xref: /linux/drivers/crypto/s5p-sss.c (revision c9d23f9657cabfd2836a096bf6eddf8df2cf1434)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Cryptographic API.
4 //
5 // Support for Samsung S5PV210 and Exynos HW acceleration.
6 //
7 // Copyright (C) 2011 NetUP Inc. All rights reserved.
8 // Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
9 //
10 // Hash part based on omap-sham.c driver.
11 
12 #include <linux/clk.h>
13 #include <linux/crypto.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/platform_device.h>
25 #include <linux/scatterlist.h>
26 
27 #include <crypto/ctr.h>
28 #include <crypto/aes.h>
29 #include <crypto/algapi.h>
30 #include <crypto/scatterwalk.h>
31 
32 #include <crypto/hash.h>
33 #include <crypto/md5.h>
34 #include <crypto/sha1.h>
35 #include <crypto/sha2.h>
36 #include <crypto/internal/hash.h>
37 
38 #define _SBF(s, v)			((v) << (s))
39 
40 /* Feed control registers */
41 #define SSS_REG_FCINTSTAT		0x0000
42 #define SSS_FCINTSTAT_HPARTINT		BIT(7)
43 #define SSS_FCINTSTAT_HDONEINT		BIT(5)
44 #define SSS_FCINTSTAT_BRDMAINT		BIT(3)
45 #define SSS_FCINTSTAT_BTDMAINT		BIT(2)
46 #define SSS_FCINTSTAT_HRDMAINT		BIT(1)
47 #define SSS_FCINTSTAT_PKDMAINT		BIT(0)
48 
49 #define SSS_REG_FCINTENSET		0x0004
50 #define SSS_FCINTENSET_HPARTINTENSET	BIT(7)
51 #define SSS_FCINTENSET_HDONEINTENSET	BIT(5)
52 #define SSS_FCINTENSET_BRDMAINTENSET	BIT(3)
53 #define SSS_FCINTENSET_BTDMAINTENSET	BIT(2)
54 #define SSS_FCINTENSET_HRDMAINTENSET	BIT(1)
55 #define SSS_FCINTENSET_PKDMAINTENSET	BIT(0)
56 
57 #define SSS_REG_FCINTENCLR		0x0008
58 #define SSS_FCINTENCLR_HPARTINTENCLR	BIT(7)
59 #define SSS_FCINTENCLR_HDONEINTENCLR	BIT(5)
60 #define SSS_FCINTENCLR_BRDMAINTENCLR	BIT(3)
61 #define SSS_FCINTENCLR_BTDMAINTENCLR	BIT(2)
62 #define SSS_FCINTENCLR_HRDMAINTENCLR	BIT(1)
63 #define SSS_FCINTENCLR_PKDMAINTENCLR	BIT(0)
64 
65 #define SSS_REG_FCINTPEND		0x000C
66 #define SSS_FCINTPEND_HPARTINTP		BIT(7)
67 #define SSS_FCINTPEND_HDONEINTP		BIT(5)
68 #define SSS_FCINTPEND_BRDMAINTP		BIT(3)
69 #define SSS_FCINTPEND_BTDMAINTP		BIT(2)
70 #define SSS_FCINTPEND_HRDMAINTP		BIT(1)
71 #define SSS_FCINTPEND_PKDMAINTP		BIT(0)
72 
73 #define SSS_REG_FCFIFOSTAT		0x0010
74 #define SSS_FCFIFOSTAT_BRFIFOFUL	BIT(7)
75 #define SSS_FCFIFOSTAT_BRFIFOEMP	BIT(6)
76 #define SSS_FCFIFOSTAT_BTFIFOFUL	BIT(5)
77 #define SSS_FCFIFOSTAT_BTFIFOEMP	BIT(4)
78 #define SSS_FCFIFOSTAT_HRFIFOFUL	BIT(3)
79 #define SSS_FCFIFOSTAT_HRFIFOEMP	BIT(2)
80 #define SSS_FCFIFOSTAT_PKFIFOFUL	BIT(1)
81 #define SSS_FCFIFOSTAT_PKFIFOEMP	BIT(0)
82 
83 #define SSS_REG_FCFIFOCTRL		0x0014
84 #define SSS_FCFIFOCTRL_DESSEL		BIT(2)
85 #define SSS_HASHIN_INDEPENDENT		_SBF(0, 0x00)
86 #define SSS_HASHIN_CIPHER_INPUT		_SBF(0, 0x01)
87 #define SSS_HASHIN_CIPHER_OUTPUT	_SBF(0, 0x02)
88 #define SSS_HASHIN_MASK			_SBF(0, 0x03)
89 
90 #define SSS_REG_FCBRDMAS		0x0020
91 #define SSS_REG_FCBRDMAL		0x0024
92 #define SSS_REG_FCBRDMAC		0x0028
93 #define SSS_FCBRDMAC_BYTESWAP		BIT(1)
94 #define SSS_FCBRDMAC_FLUSH		BIT(0)
95 
96 #define SSS_REG_FCBTDMAS		0x0030
97 #define SSS_REG_FCBTDMAL		0x0034
98 #define SSS_REG_FCBTDMAC		0x0038
99 #define SSS_FCBTDMAC_BYTESWAP		BIT(1)
100 #define SSS_FCBTDMAC_FLUSH		BIT(0)
101 
102 #define SSS_REG_FCHRDMAS		0x0040
103 #define SSS_REG_FCHRDMAL		0x0044
104 #define SSS_REG_FCHRDMAC		0x0048
105 #define SSS_FCHRDMAC_BYTESWAP		BIT(1)
106 #define SSS_FCHRDMAC_FLUSH		BIT(0)
107 
108 #define SSS_REG_FCPKDMAS		0x0050
109 #define SSS_REG_FCPKDMAL		0x0054
110 #define SSS_REG_FCPKDMAC		0x0058
111 #define SSS_FCPKDMAC_BYTESWAP		BIT(3)
112 #define SSS_FCPKDMAC_DESCEND		BIT(2)
113 #define SSS_FCPKDMAC_TRANSMIT		BIT(1)
114 #define SSS_FCPKDMAC_FLUSH		BIT(0)
115 
116 #define SSS_REG_FCPKDMAO		0x005C
117 
118 /* AES registers */
119 #define SSS_REG_AES_CONTROL		0x00
120 #define SSS_AES_BYTESWAP_DI		BIT(11)
121 #define SSS_AES_BYTESWAP_DO		BIT(10)
122 #define SSS_AES_BYTESWAP_IV		BIT(9)
123 #define SSS_AES_BYTESWAP_CNT		BIT(8)
124 #define SSS_AES_BYTESWAP_KEY		BIT(7)
125 #define SSS_AES_KEY_CHANGE_MODE		BIT(6)
126 #define SSS_AES_KEY_SIZE_128		_SBF(4, 0x00)
127 #define SSS_AES_KEY_SIZE_192		_SBF(4, 0x01)
128 #define SSS_AES_KEY_SIZE_256		_SBF(4, 0x02)
129 #define SSS_AES_FIFO_MODE		BIT(3)
130 #define SSS_AES_CHAIN_MODE_ECB		_SBF(1, 0x00)
131 #define SSS_AES_CHAIN_MODE_CBC		_SBF(1, 0x01)
132 #define SSS_AES_CHAIN_MODE_CTR		_SBF(1, 0x02)
133 #define SSS_AES_MODE_DECRYPT		BIT(0)
134 
135 #define SSS_REG_AES_STATUS		0x04
136 #define SSS_AES_BUSY			BIT(2)
137 #define SSS_AES_INPUT_READY		BIT(1)
138 #define SSS_AES_OUTPUT_READY		BIT(0)
139 
140 #define SSS_REG_AES_IN_DATA(s)		(0x10 + (s << 2))
141 #define SSS_REG_AES_OUT_DATA(s)		(0x20 + (s << 2))
142 #define SSS_REG_AES_IV_DATA(s)		(0x30 + (s << 2))
143 #define SSS_REG_AES_CNT_DATA(s)		(0x40 + (s << 2))
144 #define SSS_REG_AES_KEY_DATA(s)		(0x80 + (s << 2))
145 
146 #define SSS_REG(dev, reg)		((dev)->ioaddr + (SSS_REG_##reg))
147 #define SSS_READ(dev, reg)		__raw_readl(SSS_REG(dev, reg))
148 #define SSS_WRITE(dev, reg, val)	__raw_writel((val), SSS_REG(dev, reg))
149 
150 #define SSS_AES_REG(dev, reg)		((dev)->aes_ioaddr + SSS_REG_##reg)
151 #define SSS_AES_WRITE(dev, reg, val)    __raw_writel((val), \
152 						SSS_AES_REG(dev, reg))
153 
154 /* HW engine modes */
155 #define FLAGS_AES_DECRYPT		BIT(0)
156 #define FLAGS_AES_MODE_MASK		_SBF(1, 0x03)
157 #define FLAGS_AES_CBC			_SBF(1, 0x01)
158 #define FLAGS_AES_CTR			_SBF(1, 0x02)
159 
160 #define AES_KEY_LEN			16
161 #define CRYPTO_QUEUE_LEN		1
162 
163 /* HASH registers */
164 #define SSS_REG_HASH_CTRL		0x00
165 
166 #define SSS_HASH_USER_IV_EN		BIT(5)
167 #define SSS_HASH_INIT_BIT		BIT(4)
168 #define SSS_HASH_ENGINE_SHA1		_SBF(1, 0x00)
169 #define SSS_HASH_ENGINE_MD5		_SBF(1, 0x01)
170 #define SSS_HASH_ENGINE_SHA256		_SBF(1, 0x02)
171 
172 #define SSS_HASH_ENGINE_MASK		_SBF(1, 0x03)
173 
174 #define SSS_REG_HASH_CTRL_PAUSE		0x04
175 
176 #define SSS_HASH_PAUSE			BIT(0)
177 
178 #define SSS_REG_HASH_CTRL_FIFO		0x08
179 
180 #define SSS_HASH_FIFO_MODE_DMA		BIT(0)
181 #define SSS_HASH_FIFO_MODE_CPU          0
182 
183 #define SSS_REG_HASH_CTRL_SWAP		0x0C
184 
185 #define SSS_HASH_BYTESWAP_DI		BIT(3)
186 #define SSS_HASH_BYTESWAP_DO		BIT(2)
187 #define SSS_HASH_BYTESWAP_IV		BIT(1)
188 #define SSS_HASH_BYTESWAP_KEY		BIT(0)
189 
190 #define SSS_REG_HASH_STATUS		0x10
191 
192 #define SSS_HASH_STATUS_MSG_DONE	BIT(6)
193 #define SSS_HASH_STATUS_PARTIAL_DONE	BIT(4)
194 #define SSS_HASH_STATUS_BUFFER_READY	BIT(0)
195 
196 #define SSS_REG_HASH_MSG_SIZE_LOW	0x20
197 #define SSS_REG_HASH_MSG_SIZE_HIGH	0x24
198 
199 #define SSS_REG_HASH_PRE_MSG_SIZE_LOW	0x28
200 #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH	0x2C
201 
202 #define SSS_REG_HASH_IV(s)		(0xB0 + ((s) << 2))
203 #define SSS_REG_HASH_OUT(s)		(0x100 + ((s) << 2))
204 
205 #define HASH_BLOCK_SIZE			64
206 #define HASH_REG_SIZEOF			4
207 #define HASH_MD5_MAX_REG		(MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
208 #define HASH_SHA1_MAX_REG		(SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
209 #define HASH_SHA256_MAX_REG		(SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
210 
211 /*
212  * HASH bit numbers, used by device, setting in dev->hash_flags with
213  * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
214  * to keep HASH state BUSY or FREE, or to signal state from irq_handler
215  * to hash_tasklet. SGS keep track of allocated memory for scatterlist
216  */
217 #define HASH_FLAGS_BUSY		0
218 #define HASH_FLAGS_FINAL	1
219 #define HASH_FLAGS_DMA_ACTIVE	2
220 #define HASH_FLAGS_OUTPUT_READY	3
221 #define HASH_FLAGS_DMA_READY	4
222 #define HASH_FLAGS_SGS_COPIED	5
223 #define HASH_FLAGS_SGS_ALLOCED	6
224 
225 /* HASH HW constants */
226 #define BUFLEN			HASH_BLOCK_SIZE
227 
228 #define SSS_HASH_DMA_LEN_ALIGN	8
229 #define SSS_HASH_DMA_ALIGN_MASK	(SSS_HASH_DMA_LEN_ALIGN - 1)
230 
231 #define SSS_HASH_QUEUE_LENGTH	10
232 
233 /**
234  * struct samsung_aes_variant - platform specific SSS driver data
235  * @aes_offset: AES register offset from SSS module's base.
