 #define DRIVER_NAME             "stm32-cryp"
28 
29 /* Bit [0] encrypt / decrypt */
30 #define FLG_ENCRYPT             BIT(0)
31 /* Bit [8..1] algo & operation mode */
32 #define FLG_AES                 BIT(1)
33 #define FLG_DES                 BIT(2)
34 #define FLG_TDES                BIT(3)
35 #define FLG_ECB                 BIT(4)
36 #define FLG_CBC                 BIT(5)
37 #define FLG_CTR                 BIT(6)
38 #define FLG_GCM                 BIT(7)
39 #define FLG_CCM                 BIT(8)
40 /* Mode mask = bits [15..0] */
41 #define FLG_MODE_MASK           GENMASK(15, 0)
42 /* Bit [31..16] status  */
43 
44 /* Registers */
45 #define CRYP_CR                 0x00000000
46 #define CRYP_SR                 0x00000004
47 #define CRYP_DIN                0x00000008
48 #define CRYP_DOUT               0x0000000C
49 #define CRYP_DMACR              0x00000010
50 #define CRYP_IMSCR              0x00000014
51 #define CRYP_RISR               0x00000018
52 #define CRYP_MISR               0x0000001C
53 #define CRYP_K0LR               0x00000020
54 #define CRYP_K0RR               0x00000024
55 #define CRYP_K1LR               0x00000028
56 #define CRYP_K1RR               0x0000002C
57 #define CRYP_K2LR               0x00000030
58 #define CRYP_K2RR               0x00000034
59 #define CRYP_K3LR               0x00000038
60 #define CRYP_K3RR               0x0000003C
61 #define CRYP_IV0LR              0x00000040
62 #define CRYP_IV0RR              0x00000044
63 #define CRYP_IV1LR              0x00000048
64 #define CRYP_IV1RR              0x0000004C
65 #define CRYP_CSGCMCCM0R         0x00000050
66 #define CRYP_CSGCM0R            0x00000070
67 
68 #define UX500_CRYP_CR		0x00000000
69 #define UX500_CRYP_SR		0x00000004
70 #define UX500_CRYP_DIN		0x00000008
71 #define UX500_CRYP_DINSIZE	0x0000000C
72 #define UX500_CRYP_DOUT		0x00000010
73 #define UX500_CRYP_DOUSIZE	0x00000014
74 #define UX500_CRYP_DMACR	0x00000018
75 #define UX500_CRYP_IMSC		0x0000001C
76 #define UX500_CRYP_RIS		0x00000020
77 #define UX500_CRYP_MIS		0x00000024
78 #define UX500_CRYP_K1L		0x00000028
79 #define UX500_CRYP_K1R		0x0000002C
80 #define UX500_CRYP_K2L		0x00000030
81 #define UX500_CRYP_K2R		0x00000034
82 #define UX500_CRYP_K3L		0x00000038
83 #define UX500_CRYP_K3R		0x0000003C
84 #define UX500_CRYP_K4L		0x00000040
85 #define UX500_CRYP_K4R		0x00000044
86 #define UX500_CRYP_IV0L		0x00000048
87 #define UX500_CRYP_IV0R		0x0000004C
88 #define UX500_CRYP_IV1L		0x00000050
89 #define UX500_CRYP_IV1R		0x00000054
90 
91 /* Registers values */
92 #define CR_DEC_NOT_ENC          0x00000004
93 #define CR_TDES_ECB             0x00000000
94 #define CR_TDES_CBC             0x00000008
95 #define CR_DES_ECB              0x00000010
96 #define CR_DES_CBC              0x00000018
97 #define CR_AES_ECB              0x00000020
98 #define CR_AES_CBC              0x00000028
99 #define CR_AES_CTR              0x00000030
100 #define CR_AES_KP               0x00000038 /* Not on Ux500 */
101 #define CR_AES_XTS              0x00000038 /* Only on Ux500 */
102 #define CR_AES_GCM              0x00080000
103 #define CR_AES_CCM              0x00080008
104 #define CR_AES_UNKNOWN          0xFFFFFFFF
105 #define CR_ALGO_MASK            0x00080038
106 #define CR_DATA32               0x00000000
107 #define CR_DATA16               0x00000040
108 #define CR_DATA8                0x00000080
109 #define CR_DATA1                0x000000C0
110 #define CR_KEY128               0x00000000
111 #define CR_KEY192               0x00000100
112 #define CR_KEY256               0x00000200
113 #define CR_KEYRDEN              0x00000400 /* Only on Ux500 */
114 #define CR_KSE                  0x00000800 /* Only on Ux500 */
115 #define CR_FFLUSH               0x00004000
116 #define CR_CRYPEN               0x00008000
117 #define CR_PH_INIT              0x00000000
118 #define CR_PH_HEADER            0x00010000
119 #define CR_PH_PAYLOAD           0x00020000
120 #define CR_PH_FINAL             0x00030000
121 #define CR_PH_MASK              0x00030000
122 #define CR_NBPBL_SHIFT          20
123 
124 #define SR_BUSY                 0x00000010
125 #define SR_OFNE                 0x00000004
126 
127 #define IMSCR_IN                BIT(0)
128 #define IMSCR_OUT               BIT(1)
129 
130 #define MISR_IN                 BIT(0)
131 #define MISR_OUT                BIT(1)
132 
133 /* Misc */
134 #define AES_BLOCK_32            (AES_BLOCK_SIZE / sizeof(u32))
135 #define GCM_CTR_INIT            2
136 #define CRYP_AUTOSUSPEND_DELAY	50
137 
138 struct stm32_cryp_caps {
139 	bool			aeads_support;
140 	bool			linear_aes_key;
141 	bool			kp_mode;
142 	bool			iv_protection;
143 	bool			swap_final;
144 	bool			padding_wa;
145 	u32			cr;
146 	u32			sr;
147 	u32			din;
148 	u32			dout;
149 	u32			imsc;
150 	u32			mis;
151 	u32			k1l;
152 	u32			k1r;
153 	u32			k3r;
154 	u32			iv0l;
155 	u32			iv0r;
156 	u32			iv1l;
157 	u32			iv1r;
158 };
159 
160 struct stm32_cryp_ctx {
161 	struct stm32_cryp       *cryp;
162 	int                     keylen;
163 	__be32                  key[AES_KEYSIZE_256 / sizeof(u32)];
164 	unsigned long           flags;
165 };
166 
167 struct stm32_cryp_reqctx {
168 	unsigned long mode;
169 };
170 
171 struct stm32_cryp {
172 	struct list_head        list;
173 	struct device           *dev;
174 	void __iomem            *regs;
175 	struct clk              *clk;
176 	unsigned long           flags;
177 	u32                     irq_status;
178 	const struct stm32_cryp_caps *caps;
179 	struct stm32_cryp_ctx   *ctx;
180 
181 	struct crypto_engine    *engine;
182 
183 	struct skcipher_request *req;
184 	struct aead_request     *areq;
185 
186 	size_t                  authsize;
187 	size_t                  hw_blocksize;
188 
189 	size_t                  payload_in;
190 	size_t                  header_in;
191 	size_t                  payload_out;
192 
193 	struct scatterlist      *out_sg;
194 
195 	struct scatter_walk     in_walk;
196 	struct scatter_walk     out_walk;
197 
198 	__be32                  last_ctr[4];
199 	u32                     gcm_ctr;
200 };
201 
202 struct stm32_cryp_list {
203 	struct list_head        dev_list;
204 	spinlock_t              lock; /* protect dev_list */
205 };
206 
207 static struct stm32_cryp_list cryp_list = {
208 	.dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
209 	.lock     = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
210 };
211 
212 static inline bool is_aes(struct stm32_cryp *cryp)
213 {
214 	return cryp->flags & FLG_AES;
215 }
216 
217 static inline bool is_des(struct stm32_cryp *cryp)
218 {
219 	return cryp->flags & FLG_DES;
220 }
221 
222 static inline bool is_tdes(struct stm32_cryp *cryp)
223 {
224 	return cryp->flags & FLG_TDES;
225 }
226 
227 static inline bool is_ecb(struct stm32_cryp *cryp)
228 {
229 	return cryp->flags & FLG_ECB;
230 }
231 
232 static inline bool is_cbc(struct stm32_cryp *cryp)
233 {
234 	return cryp->flags & FLG_CBC;
235 }
236 
237 static inline bool is_ctr(struct stm32_cryp *cryp)
238 {
239 	return cryp->flags & FLG_CTR;
240 }
241 
242 static inline bool is_gcm(struct stm32_cryp *cryp)
243 {
244 	return cryp->flags & FLG_GCM;
245 }
246 
247 static inline bool is_ccm(struct stm32_cryp *cryp)
248 {
249 	return cryp->flags & FLG_CCM;
250 }
251 
252 static inline bool is_encrypt(struct stm32_cryp *cryp)
253 {
254 	return cryp->flags & FLG_ENCRYPT;
255 }
256 
257 static inline bool is_decrypt(struct stm32_cryp *cryp)
258 {
259 	return !is_encrypt(cryp);
260 }
261 
262 static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
263 {
264 	return readl_relaxed(cryp->regs + ofst);
265 }
266 
267 static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
268 {
269 	writel_relaxed(val, cryp->regs + ofst);
270 }
271 
272 static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
273 {
274 	u32 status;
275 
276 	return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
277 			!(status & SR_BUSY), 10, 100000);
278 }
279 
280 static inline void stm32_cryp_enable(struct stm32_cryp *cryp)
281 {
282 	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_CRYPEN,
283 		       cryp->regs + cryp->caps->cr);
284 }
285 
286 static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
287 {
288 	u32 status;
289 
290 	return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->cr, status,
291 			!(status & CR_CRYPEN), 10, 100000);
292 }
293 
294 static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
295 {
296 	u32 status;
297 
298 	return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
299 			status & SR_OFNE, 10, 100000);
300 }
301 
