1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // Cryptographic API. 4 // 5 // Support for Samsung S5PV210 and Exynos HW acceleration. 6 // 7 // Copyright (C) 2011 NetUP Inc. All rights reserved. 8 // Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved. 9 // 10 // Hash part based on omap-sham.c driver. 11 12 #include <linux/clk.h> 13 #include <linux/crypto.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/err.h> 16 #include <linux/errno.h> 17 #include <linux/init.h> 18 #include <linux/interrupt.h> 19 #include <linux/io.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/of.h> 23 #include <linux/platform_device.h> 24 #include <linux/scatterlist.h> 25 26 #include <crypto/ctr.h> 27 #include <crypto/aes.h> 28 #include <crypto/algapi.h> 29 #include <crypto/scatterwalk.h> 30 31 #include <crypto/hash.h> 32 #include <crypto/md5.h> 33 #include <crypto/sha.h> 34 #include <crypto/internal/hash.h> 35 36 #define _SBF(s, v) ((v) << (s)) 37 38 /* Feed control registers */ 39 #define SSS_REG_FCINTSTAT 0x0000 40 #define SSS_FCINTSTAT_HPARTINT BIT(7) 41 #define SSS_FCINTSTAT_HDONEINT BIT(5) 42 #define SSS_FCINTSTAT_BRDMAINT BIT(3) 43 #define SSS_FCINTSTAT_BTDMAINT BIT(2) 44 #define SSS_FCINTSTAT_HRDMAINT BIT(1) 45 #define SSS_FCINTSTAT_PKDMAINT BIT(0) 46 47 #define SSS_REG_FCINTENSET 0x0004 48 #define SSS_FCINTENSET_HPARTINTENSET BIT(7) 49 #define SSS_FCINTENSET_HDONEINTENSET BIT(5) 50 #define SSS_FCINTENSET_BRDMAINTENSET BIT(3) 51 #define SSS_FCINTENSET_BTDMAINTENSET BIT(2) 52 #define SSS_FCINTENSET_HRDMAINTENSET BIT(1) 53 #define SSS_FCINTENSET_PKDMAINTENSET BIT(0) 54 55 #define SSS_REG_FCINTENCLR 0x0008 56 #define SSS_FCINTENCLR_HPARTINTENCLR BIT(7) 57 #define SSS_FCINTENCLR_HDONEINTENCLR BIT(5) 58 #define SSS_FCINTENCLR_BRDMAINTENCLR BIT(3) 59 #define SSS_FCINTENCLR_BTDMAINTENCLR BIT(2) 60 #define SSS_FCINTENCLR_HRDMAINTENCLR BIT(1) 61 #define SSS_FCINTENCLR_PKDMAINTENCLR BIT(0) 62 63 #define SSS_REG_FCINTPEND 0x000C 64 #define SSS_FCINTPEND_HPARTINTP BIT(7) 65 #define SSS_FCINTPEND_HDONEINTP BIT(5) 66 #define SSS_FCINTPEND_BRDMAINTP BIT(3) 67 #define SSS_FCINTPEND_BTDMAINTP BIT(2) 68 #define SSS_FCINTPEND_HRDMAINTP BIT(1) 69 #define SSS_FCINTPEND_PKDMAINTP BIT(0) 70 71 #define SSS_REG_FCFIFOSTAT 0x0010 72 #define SSS_FCFIFOSTAT_BRFIFOFUL BIT(7) 73 #define SSS_FCFIFOSTAT_BRFIFOEMP BIT(6) 74 #define SSS_FCFIFOSTAT_BTFIFOFUL BIT(5) 75 #define SSS_FCFIFOSTAT_BTFIFOEMP BIT(4) 76 #define SSS_FCFIFOSTAT_HRFIFOFUL BIT(3) 77 #define SSS_FCFIFOSTAT_HRFIFOEMP BIT(2) 78 #define SSS_FCFIFOSTAT_PKFIFOFUL BIT(1) 79 #define SSS_FCFIFOSTAT_PKFIFOEMP BIT(0) 80 81 #define SSS_REG_FCFIFOCTRL 0x0014 82 #define SSS_FCFIFOCTRL_DESSEL BIT(2) 83 #define SSS_HASHIN_INDEPENDENT _SBF(0, 0x00) 84 #define SSS_HASHIN_CIPHER_INPUT _SBF(0, 0x01) 85 #define SSS_HASHIN_CIPHER_OUTPUT _SBF(0, 0x02) 86 #define SSS_HASHIN_MASK _SBF(0, 0x03) 87 88 #define SSS_REG_FCBRDMAS 0x0020 89 #define SSS_REG_FCBRDMAL 0x0024 90 #define SSS_REG_FCBRDMAC 0x0028 91 #define SSS_FCBRDMAC_BYTESWAP BIT(1) 92 #define SSS_FCBRDMAC_FLUSH BIT(0) 93 94 #define SSS_REG_FCBTDMAS 0x0030 95 #define SSS_REG_FCBTDMAL 0x0034 96 #define SSS_REG_FCBTDMAC 0x0038 97 #define SSS_FCBTDMAC_BYTESWAP BIT(1) 98 #define SSS_FCBTDMAC_FLUSH BIT(0) 99 100 #define SSS_REG_FCHRDMAS 0x0040 101 #define SSS_REG_FCHRDMAL 0x0044 102 #define SSS_REG_FCHRDMAC 0x0048 103 #define SSS_FCHRDMAC_BYTESWAP BIT(1) 104 #define SSS_FCHRDMAC_FLUSH BIT(0) 105 106 #define SSS_REG_FCPKDMAS 0x0050 107 #define SSS_REG_FCPKDMAL 0x0054 108 #define SSS_REG_FCPKDMAC 0x0058 109 #define SSS_FCPKDMAC_BYTESWAP BIT(3) 110 #define SSS_FCPKDMAC_DESCEND BIT(2) 111 #define SSS_FCPKDMAC_TRANSMIT BIT(1) 112 #define SSS_FCPKDMAC_FLUSH BIT(0) 113 114 #define SSS_REG_FCPKDMAO 0x005C 115 116 /* AES registers */ 117 #define SSS_REG_AES_CONTROL 0x00 118 #define SSS_AES_BYTESWAP_DI BIT(11) 119 #define SSS_AES_BYTESWAP_DO BIT(10) 120 #define SSS_AES_BYTESWAP_IV BIT(9) 121 #define SSS_AES_BYTESWAP_CNT BIT(8) 122 #define SSS_AES_BYTESWAP_KEY BIT(7) 123 #define SSS_AES_KEY_CHANGE_MODE BIT(6) 124 #define SSS_AES_KEY_SIZE_128 _SBF(4, 0x00) 125 #define SSS_AES_KEY_SIZE_192 _SBF(4, 0x01) 126 #define SSS_AES_KEY_SIZE_256 _SBF(4, 0x02) 127 #define SSS_AES_FIFO_MODE BIT(3) 128 #define SSS_AES_CHAIN_MODE_ECB _SBF(1, 0x00) 129 #define SSS_AES_CHAIN_MODE_CBC _SBF(1, 0x01) 130 #define SSS_AES_CHAIN_MODE_CTR _SBF(1, 0x02) 131 #define SSS_AES_MODE_DECRYPT BIT(0) 132 133 #define SSS_REG_AES_STATUS 0x04 134 #define SSS_AES_BUSY BIT(2) 135 #define SSS_AES_INPUT_READY BIT(1) 136 #define SSS_AES_OUTPUT_READY BIT(0) 137 138 #define SSS_REG_AES_IN_DATA(s) (0x10 + (s << 2)) 139 #define SSS_REG_AES_OUT_DATA(s) (0x20 + (s << 2)) 140 #define SSS_REG_AES_IV_DATA(s) (0x30 + (s << 2)) 141 #define SSS_REG_AES_CNT_DATA(s) (0x40 + (s << 2)) 142 #define SSS_REG_AES_KEY_DATA(s) (0x80 + (s << 2)) 143 144 #define SSS_REG(dev, reg) ((dev)->ioaddr + (SSS_REG_##reg)) 145 #define SSS_READ(dev, reg) __raw_readl(SSS_REG(dev, reg)) 146 #define SSS_WRITE(dev, reg, val) __raw_writel((val), SSS_REG(dev, reg)) 147 148 #define SSS_AES_REG(dev, reg) ((dev)->aes_ioaddr + SSS_REG_##reg) 149 #define SSS_AES_WRITE(dev, reg, val) __raw_writel((val), \ 150 SSS_AES_REG(dev, reg)) 151 152 /* HW engine modes */ 153 #define FLAGS_AES_DECRYPT BIT(0) 154 #define FLAGS_AES_MODE_MASK _SBF(1, 0x03) 155 #define FLAGS_AES_CBC _SBF(1, 0x01) 156 #define FLAGS_AES_CTR _SBF(1, 0x02) 157 158 #define AES_KEY_LEN 16 159 #define CRYPTO_QUEUE_LEN 1 160 161 /* HASH registers */ 162 #define SSS_REG_HASH_CTRL 0x00 163 164 #define SSS_HASH_USER_IV_EN BIT(5) 165 #define SSS_HASH_INIT_BIT BIT(4) 166 #define SSS_HASH_ENGINE_SHA1 _SBF(1, 0x00) 167 #define SSS_HASH_ENGINE_MD5 _SBF(1, 0x01) 168 #define SSS_HASH_ENGINE_SHA256 _SBF(1, 0x02) 169 170 #define SSS_HASH_ENGINE_MASK _SBF(1, 0x03) 171 172 #define SSS_REG_HASH_CTRL_PAUSE 0x04 173 174 #define SSS_HASH_PAUSE BIT(0) 175 176 #define SSS_REG_HASH_CTRL_FIFO 0x08 177 178 #define SSS_HASH_FIFO_MODE_DMA BIT(0) 179 #define SSS_HASH_FIFO_MODE_CPU 0 180 181 #define SSS_REG_HASH_CTRL_SWAP 0x0C 182 183 #define SSS_HASH_BYTESWAP_DI BIT(3) 184 #define SSS_HASH_BYTESWAP_DO BIT(2) 185 #define SSS_HASH_BYTESWAP_IV BIT(1) 186 #define SSS_HASH_BYTESWAP_KEY BIT(0) 187 188 #define SSS_REG_HASH_STATUS 0x10 189 190 #define SSS_HASH_STATUS_MSG_DONE BIT(6) 191 #define SSS_HASH_STATUS_PARTIAL_DONE BIT(4) 192 #define SSS_HASH_STATUS_BUFFER_READY BIT(0) 193 194 #define SSS_REG_HASH_MSG_SIZE_LOW 0x20 195 #define SSS_REG_HASH_MSG_SIZE_HIGH 0x24 196 197 #define SSS_REG_HASH_PRE_MSG_SIZE_LOW 0x28 198 #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH 0x2C 199 200 #define SSS_REG_HASH_IV(s) (0xB0 + ((s) << 2)) 201 #define SSS_REG_HASH_OUT(s) (0x100 + ((s) << 2)) 202 203 #define HASH_BLOCK_SIZE 64 204 #define HASH_REG_SIZEOF 4 205 #define HASH_MD5_MAX_REG (MD5_DIGEST_SIZE / HASH_REG_SIZEOF) 206 #define HASH_SHA1_MAX_REG (SHA1_DIGEST_SIZE / HASH_REG_SIZEOF) 207 #define HASH_SHA256_MAX_REG (SHA256_DIGEST_SIZE / HASH_REG_SIZEOF) 208 209 /* 210 * HASH bit numbers, used by device, setting in dev->hash_flags with 211 * functions set_bit(), clear_bit() or tested with test_bit() or BIT(), 212 * to keep HASH state BUSY or FREE, or to signal state from irq_handler 213 * to hash_tasklet. SGS keep track of allocated memory for scatterlist 214 */ 215 #define HASH_FLAGS_BUSY 0 216 #define HASH_FLAGS_FINAL 1 217 #define HASH_FLAGS_DMA_ACTIVE 2 218 #define HASH_FLAGS_OUTPUT_READY 3 219 #define HASH_FLAGS_DMA_READY 4 220 #define HASH_FLAGS_SGS_COPIED 5 221 #define HASH_FLAGS_SGS_ALLOCED 6 222 223 /* HASH HW constants */ 224 #define BUFLEN HASH_BLOCK_SIZE 225 226 #define SSS_HASH_DMA_LEN_ALIGN 8 227 #define SSS_HASH_DMA_ALIGN_MASK (SSS_HASH_DMA_LEN_ALIGN - 1) 228 229 #define SSS_HASH_QUEUE_LENGTH 10 230 231 /** 232 * struct samsung_aes_variant - platform specific SSS driver data 233 * @aes_offset: AES register offset from SSS module's base. 234 * @hash_offset: HASH register offset from SSS module's base. 235 * @clk_names: names of clocks needed to run SSS IP 236 * 237 * Specifies platform specific configuration of SSS module. 238 * Note: A structure for driver specific platform data is used for future 239 * expansion of its usage. 