236  * @hash_offset: HASH register offset from SSS module's base.
237  * @clk_names: names of clocks needed to run SSS IP
238  *
239  * Specifies platform specific configuration of SSS module.
240  * Note: A structure for driver specific platform data is used for future
241  * expansion of its usage.
242  */
243 struct samsung_aes_variant {
244 	unsigned int			aes_offset;
245 	unsigned int			hash_offset;
246 	const char			*clk_names[2];
247 };
248 
249 struct s5p_aes_reqctx {
250 	unsigned long			mode;
251 };
252 
253 struct s5p_aes_ctx {
254 	struct s5p_aes_dev		*dev;
255 
256 	u8				aes_key[AES_MAX_KEY_SIZE];
257 	u8				nonce[CTR_RFC3686_NONCE_SIZE];
258 	int				keylen;
259 };
260 
261 /**
262  * struct s5p_aes_dev - Crypto device state container
263  * @dev:	Associated device
264  * @clk:	Clock for accessing hardware
265  * @pclk:	APB bus clock necessary to access the hardware
266  * @ioaddr:	Mapped IO memory region
267  * @aes_ioaddr:	Per-varian offset for AES block IO memory
268  * @irq_fc:	Feed control interrupt line
269  * @req:	Crypto request currently handled by the device
270  * @ctx:	Configuration for currently handled crypto request
271  * @sg_src:	Scatter list with source data for currently handled block
272  *		in device.  This is DMA-mapped into device.
273  * @sg_dst:	Scatter list with destination data for currently handled block
274  *		in device. This is DMA-mapped into device.
275  * @sg_src_cpy:	In case of unaligned access, copied scatter list
276  *		with source data.
277  * @sg_dst_cpy:	In case of unaligned access, copied scatter list
278  *		with destination data.
279  * @tasklet:	New request scheduling jib
280  * @queue:	Crypto queue
281  * @busy:	Indicates whether the device is currently handling some request
282  *		thus it uses some of the fields from this state, like:
283  *		req, ctx, sg_src/dst (and copies).  This essentially
284  *		protects against concurrent access to these fields.
285  * @lock:	Lock for protecting both access to device hardware registers
286  *		and fields related to current request (including the busy field).
287  * @res:	Resources for hash.
288  * @io_hash_base: Per-variant offset for HASH block IO memory.
289  * @hash_lock:	Lock for protecting hash_req, hash_queue and hash_flags
290  *		variable.
291  * @hash_flags:	Flags for current HASH op.
292  * @hash_queue:	Async hash queue.
293  * @hash_tasklet: New HASH request scheduling job.
294  * @xmit_buf:	Buffer for current HASH request transfer into SSS block.
295  * @hash_req:	Current request sending to SSS HASH block.
296  * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
297  * @hash_sg_cnt: Counter for hash_sg_iter.
298  *
299  * @use_hash:	true if HASH algs enabled
300  */
301 struct s5p_aes_dev {
302 	struct device			*dev;
303 	struct clk			*clk;
304 	struct clk			*pclk;
305 	void __iomem			*ioaddr;
306 	void __iomem			*aes_ioaddr;
307 	int				irq_fc;
308 
309 	struct skcipher_request		*req;
310 	struct s5p_aes_ctx		*ctx;
311 	struct scatterlist		*sg_src;
312 	struct scatterlist		*sg_dst;
313 
314 	struct scatterlist		*sg_src_cpy;
315 	struct scatterlist		*sg_dst_cpy;
316 
317 	struct tasklet_struct		tasklet;
318 	struct crypto_queue		queue;
319 	bool				busy;
320 	spinlock_t			lock;
321 
322 	struct resource			*res;
323 	void __iomem			*io_hash_base;
324 
325 	spinlock_t			hash_lock; /* protect hash_ vars */
326 	unsigned long			hash_flags;
327 	struct crypto_queue		hash_queue;
328 	struct tasklet_struct		hash_tasklet;
329 
330 	u8				xmit_buf[BUFLEN];
331 	struct ahash_request		*hash_req;
332 	struct scatterlist		*hash_sg_iter;
333 	unsigned int			hash_sg_cnt;
334 
335 	bool				use_hash;
336 };
337 
338 /**
339  * struct s5p_hash_reqctx - HASH request context
340  * @dd:		Associated device
341  * @op_update:	Current request operation (OP_UPDATE or OP_FINAL)
342  * @digcnt:	Number of bytes processed by HW (without buffer[] ones)
343  * @digest:	Digest message or IV for partial result
344  * @nregs:	Number of HW registers for digest or IV read/write
345  * @engine:	Bits for selecting type of HASH in SSS block
346  * @sg:		sg for DMA transfer
347  * @sg_len:	Length of sg for DMA transfer
348  * @sgl:	sg for joining buffer and req->src scatterlist
349  * @skip:	Skip offset in req->src for current op
350  * @total:	Total number of bytes for current request
351  * @finup:	Keep state for finup or final.
352  * @error:	Keep track of error.
353  * @bufcnt:	Number of bytes holded in buffer[]
354  * @buffer:	For byte(s) from end of req->src in UPDATE op
355  */
356 struct s5p_hash_reqctx {
357 	struct s5p_aes_dev	*dd;
358 	bool			op_update;
359 
360 	u64			digcnt;
361 	u8			digest[SHA256_DIGEST_SIZE];
362 
363 	unsigned int		nregs; /* digest_size / sizeof(reg) */
364 	u32			engine;
365 
366 	struct scatterlist	*sg;
367 	unsigned int		sg_len;
368 	struct scatterlist	sgl[2];
369 	unsigned int		skip;
370 	unsigned int		total;
371 	bool			finup;
372 	bool			error;
373 
374 	u32			bufcnt;
375 	u8			buffer[];
376 };
377 
378 /**
379  * struct s5p_hash_ctx - HASH transformation context
380  * @dd:		Associated device
381  * @flags:	Bits for algorithm HASH.
382  * @fallback:	Software transformation for zero message or size < BUFLEN.