302 static inline void stm32_cryp_key_read_enable(struct stm32_cryp *cryp)
303 {
304 	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_KEYRDEN,
305 		       cryp->regs + cryp->caps->cr);
306 }
307 
308 static inline void stm32_cryp_key_read_disable(struct stm32_cryp *cryp)
309 {
310 	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) & ~CR_KEYRDEN,
311 		       cryp->regs + cryp->caps->cr);
312 }
313 
314 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
315 static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err);
316 
317 static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
318 {
319 	struct stm32_cryp *tmp, *cryp = NULL;
320 
321 	spin_lock_bh(&cryp_list.lock);
322 	if (!ctx->cryp) {
323 		list_for_each_entry(tmp, &cryp_list.dev_list, list) {
324 			cryp = tmp;
325 			break;
326 		}
327 		ctx->cryp = cryp;
328 	} else {
329 		cryp = ctx->cryp;
330 	}
331 
332 	spin_unlock_bh(&cryp_list.lock);
333 
334 	return cryp;
335 }
336 
337 static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, __be32 *iv)
338 {
339 	if (!iv)
340 		return;
341 
342 	stm32_cryp_write(cryp, cryp->caps->iv0l, be32_to_cpu(*iv++));
343 	stm32_cryp_write(cryp, cryp->caps->iv0r, be32_to_cpu(*iv++));
344 
345 	if (is_aes(cryp)) {
346 		stm32_cryp_write(cryp, cryp->caps->iv1l, be32_to_cpu(*iv++));
347 		stm32_cryp_write(cryp, cryp->caps->iv1r, be32_to_cpu(*iv++));
348 	}
349 }
350 
351 static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
352 {
353 	struct skcipher_request *req = cryp->req;
354 	__be32 *tmp = (void *)req->iv;
355 
356 	if (!tmp)
357 		return;
358 
359 	if (cryp->caps->iv_protection)
360 		stm32_cryp_key_read_enable(cryp);
361 
362 	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
363 	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
364 
365 	if (is_aes(cryp)) {
366 		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
367 		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
368 	}
369 
370 	if (cryp->caps->iv_protection)
371 		stm32_cryp_key_read_disable(cryp);
372 }
373 
374 /**
375  * ux500_swap_bits_in_byte() - mirror the bits in a byte
376  * @b: the byte to be mirrored
377  *
378  * The bits are swapped the following way:
379  *  Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and
380  *  nibble 2 (n2) bits 4-7.
381  *
382  *  Nibble 1 (n1):
383  *  (The "old" (moved) bit is replaced with a zero)
384  *  1. Move bit 6 and 7, 4 positions to the left.
385  *  2. Move bit 3 and 5, 2 positions to the left.
386  *  3. Move bit 1-4, 1 position to the left.
387  *
388  *  Nibble 2 (n2):
389  *  1. Move bit 0 and 1, 4 positions to the right.
390  *  2. Move bit 2 and 4, 2 positions to the right.
391  *  3. Move bit 3-6, 1 position to the right.
392  *
393  *  Combine the two nibbles to a complete and swapped byte.
394  */
395 static inline u8 ux500_swap_bits_in_byte(u8 b)
396 {
397 #define R_SHIFT_4_MASK  0xc0 /* Bits 6 and 7, right shift 4 */
398 #define R_SHIFT_2_MASK  0x28 /* (After right shift 4) Bits 3 and 5,
399 				  right shift 2 */
400 #define R_SHIFT_1_MASK  0x1e /* (After right shift 2) Bits 1-4,
401 				  right shift 1 */
402 #define L_SHIFT_4_MASK  0x03 /* Bits 0 and 1, left shift 4 */
403 #define L_SHIFT_2_MASK  0x14 /* (After left shift 4) Bits 2 and 4,
404 				  left shift 2 */
405 #define L_SHIFT_1_MASK  0x78 /* (After left shift 1) Bits 3-6,
406 				  left shift 1 */
407 
408 	u8 n1;
409 	u8 n2;
410 
411 	/* Swap most significant nibble */
412 	/* Right shift 4, bits 6 and 7 */
413 	n1 = ((b  & R_SHIFT_4_MASK) >> 4) | (b  & ~(R_SHIFT_4_MASK >> 4));
414 	/* Right shift 2, bits 3 and 5 */
415 	n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2));
416 	/* Right shift 1, bits 1-4 */
417 	n1 = (n1  & R_SHIFT_1_MASK) >> 1;
418 
419 	/* Swap least significant nibble */
420 	/* Left shift 4, bits 0 and 1 */
421 	n2 = ((b  & L_SHIFT_4_MASK) << 4) | (b  & ~(L_SHIFT_4_MASK << 4));
422 	/* Left shift 2, bits 2 and 4 */
423 	n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2));
424 	/* Left shift 1, bits 3-6 */
425 	n2 = (n2  & L_SHIFT_1_MASK) << 1;
426 
427 	return n1 | n2;
428 }
429 
430 /**
431  * ux500_swizzle_key() - Shuffle around words and bits in the AES key
432  * @in: key to swizzle
433  * @out: swizzled key
434  * @len: length of key, in bytes
435  *
436  * This "key swizzling procedure" is described in the examples in the
437  * DB8500 design specification. There is no real description of why
438  * the bits have been arranged like this in the hardware.
439  */
440 static inline void ux500_swizzle_key(const u8 *in, u8 *out, u32 len)
441 {
442 	int i = 0;
443 	int bpw = sizeof(u32);
444 	int j;
445 	int index = 0;
446 
447 	j = len - bpw;
448 	while (j >= 0) {
449 		for (i = 0; i < bpw; i++) {
450 			index = len - j - bpw + i;
451 			out[j + i] =
452 				ux500_swap_bits_in_byte(in[index]);
453 		}
454 		j -= bpw;
455 	}
456 }
457 
458 static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
459 {
460 	unsigned int i;
461 	int r_id;
462 
463 	if (is_des(c)) {
464 		stm32_cryp_write(c, c->caps->k1l, be32_to_cpu(c->ctx->key[0]));
465 		stm32_cryp_write(c, c->caps->k1r, be32_to_cpu(c->ctx->key[1]));
466 		return;
467 	}
468 
469 	/*
470 	 * On the Ux500 the AES key is considered as a single bit sequence
471 	 * of 128, 192 or 256 bits length. It is written linearly into the
472 	 * registers from K1L and down, and need to be processed to become
473 	 * a proper big-endian bit sequence.
474 	 */
475 	if (is_aes(c) && c->caps->linear_aes_key) {
476 		u32 tmpkey[8];
477 
478 		ux500_swizzle_key((u8 *)c->ctx->key,
479 				  (u8 *)tmpkey, c->ctx->keylen);
480 
481 		r_id = c->caps->k1l;
482 		for (i = 0; i < c->ctx->keylen / sizeof(u32); i++, r_id += 4)
483 			stm32_cryp_write(c, r_id, tmpkey[i]);
484 
485 		return;
486 	}
487 
488 	r_id = c->caps->k3r;
489 	for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
490 		stm32_cryp_write(c, r_id, be32_to_cpu(c->ctx->key[i - 1]));
491 }
492 
493 static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
494 {
495 	if (is_aes(cryp) && is_ecb(cryp))
496 		return CR_AES_ECB;
497 
498 	if (is_aes(cryp) && is_cbc(cryp))
499 		return CR_AES_CBC;
500 
501 	if (is_aes(cryp) && is_ctr(cryp))
502 		return CR_AES_CTR;
503 
504 	if (is_aes(cryp) && is_gcm(cryp))
505 		return CR_AES_GCM;
506 
507 	if (is_aes(cryp) && is_ccm(cryp))
508 		return CR_AES_CCM;
509 
510 	if (is_des(cryp) && is_ecb(cryp))
511 		return CR_DES_ECB;
512 
513 	if (is_des(cryp) && is_cbc(cryp))
514 		return CR_DES_CBC;
515 
516 	if (is_tdes(cryp) && is_ecb(cryp))
517 		return CR_TDES_ECB;
518 
519 	if (is_tdes(cryp) && is_cbc(cryp))
520 		return CR_TDES_CBC;
521 
522 	dev_err(cryp->dev, "Unknown mode\n");
523 	return CR_AES_UNKNOWN;
524 }
525 
526 static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
527 {
528 	return is_encrypt(cryp) ? cryp->areq->cryptlen :
529 				  cryp->areq->cryptlen - cryp->authsize;
530 }
531 
532 static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
533 {
534 	int ret;
535 	__be32 iv[4];
536 
537 	/* Phase 1 : init */
538 	memcpy(iv, cryp->areq->iv, 12);
539 	iv[3] = cpu_to_be32(GCM_CTR_INIT);
540 	cryp->gcm_ctr = GCM_CTR_INIT;
541 	stm32_cryp_hw_write_iv(cryp, iv);
542 
543 	stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
544 
545 	/* Wait for end of processing */
546 	ret = stm32_cryp_wait_enable(cryp);
547 	if (ret) {
548 		dev_err(cryp->dev, "Timeout (gcm init)\n");
549 		return ret;
550 	}
551 
552 	/* Prepare next phase */
553 	if (cryp->areq->assoclen) {
554 		cfg |= CR_PH_HEADER;
555 		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
556 	} else if (stm32_cryp_get_input_text_len(cryp)) {
557 		cfg |= CR_PH_PAYLOAD;
558 		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
559 	}
560 
561 	return 0;
562 }
563 
564 static void stm32_crypt_gcmccm_end_header(struct stm32_cryp *cryp)
565 {
566 	u32 cfg;
567 	int err;
568 
569 	/* Check if whole header written */
570 	if (!cryp->header_in) {
571 		/* Wait for completion */
572 		err = stm32_cryp_wait_busy(cryp);
573 		if (err) {
574 			dev_err(cryp->dev, "Timeout (gcm/ccm header)\n");
575 			stm32_cryp_write(cryp, cryp->caps->imsc, 0);
576 			stm32_cryp_finish_req(cryp, err);
577 			return;
578 		}
579 
580 		if (stm32_cryp_get_input_text_len(cryp)) {
581 			/* Phase 3 : payload */
582 			cfg = stm32_cryp_read(cryp, cryp->caps->cr);
583 			cfg &= ~CR_CRYPEN;
584 			stm32_cryp_write(cryp, cryp->caps->cr, cfg);
585 
586 			cfg &= ~CR_PH_MASK;
587 			cfg |= CR_PH_PAYLOAD | CR_CRYPEN;
588 			stm32_cryp_write(cryp, cryp->caps->cr, cfg);
589 		} else {
590 			/*
591 			 * Phase 4 : tag.