240 */ 241 struct samsung_aes_variant { 242 unsigned int aes_offset; 243 unsigned int hash_offset; 244 const char *clk_names[2]; 245 }; 246 247 struct s5p_aes_reqctx { 248 unsigned long mode; 249 }; 250 251 struct s5p_aes_ctx { 252 struct s5p_aes_dev *dev; 253 254 u8 aes_key[AES_MAX_KEY_SIZE]; 255 u8 nonce[CTR_RFC3686_NONCE_SIZE]; 256 int keylen; 257 }; 258 259 /** 260 * struct s5p_aes_dev - Crypto device state container 261 * @dev: Associated device 262 * @clk: Clock for accessing hardware 263 * @pclk: APB bus clock necessary to access the hardware 264 * @ioaddr: Mapped IO memory region 265 * @aes_ioaddr: Per-varian offset for AES block IO memory 266 * @irq_fc: Feed control interrupt line 267 * @req: Crypto request currently handled by the device 268 * @ctx: Configuration for currently handled crypto request 269 * @sg_src: Scatter list with source data for currently handled block 270 * in device. This is DMA-mapped into device. 271 * @sg_dst: Scatter list with destination data for currently handled block 272 * in device. This is DMA-mapped into device. 273 * @sg_src_cpy: In case of unaligned access, copied scatter list 274 * with source data. 275 * @sg_dst_cpy: In case of unaligned access, copied scatter list 276 * with destination data. 277 * @tasklet: New request scheduling jib 278 * @queue: Crypto queue 279 * @busy: Indicates whether the device is currently handling some request 280 * thus it uses some of the fields from this state, like: 281 * req, ctx, sg_src/dst (and copies). This essentially 282 * protects against concurrent access to these fields. 283 * @lock: Lock for protecting both access to device hardware registers 284 * and fields related to current request (including the busy field). 285 * @res: Resources for hash. 286 * @io_hash_base: Per-variant offset for HASH block IO memory. 287 * @hash_lock: Lock for protecting hash_req, hash_queue and hash_flags 288 * variable. 289 * @hash_flags: Flags for current HASH op. 290 * @hash_queue: Async hash queue. 291 * @hash_tasklet: New HASH request scheduling job. 292 * @xmit_buf: Buffer for current HASH request transfer into SSS block. 293 * @hash_req: Current request sending to SSS HASH block. 294 * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block. 295 * @hash_sg_cnt: Counter for hash_sg_iter. 296 * 297 * @use_hash: true if HASH algs enabled 298 */ 299 struct s5p_aes_dev { 300 struct device *dev; 301 struct clk *clk; 302 struct clk *pclk; 303 void __iomem *ioaddr; 304 void __iomem *aes_ioaddr; 305 int irq_fc; 306 307 struct skcipher_request *req; 308 struct s5p_aes_ctx *ctx; 309 struct scatterlist *sg_src; 310 struct scatterlist *sg_dst; 311 312 struct scatterlist *sg_src_cpy; 313 struct scatterlist *sg_dst_cpy; 314 315 struct tasklet_struct tasklet; 316 struct crypto_queue queue; 317 bool busy; 318 spinlock_t lock; 319 320 struct resource *res; 321 void __iomem *io_hash_base; 322 323 spinlock_t hash_lock; /* protect hash_ vars */ 324 unsigned long hash_flags; 325 struct crypto_queue hash_queue; 326 struct tasklet_struct hash_tasklet; 327 328 u8 xmit_buf[BUFLEN]; 329 struct ahash_request *hash_req; 330 struct scatterlist *hash_sg_iter; 331 unsigned int hash_sg_cnt; 332 333 bool use_hash; 334 }; 335 336 /** 337 * struct s5p_hash_reqctx - HASH request context 338 * @dd: Associated device 339 * @op_update: Current request operation (OP_UPDATE or OP_FINAL) 340 * @digcnt: Number of bytes processed by HW (without buffer[] ones) 341 * @digest: Digest message or IV for partial result 342 * @nregs: Number of HW registers for digest or IV read/write 343 * @engine: Bits for selecting type of HASH in SSS block 344 * @sg: sg for DMA transfer 345 * @sg_len: Length of sg for DMA transfer 346 * @sgl: sg for joining buffer and req->src scatterlist 347 * @skip: Skip offset in req->src for current op 348 * @total: Total number of bytes for current request 349 * @finup: Keep state for finup or final. 350 * @error: Keep track of error. 351 * @bufcnt: Number of bytes holded in buffer[] 352 * @buffer: For byte(s) from end of req->src in UPDATE op 353 */ 354 struct s5p_hash_reqctx { 355 struct s5p_aes_dev *dd; 356 bool op_update; 357 358 u64 digcnt; 359 u8 digest[SHA256_DIGEST_SIZE]; 360 361 unsigned int nregs; /* digest_size / sizeof(reg) */ 362 u32 engine; 363 364 struct scatterlist *sg; 365 unsigned int sg_len; 366 struct scatterlist sgl[2]; 367 unsigned int skip; 368 unsigned int total; 369 bool finup; 370 bool error; 371 372 u32 bufcnt; 373 u8 buffer[]; 374 }; 375 376 /** 377 * struct s5p_hash_ctx - HASH transformation context 378 * @dd: Associated device 379 * @flags: Bits for algorithm HASH. 380 * @fallback: Software transformation for zero message or size < BUFLEN. 381 */ 382 struct s5p_hash_ctx { 383 struct s5p_aes_dev *dd; 384 unsigned long flags; 385 struct crypto_shash *fallback; 386 }; 387 388 static const struct samsung_aes_variant s5p_aes_data = { 389 .aes_offset = 0x4000, 390 .hash_offset = 0x6000, 391 .clk_names = { "secss", }, 392 }; 393 394 static const struct samsung_aes_variant exynos_aes_data = { 395 .aes_offset = 0x200, 396 .hash_offset = 0x400, 397 .clk_names = { "secss", }, 398 }; 399 400 static const struct samsung_aes_variant exynos5433_slim_aes_data = { 401 .aes_offset = 0x400, 402 .hash_offset = 0x800, 403 .clk_names = { "pclk", "aclk", }, 404 }; 405 406 static const struct of_device_id s5p_sss_dt_match[] = { 407 { 408 .compatible = "samsung,s5pv210-secss", 409 .data = &s5p_aes_data, 410 }, 411 { 412 .compatible = "samsung,exynos4210-secss", 413 .data = &exynos_aes_data, 414 }, 415 { 416 .compatible = "samsung,exynos5433-slim-sss", 417 .data = &exynos5433_slim_aes_data, 418 }, 419 { }, 420 }; 421 MODULE_DEVICE_TABLE(of, s5p_sss_dt_match); 422 423 static inline const struct samsung_aes_variant *find_s5p_sss_version 424 (const struct platform_device *pdev) 425 { 426 if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node)) { 427 const struct of_device_id *match; 428 429 match = of_match_node(s5p_sss_dt_match, 430 pdev->dev.of_node); 431 return (const struct samsung_aes_variant *)match->data; 432 } 433 return (const struct samsung_aes_variant *) 434 platform_get_device_id(pdev)->driver_data; 435 } 436 437 static struct s5p_aes_dev *s5p_dev; 438 439 static void s5p_set_dma_indata(struct s5p_aes_dev *dev, 440 const struct scatterlist *sg) 441 { 442 SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg)); 443 SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg)); 444 } 445 446 static void s5p_set_dma_outdata(struct s5p_aes_dev *dev, 447 const struct scatterlist *sg) 448 { 449 SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg)); 450 SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg)); 451 } 452 453 static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg) 454 { 455 int len; 456 457 if (!*sg) 458 return; 459 460 len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE); 461 free_pages((unsigned long)sg_virt(*sg), get_order(len)); 462 463 kfree(*sg); 464 *sg = NULL; 465 } 466 467 static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg, 468 unsigned int nbytes, int out) 469 { 470 struct scatter_walk walk; 471 472 if (!nbytes) 473 return; 474 475 scatterwalk_start(&walk, sg); 476 scatterwalk_copychunks(buf, &walk, nbytes, out); 477 scatterwalk_done(&walk, out, 0); 478 } 479 480 static void s5p_sg_done(struct s5p_aes_dev *dev) 481 { 482 struct skcipher_request *req = dev->req; 483 struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req); 484 485 if (dev->sg_dst_cpy) { 486 dev_dbg(dev->dev, 487 "Copying %d bytes of output data back to original place\n", 488 dev->req->cryptlen); 489 s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst, 490 dev->req->cryptlen, 1); 491 } 492 s5p_free_sg_cpy(dev, &dev->sg_src_cpy); 493 s5p_free_sg_cpy(dev, &dev->sg_dst_cpy); 494 if (reqctx->mode & FLAGS_AES_CBC) 495 memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), AES_BLOCK_SIZE); 496 497 else if (reqctx->mode & FLAGS_AES_CTR) 498 memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), AES_BLOCK_SIZE); 499 } 500 501 /* Calls the completion. Cannot be called with dev->lock hold. */ 502 static void s5p_aes_complete(struct skcipher_request *req, int err) 503 { 504 req->base.complete(&req->base, err); 505 } 506 507 static void s5p_unset_outdata(struct s5p_aes_dev *dev) 508 { 509 dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE); 510 } 511 512 static void s5p_unset_indata(struct s5p_aes_dev *dev) 513 { 514 dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE); 515 } 516 517 static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src, 518 struct scatterlist **dst) 519 { 520 void *pages; 521 int len; 522 523 *dst = kmalloc(sizeof(**dst), GFP_ATOMIC); 524 if (!