383  */
384 struct s5p_hash_ctx {
385 	struct s5p_aes_dev	*dd;
386 	unsigned long		flags;
387 	struct crypto_shash	*fallback;
388 };
389 
390 static const struct samsung_aes_variant s5p_aes_data = {
391 	.aes_offset	= 0x4000,
392 	.hash_offset	= 0x6000,
393 	.clk_names	= { "secss", },
394 };
395 
396 static const struct samsung_aes_variant exynos_aes_data = {
397 	.aes_offset	= 0x200,
398 	.hash_offset	= 0x400,
399 	.clk_names	= { "secss", },
400 };
401 
402 static const struct samsung_aes_variant exynos5433_slim_aes_data = {
403 	.aes_offset	= 0x400,
404 	.hash_offset	= 0x800,
405 	.clk_names	= { "aclk", "pclk", },
406 };
407 
408 static const struct of_device_id s5p_sss_dt_match[] = {
409 	{
410 		.compatible = "samsung,s5pv210-secss",
411 		.data = &s5p_aes_data,
412 	},
413 	{
414 		.compatible = "samsung,exynos4210-secss",
415 		.data = &exynos_aes_data,
416 	},
417 	{
418 		.compatible = "samsung,exynos5433-slim-sss",
419 		.data = &exynos5433_slim_aes_data,
420 	},
421 	{ },
422 };
423 MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
424 
425 static inline const struct samsung_aes_variant *find_s5p_sss_version
426 				   (const struct platform_device *pdev)
427 {
428 	if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node))
429 		return of_device_get_match_data(&pdev->dev);
430 
431 	return (const struct samsung_aes_variant *)
432 			platform_get_device_id(pdev)->driver_data;
433 }
434 
435 static struct s5p_aes_dev *s5p_dev;
436 
437 static void s5p_set_dma_indata(struct s5p_aes_dev *dev,
438 			       const struct scatterlist *sg)
439 {
440 	SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
441 	SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
442 }
443 
444 static void s5p_set_dma_outdata(struct s5p_aes_dev *dev,
445 				const struct scatterlist *sg)
446 {
447 	SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
448 	SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
449 }
450 
451 static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
452 {
453 	int len;
454 
455 	if (!*sg)
456 		return;
457 
458 	len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
459 	free_pages((unsigned long)sg_virt(*sg), get_order(len));
460 
461 	kfree(*sg);
462 	*sg = NULL;
463 }
464 
465 static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg,
466 			    unsigned int nbytes, int out)
467 {
468 	struct scatter_walk walk;
469 
470 	if (!nbytes)
471 		return;
472 
473 	scatterwalk_start(&walk, sg);
474 	scatterwalk_copychunks(buf, &walk, nbytes, out);
475 	scatterwalk_done(&walk, out, 0);
476 }
477 
478 static void s5p_sg_done(struct s5p_aes_dev *dev)
479 {
480 	struct skcipher_request *req = dev->req;
481 	struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
482 
483 	if (dev->sg_dst_cpy) {
484 		dev_dbg(dev->dev,
485 			"Copying %d bytes of output data back to original place\n",
486 			dev->req->cryptlen);
487 		s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst,
488 				dev->req->cryptlen, 1);
489 	}
490 	s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
491 	s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
492 	if (reqctx->mode & FLAGS_AES_CBC)
493 		memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), AES_BLOCK_SIZE);
494 
495 	else if (reqctx->mode & FLAGS_AES_CTR)
496 		memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), AES_BLOCK_SIZE);
497 }
498 
499 /* Calls the completion. Cannot be called with dev->lock hold. */
500 static void s5p_aes_complete(struct skcipher_request *req, int err)
501 {
502 	skcipher_request_complete(req, err);
503 }
504 
505 static void s5p_unset_outdata(struct s5p_aes_dev *dev)
506 {
507 	dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
508 }
509 
510 static void s5p_unset_indata(struct s5p_aes_dev *dev)
511 {
512 	dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
513 }
514 
515 static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
516 			   struct scatterlist **dst)
517 {
518 	void *pages;
519 	int len;
520 
521 	*dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
522 	if (!*dst)
523 		return -ENOMEM;
524 
525 	len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
526 	pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
527 	if (!pages) {
528 		kfree(*dst);
529 		*dst = NULL;
530 		return -ENOMEM;
531 	}
532 
533 	s5p_sg_copy_buf(pages, src, dev->req->cryptlen, 0);
534 
535 	sg_init_table(*dst, 1);
536 	sg_set_buf(*dst, pages, len);
537 
538 	return 0;
539 }
540 
541 static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
542 {
543 	if (!sg->length)
544 		return -EINVAL;
545 
546 	if (!dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE))
547 		return -ENOMEM;
548 
549 	dev->sg_dst = sg;
550 
551 	return 0;
552 }
553 
554 static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
555 {
556 	if (!sg->length)
557 		return -EINVAL;
558 
559 	if (!dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE))
560 		return -ENOMEM;
561 
562 	dev->sg_src = sg;
563 
564 	return 0;
565 }
566 
567 /*
568  * Returns -ERRNO on error (mapping of new data failed).
569  * On success returns:
570  *  - 0 if there is no more data,
571  *  - 1 if new transmitting (output) data is ready and its address+length
572  *     have to be written to device (by calling s5p_set_dma_outdata()).
573  */
574 static int s5p_aes_tx(struct s5p_aes_dev *dev)
575 {
576 	int ret = 0;
577 
578 	s5p_unset_outdata(dev);
579 
580 	if (!sg_is_last(dev->sg_dst)) {
581 		ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
582 		if (!ret)
583 			ret = 1;
584 	}
585 
586 	return ret;
587 }
588 
589 /*
590  * Returns -ERRNO on error (mapping of new data failed).
591  * On success returns:
592  *  - 0 if there is no more data,
593  *  - 1 if new receiving (input) data is ready and its address+length
594  *     have to be written to device (by calling s5p_set_dma_indata()).
595  */
596 static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
597 {
598 	int ret = 0;
599 
600 	s5p_unset_indata(dev);
601 
602 	if (!sg_is_last(dev->sg_src)) {
603 		ret = s5p_set_indata(dev, sg_next(dev->sg_src));
604 		if (!ret)
605 			ret = 1;
606 	}
607 
608 	return ret;
609 }
610 
611 static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset)
612 {
613 	return __raw_readl(dd->io_hash_base + offset);
614 }
615 
616 static inline void s5p_hash_write(struct s5p_aes_dev *dd,
617 				  u32 offset, u32 value)
618 {
619 	__raw_writel(value, dd->io_hash_base + offset);
620 }
621 
622 /**
623  * s5p_set_dma_hashdata() - start DMA with sg
624  * @dev:	device
625  * @sg:		scatterlist ready to DMA transmit
626  */
627 static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev,
628 				 const struct scatterlist *sg)
629 {
630 	dev->hash_sg_cnt--;
631 	SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg));
632 	SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */
633 }
634 
635 /**
636  * s5p_hash_rx() - get next hash_sg_iter
637  * @dev:	device
638  *
639  * Return:
640  * 2	if there is no more data and it is UPDATE op
641  * 1	if new receiving (input) data is ready and can be written to device
642  * 0	if there is no more data and it is FINAL op
643  */
644 static int s5p_hash_rx(struct s5p_aes_dev *dev)
645 {
646 	if (dev->hash_sg_cnt > 0) {
647 		dev->hash_sg_iter = sg_next(dev->hash_sg_iter);
648 		return 1;
649 	}
650 
651 	set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags);
652 	if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags))
653 		return 0;
654 
655 	return 2;
656 }
657 
658 static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
659 {
660 	struct platform_device *pdev = dev_id;
661 	struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
662 	struct skcipher_request *req;
663 	int err_dma_tx = 0;
664 	int err_dma_rx = 0;
665 	int err_dma_hx = 0;
666 	bool tx_end = false;
667 	bool hx_end = false;
668 	unsigned long flags;
669 	u32 status, st_bits;
670 	int err;
671 
672 	spin_lock_irqsave(&dev->lock, flags);
673 
674 	/*
675 	 * Handle rx or tx interrupt. If there is still data (scatterlist did not
676 	 * reach end), then map next scatterlist entry.
677 	 * In case of such mapping error, s5p_aes_complete() should be called.
678 	 *
679 	 * If there is no more data in tx scatter list, call s5p_aes_complete()
680 	 * and schedule new tasklet.
681 	 *
682 	 * Handle hx interrupt. If there is still data map next entry.
683 	 */
684 	status = SSS_READ(dev, FCINTSTAT);
685 	if (status & SSS_FCINTSTAT_BRDMAINT)
686 		err_dma_rx = s5p_aes_rx(dev);
687 
688 	if (status & SSS_FCINTSTAT_BTDMAINT) {
689 		if (sg_is_last(dev->sg_dst))
690 			tx_end = true;
691 		err_dma_tx = s5p_aes_tx(dev);
692 	}
693 
694 	if (status & SSS_FCINTSTAT_HRDMAINT)
695 		err_dma_hx = s5p_hash_rx(dev);
696 
697 	st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT |
698 				SSS_FCINTSTAT_HRDMAINT);
699 	/* clear DMA bits */
700 	SSS_WRITE(dev, FCINTPEND, st_bits);
701 
702 	/* clear HASH irq bits */
703 	if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) {
704 		/* cannot have both HPART and HDONE */
705 		if (status & SSS_FCINTSTAT_HPARTINT)
706 			st_bits = SSS_HASH_STATUS_PARTIAL_DONE;
707 
708 		if (status & SSS_FCINTSTAT_HDONEINT)
709 			st_bits = SSS_HASH_STATUS_MSG_DONE;
710 
711 		set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags);
712 		s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits);
713 		hx_end = true;
714 		/* when DONE or PART, do not handle HASH DMA */
715 		err_dma_hx = 0;
716 	}
717 
718 	if (err_dma_rx < 0) {
719 		err = err_dma_rx;
720 		goto error;
721 	}
722 	if (err_dma_tx < 0) {
723 		err = err_dma_tx;
724 		goto error;
725 	}
726 
727 	if (tx_end) {
728 		s5p_sg_done(dev);
729 		if (err_dma_hx == 1)
730 			s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
731 
732 		spin_unlock_irqrestore(&dev->lock, flags);
733 
734 		s5p_aes_complete(dev->req, 0);
735 		/* Device is still busy */
736 		tasklet_schedule(&dev->tasklet);
737 	} else {
738 		/*
739 		 * Writing length of DMA block (either receiving or
740 		 * transmitting) will start the operation immediately, so this
741 		 * should be done at the end (even after clearing pending
742 		 * interrupts to not miss the interrupt).
743 		 */
744 		if (err_dma_tx == 1)
745 			s5p_set_dma_outdata(dev, dev->sg_dst);
746 		if (err_dma_rx == 1)
747 			s5p_set_dma_indata(dev, dev->sg_src);
748 		if (err_dma_hx == 1)
749 			s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
750 
751 		spin_unlock_irqrestore(&dev->lock, flags);
752 	}
753 
754 	goto hash_irq_end;
755 
756 error:
757 	s5p_sg_done(dev);
758 	dev->busy = false;
759 	req = dev->req;
760 	if (err_dma_hx == 1)
761 		s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
762 
763 	spin_unlock_irqrestore(&dev->lock, flags);
764 	s5p_aes_complete(req, err);
765 
766 hash_irq_end:
767 	/*
768 	 * Note about else if:
769 	 *   when hash_sg_iter reaches end and its UPDATE op,
770 	 *   issue SSS_HASH_PAUSE and wait for HPART irq
771 	 */
772 	if (hx_end)
773 		tasklet_schedule(&dev->hash_tasklet);
774 	else if (err_dma_hx == 2)
775 		s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE,
776 			       SSS_HASH_PAUSE);
777 
778 	return IRQ_HANDLED;
779 }
780 
781 /**
782  * s5p_hash_read_msg() - read message or IV from HW
783  * @req:	AHASH request
784  */
785 static void s5p_hash_read_msg(struct ahash_request *req)
786 {
787 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
788 	struct s5p_aes_dev *dd = ctx->dd;
789 	u32 *hash = (u32 *)ctx->digest;
790 	unsigned int i;
791 
792 	for (i = 0; i < ctx->nregs; i++)
793 		hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i));
794 }
795 
796 /**
797  * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
798  * @dd:		device
799  * @ctx:	request context
800  */
801 static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd,
802 				  const struct s5p_hash_reqctx *ctx)
803 {
804 	const u32 *hash = (const u32 *)ctx->digest;
805 	unsigned int i;
806 
807 	for (i = 0; i < ctx->nregs; i++)
808 		s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]);
809 }
810 
811 /**
812  * s5p_hash_write_iv() - write IV for next partial/finup op.