592 			 * Nothing to read, nothing to write, caller have to
593 			 * end request
594 			 */
595 		}
596 	}
597 }
598 
599 static void stm32_cryp_write_ccm_first_header(struct stm32_cryp *cryp)
600 {
601 	size_t written;
602 	size_t len;
603 	u32 alen = cryp->areq->assoclen;
604 	u32 block[AES_BLOCK_32] = {0};
605 	u8 *b8 = (u8 *)block;
606 
607 	if (alen <= 65280) {
608 		/* Write first u32 of B1 */
609 		b8[0] = (alen >> 8) & 0xFF;
610 		b8[1] = alen & 0xFF;
611 		len = 2;
612 	} else {
613 		/* Build the two first u32 of B1 */
614 		b8[0] = 0xFF;
615 		b8[1] = 0xFE;
616 		b8[2] = (alen & 0xFF000000) >> 24;
617 		b8[3] = (alen & 0x00FF0000) >> 16;
618 		b8[4] = (alen & 0x0000FF00) >> 8;
619 		b8[5] = alen & 0x000000FF;
620 		len = 6;
621 	}
622 
623 	written = min_t(size_t, AES_BLOCK_SIZE - len, alen);
624 
625 	scatterwalk_copychunks((char *)block + len, &cryp->in_walk, written, 0);
626 
627 	writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
628 
629 	cryp->header_in -= written;
630 
631 	stm32_crypt_gcmccm_end_header(cryp);
632 }
633 
634 static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
635 {
636 	int ret;
637 	u32 iv_32[AES_BLOCK_32], b0_32[AES_BLOCK_32];
638 	u8 *iv = (u8 *)iv_32, *b0 = (u8 *)b0_32;
639 	__be32 *bd;
640 	u32 *d;
641 	unsigned int i, textlen;
642 
643 	/* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
644 	memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
645 	memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
646 	iv[AES_BLOCK_SIZE - 1] = 1;
647 	stm32_cryp_hw_write_iv(cryp, (__be32 *)iv);
648 
649 	/* Build B0 */
650 	memcpy(b0, iv, AES_BLOCK_SIZE);
651 
652 	b0[0] |= (8 * ((cryp->authsize - 2) / 2));
653 
654 	if (cryp->areq->assoclen)
655 		b0[0] |= 0x40;
656 
657 	textlen = stm32_cryp_get_input_text_len(cryp);
658 
659 	b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
660 	b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
661 
662 	/* Enable HW */
663 	stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
664 
665 	/* Write B0 */
666 	d = (u32 *)b0;
667 	bd = (__be32 *)b0;
668 
669 	for (i = 0; i < AES_BLOCK_32; i++) {
670 		u32 xd = d[i];
671 
672 		if (!cryp->caps->padding_wa)
673 			xd = be32_to_cpu(bd[i]);
674 		stm32_cryp_write(cryp, cryp->caps->din, xd);
675 	}
676 
677 	/* Wait for end of processing */
678 	ret = stm32_cryp_wait_enable(cryp);
679 	if (ret) {
680 		dev_err(cryp->dev, "Timeout (ccm init)\n");
681 		return ret;
682 	}
683 
684 	/* Prepare next phase */
685 	if (cryp->areq->assoclen) {
686 		cfg |= CR_PH_HEADER | CR_CRYPEN;
687 		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
688 
689 		/* Write first (special) block (may move to next phase [payload]) */
690 		stm32_cryp_write_ccm_first_header(cryp);
691 	} else if (stm32_cryp_get_input_text_len(cryp)) {
692 		cfg |= CR_PH_PAYLOAD;
693 		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
694 	}
695 
696 	return 0;
697 }
698 
699 static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
700 {
701 	int ret;
702 	u32 cfg, hw_mode;
703 
704 	pm_runtime_get_sync(cryp->dev);
705 
706 	/* Disable interrupt */
707 	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
708 
709 	/* Set configuration */
710 	cfg = CR_DATA8 | CR_FFLUSH;
711 
712 	switch (cryp->ctx->keylen) {
713 	case AES_KEYSIZE_128:
714 		cfg |= CR_KEY128;
715 		break;
716 
717 	case AES_KEYSIZE_192:
718 		cfg |= CR_KEY192;
719 		break;
720 
721 	default:
722 	case AES_KEYSIZE_256:
723 		cfg |= CR_KEY256;
724 		break;
725 	}
726 
727 	hw_mode = stm32_cryp_get_hw_mode(cryp);
728 	if (hw_mode == CR_AES_UNKNOWN)
729 		return -EINVAL;
730 
731 	/* AES ECB/CBC decrypt: run key preparation first */
732 	if (is_decrypt(cryp) &&
733 	    ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
734 		/* Configure in key preparation mode */
735 		if (cryp->caps->kp_mode)
736 			stm32_cryp_write(cryp, cryp->caps->cr,
737 				cfg | CR_AES_KP);
738 		else
739 			stm32_cryp_write(cryp,
740 				cryp->caps->cr, cfg | CR_AES_ECB | CR_KSE);
741 
742 		/* Set key only after full configuration done */
743 		stm32_cryp_hw_write_key(cryp);
744 
745 		/* Start prepare key */
746 		stm32_cryp_enable(cryp);
747 		/* Wait for end of processing */
748 		ret = stm32_cryp_wait_busy(cryp);
749 		if (ret) {
750 			dev_err(cryp->dev, "Timeout (key preparation)\n");
751 			return ret;
752 		}
753 
754 		cfg |= hw_mode | CR_DEC_NOT_ENC;
755 
756 		/* Apply updated config (Decrypt + algo) and flush */
757 		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
758 	} else {
759 		cfg |= hw_mode;
760 		if (is_decrypt(cryp))
761 			cfg |= CR_DEC_NOT_ENC;
762 
763 		/* Apply config and flush */
764 		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
765 
766 		/* Set key only after configuration done */
767 		stm32_cryp_hw_write_key(cryp);
768 	}
769 
770 	switch (hw_mode) {
771 	case CR_AES_GCM:
772 	case CR_AES_CCM:
773 		/* Phase 1 : init */
774 		if (hw_mode == CR_AES_CCM)
775 			ret = stm32_cryp_ccm_init(cryp, cfg);
776 		else
777 			ret = stm32_cryp_gcm_init(cryp, cfg);
778 
779 		if (ret)
780 			return ret;
781 
782 		break;
783 
784 	case CR_DES_CBC:
785 	case CR_TDES_CBC:
786 	case CR_AES_CBC:
787 	case CR_AES_CTR:
788 		stm32_cryp_hw_write_iv(cryp, (__be32 *)cryp->req->iv);
789 		break;
790 
791 	default:
792 		break;
793 	}
794 
795 	/* Enable now */
796 	stm32_cryp_enable(cryp);
797 
798 	return 0;
799 }
800 
801 static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
802 {
803 	if (!err && (is_gcm(cryp) || is_ccm(cryp)))
804 		/* Phase 4 : output tag */
805 		err = stm32_cryp_read_auth_tag(cryp);
806 
807 	if (!err && (!(is_gcm(cryp) || is_ccm(cryp) || is_ecb(cryp))))
808 		stm32_cryp_get_iv(cryp);
809 
810 	pm_runtime_mark_last_busy(cryp->dev);
811 	pm_runtime_put_autosuspend(cryp->dev);
812 
813 	if (is_gcm(cryp) || is_ccm(cryp))
814 		crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
815 	else
816 		crypto_finalize_skcipher_request(cryp->engine, cryp->req,
817 						   err);
818 }
819 
820 static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
821 {
822 	/* Enable interrupt and let the IRQ handler do everything */
823 	stm32_cryp_write(cryp, cryp->caps->imsc, IMSCR_IN | IMSCR_OUT);
824 
825 	return 0;
826 }
827 
828 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
829 
830 static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm)
831 {
832 	crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
833 
834 	return 0;
835 }
836 
837 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
838 
839 static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
840 {
841 	tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
842 
843 	return 0;
844 }
845 
846 static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode)
847 {
848 	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
849 			crypto_skcipher_reqtfm(req));
850 	struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req);
851 	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
852 
853 	if (!cryp)
854 		return -ENODEV;
855 
856 	rctx->mode = mode;
857 
858 	return crypto_transfer_skcipher_request_to_engine(cryp->engine, req);
859 }
860 
861 static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
862 {
863 	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
864 	struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
865 	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
866 
867 	if (!cryp)
868 		return -ENODEV;
869 
870 	rctx->mode = mode;
871 
872 	return crypto_transfer_aead_request_to_engine(cryp->engine, req);