*dst) 525 return -ENOMEM; 526 527 len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE); 528 pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len)); 529 if (!pages) { 530 kfree(*dst); 531 *dst = NULL; 532 return -ENOMEM; 533 } 534 535 s5p_sg_copy_buf(pages, src, dev->req->cryptlen, 0); 536 537 sg_init_table(*dst, 1); 538 sg_set_buf(*dst, pages, len); 539 540 return 0; 541 } 542 543 static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg) 544 { 545 if (!sg->length) 546 return -EINVAL; 547 548 if (!dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE)) 549 return -ENOMEM; 550 551 dev->sg_dst = sg; 552 553 return 0; 554 } 555 556 static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg) 557 { 558 if (!sg->length) 559 return -EINVAL; 560 561 if (!dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE)) 562 return -ENOMEM; 563 564 dev->sg_src = sg; 565 566 return 0; 567 } 568 569 /* 570 * Returns -ERRNO on error (mapping of new data failed). 571 * On success returns: 572 * - 0 if there is no more data, 573 * - 1 if new transmitting (output) data is ready and its address+length 574 * have to be written to device (by calling s5p_set_dma_outdata()). 575 */ 576 static int s5p_aes_tx(struct s5p_aes_dev *dev) 577 { 578 int ret = 0; 579 580 s5p_unset_outdata(dev); 581 582 if (!sg_is_last(dev->sg_dst)) { 583 ret = s5p_set_outdata(dev, sg_next(dev->sg_dst)); 584 if (!ret) 585 ret = 1; 586 } 587 588 return ret; 589 } 590 591 /* 592 * Returns -ERRNO on error (mapping of new data failed). 593 * On success returns: 594 * - 0 if there is no more data, 595 * - 1 if new receiving (input) data is ready and its address+length 596 * have to be written to device (by calling s5p_set_dma_indata()). 597 */ 598 static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/) 599 { 600 int ret = 0; 601 602 s5p_unset_indata(dev); 603 604 if (!sg_is_last(dev->sg_src)) { 605 ret = s5p_set_indata(dev, sg_next(dev->sg_src)); 606 if (!ret) 607 ret = 1; 608 } 609 610 return ret; 611 } 612 613 static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset) 614 { 615 return __raw_readl(dd->io_hash_base + offset); 616 } 617 618 static inline void s5p_hash_write(struct s5p_aes_dev *dd, 619 u32 offset, u32 value) 620 { 621 __raw_writel(value, dd->io_hash_base + offset); 622 } 623 624 /** 625 * s5p_set_dma_hashdata() - start DMA with sg 626 * @dev: device 627 * @sg: scatterlist ready to DMA transmit 628 */ 629 static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev, 630 const struct scatterlist *sg) 631 { 632 dev->hash_sg_cnt--; 633 SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg)); 634 SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */ 635 } 636 637 /** 638 * s5p_hash_rx() - get next hash_sg_iter 639 * @dev: device 640 * 641 * Return: 642 * 2 if there is no more data and it is UPDATE op 643 * 1 if new receiving (input) data is ready and can be written to device 644 * 0 if there is no more data and it is FINAL op 645 */ 646 static int s5p_hash_rx(struct s5p_aes_dev *dev) 647 { 648 if (dev->hash_sg_cnt > 0) { 649 dev->hash_sg_iter = sg_next(dev->hash_sg_iter); 650 return 1; 651 } 652 653 set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags); 654 if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags)) 655 return 0; 656 657 return 2; 658 } 659 660 static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id) 661 { 662 struct platform_device *pdev = dev_id; 663 struct s5p_aes_dev *dev = platform_get_drvdata(pdev); 664 struct skcipher_request *req; 665 int err_dma_tx = 0; 666 int err_dma_rx = 0; 667 int err_dma_hx = 0; 668 bool tx_end = false; 669 bool hx_end = false; 670 unsigned long flags; 671 u32 status, st_bits; 672 int err; 673 674 spin_lock_irqsave(&dev->lock, flags); 675 676 /* 677 * Handle rx or tx interrupt. If there is still data (scatterlist did not 678 * reach end), then map next scatterlist entry. 679 * In case of such mapping error, s5p_aes_complete() should be called. 680 * 681 * If there is no more data in tx scatter list, call s5p_aes_complete() 682 * and schedule new tasklet. 683 * 684 * Handle hx interrupt. If there is still data map next entry. 685 */ 686 status = SSS_READ(dev, FCINTSTAT); 687 if (status & SSS_FCINTSTAT_BRDMAINT) 688 err_dma_rx = s5p_aes_rx(dev); 689 690 if (status & SSS_FCINTSTAT_BTDMAINT) { 691 if (sg_is_last(dev->sg_dst)) 692 tx_end = true; 693 err_dma_tx = s5p_aes_tx(dev); 694 } 695 696 if (status & SSS_FCINTSTAT_HRDMAINT) 697 err_dma_hx = s5p_hash_rx(dev); 698 699 st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT | 700 SSS_FCINTSTAT_HRDMAINT); 701 /* clear DMA bits */ 702 SSS_WRITE(dev, FCINTPEND, st_bits); 703 704 /* clear HASH irq bits */ 705 if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) { 706 /* cannot have both HPART and HDONE */ 707 if (status & SSS_FCINTSTAT_HPARTINT) 708 st_bits = SSS_HASH_STATUS_PARTIAL_DONE; 709 710 if (status & SSS_FCINTSTAT_HDONEINT) 711 st_bits = SSS_HASH_STATUS_MSG_DONE; 712 713 set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags); 714 s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits); 715 hx_end = true; 716 /* when DONE or PART, do not handle HASH DMA */ 717 err_dma_hx = 0; 718 } 719 720 if (err_dma_rx < 0) { 721 err = err_dma_rx; 722 goto error; 723 } 724 if (err_dma_tx < 0) { 725 err = err_dma_tx; 726 goto error; 727 } 728 729 if (tx_end) { 730 s5p_sg_done(dev); 731 if (err_dma_hx == 1) 732 s5p_set_dma_hashdata(dev, dev->hash_sg_iter); 733 734 spin_unlock_irqrestore(&dev->lock, flags); 735 736 s5p_aes_complete(dev->req, 0); 737 /* Device is still busy */ 738 tasklet_schedule(&dev->tasklet); 739 } else { 740 /* 741 * Writing length of DMA block (either receiving or 742 * transmitting) will start the operation immediately, so this 743 * should be done at the end (even after clearing pending 744 * interrupts to not miss the interrupt). 745 */ 746 if (err_dma_tx == 1) 747 s5p_set_dma_outdata(dev, dev->sg_dst); 748 if (err_dma_rx == 1) 749 s5p_set_dma_indata(dev, dev->sg_src); 750 if (err_dma_hx == 1) 751 s5p_set_dma_hashdata(dev, dev->hash_sg_iter); 752 753 spin_unlock_irqrestore(&dev->lock, flags); 754 } 755 756 goto hash_irq_end; 757 758 error: 759 s5p_sg_done(dev); 760 dev->busy = false; 761 req = dev->req; 762 if (err_dma_hx == 1) 763 s5p_set_dma_hashdata(dev, dev->hash_sg_iter); 764 765 spin_unlock_irqrestore(&dev->lock, flags); 766 s5p_aes_complete(req, err); 767 768 hash_irq_end: 769 /* 770 * Note about else if: 771 * when hash_sg_iter reaches end and its UPDATE op, 772 * issue SSS_HASH_PAUSE and wait for HPART irq 773 */ 774 if (hx_end) 775 tasklet_schedule(&dev->hash_tasklet); 776 else if (err_dma_hx == 2) 777 s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE, 778 SSS_HASH_PAUSE); 779 780 return IRQ_HANDLED; 781 } 782 783 /** 784 * s5p_hash_read_msg() - read message or IV from HW 785 * @req: AHASH request 786 */ 787 static void s5p_hash_read_msg(struct ahash_request *req) 788 { 789 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 790 struct s5p_aes_dev *dd = ctx->dd; 791 u32 *hash = (u32 *)ctx->digest; 792 unsigned int i; 793 794 for (i = 0; i < ctx->nregs; i++) 795 hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i)); 796 } 797 798 /** 799 * s5p_hash_write_ctx_iv() - write IV for next partial/finup op. 800 * @dd: device 801 * @ctx: request context 802 */ 803 static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd, 804 const struct s5p_hash_reqctx *ctx) 805 { 806 const u32 *hash = (const u32 *)ctx->digest; 807 unsigned int i; 808 809 for (i = 0; i < ctx->nregs; i++) 810 s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]); 811 } 812 813 /** 814 * s5p_hash_write_iv() - write IV for next partial/finup op. 815 * @req: AHASH request 816 */ 817 static void s5p_hash_write_iv(struct ahash_request *req) 818 { 819 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 820 821 s5p_hash_write_ctx_iv(ctx->dd, ctx); 822 } 823 824 /** 825 * s5p_hash_copy_result() - copy digest into req->result 826 * @req: AHASH request 827 */ 828 static void s5p_hash_copy_result(struct ahash_request *req) 829 { 830 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 831 832 if (!req->result) 833 return; 834 835 memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF); 836 } 837 838 /** 839 * s5p_hash_dma_flush() - flush HASH DMA 840 * @dev: secss device 841 */ 842 static void s5p_hash_dma_flush(struct s5p_aes_dev *dev) 843 { 844 SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH); 845 } 846 847 /** 848 * s5p_hash_dma_enable() - enable DMA mode for HASH 849 * @dev: secss device 850 * 851 * enable DMA mode for HASH 852 */ 853 static void s5p_hash_dma_enable(struct s5p_aes_dev *dev) 854 { 855 s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA); 856 } 857 858 /** 859 * s5p_hash_irq_disable() - disable irq