813  * @req:	AHASH request
814  */
815 static void s5p_hash_write_iv(struct ahash_request *req)
816 {
817 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
818 
819 	s5p_hash_write_ctx_iv(ctx->dd, ctx);
820 }
821 
822 /**
823  * s5p_hash_copy_result() - copy digest into req->result
824  * @req:	AHASH request
825  */
826 static void s5p_hash_copy_result(struct ahash_request *req)
827 {
828 	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
829 
830 	if (!req->result)
831 		return;
832 
833 	memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF);
834 }
835 
836 /**
837  * s5p_hash_dma_flush() - flush HASH DMA
838  * @dev:	secss device
839  */
840 static void s5p_hash_dma_flush(struct s5p_aes_dev *dev)
841 {
842 	SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH);
843 }
844 
845 /**
846  * s5p_hash_dma_enable() - enable DMA mode for HASH
847  * @dev:	secss device
848  *
849  * enable DMA mode for HASH
850  */
851 static void s5p_hash_dma_enable(struct s5p_aes_dev *dev)
852 {
853 	s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA);
854 }
855 
856 /**
857  * s5p_hash_irq_disable() - disable irq HASH signals
858  * @dev:	secss device
859  * @flags:	bitfield with irq's to be disabled
860  */
861 static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags)
862 {
863 	SSS_WRITE(dev, FCINTENCLR, flags);
864 }
865 
866 /**
867  * s5p_hash_irq_enable() - enable irq signals
868  * @dev:	secss device
869  * @flags:	bitfield with irq's to be enabled
870  */
871 static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags)
872 {
873 	SSS_WRITE(dev, FCINTENSET, flags);
874 }
875 
876 /**
877  * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
878  * @dev:	secss device
879  * @hashflow:	HASH stream flow with/without crypto AES/DES
880  */
881 static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow)
882 {
883 	unsigned long flags;
884 	u32 flow;
885 
886 	spin_lock_irqsave(&dev->lock, flags);
887 
888 	flow = SSS_READ(dev, FCFIFOCTRL);
889 	flow &= ~SSS_HASHIN_MASK;
890 	flow |= hashflow;
891 	SSS_WRITE(dev, FCFIFOCTRL, flow);
892 
893 	spin_unlock_irqrestore(&dev->lock, flags);
894 }
895 
896 /**
897  * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
898  * @dev:	secss device
899  * @hashflow:	HASH stream flow with/without AES/DES
900  *
901  * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
902  * enable HASH irq's HRDMA, HDONE, HPART
903  */
904 static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow)
905 {
906 	s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR |
907 			     SSS_FCINTENCLR_HDONEINTENCLR |
908 			     SSS_FCINTENCLR_HPARTINTENCLR);
909 	s5p_hash_dma_flush(dev);
910 
911 	s5p_hash_dma_enable(dev);
912 	s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK);
913 	s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET |
914 			    SSS_FCINTENSET_HDONEINTENSET |
915 			    SSS_FCINTENSET_HPARTINTENSET);
916 }
917 
918 /**
919  * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
920  * @dd:		secss device
921  * @length:	length for request
922  * @final:	true if final op
923  *
924  * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
925  * after previous updates, fill up IV words. For final, calculate and set
926  * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
927  * length as 2^63 so it will be never reached and set to zero prelow and
928  * prehigh.
929  *
930  * This function does not start DMA transfer.
931  */
932 static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length,
933 				bool final)
934 {
935 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
936 	u32 prelow, prehigh, low, high;
937 	u32 configflags, swapflags;
938 	u64 tmplen;
939 
940 	configflags = ctx->engine | SSS_HASH_INIT_BIT;
941 
942 	if (likely(ctx->digcnt)) {
943 		s5p_hash_write_ctx_iv(dd, ctx);
944 		configflags |= SSS_HASH_USER_IV_EN;
945 	}
946 
947 	if (final) {
948 		/* number of bytes for last part */
949 		low = length;
950 		high = 0;
951 		/* total number of bits prev hashed */
952 		tmplen = ctx->digcnt * 8;
953 		prelow = (u32)tmplen;
954 		prehigh = (u32)(tmplen >> 32);
955 	} else {
956 		prelow = 0;
957 		prehigh = 0;
958 		low = 0;
959 		high = BIT(31);
960 	}
961 
962 	swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO |
963 		    SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY;
964 
965 	s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low);
966 	s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high);
967 	s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow);
968 	s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh);
969 
970 	s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags);
971 	s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags);
972 }
973 
974 /**
975  * s5p_hash_xmit_dma() - start DMA hash processing
976  * @dd:		secss device
977  * @length:	length for request
978  * @final:	true if final op
979  *
980  * Update digcnt here, as it is needed for finup/final op.
981  */
982 static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length,
983 			     bool final)
984 {
985 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
986 	unsigned int cnt;
987 
988 	cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
989 	if (!cnt) {
990 		dev_err(dd->dev, "dma_map_sg error\n");
991 		ctx->error = true;
992 		return -EINVAL;
993 	}
994 
995 	set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
996 	dd->hash_sg_iter = ctx->sg;
997 	dd->hash_sg_cnt = cnt;
998 	s5p_hash_write_ctrl(dd, length, final);
999 	ctx->digcnt += length;
1000 	ctx->total -= length;
1001 
1002 	/* catch last interrupt */
1003 	if (final)
1004 		set_bit(HASH_FLAGS_FINAL, &dd->hash_flags);
1005 
1006 	s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */
1007 
1008 	return -EINPROGRESS;
1009 }
1010 
1011 /**
1012  * s5p_hash_copy_sgs() - copy request's bytes into new buffer
1013  * @ctx:	request context
1014  * @sg:		source scatterlist request
1015  * @new_len:	number of bytes to process from sg
1016  *
1017  * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
1018  * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
1019  * with allocated buffer.
1020  *
1021  * Set bit in dd->hash_flag so we can free it after irq ends processing.
1022  */
1023 static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx,
1024 			     struct scatterlist *sg, unsigned int new_len)
1025 {
1026 	unsigned int pages, len;
1027 	void *buf;
1028 
1029 	len = new_len + ctx->bufcnt;
1030 	pages = get_order(len);
1031 
1032 	buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1033 	if (!buf) {
1034 		dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n");
1035 		ctx->error = true;
1036 		return -ENOMEM;
1037 	}
1038 
1039 	if (ctx->bufcnt)
1040 		memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
1041 
1042 	scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip,
1043 				 new_len, 0);
1044 	sg_init_table(ctx->sgl, 1);
1045 	sg_set_buf(ctx->sgl, buf, len);
1046 	ctx->sg = ctx->sgl;
1047 	ctx->sg_len = 1;
1048 	ctx->bufcnt = 0;
1049 	ctx->skip = 0;
1050 	set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags);
1051 
1052 	return 0;
1053 }
1054 
1055 /**
1056  * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1057  * @ctx:	request context
1058  * @sg:		source scatterlist request
1059  * @new_len:	number of bytes to process from sg
1060  *
1061  * Allocate new scatterlist table, copy data for HASH into it. If there was
1062  * xmit_buf filled, prepare it first, then copy page, length and offset from
1063  * source sg into it, adjusting begin and/or end for skip offset and
1064  * hash_later value.
1065  *
1066  * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1067  * it after irq ends processing.
1068  */
1069 static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx,
1070 				  struct scatterlist *sg, unsigned int new_len)
1071 {
1072 	unsigned int skip = ctx->skip, n = sg_nents(sg);
1073 	struct scatterlist *tmp;
1074 	unsigned int len;
1075 
1076 	if (ctx->bufcnt)
1077 		n++;
1078 
1079 	ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
1080 	if (!ctx->sg) {
1081 		ctx->error = true;
1082 		return -ENOMEM;
1083 	}
1084 
1085 	sg_init_table(ctx->sg, n);
1086 
1087 	tmp = ctx->sg;
1088 
1089 	ctx->sg_len = 0;
1090 
1091 	if (ctx->bufcnt) {
1092 		sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
1093 		tmp = sg_next(tmp);
1094 		ctx->sg_len++;
1095 	}
1096 
1097 	while (sg && skip >= sg->length) {
1098 		skip -= sg->length;
1099 		sg = sg_next(sg);
1100 	}
1101 
1102 	while (sg && new_len) {
1103 		len = sg->length - skip;
1104 		if (new_len < len)
1105 			len = new_len;
1106 
1107 		new_len -= len;
1108 		sg_set_page(tmp, sg_page(sg), len, sg->offset + skip);
1109 		skip = 0;
1110 		if (new_len <= 0)
1111 			sg_mark_end(tmp);
1112 
1113 		tmp = sg_next(tmp);
1114 		ctx->sg_len++;
1115 		sg = sg_next(sg);
1116 	}
1117 
1118 	set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags);
1119 
1120 	return 0;
1121 }
1122 
1123 /**
1124  * s5p_hash_prepare_sgs() - prepare sg for processing
1125  * @ctx:	request context
1126  * @sg:		source scatterlist request
1127  * @new_len:	number of bytes to process from sg
1128  * @final:	final flag
1129  *
1130  * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1131  * sg table have good aligned elements (list_ok). If one of this checks fails,
1132  * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1133  * data into this buffer and prepare request in sgl, or (2) allocates new sg
1134  * table and prepare sg elements.
1135  *
1136  * For digest or finup all conditions can be good, and we may not need any
1137  * fixes.