873 }
874 
875 static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key,
876 			     unsigned int keylen)
877 {
878 	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
879 
880 	memcpy(ctx->key, key, keylen);
881 	ctx->keylen = keylen;
882 
883 	return 0;
884 }
885 
886 static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
887 				 unsigned int keylen)
888 {
889 	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
890 	    keylen != AES_KEYSIZE_256)
891 		return -EINVAL;
892 	else
893 		return stm32_cryp_setkey(tfm, key, keylen);
894 }
895 
896 static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
897 				 unsigned int keylen)
898 {
899 	return verify_skcipher_des_key(tfm, key) ?:
900 	       stm32_cryp_setkey(tfm, key, keylen);
901 }
902 
903 static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key,
904 				  unsigned int keylen)
905 {
906 	return verify_skcipher_des3_key(tfm, key) ?:
907 	       stm32_cryp_setkey(tfm, key, keylen);
908 }
909 
910 static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
911 				      unsigned int keylen)
912 {
913 	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
914 
915 	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
916 	    keylen != AES_KEYSIZE_256)
917 		return -EINVAL;
918 
919 	memcpy(ctx->key, key, keylen);
920 	ctx->keylen = keylen;
921 
922 	return 0;
923 }
924 
925 static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
926 					  unsigned int authsize)
927 {
928 	switch (authsize) {
929 	case 4:
930 	case 8:
931 	case 12:
932 	case 13:
933 	case 14:
934 	case 15:
935 	case 16:
936 		break;
937 	default:
938 		return -EINVAL;
939 	}
940 
941 	return 0;
942 }
943 
944 static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
945 					  unsigned int authsize)
946 {
947 	switch (authsize) {
948 	case 4:
949 	case 6:
950 	case 8:
951 	case 10:
952 	case 12:
953 	case 14:
954 	case 16:
955 		break;
956 	default:
957 		return -EINVAL;
958 	}
959 
960 	return 0;
961 }
962 
963 static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req)
964 {
965 	if (req->cryptlen % AES_BLOCK_SIZE)
966 		return -EINVAL;
967 
968 	if (req->cryptlen == 0)
969 		return 0;
970 
971 	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
972 }
973 
974 static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req)
975 {
976 	if (req->cryptlen % AES_BLOCK_SIZE)
977 		return -EINVAL;
978 
979 	if (req->cryptlen == 0)
980 		return 0;
981 
982 	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
983 }
984 
985 static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req)
986 {
987 	if (req->cryptlen % AES_BLOCK_SIZE)
988 		return -EINVAL;
989 
990 	if (req->cryptlen == 0)
991 		return 0;
992 
993 	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
994 }
995 
996 static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req)
997 {
998 	if (req->cryptlen % AES_BLOCK_SIZE)
999 		return -EINVAL;
1000 
1001 	if (req->cryptlen == 0)
1002 		return 0;
1003 
1004 	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
1005 }
1006 
1007 static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req)
1008 {
1009 	if (req->cryptlen == 0)
1010 		return 0;
1011 
1012 	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
1013 }
1014 
1015 static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req)
1016 {
1017 	if (req->cryptlen == 0)
1018 		return 0;
1019 
1020 	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
1021 }
1022 
1023 static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
1024 {
1025 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
1026 }
1027 
1028 static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
1029 {
1030 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
1031 }
1032 
1033 static inline int crypto_ccm_check_iv(const u8 *iv)
1034 {
1035 	/* 2 <= L <= 8, so 1 <= L' <= 7. */
1036 	if (iv[0] < 1 || iv[0] > 7)
1037 		return -EINVAL;
1038 
1039 	return 0;
1040 }
1041 
1042 static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
1043 {
1044 	int err;
1045 
1046 	err = crypto_ccm_check_iv(req->iv);
1047 	if (err)
1048 		return err;
1049 
1050 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
1051 }
1052 
1053 static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
1054 {
1055 	int err;
1056 
1057 	err = crypto_ccm_check_iv(req->iv);
1058 	if (err)
1059 		return err;
1060 
1061 	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
1062 }
1063 
1064 static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req)
1065 {
1066 	if (req->cryptlen % DES_BLOCK_SIZE)
1067 		return -EINVAL;
1068 
1069 	if (req->cryptlen == 0)
1070 		return 0;
1071 
1072 	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
1073 }
1074 
1075 static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req)
1076 {
1077 	if (req->cryptlen % DES_BLOCK_SIZE)
1078 		return -EINVAL;
1079 
1080 	if (req->cryptlen == 0)
1081 		return 0;
1082 
1083 	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
1084 }
1085 
1086 static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req)
1087 {
1088 	if (req->cryptlen % DES_BLOCK_SIZE)
1089 		return -EINVAL;
1090 
1091 	if (req->cryptlen == 0)
1092 		return 0;
1093 
1094 	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
1095 }
1096 
1097 static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req)
1098 {
1099 	if (req->cryptlen % DES_BLOCK_SIZE)
1100 		return -EINVAL;
1101 
1102 	if (req->cryptlen == 0)
1103 		return 0;
1104 
1105 	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
1106 }
1107 
1108 static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req)
1109 {
1110 	if (req->cryptlen % DES_BLOCK_SIZE)
1111 		return -EINVAL;
1112 
1113 	if (req->cryptlen == 0)
1114 		return 0;
1115 
1116 	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
1117 }
1118 
1119 static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req)
1120 {
1121 	if (req->cryptlen % DES_BLOCK_SIZE)
1122 		return -EINVAL;
1123 
1124 	if (req->cryptlen == 0)
1125 		return 0;
1126 
1127 	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
1128 }
1129 
1130 static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req)
1131 {
1132 	if (req->cryptlen % DES_BLOCK_SIZE)
1133 		return -EINVAL;
1134 
1135 	if (req->cryptlen == 0)
1136 		return 0;
1137 
1138 	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
1139 }
1140 
1141 static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req)
1142 {
1143 	if (req->cryptlen % DES_BLOCK_SIZE)
1144 		return -EINVAL;
1145 
1146 	if (req->cryptlen == 0)
1147 		return 0;
1148 
1149 	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
1150 }
1151 
1152 static int stm32_cryp_prepare_req(struct skcipher_request *req,
1153 				  struct aead_request *areq)
1154 {
1155 	struct stm32_cryp_ctx *ctx;
1156 	struct stm32_cryp *cryp;
1157 	struct stm32_cryp_reqctx *rctx;
1158 	struct scatterlist *in_sg;
1159 	int ret;
1160 
1161 	if (!req && !areq)
1162 		return -EINVAL;
1163 
1164 	ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) :
1165 		    crypto_aead_ctx(crypto_aead_reqtfm(areq));
1166 
1167 	cryp = ctx->cryp;
1168 
1169 	rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq);
1170 	rctx->mode &= FLG_MODE_MASK;
1171 
1172 	ctx->cryp = cryp;
1173 
1174 	cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
1175 	cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
1176 	cryp->ctx = ctx;
1177 
1178 	if (req) {
1179 		cryp->req = req;
1180 		cryp->areq = NULL;
1181 		cryp->header_in = 0;
1182 		cryp->payload_in = req->cryptlen;