HASH signals 860 * @dev: secss device 861 * @flags: bitfield with irq's to be disabled 862 */ 863 static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags) 864 { 865 SSS_WRITE(dev, FCINTENCLR, flags); 866 } 867 868 /** 869 * s5p_hash_irq_enable() - enable irq signals 870 * @dev: secss device 871 * @flags: bitfield with irq's to be enabled 872 */ 873 static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags) 874 { 875 SSS_WRITE(dev, FCINTENSET, flags); 876 } 877 878 /** 879 * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH 880 * @dev: secss device 881 * @hashflow: HASH stream flow with/without crypto AES/DES 882 */ 883 static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow) 884 { 885 unsigned long flags; 886 u32 flow; 887 888 spin_lock_irqsave(&dev->lock, flags); 889 890 flow = SSS_READ(dev, FCFIFOCTRL); 891 flow &= ~SSS_HASHIN_MASK; 892 flow |= hashflow; 893 SSS_WRITE(dev, FCFIFOCTRL, flow); 894 895 spin_unlock_irqrestore(&dev->lock, flags); 896 } 897 898 /** 899 * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS 900 * @dev: secss device 901 * @hashflow: HASH stream flow with/without AES/DES 902 * 903 * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW, 904 * enable HASH irq's HRDMA, HDONE, HPART 905 */ 906 static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow) 907 { 908 s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR | 909 SSS_FCINTENCLR_HDONEINTENCLR | 910 SSS_FCINTENCLR_HPARTINTENCLR); 911 s5p_hash_dma_flush(dev); 912 913 s5p_hash_dma_enable(dev); 914 s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK); 915 s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET | 916 SSS_FCINTENSET_HDONEINTENSET | 917 SSS_FCINTENSET_HPARTINTENSET); 918 } 919 920 /** 921 * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing 922 * @dd: secss device 923 * @length: length for request 924 * @final: true if final op 925 * 926 * Prepare SSS HASH block for processing bytes in DMA mode. If it is called 927 * after previous updates, fill up IV words. For final, calculate and set 928 * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH 929 * length as 2^63 so it will be never reached and set to zero prelow and 930 * prehigh. 931 * 932 * This function does not start DMA transfer. 933 */ 934 static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length, 935 bool final) 936 { 937 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req); 938 u32 prelow, prehigh, low, high; 939 u32 configflags, swapflags; 940 u64 tmplen; 941 942 configflags = ctx->engine | SSS_HASH_INIT_BIT; 943 944 if (likely(ctx->digcnt)) { 945 s5p_hash_write_ctx_iv(dd, ctx); 946 configflags |= SSS_HASH_USER_IV_EN; 947 } 948 949 if (final) { 950 /* number of bytes for last part */ 951 low = length; 952 high = 0; 953 /* total number of bits prev hashed */ 954 tmplen = ctx->digcnt * 8; 955 prelow = (u32)tmplen; 956 prehigh = (u32)(tmplen >> 32); 957 } else { 958 prelow = 0; 959 prehigh = 0; 960 low = 0; 961 high = BIT(31); 962 } 963 964 swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO | 965 SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY; 966 967 s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low); 968 s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high); 969 s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow); 970 s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh); 971 972 s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags); 973 s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags); 974 } 975 976 /** 977 * s5p_hash_xmit_dma() - start DMA hash processing 978 * @dd: secss device 979 * @length: length for request 980 * @final: true if final op 981 * 982 * Update digcnt here, as it is needed for finup/final op. 983 */ 984 static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length, 985 bool final) 986 { 987 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req); 988 unsigned int cnt; 989 990 cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE); 991 if (!cnt) { 992 dev_err(dd->dev, "dma_map_sg error\n"); 993 ctx->error = true; 994 return -EINVAL; 995 } 996 997 set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags); 998 dd->hash_sg_iter = ctx->sg; 999 dd->hash_sg_cnt = cnt; 1000 s5p_hash_write_ctrl(dd, length, final); 1001 ctx->digcnt += length; 1002 ctx->total -= length; 1003 1004 /* catch last interrupt */ 1005 if (final) 1006 set_bit(HASH_FLAGS_FINAL, &dd->hash_flags); 1007 1008 s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */ 1009 1010 return -EINPROGRESS; 1011 } 1012 1013 /** 1014 * s5p_hash_copy_sgs() - copy request's bytes into new buffer 1015 * @ctx: request context 1016 * @sg: source scatterlist request 1017 * @new_len: number of bytes to process from sg 1018 * 1019 * Allocate new buffer, copy data for HASH into it. If there was xmit_buf 1020 * filled, copy it first, then copy data from sg into it. Prepare one sgl[0] 1021 * with allocated buffer. 1022 * 1023 * Set bit in dd->hash_flag so we can free it after irq ends processing. 1024 */ 1025 static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx, 1026 struct scatterlist *sg, unsigned int new_len) 1027 { 1028 unsigned int pages, len; 1029 void *buf; 1030 1031 len = new_len + ctx->bufcnt; 1032 pages = get_order(len); 1033 1034 buf = (void *)__get_free_pages(GFP_ATOMIC, pages); 1035 if (!buf) { 1036 dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n"); 1037 ctx->error = true; 1038 return -ENOMEM; 1039 } 1040 1041 if (ctx->bufcnt) 1042 memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt); 1043 1044 scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip, 1045 new_len, 0); 1046 sg_init_table(ctx->sgl, 1); 1047 sg_set_buf(ctx->sgl, buf, len); 1048 ctx->sg = ctx->sgl; 1049 ctx->sg_len = 1; 1050 ctx->bufcnt = 0; 1051 ctx->skip = 0; 1052 set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags); 1053 1054 return 0; 1055 } 1056 1057 /** 1058 * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy 1059 * @ctx: request context 1060 * @sg: source scatterlist request 1061 * @new_len: number of bytes to process from sg 1062 * 1063 * Allocate new scatterlist table, copy data for HASH into it. If there was 1064 * xmit_buf filled, prepare it first, then copy page, length and offset from 1065 * source sg into it, adjusting begin and/or end for skip offset and 1066 * hash_later value. 1067 * 1068 * Resulting sg table will be assigned to ctx->sg. Set flag so we can free 1069 * it after irq ends processing. 1070 */ 1071 static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx, 1072 struct scatterlist *sg, unsigned int new_len) 1073 { 1074 unsigned int skip = ctx->skip, n = sg_nents(sg); 1075 struct scatterlist *tmp; 1076 unsigned int len; 1077 1078 if (ctx->bufcnt) 1079 n++; 1080 1081 ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL); 1082 if (!ctx->sg) { 1083 ctx->error = true; 1084 return -ENOMEM; 1085 } 1086 1087 sg_init_table(ctx->sg, n); 1088 1089 tmp = ctx->sg; 1090 1091 ctx->sg_len = 0; 1092 1093 if (ctx->bufcnt) { 1094 sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt); 1095 tmp = sg_next(tmp); 1096 ctx->sg_len++; 1097 } 1098 1099 while (sg && skip >= sg->length) { 1100 skip -= sg->length; 1101 sg = sg_next(sg); 1102 } 1103 1104 while (sg && new_len) { 1105 len = sg->length - skip; 1106 if (new_len < len) 1107 len = new_len; 1108 1109 new_len -= len; 1110 sg_set_page(tmp, sg_page(sg), len, sg->offset + skip); 1111 skip = 0; 1112 if (new_len <= 0) 1113 sg_mark_end(tmp); 1114 1115 tmp = sg_next(tmp); 1116 ctx->sg_len++; 1117 sg = sg_next(sg); 1118 } 1119 1120 set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags); 1121 1122 return 0; 1123 } 1124 1125 /** 1126 * s5p_hash_prepare_sgs() - prepare sg for processing 1127 * @ctx: request context 1128 * @sg: source scatterlist request 1129 * @new_len: number of bytes to process from sg 1130 * @final: final flag 1131 * 1132 * Check two conditions: (1) if buffers in sg have len aligned data, and (2) 1133 * sg table have good aligned elements (list_ok). If one of this checks fails, 1134 * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy 1135 * data into this buffer and prepare request in sgl, or (2) allocates new sg 1136 * table and prepare sg elements. 1137 * 1138 * For digest or finup all conditions can be good, and we may not need any 1139 * fixes. 