1138  */
1139 static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx,
1140 				struct scatterlist *sg,
1141 				unsigned int new_len, bool final)
1142 {
1143 	unsigned int skip = ctx->skip, nbytes = new_len, n = 0;
1144 	bool aligned = true, list_ok = true;
1145 	struct scatterlist *sg_tmp = sg;
1146 
1147 	if (!sg || !sg->length || !new_len)
1148 		return 0;
1149 
1150 	if (skip || !final)
1151 		list_ok = false;
1152 
1153 	while (nbytes > 0 && sg_tmp) {
1154 		n++;
1155 		if (skip >= sg_tmp->length) {
1156 			skip -= sg_tmp->length;
1157 			if (!sg_tmp->length) {
1158 				aligned = false;
1159 				break;
1160 			}
1161 		} else {
1162 			if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) {
1163 				aligned = false;
1164 				break;
1165 			}
1166 
1167 			if (nbytes < sg_tmp->length - skip) {
1168 				list_ok = false;
1169 				break;
1170 			}
1171 
1172 			nbytes -= sg_tmp->length - skip;
1173 			skip = 0;
1174 		}
1175 
1176 		sg_tmp = sg_next(sg_tmp);
1177 	}
1178 
1179 	if (!aligned)
1180 		return s5p_hash_copy_sgs(ctx, sg, new_len);
1181 	else if (!list_ok)
1182 		return s5p_hash_copy_sg_lists(ctx, sg, new_len);
1183 
1184 	/*
1185 	 * Have aligned data from previous operation and/or current
1186 	 * Note: will enter here only if (digest or finup) and aligned
1187 	 */
1188 	if (ctx->bufcnt) {
1189 		ctx->sg_len = n;
1190 		sg_init_table(ctx->sgl, 2);
1191 		sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt);
1192 		sg_chain(ctx->sgl, 2, sg);
1193 		ctx->sg = ctx->sgl;
1194 		ctx->sg_len++;
1195 	} else {
1196 		ctx->sg = sg;
1197 		ctx->sg_len = n;
1198 	}
1199 
1200 	return 0;
1201 }
1202 
1203 /**
1204  * s5p_hash_prepare_request() - prepare request for processing
1205  * @req:	AHASH request
1206  * @update:	true if UPDATE op
1207  *
1208  * Note 1: we can have update flag _and_ final flag at the same time.
1209  * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1210  *	   either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1211  *	   we have final op
1212  */
1213 static int s5p_hash_prepare_request(struct ahash_request *req, bool update)
1214 {
1215 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1216 	bool final = ctx->finup;
1217 	int xmit_len, hash_later, nbytes;
1218 	int ret;
1219 
1220 	if (update)
1221 		nbytes = req->nbytes;
1222 	else
1223 		nbytes = 0;
1224 
1225 	ctx->total = nbytes + ctx->bufcnt;
1226 	if (!ctx->total)
1227 		return 0;
1228 
1229 	if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) {
1230 		/* bytes left from previous request, so fill up to BUFLEN */
1231 		int len = BUFLEN - ctx->bufcnt % BUFLEN;
1232 
1233 		if (len > nbytes)
1234 			len = nbytes;
1235 
1236 		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1237 					 0, len, 0);
1238 		ctx->bufcnt += len;
1239 		nbytes -= len;
1240 		ctx->skip = len;
1241 	} else {
1242 		ctx->skip = 0;
1243 	}
1244 
1245 	if (ctx->bufcnt)
1246 		memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt);
1247 
1248 	xmit_len = ctx->total;
1249 	if (final) {
1250 		hash_later = 0;
1251 	} else {
1252 		if (IS_ALIGNED(xmit_len, BUFLEN))
1253 			xmit_len -= BUFLEN;
1254 		else
1255 			xmit_len -= xmit_len & (BUFLEN - 1);
1256 
1257 		hash_later = ctx->total - xmit_len;
1258 		/* copy hash_later bytes from end of req->src */
1259 		/* previous bytes are in xmit_buf, so no overwrite */
1260 		scatterwalk_map_and_copy(ctx->buffer, req->src,
1261 					 req->nbytes - hash_later,
1262 					 hash_later, 0);
1263 	}
1264 
1265 	if (xmit_len > BUFLEN) {
1266 		ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later,
1267 					   final);
1268 		if (ret)
1269 			return ret;
1270 	} else {
1271 		/* have buffered data only */
1272 		if (unlikely(!ctx->bufcnt)) {
1273 			/* first update didn't fill up buffer */
1274 			scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src,
1275 						 0, xmit_len, 0);
1276 		}
1277 
1278 		sg_init_table(ctx->sgl, 1);
1279 		sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len);
1280 
1281 		ctx->sg = ctx->sgl;
1282 		ctx->sg_len = 1;
1283 	}
1284 
1285 	ctx->bufcnt = hash_later;
1286 	if (!final)
1287 		ctx->total = xmit_len;
1288 
1289 	return 0;
1290 }
1291 
1292 /**
1293  * s5p_hash_update_dma_stop() - unmap DMA
1294  * @dd:		secss device
1295  *
1296  * Unmap scatterlist ctx->sg.
1297  */
1298 static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd)
1299 {
1300 	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
1301 
1302 	dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
1303 	clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
1304 }
1305 
1306 /**
1307  * s5p_hash_finish() - copy calculated digest to crypto layer
1308  * @req:	AHASH request
1309  */
1310 static void s5p_hash_finish(struct ahash_request *req)
1311 {
1312 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1313 	struct s5p_aes_dev *dd = ctx->dd;
1314 
1315 	if (ctx->digcnt)
1316 		s5p_hash_copy_result(req);
1317 
1318 	dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt);
1319 }
1320 
1321 /**
1322  * s5p_hash_finish_req() - finish request
1323  * @req:	AHASH request
1324  * @err:	error
1325  */
1326 static void s5p_hash_finish_req(struct ahash_request *req, int err)
1327 {
1328 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1329 	struct s5p_aes_dev *dd = ctx->dd;
1330 	unsigned long flags;
1331 
1332 	if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags))
1333 		free_pages((unsigned long)sg_virt(ctx->sg),
1334 			   get_order(ctx->sg->length));
1335 
1336 	if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags))
1337 		kfree(ctx->sg);
1338 
1339 	ctx->sg = NULL;
1340 	dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) |
1341 			    BIT(HASH_FLAGS_SGS_COPIED));
1342 
1343 	if (!err && !ctx->error) {
1344 		s5p_hash_read_msg(req);
1345 		if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags))
1346 			s5p_hash_finish(req);
1347 	} else {
1348 		ctx->error = true;
1349 	}
1350 
1351 	spin_lock_irqsave(&dd->hash_lock, flags);
1352 	dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) |
1353 			    BIT(HASH_FLAGS_DMA_READY) |
1354 			    BIT(HASH_FLAGS_OUTPUT_READY));
1355 	spin_unlock_irqrestore(&dd->hash_lock, flags);
1356 
1357 	if (req->base.complete)
1358 		ahash_request_complete(req, err);
1359 }
1360 
1361 /**
1362  * s5p_hash_handle_queue() - handle hash queue
1363  * @dd:		device s5p_aes_dev
1364  * @req:	AHASH request
1365  *
1366  * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1367  * device then processes the first request from the dd->queue
1368  *
1369  * Returns: see s5p_hash_final below.
1370  */
1371 static int s5p_hash_handle_queue(struct s5p_aes_dev *dd,
1372 				 struct ahash_request *req)
1373 {
1374 	struct crypto_async_request *async_req, *backlog;
1375 	struct s5p_hash_reqctx *ctx;
1376 	unsigned long flags;
1377 	int err = 0, ret = 0;
1378 
1379 retry:
1380 	spin_lock_irqsave(&dd->hash_lock, flags);
1381 	if (req)
1382 		ret = ahash_enqueue_request(&dd->hash_queue, req);
1383 
1384 	if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1385 		spin_unlock_irqrestore(&dd->hash_lock, flags);
1386 		return ret;
1387 	}
1388 
1389 	backlog = crypto_get_backlog(&dd->hash_queue);
1390 	async_req = crypto_dequeue_request(&dd->hash_queue);
1391 	if (async_req)
1392 		set_bit(HASH_FLAGS_BUSY, &dd->hash_flags);
1393 
1394 	spin_unlock_irqrestore(&dd->hash_lock, flags);
1395 
1396 	if (!async_req)
1397 		return ret;
1398 
1399 	if (backlog)
1400 		crypto_request_complete(backlog, -EINPROGRESS);
1401 
1402 	req = ahash_request_cast(async_req);
1403 	dd->hash_req = req;
1404 	ctx = ahash_request_ctx(req);
1405 
1406 	err = s5p_hash_prepare_request(req, ctx->op_update);
1407 	if (err || !ctx->total)
1408 		goto out;
1409 
1410 	dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n",
1411 		ctx->op_update, req->nbytes);
1412 
1413 	s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT);
1414 	if (ctx->digcnt)
1415 		s5p_hash_write_iv(req); /* restore hash IV */
1416 
1417 	if (ctx->op_update) { /* HASH_OP_UPDATE */
1418 		err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup);
1419 		if (err != -EINPROGRESS && ctx->finup && !ctx->error)
1420 			/* no final() after finup() */
1421 			err = s5p_hash_xmit_dma(dd, ctx->total, true);
1422 	} else { /* HASH_OP_FINAL */
1423 		err = s5p_hash_xmit_dma(dd, ctx->total, true);
1424 	}
1425 out:
1426 	if (err != -EINPROGRESS) {
1427 		/* hash_tasklet_cb will not finish it, so do it here */
1428 		s5p_hash_finish_req(req, err);
1429 		req = NULL;
1430 
1431 		/*
1432 		 * Execute next request immediately if there is anything
1433 		 * in queue.
1434 		 */
1435 		goto retry;
1436 	}
1437 
1438 	return ret;
1439 }
1440 
1441 /**
1442  * s5p_hash_tasklet_cb() - hash tasklet
1443  * @data:	ptr to s5p_aes_dev
1444  */
1445 static void s5p_hash_tasklet_cb(unsigned long data)
1446 {
1447 	struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data;
1448 
1449 	if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1450 		s5p_hash_handle_queue(dd, NULL);
1451 		return;
1452 	}
1453 
1454 	if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) {
1455 		if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE,
1456 				       &dd->hash_flags)) {
1457 			s5p_hash_update_dma_stop(dd);
1458 		}
1459 
1460 		if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY,
1461 				       &dd->hash_flags)) {
1462 			/* hash or semi-hash ready */
1463 			clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags);
1464 			goto finish;
1465 		}
1466 	}
1467 
1468 	return;
1469 
1470 finish:
1471 	/* finish curent request */
1472 	s5p_hash_finish_req(dd->hash_req, 0);
1473 
1474 	/* If we are not busy, process next req */
1475 	if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags))
1476 		s5p_hash_handle_queue(dd, NULL);
1477 }
1478 
1479 /**
1480  * s5p_hash_enqueue() - enqueue request
1481  * @req:	AHASH request
1482  * @op:		operation UPDATE (true) or FINAL (false)
1483  *
1484  * Returns: see s5p_hash_final below.