1183 		cryp->payload_out = req->cryptlen;
1184 		cryp->authsize = 0;
1185 	} else {
1186 		/*
1187 		 * Length of input and output data:
1188 		 * Encryption case:
1189 		 *  INPUT  = AssocData   ||     PlainText
1190 		 *          <- assoclen ->  <- cryptlen ->
1191 		 *
1192 		 *  OUTPUT = AssocData    ||   CipherText   ||      AuthTag
1193 		 *          <- assoclen ->  <-- cryptlen -->  <- authsize ->
1194 		 *
1195 		 * Decryption case:
1196 		 *  INPUT  =  AssocData     ||    CipherTex   ||       AuthTag
1197 		 *          <- assoclen --->  <---------- cryptlen ---------->
1198 		 *
1199 		 *  OUTPUT = AssocData    ||               PlainText
1200 		 *          <- assoclen ->  <- cryptlen - authsize ->
1201 		 */
1202 		cryp->areq = areq;
1203 		cryp->req = NULL;
1204 		cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
1205 		if (is_encrypt(cryp)) {
1206 			cryp->payload_in = areq->cryptlen;
1207 			cryp->header_in = areq->assoclen;
1208 			cryp->payload_out = areq->cryptlen;
1209 		} else {
1210 			cryp->payload_in = areq->cryptlen - cryp->authsize;
1211 			cryp->header_in = areq->assoclen;
1212 			cryp->payload_out = cryp->payload_in;
1213 		}
1214 	}
1215 
1216 	in_sg = req ? req->src : areq->src;
1217 	scatterwalk_start(&cryp->in_walk, in_sg);
1218 
1219 	cryp->out_sg = req ? req->dst : areq->dst;
1220 	scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1221 
1222 	if (is_gcm(cryp) || is_ccm(cryp)) {
1223 		/* In output, jump after assoc data */
1224 		scatterwalk_copychunks(NULL, &cryp->out_walk, cryp->areq->assoclen, 2);
1225 	}
1226 
1227 	if (is_ctr(cryp))
1228 		memset(cryp->last_ctr, 0, sizeof(cryp->last_ctr));
1229 
1230 	ret = stm32_cryp_hw_init(cryp);
1231 	return ret;
1232 }
1233 
1234 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1235 {
1236 	struct skcipher_request *req = container_of(areq,
1237 						      struct skcipher_request,
1238 						      base);
1239 	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
1240 			crypto_skcipher_reqtfm(req));
1241 	struct stm32_cryp *cryp = ctx->cryp;
1242 
1243 	if (!cryp)
1244 		return -ENODEV;
1245 
1246 	return stm32_cryp_prepare_req(req, NULL) ?:
1247 	       stm32_cryp_cpu_start(cryp);
1248 }
1249 
1250 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1251 {
1252 	struct aead_request *req = container_of(areq, struct aead_request,
1253 						base);
1254 	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1255 	struct stm32_cryp *cryp = ctx->cryp;
1256 	int err;
1257 
1258 	if (!cryp)
1259 		return -ENODEV;
1260 
1261 	err = stm32_cryp_prepare_req(NULL, req);
1262 	if (err)
1263 		return err;
1264 
1265 	if (unlikely(!cryp->payload_in && !cryp->header_in)) {
1266 		/* No input data to process: get tag and finish */
1267 		stm32_cryp_finish_req(cryp, 0);
1268 		return 0;
1269 	}
1270 
1271 	return stm32_cryp_cpu_start(cryp);
1272 }
1273 
1274 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1275 {
1276 	u32 cfg, size_bit;
1277 	unsigned int i;
1278 	int ret = 0;
1279 
1280 	/* Update Config */
1281 	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1282 
1283 	cfg &= ~CR_PH_MASK;
1284 	cfg |= CR_PH_FINAL;
1285 	cfg &= ~CR_DEC_NOT_ENC;
1286 	cfg |= CR_CRYPEN;
1287 
1288 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1289 
1290 	if (is_gcm(cryp)) {
1291 		/* GCM: write aad and payload size (in bits) */
1292 		size_bit = cryp->areq->assoclen * 8;
1293 		if (cryp->caps->swap_final)
1294 			size_bit = (__force u32)cpu_to_be32(size_bit);
1295 
1296 		stm32_cryp_write(cryp, cryp->caps->din, 0);
1297 		stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1298 
1299 		size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1300 				cryp->areq->cryptlen - cryp->authsize;
1301 		size_bit *= 8;
1302 		if (cryp->caps->swap_final)
1303 			size_bit = (__force u32)cpu_to_be32(size_bit);
1304 
1305 		stm32_cryp_write(cryp, cryp->caps->din, 0);
1306 		stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1307 	} else {
1308 		/* CCM: write CTR0 */
1309 		u32 iv32[AES_BLOCK_32];
1310 		u8 *iv = (u8 *)iv32;
1311 		__be32 *biv = (__be32 *)iv32;
1312 
1313 		memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1314 		memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1315 
1316 		for (i = 0; i < AES_BLOCK_32; i++) {
1317 			u32 xiv = iv32[i];
1318 
1319 			if (!cryp->caps->padding_wa)
1320 				xiv = be32_to_cpu(biv[i]);
1321 			stm32_cryp_write(cryp, cryp->caps->din, xiv);
1322 		}
1323 	}
1324 
1325 	/* Wait for output data */
1326 	ret = stm32_cryp_wait_output(cryp);
1327 	if (ret) {
1328 		dev_err(cryp->dev, "Timeout (read tag)\n");
1329 		return ret;
1330 	}
1331 
1332 	if (is_encrypt(cryp)) {
1333 		u32 out_tag[AES_BLOCK_32];
1334 
1335 		/* Get and write tag */
1336 		readsl(cryp->regs + cryp->caps->dout, out_tag, AES_BLOCK_32);
1337 		scatterwalk_copychunks(out_tag, &cryp->out_walk, cryp->authsize, 1);
1338 	} else {
1339 		/* Get and check tag */
1340 		u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1341 
1342 		scatterwalk_copychunks(in_tag, &cryp->in_walk, cryp->authsize, 0);
1343 		readsl(cryp->regs + cryp->caps->dout, out_tag, AES_BLOCK_32);
1344 
1345 		if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1346 			ret = -EBADMSG;
1347 	}
1348 
1349 	/* Disable cryp */
1350 	cfg &= ~CR_CRYPEN;
1351 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1352 
1353 	return ret;
1354 }
1355 
1356 static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1357 {
1358 	u32 cr;
1359 
1360 	if (unlikely(cryp->last_ctr[3] == cpu_to_be32(0xFFFFFFFF))) {
1361 		/*
1362 		 * In this case, we need to increment manually the ctr counter,
1363 		 * as HW doesn't handle the U32 carry.
1364 		 */
1365 		crypto_inc((u8 *)cryp->last_ctr, sizeof(cryp->last_ctr));
1366 
1367 		cr = stm32_cryp_read(cryp, cryp->caps->cr);
1368 		stm32_cryp_write(cryp, cryp->caps->cr, cr & ~CR_CRYPEN);
1369 
1370 		stm32_cryp_hw_write_iv(cryp, cryp->last_ctr);
1371 
1372 		stm32_cryp_write(cryp, cryp->caps->cr, cr);
1373 	}
1374 
1375 	/* The IV registers are BE  */
1376 	cryp->last_ctr[0] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
1377 	cryp->last_ctr[1] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
1378 	cryp->last_ctr[2] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
1379 	cryp->last_ctr[3] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
1380 }
1381 
1382 static void stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1383 {
1384 	u32 block[AES_BLOCK_32];
1385 
1386 	readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
1387 	scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1388 							     cryp->payload_out), 1);
1389 	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1390 				   cryp->payload_out);
1391 }
1392 
1393 static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1394 {
1395 	u32 block[AES_BLOCK_32] = {0};
1396 
1397 	scatterwalk_copychunks(block, &cryp->in_walk, min_t(size_t, cryp->hw_blocksize,
1398 							    cryp->payload_in), 0);
1399 	writesl(cryp->regs + cryp->caps->din, block, cryp->hw_blocksize / sizeof(u32));
1400 	cryp->payload_in -= min_t(size_t, cryp->hw_blocksize, cryp->payload_in);
1401 }
1402 
1403 static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1404 {
1405 	int err;
1406 	u32 cfg, block[AES_BLOCK_32] = {0};
1407 	unsigned int i;
1408 
1409 	/* 'Special workaround' procedure described in the datasheet */
1410 
1411 	/* a) disable ip */
1412 	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
1413 	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1414 	cfg &= ~CR_CRYPEN;