1140 */ 1141 static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx, 1142 struct scatterlist *sg, 1143 unsigned int new_len, bool final) 1144 { 1145 unsigned int skip = ctx->skip, nbytes = new_len, n = 0; 1146 bool aligned = true, list_ok = true; 1147 struct scatterlist *sg_tmp = sg; 1148 1149 if (!sg || !sg->length || !new_len) 1150 return 0; 1151 1152 if (skip || !final) 1153 list_ok = false; 1154 1155 while (nbytes > 0 && sg_tmp) { 1156 n++; 1157 if (skip >= sg_tmp->length) { 1158 skip -= sg_tmp->length; 1159 if (!sg_tmp->length) { 1160 aligned = false; 1161 break; 1162 } 1163 } else { 1164 if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) { 1165 aligned = false; 1166 break; 1167 } 1168 1169 if (nbytes < sg_tmp->length - skip) { 1170 list_ok = false; 1171 break; 1172 } 1173 1174 nbytes -= sg_tmp->length - skip; 1175 skip = 0; 1176 } 1177 1178 sg_tmp = sg_next(sg_tmp); 1179 } 1180 1181 if (!aligned) 1182 return s5p_hash_copy_sgs(ctx, sg, new_len); 1183 else if (!list_ok) 1184 return s5p_hash_copy_sg_lists(ctx, sg, new_len); 1185 1186 /* 1187 * Have aligned data from previous operation and/or current 1188 * Note: will enter here only if (digest or finup) and aligned 1189 */ 1190 if (ctx->bufcnt) { 1191 ctx->sg_len = n; 1192 sg_init_table(ctx->sgl, 2); 1193 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt); 1194 sg_chain(ctx->sgl, 2, sg); 1195 ctx->sg = ctx->sgl; 1196 ctx->sg_len++; 1197 } else { 1198 ctx->sg = sg; 1199 ctx->sg_len = n; 1200 } 1201 1202 return 0; 1203 } 1204 1205 /** 1206 * s5p_hash_prepare_request() - prepare request for processing 1207 * @req: AHASH request 1208 * @update: true if UPDATE op 1209 * 1210 * Note 1: we can have update flag _and_ final flag at the same time. 1211 * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or 1212 * either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or 1213 * we have final op 1214 */ 1215 static int s5p_hash_prepare_request(struct ahash_request *req, bool update) 1216 { 1217 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1218 bool final = ctx->finup; 1219 int xmit_len, hash_later, nbytes; 1220 int ret; 1221 1222 if (update) 1223 nbytes = req->nbytes; 1224 else 1225 nbytes = 0; 1226 1227 ctx->total = nbytes + ctx->bufcnt; 1228 if (!ctx->total) 1229 return 0; 1230 1231 if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) { 1232 /* bytes left from previous request, so fill up to BUFLEN */ 1233 int len = BUFLEN - ctx->bufcnt % BUFLEN; 1234 1235 if (len > nbytes) 1236 len = nbytes; 1237 1238 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src, 1239 0, len, 0); 1240 ctx->bufcnt += len; 1241 nbytes -= len; 1242 ctx->skip = len; 1243 } else { 1244 ctx->skip = 0; 1245 } 1246 1247 if (ctx->bufcnt) 1248 memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt); 1249 1250 xmit_len = ctx->total; 1251 if (final) { 1252 hash_later = 0; 1253 } else { 1254 if (IS_ALIGNED(xmit_len, BUFLEN)) 1255 xmit_len -= BUFLEN; 1256 else 1257 xmit_len -= xmit_len & (BUFLEN - 1); 1258 1259 hash_later = ctx->total - xmit_len; 1260 /* copy hash_later bytes from end of req->src */ 1261 /* previous bytes are in xmit_buf, so no overwrite */ 1262 scatterwalk_map_and_copy(ctx->buffer, req->src, 1263 req->nbytes - hash_later, 1264 hash_later, 0); 1265 } 1266 1267 if (xmit_len > BUFLEN) { 1268 ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later, 1269 final); 1270 if (ret) 1271 return ret; 1272 } else { 1273 /* have buffered data only */ 1274 if (unlikely(!ctx->bufcnt)) { 1275 /* first update didn't fill up buffer */ 1276 scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src, 1277 0, xmit_len, 0); 1278 } 1279 1280 sg_init_table(ctx->sgl, 1); 1281 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len); 1282 1283 ctx->sg = ctx->sgl; 1284 ctx->sg_len = 1; 1285 } 1286 1287 ctx->bufcnt = hash_later; 1288 if (!final) 1289 ctx->total = xmit_len; 1290 1291 return 0; 1292 } 1293 1294 /** 1295 * s5p_hash_update_dma_stop() - unmap DMA 1296 * @dd: secss device 1297 * 1298 * Unmap scatterlist ctx->sg. 1299 */ 1300 static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd) 1301 { 1302 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req); 1303 1304 dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE); 1305 clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags); 1306 } 1307 1308 /** 1309 * s5p_hash_finish() - copy calculated digest to crypto layer 1310 * @req: AHASH request 1311 */ 1312 static void s5p_hash_finish(struct ahash_request *req) 1313 { 1314 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1315 struct s5p_aes_dev *dd = ctx->dd; 1316 1317 if (ctx->digcnt) 1318 s5p_hash_copy_result(req); 1319 1320 dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt); 1321 } 1322 1323 /** 1324 * s5p_hash_finish_req() - finish request 1325 * @req: AHASH request 1326 * @err: error 1327 */ 1328 static void s5p_hash_finish_req(struct ahash_request *req, int err) 1329 { 1330 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1331 struct s5p_aes_dev *dd = ctx->dd; 1332 unsigned long flags; 1333 1334 if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags)) 1335 free_pages((unsigned long)sg_virt(ctx->sg), 1336 get_order(ctx->sg->length)); 1337 1338 if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags)) 1339 kfree(ctx->sg); 1340 1341 ctx->sg = NULL; 1342 dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) | 1343 BIT(HASH_FLAGS_SGS_COPIED)); 1344 1345 if (!err && !ctx->error) { 1346 s5p_hash_read_msg(req); 1347 if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags)) 1348 s5p_hash_finish(req); 1349 } else { 1350 ctx->error = true; 1351 } 1352 1353 spin_lock_irqsave(&dd->hash_lock, flags); 1354 dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) | 1355 BIT(HASH_FLAGS_DMA_READY) | 1356 BIT(HASH_FLAGS_OUTPUT_READY)); 1357 spin_unlock_irqrestore(&dd->hash_lock, flags); 1358 1359 if (req->base.complete) 1360 req->base.complete(&req->base, err); 1361 } 1362 1363 /** 1364 * s5p_hash_handle_queue() - handle hash queue 1365 * @dd: device s5p_aes_dev 1366 * @req: AHASH request 1367 * 1368 * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the 1369 * device then processes the first request from the dd->queue 1370 * 1371 * Returns: see s5p_hash_final below. 1372 */ 1373 static int s5p_hash_handle_queue(struct s5p_aes_dev *dd, 1374 struct ahash_request *req) 1375 { 1376 struct crypto_async_request *async_req, *backlog; 1377 struct s5p_hash_reqctx *ctx; 1378 unsigned long flags; 1379 int err = 0, ret = 0; 1380 1381 retry: 1382 spin_lock_irqsave(&dd->hash_lock, flags); 1383 if (req) 1384 ret = ahash_enqueue_request(&dd->hash_queue, req); 1385 1386 if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) { 1387 spin_unlock_irqrestore(&dd->hash_lock, flags); 1388 return ret; 1389 } 1390 1391 backlog = crypto_get_backlog(&dd->hash_queue); 1392 async_req = crypto_dequeue_request(&dd->hash_queue); 1393 if (async_req) 1394 set_bit(HASH_FLAGS_BUSY, &dd->hash_flags); 1395 1396 spin_unlock_irqrestore(&dd->hash_lock, flags); 1397 1398 if (!async_req) 1399 return ret; 1400 1401 if (backlog) 1402 backlog->complete(backlog, -EINPROGRESS); 1403 1404 req = ahash_request_cast(async_req); 1405 dd->hash_req = req; 1406 ctx = ahash_request_ctx(req); 1407 1408 err = s5p_hash_prepare_request(req, ctx->op_update); 1409 if (err || !ctx->total) 1410 goto out; 1411 1412 dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n", 1413 ctx->op_update, req->nbytes); 1414 1415 s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT); 1416 if (ctx->digcnt) 1417 s5p_hash_write_iv(req); /* restore hash IV */ 1418 1419 if (ctx->op_update) { /* HASH_OP_UPDATE */ 1420 err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup); 1421 if (err != -EINPROGRESS && ctx->finup && !ctx->error) 1422 /* no final() after finup() */ 1423 err = s5p_hash_xmit_dma(dd, ctx->total, true); 1424 } else { /* HASH_OP_FINAL */ 1425 err = s5p_hash_xmit_dma(dd, ctx->total, true); 1426 } 1427 out: 1428 if (err != -EINPROGRESS) { 1429 /* hash_tasklet_cb will not finish it, so do it here */ 1430 s5p_hash_finish_req(req, err); 1431 req = NULL; 1432 1433 /* 1434 * Execute next request immediately if there is anything 1435 * in queue. 