1485  */
1486 static int s5p_hash_enqueue(struct ahash_request *req, bool op)
1487 {
1488 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1489 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1490 
1491 	ctx->op_update = op;
1492 
1493 	return s5p_hash_handle_queue(tctx->dd, req);
1494 }
1495 
1496 /**
1497  * s5p_hash_update() - process the hash input data
1498  * @req:	AHASH request
1499  *
1500  * If request will fit in buffer, copy it and return immediately
1501  * else enqueue it with OP_UPDATE.
1502  *
1503  * Returns: see s5p_hash_final below.
1504  */
1505 static int s5p_hash_update(struct ahash_request *req)
1506 {
1507 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1508 
1509 	if (!req->nbytes)
1510 		return 0;
1511 
1512 	if (ctx->bufcnt + req->nbytes <= BUFLEN) {
1513 		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1514 					 0, req->nbytes, 0);
1515 		ctx->bufcnt += req->nbytes;
1516 		return 0;
1517 	}
1518 
1519 	return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */
1520 }
1521 
1522 /**
1523  * s5p_hash_final() - close up hash and calculate digest
1524  * @req:	AHASH request
1525  *
1526  * Note: in final req->src do not have any data, and req->nbytes can be
1527  * non-zero.
1528  *
1529  * If there were no input data processed yet and the buffered hash data is
1530  * less than BUFLEN (64) then calculate the final hash immediately by using
1531  * SW algorithm fallback.
1532  *
1533  * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1534  * and finalize hash message in HW. Note that if digcnt!=0 then there were
1535  * previous update op, so there are always some buffered bytes in ctx->buffer,
1536  * which means that ctx->bufcnt!=0
1537  *
1538  * Returns:
1539  * 0 if the request has been processed immediately,
1540  * -EINPROGRESS if the operation has been queued for later execution or is set
1541  *		to processing by HW,
1542  * -EBUSY if queue is full and request should be resubmitted later,
1543  * other negative values denotes an error.
1544  */
1545 static int s5p_hash_final(struct ahash_request *req)
1546 {
1547 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1548 
1549 	ctx->finup = true;
1550 	if (ctx->error)
1551 		return -EINVAL; /* uncompleted hash is not needed */
1552 
1553 	if (!ctx->digcnt && ctx->bufcnt < BUFLEN) {
1554 		struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1555 
1556 		return crypto_shash_tfm_digest(tctx->fallback, ctx->buffer,
1557 					       ctx->bufcnt, req->result);
1558 	}
1559 
1560 	return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */
1561 }
1562 
1563 /**
1564  * s5p_hash_finup() - process last req->src and calculate digest
1565  * @req:	AHASH request containing the last update data
1566  *
1567  * Return values: see s5p_hash_final above.
1568  */
1569 static int s5p_hash_finup(struct ahash_request *req)
1570 {
1571 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1572 	int err1, err2;
1573 
1574 	ctx->finup = true;
1575 
1576 	err1 = s5p_hash_update(req);
1577 	if (err1 == -EINPROGRESS || err1 == -EBUSY)
1578 		return err1;
1579 
1580 	/*
1581 	 * final() has to be always called to cleanup resources even if
1582 	 * update() failed, except EINPROGRESS or calculate digest for small
1583 	 * size
1584 	 */
1585 	err2 = s5p_hash_final(req);
1586 
1587 	return err1 ?: err2;
1588 }
1589 
1590 /**
1591  * s5p_hash_init() - initialize AHASH request contex
1592  * @req:	AHASH request
1593  *
1594  * Init async hash request context.
1595  */
1596 static int s5p_hash_init(struct ahash_request *req)
1597 {
1598 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1599 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1600 	struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1601 
1602 	ctx->dd = tctx->dd;
1603 	ctx->error = false;
1604 	ctx->finup = false;
1605 	ctx->bufcnt = 0;
1606 	ctx->digcnt = 0;
1607 	ctx->total = 0;
1608 	ctx->skip = 0;
1609 
1610 	dev_dbg(tctx->dd->dev, "init: digest size: %d\n",
1611 		crypto_ahash_digestsize(tfm));
1612 
1613 	switch (crypto_ahash_digestsize(tfm)) {
1614 	case MD5_DIGEST_SIZE:
1615 		ctx->engine = SSS_HASH_ENGINE_MD5;
1616 		ctx->nregs = HASH_MD5_MAX_REG;
1617 		break;
1618 	case SHA1_DIGEST_SIZE:
1619 		ctx->engine = SSS_HASH_ENGINE_SHA1;
1620 		ctx->nregs = HASH_SHA1_MAX_REG;
1621 		break;
1622 	case SHA256_DIGEST_SIZE:
1623 		ctx->engine = SSS_HASH_ENGINE_SHA256;
1624 		ctx->nregs = HASH_SHA256_MAX_REG;
1625 		break;
1626 	default:
1627 		ctx->error = true;
1628 		return -EINVAL;
1629 	}
1630 
1631 	return 0;
1632 }
1633 
1634 /**
1635  * s5p_hash_digest - calculate digest from req->src
1636  * @req:	AHASH request
1637  *
1638  * Return values: see s5p_hash_final above.
1639  */
1640 static int s5p_hash_digest(struct ahash_request *req)
1641 {
1642 	return s5p_hash_init(req) ?: s5p_hash_finup(req);
1643 }
1644 
1645 /**
1646  * s5p_hash_cra_init_alg - init crypto alg transformation
1647  * @tfm:	crypto transformation
1648  */
1649 static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm)
1650 {
1651 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1652 	const char *alg_name = crypto_tfm_alg_name(tfm);
1653 
1654 	tctx->dd = s5p_dev;
1655 	/* Allocate a fallback and abort if it failed. */
1656 	tctx->fallback = crypto_alloc_shash(alg_name, 0,
1657 					    CRYPTO_ALG_NEED_FALLBACK);
1658 	if (IS_ERR(tctx->fallback)) {
1659 		pr_err("fallback alloc fails for '%s'\n", alg_name);
1660 		return PTR_ERR(tctx->fallback);
1661 	}
1662 
1663 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1664 				 sizeof(struct s5p_hash_reqctx) + BUFLEN);
1665 
1666 	return 0;
1667 }
1668 
1669 /**
1670  * s5p_hash_cra_init - init crypto tfm
1671  * @tfm:	crypto transformation
1672  */
1673 static int s5p_hash_cra_init(struct crypto_tfm *tfm)
1674 {
1675 	return s5p_hash_cra_init_alg(tfm);
1676 }
1677 
1678 /**
1679  * s5p_hash_cra_exit - exit crypto tfm
1680  * @tfm:	crypto transformation
1681  *
1682  * free allocated fallback
1683  */
1684 static void s5p_hash_cra_exit(struct crypto_tfm *tfm)
1685 {
1686 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1687 
1688 	crypto_free_shash(tctx->fallback);
1689 	tctx->fallback = NULL;
1690 }
1691 
1692 /**
1693  * s5p_hash_export - export hash state
1694  * @req:	AHASH request
1695  * @out:	buffer for exported state
1696  */
1697 static int s5p_hash_export(struct ahash_request *req, void *out)
1698 {
1699 	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1700 
1701 	memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt);
1702 
1703 	return 0;
1704 }
1705 
1706 /**
1707  * s5p_hash_import - import hash state
1708  * @req:	AHASH request
1709  * @in:		buffer with state to be imported from
1710  */
1711 static int s5p_hash_import(struct ahash_request *req, const void *in)
1712 {
1713 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1714 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1715 	struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1716 	const struct s5p_hash_reqctx *ctx_in = in;
1717 
1718 	memcpy(ctx, in, sizeof(*ctx) + BUFLEN);
1719 	if (ctx_in->bufcnt > BUFLEN) {
1720 		ctx->error = true;
1721 		return -EINVAL;
1722 	}
1723 
1724 	ctx->dd = tctx->dd;
1725 	ctx->error = false;
1726 
1727 	return 0;
1728 }
1729 
1730 static struct ahash_alg algs_sha1_md5_sha256[] = {
1731 {
1732 	.init		= s5p_hash_init,
1733 	.update		= s5p_hash_update,
1734 	.final		= s5p_hash_final,
1735 	.finup		= s5p_hash_finup,
1736 	.digest		= s5p_hash_digest,
1737 	.export		= s5p_hash_export,
1738 	.import		= s5p_hash_import,
1739 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1740 	.halg.digestsize	= SHA1_DIGEST_SIZE,
1741 	.halg.base	= {
1742 		.cra_name		= "sha1",
1743 		.cra_driver_name	= "exynos-sha1",
1744 		.cra_priority		= 100,
1745 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1746 					  CRYPTO_ALG_ASYNC |
1747 					  CRYPTO_ALG_NEED_FALLBACK,
1748 		.cra_blocksize		= HASH_BLOCK_SIZE,
1749 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1750 		.cra_alignmask		= SSS_HASH_DMA_ALIGN_MASK,
1751 		.cra_module		= THIS_MODULE,
1752 		.cra_init		= s5p_hash_cra_init,
1753 		.cra_exit		= s5p_hash_cra_exit,
1754 	}
1755 },
1756 {
1757 	.init		= s5p_hash_init,
1758 	.update		= s5p_hash_update,
1759 	.final		= s5p_hash_final,
1760 	.finup		= s5p_hash_finup,
1761 	.digest		= s5p_hash_digest,
1762 	.export		= s5p_hash_export,
1763 	.import		= s5p_hash_import,
1764 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1765 	.halg.digestsize	= MD5_DIGEST_SIZE,
1766 	.halg.base	= {
1767 		.cra_name		= "md5",
1768 		.cra_driver_name	= "exynos-md5",
1769 		.cra_priority		= 100,
1770 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1771 					  CRYPTO_ALG_ASYNC |