1415 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1416 
1417 	/* b) Update IV1R */
1418 	stm32_cryp_write(cryp, cryp->caps->iv1r, cryp->gcm_ctr - 2);
1419 
1420 	/* c) change mode to CTR */
1421 	cfg &= ~CR_ALGO_MASK;
1422 	cfg |= CR_AES_CTR;
1423 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1424 
1425 	/* a) enable IP */
1426 	cfg |= CR_CRYPEN;
1427 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1428 
1429 	/* b) pad and write the last block */
1430 	stm32_cryp_irq_write_block(cryp);
1431 	/* wait end of process */
1432 	err = stm32_cryp_wait_output(cryp);
1433 	if (err) {
1434 		dev_err(cryp->dev, "Timeout (write gcm last data)\n");
1435 		return stm32_cryp_finish_req(cryp, err);
1436 	}
1437 
1438 	/* c) get and store encrypted data */
1439 	/*
1440 	 * Same code as stm32_cryp_irq_read_data(), but we want to store
1441 	 * block value
1442 	 */
1443 	readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
1444 
1445 	scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1446 							     cryp->payload_out), 1);
1447 	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1448 				   cryp->payload_out);
1449 
1450 	/* d) change mode back to AES GCM */
1451 	cfg &= ~CR_ALGO_MASK;
1452 	cfg |= CR_AES_GCM;
1453 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1454 
1455 	/* e) change phase to Final */
1456 	cfg &= ~CR_PH_MASK;
1457 	cfg |= CR_PH_FINAL;
1458 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1459 
1460 	/* f) write padded data */
1461 	writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
1462 
1463 	/* g) Empty fifo out */
1464 	err = stm32_cryp_wait_output(cryp);
1465 	if (err) {
1466 		dev_err(cryp->dev, "Timeout (write gcm padded data)\n");
1467 		return stm32_cryp_finish_req(cryp, err);
1468 	}
1469 
1470 	for (i = 0; i < AES_BLOCK_32; i++)
1471 		stm32_cryp_read(cryp, cryp->caps->dout);
1472 
1473 	/* h) run the he normal Final phase */
1474 	stm32_cryp_finish_req(cryp, 0);
1475 }
1476 
1477 static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1478 {
1479 	u32 cfg;
1480 
1481 	/* disable ip, set NPBLB and reneable ip */
1482 	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1483 	cfg &= ~CR_CRYPEN;
1484 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1485 
1486 	cfg |= (cryp->hw_blocksize - cryp->payload_in) << CR_NBPBL_SHIFT;
1487 	cfg |= CR_CRYPEN;
1488 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1489 }
1490 
1491 static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1492 {
1493 	int err = 0;
1494 	u32 cfg, iv1tmp;
1495 	u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32];
1496 	u32 block[AES_BLOCK_32] = {0};
1497 	unsigned int i;
1498 
1499 	/* 'Special workaround' procedure described in the datasheet */
1500 
1501 	/* a) disable ip */
1502 	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
1503 
1504 	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1505 	cfg &= ~CR_CRYPEN;
1506 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1507 
1508 	/* b) get IV1 from CRYP_CSGCMCCM7 */
1509 	iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1510 
1511 	/* c) Load CRYP_CSGCMCCMxR */
1512 	for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1513 		cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1514 
1515 	/* d) Write IV1R */
1516 	stm32_cryp_write(cryp, cryp->caps->iv1r, iv1tmp);
1517 
1518 	/* e) change mode to CTR */
1519 	cfg &= ~CR_ALGO_MASK;
1520 	cfg |= CR_AES_CTR;
1521 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1522 
1523 	/* a) enable IP */
1524 	cfg |= CR_CRYPEN;
1525 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1526 
1527 	/* b) pad and write the last block */
1528 	stm32_cryp_irq_write_block(cryp);
1529 	/* wait end of process */
1530 	err = stm32_cryp_wait_output(cryp);
1531 	if (err) {
1532 		dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
1533 		return stm32_cryp_finish_req(cryp, err);
1534 	}
1535 
1536 	/* c) get and store decrypted data */
1537 	/*
1538 	 * Same code as stm32_cryp_irq_read_data(), but we want to store
1539 	 * block value
1540 	 */
1541 	readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
1542 
1543 	scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1544 							     cryp->payload_out), 1);
1545 	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize, cryp->payload_out);
1546 
1547 	/* d) Load again CRYP_CSGCMCCMxR */
1548 	for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1549 		cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1550 
1551 	/* e) change mode back to AES CCM */
1552 	cfg &= ~CR_ALGO_MASK;
1553 	cfg |= CR_AES_CCM;
1554 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1555 
1556 	/* f) change phase to header */
1557 	cfg &= ~CR_PH_MASK;
1558 	cfg |= CR_PH_HEADER;
1559 	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1560 
1561 	/* g) XOR and write padded data */
1562 	for (i = 0; i < ARRAY_SIZE(block); i++) {
1563 		block[i] ^= cstmp1[i];
1564 		block[i] ^= cstmp2[i];
1565 		stm32_cryp_write(cryp, cryp->caps->din, block[i]);
1566 	}
1567 
1568 	/* h) wait for completion */
1569 	err = stm32_cryp_wait_busy(cryp);
1570 	if (err)
1571 		dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
1572 
1573 	/* i) run the he normal Final phase */
1574 	stm32_cryp_finish_req(cryp, err);
1575 }
1576 
1577 static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1578 {
1579 	if (unlikely(!cryp->payload_in)) {
1580 		dev_warn(cryp->dev, "No more data to process\n");
1581 		return;
1582 	}
1583 
1584 	if (unlikely(cryp->payload_in < AES_BLOCK_SIZE &&
1585 		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1586 		     is_encrypt(cryp))) {
1587 		/* Padding for AES GCM encryption */
1588 		if (cryp->caps->padding_wa) {
1589 			/* Special case 1 */
1590 			stm32_cryp_irq_write_gcm_padded_data(cryp);
1591 			return;
1592 		}
1593 
1594 		/* Setting padding bytes (NBBLB) */
1595 		stm32_cryp_irq_set_npblb(cryp);
1596 	}
1597 
1598 	if (unlikely((cryp->payload_in < AES_BLOCK_SIZE) &&
1599 		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1600 		     is_decrypt(cryp))) {
1601 		/* Padding for AES CCM decryption */
1602 		if (cryp->caps->padding_wa) {
1603 			/* Special case 2 */
1604 			stm32_cryp_irq_write_ccm_padded_data(cryp);
1605 			return;
1606 		}
1607 
1608 		/* Setting padding bytes (NBBLB) */
1609 		stm32_cryp_irq_set_npblb(cryp);
1610 	}
1611 
1612 	if (is_aes(cryp) && is_ctr(cryp))
1613 		stm32_cryp_check_ctr_counter(cryp);
1614 
1615 	stm32_cryp_irq_write_block(cryp);
1616 }
1617 
1618 static void stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp *cryp)
1619 {
1620 	u32 block[AES_BLOCK_32] = {0};
1621 	size_t written;
1622 
1623 	written = min_t(size_t, AES_BLOCK_SIZE, cryp->header_in);
1624 
1625 	scatterwalk_copychunks(block, &cryp->in_walk, written, 0);
1626 
1627 	writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
1628 
1629 	cryp->header_in -= written;
1630 
1631 	stm32_crypt_gcmccm_end_header(cryp);
1632 }
1633 
1634 static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1635 {
1636 	struct stm32_cryp *cryp = arg;
1637 	u32 ph;
1638 	u32 it_mask = stm32_cryp_read(cryp, cryp->caps->imsc);
1639 
1640 	if (cryp->irq_status & MISR_OUT)
1641 		/* Output FIFO IRQ: read data */
1642 		stm32_cryp_irq_read_data(cryp);
1643 
1644 	if (cryp->irq_status & MISR_IN) {
1645 		if (is_gcm(cryp) || is_ccm(cryp)) {
1646 			ph = stm32_cryp_read(cryp, cryp->caps->cr) & CR_PH_MASK;
1647 			if (unlikely(ph == CR_PH_HEADER))
1648 				/* Write Header */