1436 */ 1437 goto retry; 1438 } 1439 1440 return ret; 1441 } 1442 1443 /** 1444 * s5p_hash_tasklet_cb() - hash tasklet 1445 * @data: ptr to s5p_aes_dev 1446 */ 1447 static void s5p_hash_tasklet_cb(unsigned long data) 1448 { 1449 struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data; 1450 1451 if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) { 1452 s5p_hash_handle_queue(dd, NULL); 1453 return; 1454 } 1455 1456 if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) { 1457 if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE, 1458 &dd->hash_flags)) { 1459 s5p_hash_update_dma_stop(dd); 1460 } 1461 1462 if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY, 1463 &dd->hash_flags)) { 1464 /* hash or semi-hash ready */ 1465 clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags); 1466 goto finish; 1467 } 1468 } 1469 1470 return; 1471 1472 finish: 1473 /* finish curent request */ 1474 s5p_hash_finish_req(dd->hash_req, 0); 1475 1476 /* If we are not busy, process next req */ 1477 if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) 1478 s5p_hash_handle_queue(dd, NULL); 1479 } 1480 1481 /** 1482 * s5p_hash_enqueue() - enqueue request 1483 * @req: AHASH request 1484 * @op: operation UPDATE (true) or FINAL (false) 1485 * 1486 * Returns: see s5p_hash_final below. 1487 */ 1488 static int s5p_hash_enqueue(struct ahash_request *req, bool op) 1489 { 1490 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1491 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm); 1492 1493 ctx->op_update = op; 1494 1495 return s5p_hash_handle_queue(tctx->dd, req); 1496 } 1497 1498 /** 1499 * s5p_hash_update() - process the hash input data 1500 * @req: AHASH request 1501 * 1502 * If request will fit in buffer, copy it and return immediately 1503 * else enqueue it with OP_UPDATE. 1504 * 1505 * Returns: see s5p_hash_final below. 1506 */ 1507 static int s5p_hash_update(struct ahash_request *req) 1508 { 1509 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1510 1511 if (!req->nbytes) 1512 return 0; 1513 1514 if (ctx->bufcnt + req->nbytes <= BUFLEN) { 1515 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src, 1516 0, req->nbytes, 0); 1517 ctx->bufcnt += req->nbytes; 1518 return 0; 1519 } 1520 1521 return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */ 1522 } 1523 1524 /** 1525 * s5p_hash_final() - close up hash and calculate digest 1526 * @req: AHASH request 1527 * 1528 * Note: in final req->src do not have any data, and req->nbytes can be 1529 * non-zero. 1530 * 1531 * If there were no input data processed yet and the buffered hash data is 1532 * less than BUFLEN (64) then calculate the final hash immediately by using 1533 * SW algorithm fallback. 1534 * 1535 * Otherwise enqueues the current AHASH request with OP_FINAL operation op 1536 * and finalize hash message in HW. Note that if digcnt!=0 then there were 1537 * previous update op, so there are always some buffered bytes in ctx->buffer, 1538 * which means that ctx->bufcnt!=0 1539 * 1540 * Returns: 1541 * 0 if the request has been processed immediately, 1542 * -EINPROGRESS if the operation has been queued for later execution or is set 1543 * to processing by HW, 1544 * -EBUSY if queue is full and request should be resubmitted later, 1545 * other negative values denotes an error. 1546 */ 1547 static int s5p_hash_final(struct ahash_request *req) 1548 { 1549 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1550 1551 ctx->finup = true; 1552 if (ctx->error) 1553 return -EINVAL; /* uncompleted hash is not needed */ 1554 1555 if (!ctx->digcnt && ctx->bufcnt < BUFLEN) { 1556 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm); 1557 1558 return crypto_shash_tfm_digest(tctx->fallback, ctx->buffer, 1559 ctx->bufcnt, req->result); 1560 } 1561 1562 return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */ 1563 } 1564 1565 /** 1566 * s5p_hash_finup() - process last req->src and calculate digest 1567 * @req: AHASH request containing the last update data 1568 * 1569 * Return values: see s5p_hash_final above. 1570 */ 1571 static int s5p_hash_finup(struct ahash_request *req) 1572 { 1573 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1574 int err1, err2; 1575 1576 ctx->finup = true; 1577 1578 err1 = s5p_hash_update(req); 1579 if (err1 == -EINPROGRESS || err1 == -EBUSY) 1580 return err1; 1581 1582 /* 1583 * final() has to be always called to cleanup resources even if 1584 * update() failed, except EINPROGRESS or calculate digest for small 1585 * size 1586 */ 1587 err2 = s5p_hash_final(req); 1588 1589 return err1 ?: err2; 1590 } 1591 1592 /** 1593 * s5p_hash_init() - initialize AHASH request contex 1594 * @req: AHASH request 1595 * 1596 * Init async hash request context. 1597 */ 1598 static int s5p_hash_init(struct ahash_request *req) 1599 { 1600 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1601 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 1602 struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm); 1603 1604 ctx->dd = tctx->dd; 1605 ctx->error = false; 1606 ctx->finup = false; 1607 ctx->bufcnt = 0; 1608 ctx->digcnt = 0; 1609 ctx->total = 0; 1610 ctx->skip = 0; 1611 1612 dev_dbg(tctx->dd->dev, "init: digest size: %d\n", 1613 crypto_ahash_digestsize(tfm)); 1614 1615 switch (crypto_ahash_digestsize(tfm)) { 1616 case MD5_DIGEST_SIZE: 1617 ctx->engine = SSS_HASH_ENGINE_MD5; 1618 ctx->nregs = HASH_MD5_MAX_REG; 1619 break; 1620 case SHA1_DIGEST_SIZE: 1621 ctx->engine = SSS_HASH_ENGINE_SHA1; 1622 ctx->nregs = HASH_SHA1_MAX_REG; 1623 break; 1624 case SHA256_DIGEST_SIZE: 1625 ctx->engine = SSS_HASH_ENGINE_SHA256; 1626 ctx->nregs = HASH_SHA256_MAX_REG; 1627 break; 1628 default: 1629 ctx->error = true; 1630 return -EINVAL; 1631 } 1632 1633 return 0; 1634 } 1635 1636 /** 1637 * s5p_hash_digest - calculate digest from req->src 1638 * @req: AHASH request 1639 * 1640 * Return values: see s5p_hash_final above. 1641 */ 1642 static int s5p_hash_digest(struct ahash_request *req) 1643 { 1644 return s5p_hash_init(req) ?: s5p_hash_finup(req); 1645 } 1646 1647 /** 1648 * s5p_hash_cra_init_alg - init crypto alg transformation 1649 * @tfm: crypto transformation 1650 */ 1651 static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm) 1652 { 1653 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm); 1654 const char *alg_name = crypto_tfm_alg_name(tfm); 1655 1656 tctx->dd = s5p_dev; 1657 /* Allocate a fallback and abort if it failed. */ 1658 tctx->fallback = crypto_alloc_shash(alg_name, 0, 1659 CRYPTO_ALG_NEED_FALLBACK); 1660 if (IS_ERR(tctx->fallback)) { 1661 pr_err("fallback alloc fails for '%s'\n", alg_name); 1662 return PTR_ERR(tctx->fallback); 1663 } 1664 1665 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), 1666 sizeof(struct s5p_hash_reqctx) + BUFLEN); 1667 1668 return 0; 1669 } 1670 1671 /** 1672 * s5p_hash_cra_init - init crypto tfm 1673 * @tfm: crypto transformation 1674 */ 1675 static int s5p_hash_cra_init(struct crypto_tfm *tfm) 1676 { 1677 return s5p_hash_cra_init_alg(tfm); 1678 } 1679 1680 /** 1681 * s5p_hash_cra_exit - exit crypto tfm 1682 * @tfm: crypto transformation 1683 * 1684 * free allocated fallback 1685 */ 1686 static void s5p_hash_cra_exit(struct crypto_tfm *tfm) 1687 { 1688 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm); 1689 1690 crypto_free_shash(tctx->fallback); 1691 tctx->fallback = NULL; 1692 } 1693 1694 /** 1695 * s5p_hash_export - export hash state 1696 * @req: AHASH request 1697 * @out: buffer for exported state 1698 */ 1699 static int s5p_hash_export(struct ahash_request *req, void *out) 1700 { 1701 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1702 1703 memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt); 1704 1705 return 0; 1706 } 1707 1708 /** 1709 * s5p_hash_import - import hash state 1710 * @req: AHASH request 1711 * @in: buffer with state to be imported from 1712 */ 1713 static int s5p_hash_import(struct ahash_request *req, const void *in) 1714 { 1715 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1716 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 1717 struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm); 1718 const struct s5p_hash_reqctx *ctx_in = in; 1719 1720 memcpy(ctx, in, sizeof(*ctx) + BUFLEN); 1721 if (ctx_in->bufcnt > BUFLEN) { 1722 ctx->error = true; 1723 return -EINVAL; 1724 } 1725 1726 ctx->dd = tctx->dd; 1727 ctx->error = false; 1728 1729 return 0; 1730 } 1731 1732 static struct ahash_alg algs_sha1_md5_sha256[] = { 1733 { 1734 .init = s5p_hash_init, 1735 .update = s5p_hash_update, 1736 .final = s5p_hash_final, 1737 .finup = s5p_hash_finup, 1738 .digest = s5p_hash_digest, 1739 .export = s5p_hash_export, 1740 .import = s5p_hash_import, 1741 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN, 1742 .halg.digestsize = SHA1_DIGEST_SIZE, 1743 .halg.base = { 1744 .cra_name = "sha1", 1745 .cra_driver_name = "exynos-sha1", 1746 .cra_priority = 100, 1747 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1748 CRYPTO_ALG_ASYNC | 1749 CRYPTO_ALG_NEED_FALLBACK, 1750 .cra_blocksize = HASH_BLOCK_SIZE, 1751 .cra_ctxsize = sizeof(struct s5p_hash_ctx), 1752 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK, 1753 .cra_module = THIS_MODULE, 1754 .cra_init = s5p_hash_cra_init, 1755 .cra_exit = s5p_hash_cra_exit, 1756 } 1757 }, 1758 { 1759 .init = s5p_hash_init, 1760 .update = s5p_hash_update, 1761 .final = s5p_hash_final, 1762 .finup = s5p_hash_finup, 1763 .digest = s5p_hash_digest, 1764 .export = s5p_hash_export, 1765 .import = s5p_hash_import, 1766 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN, 1767 .halg.digestsize = MD5_DIGEST_SIZE, 1768 .halg.base = { 1769 .cra_name = "md5", 1770 .cra_driver_name = "exynos-md5", 1771 .cra_priority = 100, 1772 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1773 CRYPTO_ALG_ASYNC | 1774 CRYPTO_ALG_NEED_FALLBACK, 1775 .cra_blocksize = HASH_BLOCK_SIZE, 1776 .cra_ctxsize = sizeof(struct s5p_hash_ctx), 1777 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK, 1778 .cra_module = THIS_MODULE, 1779 .cra_init = s5p_hash_cra_init, 1780 .cra_exit = s5p_hash_cra_exit, 1781 } 1782 }, 1783 { 1784 .init = s5p_hash_init, 1785 .update = s5p_hash_update, 1786 .final = s5p_hash_final, 1787 .finup = s5p_hash_finup, 1788 .digest = s5p_hash_digest, 1789 .export = s5p_hash_export, 1790 .import = s5p_hash_import, 1791 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN, 1792 .halg.digestsize = SHA256_DIGEST_SIZE, 1793 .halg.base = { 1794 .cra_name = "sha256", 1795 .cra_driver_name = "exynos-sha256", 1796 .cra_priority = 100, 1797 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1798 CRYPTO_ALG_ASYNC | 1799 CRYPTO_ALG_NEED_FALLBACK, 1800 .cra_blocksize = HASH_BLOCK_SIZE, 1801 .cra_ctxsize = sizeof(struct s5p_hash_ctx), 1802 .cra_alignmask = SSS_HASH_DMA_ALIGN_MASK, 1803 .cra_module = THIS_MODULE, 1804 .cra_init = s5p_hash_cra_init, 1805 .cra_exit = s5p_hash_cra_exit, 1806 } 1807 } 1808 1809 }; 1810 1811 static void s5p_set_aes(struct s5p_aes_dev *dev, 1812 const u8 *key, const u8 *iv, const u8 *ctr, 1813 unsigned int keylen) 1814 { 1815 void __iomem *keystart; 1816 1817 if (iv) 1818 memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv, 1819 AES_BLOCK_SIZE); 1820 1821 if (ctr) 1822 memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), ctr, 1823 AES_BLOCK_SIZE); 1824 1825 if (keylen == AES_KEYSIZE_256) 1826 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0); 1827 else if (keylen == AES_KEYSIZE_192) 1828 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2); 1829 else 1830 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4); 1831 1832 memcpy_toio(keystart, key, keylen); 1833 } 1834 1835 static bool s5p_is_sg_aligned(struct scatterlist *sg) 1836 { 1837 while (sg) { 1838 if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE)) 1839 return false; 1840 sg = sg_next(sg); 1841 } 1842 1843 return true; 1844 } 1845 1846 static int s5p_set_indata_start(struct s5p_aes_dev *dev, 1847 struct skcipher_request *req) 1848 { 1849 struct scatterlist *sg; 1850 int err; 1851 1852 dev->sg_src_cpy = NULL; 1853 sg = req->src; 1854 if (!s5p_is_sg_aligned(sg)) { 1855 dev_dbg(dev->dev, 1856 "At least one unaligned source scatter list, making a copy\n"); 1857 err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy); 1858 if (err) 1859 return err; 1860 1861 sg = dev->sg_src_cpy; 1862 } 1863 1864 err = s5p_set_indata(dev, sg); 1865 if (err) { 1866 s5p_free_sg_cpy(dev, &dev->sg_src_cpy); 1867 return err; 1868 } 1869 1870 return 0; 1871 } 1872 1873 static int s5p_set_outdata_start(struct s5p_aes_dev *dev, 1874 struct skcipher_request *req) 1875 { 1876 struct scatterlist *sg; 1877 int err; 1878 1879 dev->sg_dst_cpy = NULL; 1880 sg = req->dst; 1881 if (!s5p_is_sg_aligned(sg)) { 1882 dev_dbg(dev->dev, 1883 "At least one unaligned dest scatter list, making a copy\n"); 1884 err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy); 1885 if (err) 1886 return err; 1887 1888 sg = dev->sg_dst_cpy; 1889 } 1890 1891 err = s5p_set_outdata(dev, sg); 1892 if (err) { 1893 s5p_free_sg_cpy(dev, &dev->sg_dst_cpy); 1894 return err; 1895 } 1896 1897 return 0; 1898 } 1899 1900 static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode) 1901 { 1902 struct skcipher_request *req = dev->req; 1903 u32 aes_control; 1904 unsigned long flags; 1905 int err; 1906 u8 *iv, *ctr; 1907 1908 /* This sets bit [13:12] to 00, which selects 128-bit counter */ 1909 aes_control = SSS_AES_KEY_CHANGE_MODE; 1910 if (mode & FLAGS_AES_DECRYPT) 1911 aes_control |= SSS_AES_MODE_DECRYPT; 1912 1913 if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) { 1914 aes_control |= SSS_AES_CHAIN_MODE_CBC; 1915 iv = req->iv; 1916 ctr = NULL; 1917 } else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) { 1918 aes_control |= SSS_AES_CHAIN_MODE_CTR; 1919 iv = NULL; 1920 ctr = req->iv; 1921 } else { 1922 iv = NULL; /* AES_ECB */ 1923 ctr = NULL; 1924 } 1925 1926 if (dev->ctx->keylen == AES_KEYSIZE_192) 1927 aes_control |= SSS_AES_KEY_SIZE_192; 1928 else if (dev->ctx->keylen == AES_KEYSIZE_256) 1929 aes_control |= SSS_AES_KEY_SIZE_256; 1930 1931 aes_control |= SSS_AES_FIFO_MODE; 1932 1933 /* as a variant it is possible to use byte swapping on DMA side */ 1934 aes_control |= SSS_AES_BYTESWAP_DI 1935 | SSS_AES_BYTESWAP_DO 1936 | SSS_AES_BYTESWAP_IV 1937 | SSS_AES_BYTESWAP_KEY 1938 | SSS_AES_BYTESWAP_CNT; 1939 1940 spin_lock_irqsave(&dev->lock, flags); 1941 1942 SSS_WRITE(dev, FCINTENCLR, 1943 SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR); 1944 SSS_WRITE(dev, FCFIFOCTRL, 0x00); 1945 1946 err = s5p_set_indata_start(dev, req); 1947 if (err) 1948 goto indata_error; 1949 1950 err = s5p_set_outdata_start(dev, req); 1951 if (err) 1952 goto outdata_error; 1953 1954 SSS_AES_WRITE(dev, AES_CONTROL, aes_control); 1955 s5p_set_aes(dev, dev->ctx->aes_key, iv, ctr, dev->ctx->keylen); 1956 1957 s5p_set_dma_indata(dev, dev->sg_src); 1958 s5p_set_dma_outdata(dev, dev->sg_dst); 1959 1960 SSS_WRITE(dev, FCINTENSET, 1961 SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET); 1962 1963 spin_unlock_irqrestore(&dev->lock, flags); 1964 1965 return; 1966 1967 outdata_error: 1968 s5p_unset_indata(dev); 1969 1970 indata_error: 1971 s5p_sg_done(dev); 1972 dev->busy = false; 1973 spin_unlock_irqrestore(&dev->lock, flags); 1974 s5p_aes_complete(req, err); 1975 } 1976 1977 static void s5p_tasklet_cb(unsigned long data) 1978 { 1979 struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data; 1980 struct crypto_async_request *async_req, *backlog; 1981 struct s5p_aes_reqctx *reqctx; 1982 unsigned long flags; 1983 1984 spin_lock_irqsave(&dev->lock, flags); 1985 backlog = crypto_get_backlog(&dev->queue); 1986 async_req = crypto_dequeue_request(&dev->queue); 1987 1988 if (!async_req) { 1989 dev->busy = false; 1990 spin_unlock_irqrestore(&dev->lock, flags); 1991 return; 1992 } 1993 spin_unlock_irqrestore(&dev->lock, flags); 1994 1995 if (backlog) 1996 backlog->complete(backlog, -EINPROGRESS); 1997 1998 dev->req = skcipher_request_cast(async_req); 1999 dev->ctx = crypto_tfm_ctx(dev->req->base.tfm); 2000 reqctx = skcipher_request_ctx(dev->req); 2001 2002 s5p_aes_crypt_start(dev, reqctx->mode); 2003 } 2004 2005 static int s5p_aes_handle_req(struct s5p_aes_dev *dev, 2006 struct skcipher_request *req) 2007 { 2008 unsigned long flags; 2009 int err; 2010 2011 spin_lock_irqsave(&dev->lock, flags); 2012 err = crypto_enqueue_request(&dev->queue, &req->base); 2013 if (dev->busy) { 2014 spin_unlock_irqrestore(&dev->lock, flags); 2015 return err; 2016 } 2017 dev->busy = true; 2018 2019 spin_unlock_irqrestore(&dev->lock, flags); 2020 2021 tasklet_schedule(&dev->tasklet); 2022 2023 return err; 2024 } 2025 2026 static int s5p_aes_crypt(struct skcipher_request *req, unsigned long mode) 2027 { 2028 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 2029 struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req); 2030 struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm); 2031 struct s5p_aes_dev *dev = ctx->dev; 2032 2033 if (!req->cryptlen) 2034 return 0; 2035 2036 if (!IS_ALIGNED(req->cryptlen, AES_BLOCK_SIZE) && 2037 ((mode & FLAGS_AES_MODE_MASK) != FLAGS_AES_CTR)) { 2038 dev_dbg(dev->dev, "request size is not exact amount of AES blocks\n"); 2039 return -EINVAL; 2040 } 2041 2042 reqctx->mode = mode; 2043 2044 return s5p_aes_handle_req(dev, req); 2045 } 2046 2047 static int s5p_aes_setkey(struct crypto_skcipher *cipher, 2048 const u8 *key, unsigned int keylen) 2049 { 2050 struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher); 2051 struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm); 2052 2053 if (keylen != AES_KEYSIZE_128 && 2054 keylen != AES_KEYSIZE_192 && 2055 keylen != AES_KEYSIZE_256) 2056 return -EINVAL; 2057 2058 memcpy(ctx->aes_key, key, keylen); 2059 ctx->keylen = keylen; 2060 2061 