1772 					  CRYPTO_ALG_NEED_FALLBACK,
1773 		.cra_blocksize		= HASH_BLOCK_SIZE,
1774 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1775 		.cra_alignmask		= SSS_HASH_DMA_ALIGN_MASK,
1776 		.cra_module		= THIS_MODULE,
1777 		.cra_init		= s5p_hash_cra_init,
1778 		.cra_exit		= s5p_hash_cra_exit,
1779 	}
1780 },
1781 {
1782 	.init		= s5p_hash_init,
1783 	.update		= s5p_hash_update,
1784 	.final		= s5p_hash_final,
1785 	.finup		= s5p_hash_finup,
1786 	.digest		= s5p_hash_digest,
1787 	.export		= s5p_hash_export,
1788 	.import		= s5p_hash_import,
1789 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1790 	.halg.digestsize	= SHA256_DIGEST_SIZE,
1791 	.halg.base	= {
1792 		.cra_name		= "sha256",
1793 		.cra_driver_name	= "exynos-sha256",
1794 		.cra_priority		= 100,
1795 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1796 					  CRYPTO_ALG_ASYNC |
1797 					  CRYPTO_ALG_NEED_FALLBACK,
1798 		.cra_blocksize		= HASH_BLOCK_SIZE,
1799 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1800 		.cra_alignmask		= SSS_HASH_DMA_ALIGN_MASK,
1801 		.cra_module		= THIS_MODULE,
1802 		.cra_init		= s5p_hash_cra_init,
1803 		.cra_exit		= s5p_hash_cra_exit,
1804 	}
1805 }
1806 
1807 };
1808 
1809 static void s5p_set_aes(struct s5p_aes_dev *dev,
1810 			const u8 *key, const u8 *iv, const u8 *ctr,
1811 			unsigned int keylen)
1812 {
1813 	void __iomem *keystart;
1814 
1815 	if (iv)
1816 		memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv,
1817 			    AES_BLOCK_SIZE);
1818 
1819 	if (ctr)
1820 		memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), ctr,
1821 			    AES_BLOCK_SIZE);
1822 
1823 	if (keylen == AES_KEYSIZE_256)
1824 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
1825 	else if (keylen == AES_KEYSIZE_192)
1826 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
1827 	else
1828 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
1829 
1830 	memcpy_toio(keystart, key, keylen);
1831 }
1832 
1833 static bool s5p_is_sg_aligned(struct scatterlist *sg)
1834 {
1835 	while (sg) {
1836 		if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
1837 			return false;
1838 		sg = sg_next(sg);
1839 	}
1840 
1841 	return true;
1842 }
1843 
1844 static int s5p_set_indata_start(struct s5p_aes_dev *dev,
1845 				struct skcipher_request *req)
1846 {
1847 	struct scatterlist *sg;
1848 	int err;
1849 
1850 	dev->sg_src_cpy = NULL;
1851 	sg = req->src;
1852 	if (!s5p_is_sg_aligned(sg)) {
1853 		dev_dbg(dev->dev,
1854 			"At least one unaligned source scatter list, making a copy\n");
1855 		err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
1856 		if (err)
1857 			return err;
1858 
1859 		sg = dev->sg_src_cpy;
1860 	}
1861 
1862 	err = s5p_set_indata(dev, sg);
1863 	if (err) {
1864 		s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
1865 		return err;
1866 	}
1867 
1868 	return 0;
1869 }
1870 
1871 static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
1872 				 struct skcipher_request *req)
1873 {
1874 	struct scatterlist *sg;
1875 	int err;
1876 
1877 	dev->sg_dst_cpy = NULL;
1878 	sg = req->dst;
1879 	if (!s5p_is_sg_aligned(sg)) {
1880 		dev_dbg(dev->dev,
1881 			"At least one unaligned dest scatter list, making a copy\n");
1882 		err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
1883 		if (err)
1884 			return err;
1885 
1886 		sg = dev->sg_dst_cpy;
1887 	}
1888 
1889 	err = s5p_set_outdata(dev, sg);
1890 	if (err) {
1891 		s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
1892 		return err;
1893 	}
1894 
1895 	return 0;
1896 }
1897 
1898 static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
1899 {
1900 	struct skcipher_request *req = dev->req;
1901 	u32 aes_control;
1902 	unsigned long flags;
1903 	int err;
1904 	u8 *iv, *ctr;
1905 
1906 	/* This sets bit [13:12] to 00, which selects 128-bit counter */
1907 	aes_control = SSS_AES_KEY_CHANGE_MODE;
1908 	if (mode & FLAGS_AES_DECRYPT)
1909 		aes_control |= SSS_AES_MODE_DECRYPT;
1910 
1911 	if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) {
1912 		aes_control |= SSS_AES_CHAIN_MODE_CBC;
1913 		iv = req->iv;
1914 		ctr = NULL;
1915 	} else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) {
1916 		aes_control |= SSS_AES_CHAIN_MODE_CTR;
1917 		iv = NULL;
1918 		ctr = req->iv;
1919 	} else {
1920 		iv = NULL; /* AES_ECB */
1921 		ctr = NULL;
1922 	}
1923 
1924 	if (dev->ctx->keylen == AES_KEYSIZE_192)
1925 		aes_control |= SSS_AES_KEY_SIZE_192;
1926 	else if (dev->ctx->keylen == AES_KEYSIZE_256)
1927 		aes_control |= SSS_AES_KEY_SIZE_256;
1928 
1929 	aes_control |= SSS_AES_FIFO_MODE;
1930 
1931 	/* as a variant it is possible to use byte swapping on DMA side */
1932 	aes_control |= SSS_AES_BYTESWAP_DI
1933 		    |  SSS_AES_BYTESWAP_DO
1934 		    |  SSS_AES_BYTESWAP_IV
1935 		    |  SSS_AES_BYTESWAP_KEY
1936 		    |  SSS_AES_BYTESWAP_CNT;
1937 
1938 	spin_lock_irqsave(&dev->lock, flags);
1939 
1940 	SSS_WRITE(dev, FCINTENCLR,
1941 		  SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
1942 	SSS_WRITE(dev, FCFIFOCTRL, 0x00);
1943 
1944 	err = s5p_set_indata_start(dev, req);
1945 	if (err)
1946 		goto indata_error;
1947 
1948 	err = s5p_set_outdata_start(dev, req);
1949 	if (err)
1950 		goto outdata_error;
1951 
1952 	SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
1953 	s5p_set_aes(dev, dev->ctx->aes_key, iv, ctr, dev->ctx->keylen);
1954 
1955 	s5p_set_dma_indata(dev,  dev->sg_src);
1956 	s5p_set_dma_outdata(dev, dev->sg_dst);
1957 
1958 	SSS_WRITE(dev, FCINTENSET,
1959 		  SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
1960 
1961 	spin_unlock_irqrestore(&dev->lock, flags);
1962 
1963 	return;
1964 
1965 outdata_error:
1966 	s5p_unset_indata(dev);
1967 
1968 indata_error:
1969 	s5p_sg_done(dev);
1970 	dev->busy = false;
1971 	spin_unlock_irqrestore(&dev->lock, flags);
1972 	s5p_aes_complete(req, err);
1973 }
1974 
1975 static void s5p_tasklet_cb(unsigned long data)
1976 {
1977 	struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
1978 	struct crypto_async_request *async_req, *backlog;
1979 	struct s5p_aes_reqctx *reqctx;
1980 	unsigned long flags;
1981 
1982 	spin_lock_irqsave(&dev->lock, flags);
1983 	backlog   = crypto_get_backlog(&dev->queue);
1984 	async_req = crypto_dequeue_request(&dev->queue);
1985 
1986 	if (!async_req) {
1987 		dev->busy = false;
1988 		spin_unlock_irqrestore(&dev->lock, flags);
1989 		return;
1990 	}
1991 	spin_unlock_irqrestore(&dev->lock, flags);
1992 
1993 	if (backlog)
1994 		crypto_request_complete(backlog, -EINPROGRESS);
1995 
1996 	dev->req = skcipher_request_cast(async_req);
1997 	dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
1998 	reqctx   = skcipher_request_ctx(dev->req);
1999 
2000 	s5p_aes_crypt_start(dev, reqctx->mode);
2001 }
2002 
2003 static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
2004 			      struct skcipher_request *req)
2005 {
2006 	unsigned long flags;
2007 	int err;
2008 
2009 	spin_lock_irqsave(&dev->lock, flags);
2010 	err = crypto_enqueue_request(&dev->queue, &req->base);
2011 	if (dev->busy) {
2012 		spin_unlock_irqrestore(&dev->lock, flags);
2013 		return err;
2014 	}
2015 	dev->busy = true;
2016 
2017 	spin_unlock_irqrestore(&dev->lock, flags);
2018 
2019 	tasklet_schedule(&dev->tasklet);
2020 
2021 	return err;
2022 }
2023 
2024 static int s5p_aes_crypt(struct skcipher_request *req, unsigned long mode)
2025 {
2026 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
2027 	struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
2028 	struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2029 	struct s5p_aes_dev *dev = ctx->dev;
2030 
2031 	if (!req->cryptlen)
2032 		return 0;
2033 
2034 	if (!IS_ALIGNED(req->cryptlen, AES_BLOCK_SIZE) &&
2035 			((mode & FLAGS_AES_MODE_MASK) != FLAGS_AES_CTR)) {
2036 		dev_dbg(dev->dev, "request size is not exact amount of AES blocks\n");
2037 		return -EINVAL;
2038 	}
2039 
2040 	reqctx->mode = mode;
2041 
2042 	return s5p_aes_handle_req(dev, req);
2043 }
2044 
2045 static int s5p_aes_setkey(struct crypto_skcipher *cipher,
2046 			  const u8 *key, unsigned int keylen)
2047 {
2048 	struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher);
2049 	struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2050 
2051 	if (keylen != AES_KEYSIZE_128 &&
2052 	    keylen != AES_KEYSIZE_192 &&
2053 	    keylen != AES_KEYSIZE_256)
2054 		return -EINVAL;
2055 
2056 	memcpy(ctx->aes_key, key, keylen);
2057 	ctx->keylen = keylen;
2058 
2059 	return 0;
2060 }
2061 
2062 static int s5p_aes_ecb_encrypt(struct skcipher_request *req)
2063 {
2064 	return s5p_aes_crypt(req, 0);
2065 }
2066 
2067 static int s5p_aes_ecb_decrypt(struct skcipher_request *req)
2068 {
2069 	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
2070 }
2071 