1649 				stm32_cryp_irq_write_gcmccm_header(cryp);
1650 			else
1651 				/* Input FIFO IRQ: write data */
1652 				stm32_cryp_irq_write_data(cryp);
1653 			if (is_gcm(cryp))
1654 				cryp->gcm_ctr++;
1655 		} else {
1656 			/* Input FIFO IRQ: write data */
1657 			stm32_cryp_irq_write_data(cryp);
1658 		}
1659 	}
1660 
1661 	/* Mask useless interrupts */
1662 	if (!cryp->payload_in && !cryp->header_in)
1663 		it_mask &= ~IMSCR_IN;
1664 	if (!cryp->payload_out)
1665 		it_mask &= ~IMSCR_OUT;
1666 	stm32_cryp_write(cryp, cryp->caps->imsc, it_mask);
1667 
1668 	if (!cryp->payload_in && !cryp->header_in && !cryp->payload_out)
1669 		stm32_cryp_finish_req(cryp, 0);
1670 
1671 	return IRQ_HANDLED;
1672 }
1673 
1674 static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1675 {
1676 	struct stm32_cryp *cryp = arg;
1677 
1678 	cryp->irq_status = stm32_cryp_read(cryp, cryp->caps->mis);
1679 
1680 	return IRQ_WAKE_THREAD;
1681 }
1682 
1683 static struct skcipher_engine_alg crypto_algs[] = {
1684 {
1685 	.base = {
1686 		.base.cra_name		= "ecb(aes)",
1687 		.base.cra_driver_name	= "stm32-ecb-aes",
1688 		.base.cra_priority	= 200,
1689 		.base.cra_flags		= CRYPTO_ALG_ASYNC,
1690 		.base.cra_blocksize	= AES_BLOCK_SIZE,
1691 		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1692 		.base.cra_alignmask	= 0,
1693 		.base.cra_module	= THIS_MODULE,
1694 
1695 		.init			= stm32_cryp_init_tfm,
1696 		.min_keysize		= AES_MIN_KEY_SIZE,
1697 		.max_keysize		= AES_MAX_KEY_SIZE,
1698 		.setkey			= stm32_cryp_aes_setkey,
1699 		.encrypt		= stm32_cryp_aes_ecb_encrypt,
1700 		.decrypt		= stm32_cryp_aes_ecb_decrypt,
1701 	},
1702 	.op = {
1703 		.do_one_request = stm32_cryp_cipher_one_req,
1704 	},
1705 },
1706 {
1707 	.base = {
1708 		.base.cra_name		= "cbc(aes)",
1709 		.base.cra_driver_name	= "stm32-cbc-aes",
1710 		.base.cra_priority	= 200,
1711 		.base.cra_flags		= CRYPTO_ALG_ASYNC,
1712 		.base.cra_blocksize	= AES_BLOCK_SIZE,
1713 		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1714 		.base.cra_alignmask	= 0,
1715 		.base.cra_module	= THIS_MODULE,
1716 
1717 		.init			= stm32_cryp_init_tfm,
1718 		.min_keysize		= AES_MIN_KEY_SIZE,
1719 		.max_keysize		= AES_MAX_KEY_SIZE,
1720 		.ivsize			= AES_BLOCK_SIZE,
1721 		.setkey			= stm32_cryp_aes_setkey,
1722 		.encrypt		= stm32_cryp_aes_cbc_encrypt,
1723 		.decrypt		= stm32_cryp_aes_cbc_decrypt,
1724 	},
1725 	.op = {
1726 		.do_one_request = stm32_cryp_cipher_one_req,
1727 	},
1728 },
1729 {
1730 	.base = {
1731 		.base.cra_name		= "ctr(aes)",
1732 		.base.cra_driver_name	= "stm32-ctr-aes",
1733 		.base.cra_priority	= 200,
1734 		.base.cra_flags		= CRYPTO_ALG_ASYNC,
1735 		.base.cra_blocksize	= 1,
1736 		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1737 		.base.cra_alignmask	= 0,
1738 		.base.cra_module	= THIS_MODULE,
1739 
1740 		.init			= stm32_cryp_init_tfm,
1741 		.min_keysize		= AES_MIN_KEY_SIZE,
1742 		.max_keysize		= AES_MAX_KEY_SIZE,
1743 		.ivsize			= AES_BLOCK_SIZE,
1744 		.setkey			= stm32_cryp_aes_setkey,
1745 		.encrypt		= stm32_cryp_aes_ctr_encrypt,
1746 		.decrypt		= stm32_cryp_aes_ctr_decrypt,
1747 	},
1748 	.op = {
1749 		.do_one_request = stm32_cryp_cipher_one_req,
1750 	},
1751 },
1752 {
1753 	.base = {
1754 		.base.cra_name		= "ecb(des)",
1755 		.base.cra_driver_name	= "stm32-ecb-des",
1756 		.base.cra_priority	= 200,
1757 		.base.cra_flags		= CRYPTO_ALG_ASYNC,
1758 		.base.cra_blocksize	= DES_BLOCK_SIZE,
1759 		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1760 		.base.cra_alignmask	= 0,
1761 		.base.cra_module	= THIS_MODULE,
1762 
1763 		.init			= stm32_cryp_init_tfm,
1764 		.min_keysize		= DES_BLOCK_SIZE,
1765 		.max_keysize		= DES_BLOCK_SIZE,
1766 		.setkey			= stm32_cryp_des_setkey,
1767 		.encrypt		= stm32_cryp_des_ecb_encrypt,
1768 		.decrypt		= stm32_cryp_des_ecb_decrypt,
1769 	},
1770 	.op = {
1771 		.do_one_request = stm32_cryp_cipher_one_req,
1772 	},
1773 },
1774 {
1775 	.base = {
1776 		.base.cra_name		= "cbc(des)",
1777 		.base.cra_driver_name	= "stm32-cbc-des",
1778 		.base.cra_priority	= 200,
1779 		.base.cra_flags		= CRYPTO_ALG_ASYNC,
1780 		.base.cra_blocksize	= DES_BLOCK_SIZE,
1781 		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1782 		.base.cra_alignmask	= 0,
1783 		.base.cra_module	= THIS_MODULE,
1784 
1785 		.init			= stm32_cryp_init_tfm,
1786 		.min_keysize		= DES_BLOCK_SIZE,
1787 		.max_keysize		= DES_BLOCK_SIZE,
1788 		.ivsize			= DES_BLOCK_SIZE,
1789 		.setkey			= stm32_cryp_des_setkey,
1790 		.encrypt		= stm32_cryp_des_cbc_encrypt,
1791 		.decrypt		= stm32_cryp_des_cbc_decrypt,
1792 	},
1793 	.op = {
1794 		.do_one_request = stm32_cryp_cipher_one_req,
1795 	},
1796 },
1797 {
1798 	.base = {
1799 		.base.cra_name		= "ecb(des3_ede)",
1800 		.base.cra_driver_name	= "stm32-ecb-des3",
1801 		.base.cra_priority	= 200,
1802 		.base.cra_flags		= CRYPTO_ALG_ASYNC,
1803 		.base.cra_blocksize	= DES_BLOCK_SIZE,
1804 		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1805 		.base.cra_alignmask	= 0,
1806 		.base.cra_module	= THIS_MODULE,
1807 
1808 		.init			= stm32_cryp_init_tfm,
1809 		.min_keysize		= 3 * DES_BLOCK_SIZE,
1810 		.max_keysize		= 3 * DES_BLOCK_SIZE,
1811 		.setkey			= stm32_cryp_tdes_setkey,
1812 		.encrypt		= stm32_cryp_tdes_ecb_encrypt,
1813 		.decrypt		= stm32_cryp_tdes_ecb_decrypt,
1814 	},
1815 	.op = {
1816 		.do_one_request = stm32_cryp_cipher_one_req,
1817 	},
1818 },
1819 {
1820 	.base = {
1821 		.base.cra_name		= "cbc(des3_ede)",
1822 		.base.cra_driver_name	= "stm32-cbc-des3",
1823 		.base.cra_priority	= 200,
1824 		.base.cra_flags		= CRYPTO_ALG_ASYNC,
1825 		.base.cra_blocksize	= DES_BLOCK_SIZE,
1826 		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1827 		.base.cra_alignmask	= 0,
1828 		.base.cra_module	= THIS_MODULE,
1829 
1830 		.init			= stm32_cryp_init_tfm,
1831 		.min_keysize		= 3 * DES_BLOCK_SIZE,
1832 		.max_keysize		= 3 * DES_BLOCK_SIZE,
1833 		.ivsize			= DES_BLOCK_SIZE,
1834 		.setkey			= stm32_cryp_tdes_setkey,
1835 		.encrypt		= stm32_cryp_tdes_cbc_encrypt,
1836 		.decrypt		= stm32_cryp_tdes_cbc_decrypt,
1837 	},
1838 	.op = {
1839 		.do_one_request = stm32_cryp_cipher_one_req,
1840 	},
1841 },
1842 };
1843 
1844 static struct aead_engine_alg aead_algs[] = {
1845 {
1846 	.base.setkey		= stm32_cryp_aes_aead_setkey,
1847 	.base.setauthsize	= stm32_cryp_aes_gcm_setauthsize,
1848 	.base.encrypt		= stm32_cryp_aes_gcm_encrypt,
1849 	.base.decrypt		= stm32_cryp_aes_gcm_decrypt,
1850 	.base.init		= stm32_cryp_aes_aead_init,
1851 	.base.ivsize		= 12,
1852 	.base.maxauthsize	= AES_BLOCK_SIZE,
1853 
1854 	.base.base = {
1855 		.cra_name		= "gcm(aes)",
1856 		.cra_driver_name	= "stm32-gcm-aes",
1857 		.cra_priority		= 200,
1858 		.cra_flags		= CRYPTO_ALG_ASYNC,
1859 		.cra_blocksize		= 1,
1860 		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1861 		.cra_alignmask		= 0,
1862 		.cra_module		= THIS_MODULE,
1863 	},
1864 	.op = {
1865 		.do_one_request = stm32_cryp_aead_one_req,
1866 	},
1867 },
1868 {
1869 	.base.setkey		= stm32_cryp_aes_aead_setkey,
1870 	.base.setauthsize	= stm32_cryp_aes_ccm_setauthsize,
1871 	.base.encrypt		= stm32_cryp_aes_ccm_encrypt,
1872 	.base.decrypt		= stm32_cryp_aes_ccm_decrypt,
1873 	.base.init		= stm32_cryp_aes_aead_init,
1874 	.base.ivsize		= AES_BLOCK_SIZE,
1875 	.base.maxauthsize	= AES_BLOCK_SIZE,
1876 
1877 	.base.base = {
1878 		.cra_name		= "ccm(aes)",
1879 		.cra_driver_name	= "stm32-ccm-aes",
1880 		.cra_priority		= 200,
1881 		.cra_flags		= CRYPTO_ALG_ASYNC,
1882 		.cra_blocksize		= 1,
1883 		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1884 		.cra_alignmask		= 0,