return 0; 2062 } 2063 2064 static int s5p_aes_ecb_encrypt(struct skcipher_request *req) 2065 { 2066 return s5p_aes_crypt(req, 0); 2067 } 2068 2069 static int s5p_aes_ecb_decrypt(struct skcipher_request *req) 2070 { 2071 return s5p_aes_crypt(req, FLAGS_AES_DECRYPT); 2072 } 2073 2074 static int s5p_aes_cbc_encrypt(struct skcipher_request *req) 2075 { 2076 return s5p_aes_crypt(req, FLAGS_AES_CBC); 2077 } 2078 2079 static int s5p_aes_cbc_decrypt(struct skcipher_request *req) 2080 { 2081 return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC); 2082 } 2083 2084 static int s5p_aes_ctr_crypt(struct skcipher_request *req) 2085 { 2086 return s5p_aes_crypt(req, FLAGS_AES_CTR); 2087 } 2088 2089 static int s5p_aes_init_tfm(struct crypto_skcipher *tfm) 2090 { 2091 struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm); 2092 2093 ctx->dev = s5p_dev; 2094 crypto_skcipher_set_reqsize(tfm, sizeof(struct s5p_aes_reqctx)); 2095 2096 return 0; 2097 } 2098 2099 static struct skcipher_alg algs[] = { 2100 { 2101 .base.cra_name = "ecb(aes)", 2102 .base.cra_driver_name = "ecb-aes-s5p", 2103 .base.cra_priority = 100, 2104 .base.cra_flags = CRYPTO_ALG_ASYNC | 2105 CRYPTO_ALG_KERN_DRIVER_ONLY, 2106 .base.cra_blocksize = AES_BLOCK_SIZE, 2107 .base.cra_ctxsize = sizeof(struct s5p_aes_ctx), 2108 .base.cra_alignmask = 0x0f, 2109 .base.cra_module = THIS_MODULE, 2110 2111 .min_keysize = AES_MIN_KEY_SIZE, 2112 .max_keysize = AES_MAX_KEY_SIZE, 2113 .setkey = s5p_aes_setkey, 2114 .encrypt = s5p_aes_ecb_encrypt, 2115 .decrypt = s5p_aes_ecb_decrypt, 2116 .init = s5p_aes_init_tfm, 2117 }, 2118 { 2119 .base.cra_name = "cbc(aes)", 2120 .base.cra_driver_name = "cbc-aes-s5p", 2121 .base.cra_priority = 100, 2122 .base.cra_flags = CRYPTO_ALG_ASYNC | 2123 CRYPTO_ALG_KERN_DRIVER_ONLY, 2124 .base.cra_blocksize = AES_BLOCK_SIZE, 2125 .base.cra_ctxsize = sizeof(struct s5p_aes_ctx), 2126 .base.cra_alignmask = 0x0f, 2127 .base.cra_module = THIS_MODULE, 2128 2129 .min_keysize = AES_MIN_KEY_SIZE, 2130 .max_keysize = AES_MAX_KEY_SIZE, 2131 .ivsize = AES_BLOCK_SIZE, 2132 .setkey = s5p_aes_setkey, 2133 .encrypt = s5p_aes_cbc_encrypt, 2134 .decrypt = s5p_aes_cbc_decrypt, 2135 .init = s5p_aes_init_tfm, 2136 }, 2137 { 2138 .base.cra_name = "ctr(aes)", 2139 .base.cra_driver_name = "ctr-aes-s5p", 2140 .base.cra_priority = 100, 2141 .base.cra_flags = CRYPTO_ALG_ASYNC | 2142 CRYPTO_ALG_KERN_DRIVER_ONLY, 2143 .base.cra_blocksize = 1, 2144 .base.cra_ctxsize = sizeof(struct s5p_aes_ctx), 2145 .base.cra_alignmask = 0x0f, 2146 .base.cra_module = THIS_MODULE, 2147 2148 .min_keysize = AES_MIN_KEY_SIZE, 2149 .max_keysize = AES_MAX_KEY_SIZE, 2150 .ivsize = AES_BLOCK_SIZE, 2151 .setkey = s5p_aes_setkey, 2152 .encrypt = s5p_aes_ctr_crypt, 2153 .decrypt = s5p_aes_ctr_crypt, 2154 .init = s5p_aes_init_tfm, 2155 }, 2156 }; 2157 2158 static int s5p_aes_probe(struct platform_device *pdev) 2159 { 2160 struct device *dev = &pdev->dev; 2161 int i, j, err = -ENODEV; 2162 const struct samsung_aes_variant *variant; 2163 struct s5p_aes_dev *pdata; 2164 struct resource *res; 2165 unsigned int hash_i; 2166 2167 if (s5p_dev) 2168 return -EEXIST; 2169 2170 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); 2171 if (!pdata) 2172 return -ENOMEM; 2173 2174 variant = find_s5p_sss_version(pdev); 2175 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2176 2177 /* 2178 * Note: HASH and PRNG uses the same registers in secss, avoid 2179 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG 2180 * is enabled in config. We need larger size for HASH registers in 2181 * secss, current describe only AES/DES 2182 */ 2183 if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) { 2184 if (variant == &exynos_aes_data) { 2185 res->end += 0x300; 2186 pdata->use_hash = true; 2187 } 2188 } 2189 2190 pdata->res = res; 2191 pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res); 2192 if (IS_ERR(pdata->ioaddr)) { 2193 if (!pdata->use_hash) 2194 return PTR_ERR(pdata->ioaddr); 2195 /* try AES without HASH */ 2196 res->end -= 0x300; 2197 pdata->use_hash = false; 2198 pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res); 2199 if (IS_ERR(pdata->ioaddr)) 2200 return PTR_ERR(pdata->ioaddr); 2201 } 2202 2203 pdata->clk = devm_clk_get(dev, variant->clk_names[0]); 2204 if (IS_ERR(pdata->clk)) 2205 return dev_err_probe(dev, PTR_ERR(pdata->clk), 2206 "failed to find secss clock %s\n", 2207 variant->clk_names[0]); 2208 2209 err = clk_prepare_enable(pdata->clk); 2210 if (err < 0) { 2211 dev_err(dev, "Enabling clock %s failed, err %d\n", 2212 variant->clk_names[0], err); 2213 return err; 2214 } 2215 2216 if (variant->clk_names[1]) { 2217 pdata->pclk = devm_clk_get(dev, variant->clk_names[1]); 2218 if (IS_ERR(pdata->pclk)) { 2219 err = dev_err_probe(dev, PTR_ERR(pdata->pclk), 2220 "failed to find clock %s\n", 2221 variant->clk_names[1]); 2222 goto err_clk; 2223 } 2224 2225 err = clk_prepare_enable(pdata->pclk); 2226 if (err < 0) { 2227 dev_err(dev, "Enabling clock %s failed, err %d\n", 2228 variant->clk_names[0], err); 2229 goto err_clk; 2230 } 2231 } else { 2232 pdata->pclk = NULL; 2233 } 2234 2235 spin_lock_init(&pdata->lock); 2236 spin_lock_init(&pdata->hash_lock); 2237 2238 pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset; 2239 pdata->io_hash_base = pdata->ioaddr + variant->hash_offset; 2240 2241 pdata->irq_fc = platform_get_irq(pdev, 0); 2242 if (pdata->irq_fc < 0) { 2243 err = pdata->irq_fc; 2244 dev_warn(dev, "feed control interrupt is not available.\n"); 2245 goto err_irq; 2246 } 2247 err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL, 2248 s5p_aes_interrupt, IRQF_ONESHOT, 2249 pdev->name, pdev); 2250 if (err < 0) { 2251 dev_warn(dev, "feed control interrupt is not available.\n"); 2252 goto err_irq; 2253 } 2254 2255 pdata->busy = false; 2256 pdata->dev = dev; 2257 platform_set_drvdata(pdev, pdata); 2258 s5p_dev = pdata; 2259 2260 tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata); 2261 crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN); 2262 2263 for (i = 0; i < ARRAY_SIZE(algs); i++) { 2264 err = crypto_register_skcipher(&algs[i]); 2265 if (err) 2266 goto err_algs; 2267 } 2268 2269 if (pdata->use_hash) { 2270 tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb, 2271 (unsigned long)pdata); 2272 crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH); 2273 2274 for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256); 2275 hash_i++) { 2276 struct ahash_alg *alg; 2277 2278 alg = &algs_sha1_md5_sha256[hash_i]; 2279 err = crypto_register_ahash(alg); 2280 if (err) { 2281 dev_err(dev, "can't register '%s': %d\n", 2282 alg->halg.base.cra_driver_name, err); 2283 goto err_hash; 2284 } 2285 } 2286 } 2287 2288 dev_info(dev, "s5p-sss driver registered\n"); 2289 2290 return 0; 2291 2292 err_hash: 2293 for (j = hash_i - 1; j >= 0; j--) 2294 crypto_unregister_ahash(&algs_sha1_md5_sha256[j]); 2295 2296 tasklet_kill(&pdata->hash_tasklet); 2297 res->end -= 0x300; 2298 2299 err_algs: 2300 if (i < ARRAY_SIZE(algs)) 2301 dev_err(dev, "can't register '%s': %d\n", algs[i].base.cra_name, 2302 err); 2303 2304 for (j = 0; j < i; j++) 2305 crypto_unregister_skcipher(&algs[j]); 2306 2307 tasklet_kill(&pdata->tasklet); 2308 2309 err_irq: 2310 clk_disable_unprepare(pdata->pclk); 2311 2312 err_clk: 2313 clk_disable_unprepare(pdata->clk); 2314 s5p_dev = NULL; 2315 2316 return err; 2317 } 2318 2319 static int s5p_aes_remove(struct platform_device *pdev) 2320 { 2321 struct s5p_aes_dev *pdata = platform_get_drvdata(pdev); 2322 int i; 2323 2324 if (!pdata) 2325 return -ENODEV; 2326 2327 for (i = 0; i < ARRAY_SIZE(algs); i++) 2328 crypto_unregister_skcipher(&algs[i]); 2329 2330 tasklet_kill(&pdata->tasklet); 2331 if (pdata->use_hash) { 2332 for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--) 2333 crypto_unregister_ahash(&algs_sha1_md5_sha256[i]); 2334 2335 pdata->res->end -= 0x300; 2336 tasklet_kill(&pdata->hash_tasklet); 2337 pdata->use_hash = false; 2338 } 2339 2340 clk_disable_unprepare(pdata->pclk); 2341 2342 clk_disable_unprepare(pdata->clk); 2343 s5p_dev = NULL; 2344 2345 return 0; 2346 } 2347 2348 static struct platform_driver s5p_aes_crypto = { 2349 .probe = s5p_aes_probe, 2350 .remove = s5p_aes_remove, 2351 .driver = { 2352 .name = "s5p-secss", 2353 .of_match_table = s5p_sss_dt_match, 2354 }, 2355 }; 2356 2357 module_platform_driver(s5p_aes_crypto); 2358 2359 MODULE_DESCRIPTION("S5PV210 AES hw acceleration support."); 2360 MODULE_LICENSE("GPL v2"); 2361 MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>"); 2362 MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>"); 2363