2072 static int s5p_aes_cbc_encrypt(struct skcipher_request *req)
2073 {
2074 	return s5p_aes_crypt(req, FLAGS_AES_CBC);
2075 }
2076 
2077 static int s5p_aes_cbc_decrypt(struct skcipher_request *req)
2078 {
2079 	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
2080 }
2081 
2082 static int s5p_aes_ctr_crypt(struct skcipher_request *req)
2083 {
2084 	return s5p_aes_crypt(req, FLAGS_AES_CTR);
2085 }
2086 
2087 static int s5p_aes_init_tfm(struct crypto_skcipher *tfm)
2088 {
2089 	struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2090 
2091 	ctx->dev = s5p_dev;
2092 	crypto_skcipher_set_reqsize(tfm, sizeof(struct s5p_aes_reqctx));
2093 
2094 	return 0;
2095 }
2096 
2097 static struct skcipher_alg algs[] = {
2098 	{
2099 		.base.cra_name		= "ecb(aes)",
2100 		.base.cra_driver_name	= "ecb-aes-s5p",
2101 		.base.cra_priority	= 100,
2102 		.base.cra_flags		= CRYPTO_ALG_ASYNC |
2103 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2104 		.base.cra_blocksize	= AES_BLOCK_SIZE,
2105 		.base.cra_ctxsize	= sizeof(struct s5p_aes_ctx),
2106 		.base.cra_alignmask	= 0x0f,
2107 		.base.cra_module	= THIS_MODULE,
2108 
2109 		.min_keysize		= AES_MIN_KEY_SIZE,
2110 		.max_keysize		= AES_MAX_KEY_SIZE,
2111 		.setkey			= s5p_aes_setkey,
2112 		.encrypt		= s5p_aes_ecb_encrypt,
2113 		.decrypt		= s5p_aes_ecb_decrypt,
2114 		.init			= s5p_aes_init_tfm,
2115 	},
2116 	{
2117 		.base.cra_name		= "cbc(aes)",
2118 		.base.cra_driver_name	= "cbc-aes-s5p",
2119 		.base.cra_priority	= 100,
2120 		.base.cra_flags		= CRYPTO_ALG_ASYNC |
2121 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2122 		.base.cra_blocksize	= AES_BLOCK_SIZE,
2123 		.base.cra_ctxsize	= sizeof(struct s5p_aes_ctx),
2124 		.base.cra_alignmask	= 0x0f,
2125 		.base.cra_module	= THIS_MODULE,
2126 
2127 		.min_keysize		= AES_MIN_KEY_SIZE,
2128 		.max_keysize		= AES_MAX_KEY_SIZE,
2129 		.ivsize			= AES_BLOCK_SIZE,
2130 		.setkey			= s5p_aes_setkey,
2131 		.encrypt		= s5p_aes_cbc_encrypt,
2132 		.decrypt		= s5p_aes_cbc_decrypt,
2133 		.init			= s5p_aes_init_tfm,
2134 	},
2135 	{
2136 		.base.cra_name		= "ctr(aes)",
2137 		.base.cra_driver_name	= "ctr-aes-s5p",
2138 		.base.cra_priority	= 100,
2139 		.base.cra_flags		= CRYPTO_ALG_ASYNC |
2140 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2141 		.base.cra_blocksize	= 1,
2142 		.base.cra_ctxsize	= sizeof(struct s5p_aes_ctx),
2143 		.base.cra_alignmask	= 0x0f,
2144 		.base.cra_module	= THIS_MODULE,
2145 
2146 		.min_keysize		= AES_MIN_KEY_SIZE,
2147 		.max_keysize		= AES_MAX_KEY_SIZE,
2148 		.ivsize			= AES_BLOCK_SIZE,
2149 		.setkey			= s5p_aes_setkey,
2150 		.encrypt		= s5p_aes_ctr_crypt,
2151 		.decrypt		= s5p_aes_ctr_crypt,
2152 		.init			= s5p_aes_init_tfm,
2153 	},
2154 };
2155 
2156 static int s5p_aes_probe(struct platform_device *pdev)
2157 {
2158 	struct device *dev = &pdev->dev;
2159 	int i, j, err;
2160 	const struct samsung_aes_variant *variant;
2161 	struct s5p_aes_dev *pdata;
2162 	struct resource *res;
2163 	unsigned int hash_i;
2164 
2165 	if (s5p_dev)
2166 		return -EEXIST;
2167 
2168 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2169 	if (!pdata)
2170 		return -ENOMEM;
2171 
2172 	variant = find_s5p_sss_version(pdev);
2173 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2174 	if (!res)
2175 		return -EINVAL;
2176 
2177 	/*
2178 	 * Note: HASH and PRNG uses the same registers in secss, avoid
2179 	 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2180 	 * is enabled in config. We need larger size for HASH registers in
2181 	 * secss, current describe only AES/DES
2182 	 */
2183 	if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) {
2184 		if (variant == &exynos_aes_data) {
2185 			res->end += 0x300;
2186 			pdata->use_hash = true;
2187 		}
2188 	}
2189 
2190 	pdata->res = res;
2191 	pdata->ioaddr = devm_ioremap_resource(dev, res);
2192 	if (IS_ERR(pdata->ioaddr)) {
2193 		if (!pdata->use_hash)
2194 			return PTR_ERR(pdata->ioaddr);
2195 		/* try AES without HASH */
2196 		res->end -= 0x300;
2197 		pdata->use_hash = false;
2198 		pdata->ioaddr = devm_ioremap_resource(dev, res);
2199 		if (IS_ERR(pdata->ioaddr))
2200 			return PTR_ERR(pdata->ioaddr);
2201 	}
2202 
2203 	pdata->clk = devm_clk_get(dev, variant->clk_names[0]);
2204 	if (IS_ERR(pdata->clk))
2205 		return dev_err_probe(dev, PTR_ERR(pdata->clk),
2206 				     "failed to find secss clock %s\n",
2207 				     variant->clk_names[0]);
2208 
2209 	err = clk_prepare_enable(pdata->clk);
2210 	if (err < 0) {
2211 		dev_err(dev, "Enabling clock %s failed, err %d\n",
2212 			variant->clk_names[0], err);
2213 		return err;
2214 	}
2215 
2216 	if (variant->clk_names[1]) {
2217 		pdata->pclk = devm_clk_get(dev, variant->clk_names[1]);
2218 		if (IS_ERR(pdata->pclk)) {
2219 			err = dev_err_probe(dev, PTR_ERR(pdata->pclk),
2220 					    "failed to find clock %s\n",
2221 					    variant->clk_names[1]);
2222 			goto err_clk;
2223 		}
2224 
2225 		err = clk_prepare_enable(pdata->pclk);
2226 		if (err < 0) {
2227 			dev_err(dev, "Enabling clock %s failed, err %d\n",
2228 				variant->clk_names[0], err);
2229 			goto err_clk;
2230 		}
2231 	} else {
2232 		pdata->pclk = NULL;
2233 	}
2234 
2235 	spin_lock_init(&pdata->lock);
2236 	spin_lock_init(&pdata->hash_lock);
2237 
2238 	pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
2239 	pdata->io_hash_base = pdata->ioaddr + variant->hash_offset;
2240 
2241 	pdata->irq_fc = platform_get_irq(pdev, 0);
2242 	if (pdata->irq_fc < 0) {
2243 		err = pdata->irq_fc;
2244 		dev_warn(dev, "feed control interrupt is not available.\n");
2245 		goto err_irq;
2246 	}
2247 	err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
2248 					s5p_aes_interrupt, IRQF_ONESHOT,
2249 					pdev->name, pdev);
2250 	if (err < 0) {
2251 		dev_warn(dev, "feed control interrupt is not available.\n");
2252 		goto err_irq;
2253 	}
2254 
2255 	pdata->busy = false;
2256 	pdata->dev = dev;
2257 	platform_set_drvdata(pdev, pdata);
2258 	s5p_dev = pdata;
2259 
2260 	tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
2261 	crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
2262 
2263 	for (i = 0; i < ARRAY_SIZE(algs); i++) {
2264 		err = crypto_register_skcipher(&algs[i]);
2265 		if (err)
2266 			goto err_algs;
2267 	}
2268 
2269 	if (pdata->use_hash) {
2270 		tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb,
2271 			     (unsigned long)pdata);
2272 		crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH);
2273 
2274 		for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256);
2275 		     hash_i++) {
2276 			struct ahash_alg *alg;
2277 
2278 			alg = &algs_sha1_md5_sha256[hash_i];
2279 			err = crypto_register_ahash(alg);
2280 			if (err) {
2281 				dev_err(dev, "can't register '%s': %d\n",
2282 					alg->halg.base.cra_driver_name, err);
2283 				goto err_hash;
2284 			}
2285 		}
2286 	}
2287 
2288 	dev_info(dev, "s5p-sss driver registered\n");
2289 
2290 	return 0;
2291 
2292 err_hash:
2293 	for (j = hash_i - 1; j >= 0; j--)
2294 		crypto_unregister_ahash(&algs_sha1_md5_sha256[j]);
2295 
2296 	tasklet_kill(&pdata->hash_tasklet);
2297 	res->end -= 0x300;
2298 
2299 err_algs:
2300 	if (i < ARRAY_SIZE(algs))
2301 		dev_err(dev, "can't register '%s': %d\n", algs[i].base.cra_name,
2302 			err);
2303 
2304 	for (j = 0; j < i; j++)
2305 		crypto_unregister_skcipher(&algs[j]);
2306 
2307 	tasklet_kill(&pdata->tasklet);
2308 
2309 err_irq:
2310 	clk_disable_unprepare(pdata->pclk);
2311 
2312 err_clk:
2313 	clk_disable_unprepare(pdata->clk);
2314 	s5p_dev = NULL;
2315 
2316 	return err;
2317 }
2318 
2319 static int s5p_aes_remove(struct platform_device *pdev)
2320 {
2321 	struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
2322 	int i;
2323 
2324 	for (i = 0; i < ARRAY_SIZE(algs); i++)
2325 		crypto_unregister_skcipher(&algs[i]);
2326 
2327 	tasklet_kill(&pdata->tasklet);
2328 	if (pdata->use_hash) {
2329 		for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--)
2330 			crypto_unregister_ahash(&algs_sha1_md5_sha256[i]);
2331 
2332 		pdata->res->end -= 0x300;
2333 		tasklet_kill(&pdata->hash_tasklet);
2334 		pdata->use_hash = false;
2335 	}
2336 
2337 	clk_disable_unprepare(pdata->pclk);
2338 
2339 	clk_disable_unprepare(pdata->clk);
2340 	s5p_dev = NULL;
2341 
2342 	return 0;
2343 }
2344 
2345 static struct platform_driver s5p_aes_crypto = {
2346 	.probe	= s5p_aes_probe,
2347 	.remove	= s5p_aes_remove,
2348 	.driver	= {
2349 		.name	= "s5p-secss",
2350 		.of_match_table = s5p_sss_dt_match,
2351 	},
2352 };
2353 
2354 module_platform_driver(s5p_aes_crypto);
2355 
2356 MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2357 MODULE_LICENSE("GPL v2");
2358 MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
2359 MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");
2360