1885 		.cra_module		= THIS_MODULE,
1886 	},
1887 	.op = {
1888 		.do_one_request = stm32_cryp_aead_one_req,
1889 	},
1890 },
1891 };
1892 
1893 static const struct stm32_cryp_caps ux500_data = {
1894 	.aeads_support = false,
1895 	.linear_aes_key = true,
1896 	.kp_mode = false,
1897 	.iv_protection = true,
1898 	.swap_final = true,
1899 	.padding_wa = true,
1900 	.cr = UX500_CRYP_CR,
1901 	.sr = UX500_CRYP_SR,
1902 	.din = UX500_CRYP_DIN,
1903 	.dout = UX500_CRYP_DOUT,
1904 	.imsc = UX500_CRYP_IMSC,
1905 	.mis = UX500_CRYP_MIS,
1906 	.k1l = UX500_CRYP_K1L,
1907 	.k1r = UX500_CRYP_K1R,
1908 	.k3r = UX500_CRYP_K3R,
1909 	.iv0l = UX500_CRYP_IV0L,
1910 	.iv0r = UX500_CRYP_IV0R,
1911 	.iv1l = UX500_CRYP_IV1L,
1912 	.iv1r = UX500_CRYP_IV1R,
1913 };
1914 
1915 static const struct stm32_cryp_caps f7_data = {
1916 	.aeads_support = true,
1917 	.linear_aes_key = false,
1918 	.kp_mode = true,
1919 	.iv_protection = false,
1920 	.swap_final = true,
1921 	.padding_wa = true,
1922 	.cr = CRYP_CR,
1923 	.sr = CRYP_SR,
1924 	.din = CRYP_DIN,
1925 	.dout = CRYP_DOUT,
1926 	.imsc = CRYP_IMSCR,
1927 	.mis = CRYP_MISR,
1928 	.k1l = CRYP_K1LR,
1929 	.k1r = CRYP_K1RR,
1930 	.k3r = CRYP_K3RR,
1931 	.iv0l = CRYP_IV0LR,
1932 	.iv0r = CRYP_IV0RR,
1933 	.iv1l = CRYP_IV1LR,
1934 	.iv1r = CRYP_IV1RR,
1935 };
1936 
1937 static const struct stm32_cryp_caps mp1_data = {
1938 	.aeads_support = true,
1939 	.linear_aes_key = false,
1940 	.kp_mode = true,
1941 	.iv_protection = false,
1942 	.swap_final = false,
1943 	.padding_wa = false,
1944 	.cr = CRYP_CR,
1945 	.sr = CRYP_SR,
1946 	.din = CRYP_DIN,
1947 	.dout = CRYP_DOUT,
1948 	.imsc = CRYP_IMSCR,
1949 	.mis = CRYP_MISR,
1950 	.k1l = CRYP_K1LR,
1951 	.k1r = CRYP_K1RR,
1952 	.k3r = CRYP_K3RR,
1953 	.iv0l = CRYP_IV0LR,
1954 	.iv0r = CRYP_IV0RR,
1955 	.iv1l = CRYP_IV1LR,
1956 	.iv1r = CRYP_IV1RR,
1957 };
1958 
1959 static const struct of_device_id stm32_dt_ids[] = {
1960 	{ .compatible = "stericsson,ux500-cryp", .data = &ux500_data},
1961 	{ .compatible = "st,stm32f756-cryp", .data = &f7_data},
1962 	{ .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1963 	{},
1964 };
1965 MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1966 
1967 static int stm32_cryp_probe(struct platform_device *pdev)
1968 {
1969 	struct device *dev = &pdev->dev;
1970 	struct stm32_cryp *cryp;
1971 	struct reset_control *rst;
1972 	int irq, ret;
1973 
1974 	cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1975 	if (!cryp)
1976 		return -ENOMEM;
1977 
1978 	cryp->caps = of_device_get_match_data(dev);
1979 	if (!cryp->caps)
1980 		return -ENODEV;
1981 
1982 	cryp->dev = dev;
1983 
1984 	cryp->regs = devm_platform_ioremap_resource(pdev, 0);
1985 	if (IS_ERR(cryp->regs))
1986 		return PTR_ERR(cryp->regs);
1987 
1988 	irq = platform_get_irq(pdev, 0);
1989 	if (irq < 0)
1990 		return irq;
1991 
1992 	ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1993 					stm32_cryp_irq_thread, IRQF_ONESHOT,
1994 					dev_name(dev), cryp);
1995 	if (ret) {
1996 		dev_err(dev, "Cannot grab IRQ\n");
1997 		return ret;
1998 	}
1999 
2000 	cryp->clk = devm_clk_get(dev, NULL);
2001 	if (IS_ERR(cryp->clk)) {
2002 		dev_err_probe(dev, PTR_ERR(cryp->clk), "Could not get clock\n");
2003 
2004 		return PTR_ERR(cryp->clk);
2005 	}
2006 
2007 	ret = clk_prepare_enable(cryp->clk);
2008 	if (ret) {
2009 		dev_err(cryp->dev, "Failed to enable clock\n");
2010 		return ret;
2011 	}
2012 
2013 	pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
2014 	pm_runtime_use_autosuspend(dev);
2015 
2016 	pm_runtime_get_noresume(dev);
2017 	pm_runtime_set_active(dev);
2018 	pm_runtime_enable(dev);
2019 
2020 	rst = devm_reset_control_get(dev, NULL);
2021 	if (IS_ERR(rst)) {
2022 		ret = PTR_ERR(rst);
2023 		if (ret == -EPROBE_DEFER)
2024 			goto err_rst;
2025 	} else {
2026 		reset_control_assert(rst);
2027 		udelay(2);
2028 		reset_control_deassert(rst);
2029 	}
2030 
2031 	platform_set_drvdata(pdev, cryp);
2032 
2033 	spin_lock(&cryp_list.lock);
2034 	list_add(&cryp->list, &cryp_list.dev_list);
2035 	spin_unlock(&cryp_list.lock);
2036 
2037 	/* Initialize crypto engine */
2038 	cryp->engine = crypto_engine_alloc_init(dev, 1);
2039 	if (!cryp->engine) {
2040 		dev_err(dev, "Could not init crypto engine\n");
2041 		ret = -ENOMEM;
2042 		goto err_engine1;
2043 	}
2044 
2045 	ret = crypto_engine_start(cryp->engine);
2046 	if (ret) {
2047 		dev_err(dev, "Could not start crypto engine\n");
2048 		goto err_engine2;
2049 	}
2050 
2051 	ret = crypto_engine_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2052 	if (ret) {
2053 		dev_err(dev, "Could not register algs\n");
2054 		goto err_algs;
2055 	}
2056 
2057 	if (cryp->caps->aeads_support) {
2058 		ret = crypto_engine_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2059 		if (ret)
2060 			goto err_aead_algs;
2061 	}
2062 
2063 	dev_info(dev, "Initialized\n");
2064 
2065 	pm_runtime_put_sync(dev);
2066 
2067 	return 0;
2068 
2069 err_aead_algs:
2070 	crypto_engine_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2071 err_algs:
2072 err_engine2:
2073 	crypto_engine_exit(cryp->engine);
2074 err_engine1:
2075 	spin_lock(&cryp_list.lock);
2076 	list_del(&cryp->list);
2077 	spin_unlock(&cryp_list.lock);
2078 err_rst:
2079 	pm_runtime_disable(dev);
2080 	pm_runtime_put_noidle(dev);
2081 
2082 	clk_disable_unprepare(cryp->clk);
2083 
2084 	return ret;
2085 }
2086 
2087 static int stm32_cryp_remove(struct platform_device *pdev)
2088 {
2089 	struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2090 	int ret;
2091 
2092 	if (!cryp)
2093 		return -ENODEV;
2094 
2095 	ret = pm_runtime_resume_and_get(cryp->dev);
2096 	if (ret < 0)
2097 		return ret;
2098 
2099 	if (cryp->caps->aeads_support)
2100 		crypto_engine_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2101 	crypto_engine_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2102 
2103 	crypto_engine_exit(cryp->engine);
2104 
2105 	spin_lock(&cryp_list.lock);
2106 	list_del(&cryp->list);
2107 	spin_unlock(&cryp_list.lock);
2108 
2109 	pm_runtime_disable(cryp->dev);
2110 	pm_runtime_put_noidle(cryp->dev);
2111 
2112 	clk_disable_unprepare(cryp->clk);
2113 
2114 	return 0;
2115 }
2116 
2117 #ifdef CONFIG_PM
2118 static int stm32_cryp_runtime_suspend(struct device *dev)
2119 {
2120 	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2121 
2122 	clk_disable_unprepare(cryp->clk);
2123 
2124 	return 0;
2125 }
2126 
2127 static int stm32_cryp_runtime_resume(struct device *dev)
2128 {
2129 	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2130 	int ret;
2131 
2132 	ret = clk_prepare_enable(cryp->clk);
2133 	if (ret) {
2134 		dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2135 		return ret;
2136 	}
2137 
2138 	return 0;
2139 }
2140 #endif
2141 
2142 static const struct dev_pm_ops stm32_cryp_pm_ops = {
2143 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2144 				pm_runtime_force_resume)
2145 	SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2146 			   stm32_cryp_runtime_resume, NULL)
2147 };
2148 
2149 static struct platform_driver stm32_cryp_driver = {
2150 	.probe  = stm32_cryp_probe,
2151 	.remove = stm32_cryp_remove,
2152 	.driver = {
2153 		.name           = DRIVER_NAME,
2154 		.pm		= &stm32_cryp_pm_ops,
2155 		.of_match_table = stm32_dt_ids,
2156 	},
2157 };
2158 
2159 module_platform_driver(stm32_cryp_driver);
2160 
2161 MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2162 MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2163 MODULE_LICENSE("GPL");
2164