1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // Cryptographic API. 4 // 5 // Support for Samsung S5PV210 and Exynos HW acceleration. 6 // 7 // Copyright (C) 2011 NetUP Inc. All rights reserved. 8 // Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved. 9 // 10 // Hash part based on omap-sham.c driver. 11 12 #include <crypto/aes.h> 13 #include <crypto/ctr.h> 14 #include <crypto/internal/hash.h> 15 #include <crypto/internal/skcipher.h> 16 #include <crypto/md5.h> 17 #include <crypto/scatterwalk.h> 18 #include <crypto/sha1.h> 19 #include <crypto/sha2.h> 20 #include <linux/clk.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/err.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/io.h> 26 #include <linux/kernel.h> 27 #include <linux/module.h> 28 #include <linux/of.h> 29 #include <linux/platform_device.h> 30 #include <linux/scatterlist.h> 31 #include <linux/slab.h> 32 #include <linux/spinlock.h> 33 #include <linux/string.h> 34 35 #define _SBF(s, v) ((v) << (s)) 36 37 /* Feed control registers */ 38 #define SSS_REG_FCINTSTAT 0x0000 39 #define SSS_FCINTSTAT_HPARTINT BIT(7) 40 #define SSS_FCINTSTAT_HDONEINT BIT(5) 41 #define SSS_FCINTSTAT_BRDMAINT BIT(3) 42 #define SSS_FCINTSTAT_BTDMAINT BIT(2) 43 #define SSS_FCINTSTAT_HRDMAINT BIT(1) 44 #define SSS_FCINTSTAT_PKDMAINT BIT(0) 45 46 #define SSS_REG_FCINTENSET 0x0004 47 #define SSS_FCINTENSET_HPARTINTENSET BIT(7) 48 #define SSS_FCINTENSET_HDONEINTENSET BIT(5) 49 #define SSS_FCINTENSET_BRDMAINTENSET BIT(3) 50 #define SSS_FCINTENSET_BTDMAINTENSET BIT(2) 51 #define SSS_FCINTENSET_HRDMAINTENSET BIT(1) 52 #define SSS_FCINTENSET_PKDMAINTENSET BIT(0) 53 54 #define SSS_REG_FCINTENCLR 0x0008 55 #define SSS_FCINTENCLR_HPARTINTENCLR BIT(7) 56 #define SSS_FCINTENCLR_HDONEINTENCLR BIT(5) 57 #define SSS_FCINTENCLR_BRDMAINTENCLR BIT(3) 58 #define SSS_FCINTENCLR_BTDMAINTENCLR BIT(2) 59 #define SSS_FCINTENCLR_HRDMAINTENCLR BIT(1) 60 #define SSS_FCINTENCLR_PKDMAINTENCLR BIT(0) 61 62 #define SSS_REG_FCINTPEND 0x000C 63 #define SSS_FCINTPEND_HPARTINTP BIT(7) 64 #define SSS_FCINTPEND_HDONEINTP BIT(5) 65 #define SSS_FCINTPEND_BRDMAINTP BIT(3) 66 #define SSS_FCINTPEND_BTDMAINTP BIT(2) 67 #define SSS_FCINTPEND_HRDMAINTP BIT(1) 68 #define SSS_FCINTPEND_PKDMAINTP BIT(0) 69 70 #define SSS_REG_FCFIFOSTAT 0x0010 71 #define SSS_FCFIFOSTAT_BRFIFOFUL BIT(7) 72 #define SSS_FCFIFOSTAT_BRFIFOEMP BIT(6) 73 #define SSS_FCFIFOSTAT_BTFIFOFUL BIT(5) 74 #define SSS_FCFIFOSTAT_BTFIFOEMP BIT(4) 75 #define SSS_FCFIFOSTAT_HRFIFOFUL BIT(3) 76 #define SSS_FCFIFOSTAT_HRFIFOEMP BIT(2) 77 #define SSS_FCFIFOSTAT_PKFIFOFUL BIT(1) 78 #define SSS_FCFIFOSTAT_PKFIFOEMP BIT(0) 79 80 #define SSS_REG_FCFIFOCTRL 0x0014 81 #define SSS_FCFIFOCTRL_DESSEL BIT(2) 82 #define SSS_HASHIN_INDEPENDENT _SBF(0, 0x00) 83 #define SSS_HASHIN_CIPHER_INPUT _SBF(0, 0x01) 84 #define SSS_HASHIN_CIPHER_OUTPUT _SBF(0, 0x02) 85 #define SSS_HASHIN_MASK _SBF(0, 0x03) 86 87 #define SSS_REG_FCBRDMAS 0x0020 88 #define SSS_REG_FCBRDMAL 0x0024 89 #define SSS_REG_FCBRDMAC 0x0028 90 #define SSS_FCBRDMAC_BYTESWAP BIT(1) 91 #define SSS_FCBRDMAC_FLUSH BIT(0) 92 93 #define SSS_REG_FCBTDMAS 0x0030 94 #define SSS_REG_FCBTDMAL 0x0034 95 #define SSS_REG_FCBTDMAC 0x0038 96 #define SSS_FCBTDMAC_BYTESWAP BIT(1) 97 #define SSS_FCBTDMAC_FLUSH BIT(0) 98 99 #define SSS_REG_FCHRDMAS 0x0040 100 #define SSS_REG_FCHRDMAL 0x0044 101 #define SSS_REG_FCHRDMAC 0x0048 102 #define SSS_FCHRDMAC_BYTESWAP BIT(1) 103 #define SSS_FCHRDMAC_FLUSH BIT(0) 104 105 #define SSS_REG_FCPKDMAS 0x0050 106 #define SSS_REG_FCPKDMAL 0x0054 107 #define SSS_REG_FCPKDMAC 0x0058 108 #define SSS_FCPKDMAC_BYTESWAP BIT(3) 109 #define SSS_FCPKDMAC_DESCEND BIT(2) 110 #define SSS_FCPKDMAC_TRANSMIT BIT(1) 111 #define SSS_FCPKDMAC_FLUSH BIT(0) 112 113 #define SSS_REG_FCPKDMAO 0x005C 114 115 /* AES registers */ 116 #define SSS_REG_AES_CONTROL 0x00 117 #define SSS_AES_BYTESWAP_DI BIT(11) 118 #define SSS_AES_BYTESWAP_DO BIT(10) 119 #define SSS_AES_BYTESWAP_IV BIT(9) 120 #define SSS_AES_BYTESWAP_CNT BIT(8) 121 #define SSS_AES_BYTESWAP_KEY BIT(7) 122 #define SSS_AES_KEY_CHANGE_MODE BIT(6) 123 #define SSS_AES_KEY_SIZE_128 _SBF(4, 0x00) 124 #define SSS_AES_KEY_SIZE_192 _SBF(4, 0x01) 125 #define SSS_AES_KEY_SIZE_256 _SBF(4, 0x02) 126 #define SSS_AES_FIFO_MODE BIT(3) 127 #define SSS_AES_CHAIN_MODE_ECB _SBF(1, 0x00) 128 #define SSS_AES_CHAIN_MODE_CBC _SBF(1, 0x01) 129 #define SSS_AES_CHAIN_MODE_CTR _SBF(1, 0x02) 130 #define SSS_AES_MODE_DECRYPT BIT(0) 131 132 #define SSS_REG_AES_STATUS 0x04 133 #define SSS_AES_BUSY BIT(2) 134 #define SSS_AES_INPUT_READY BIT(1) 135 #define SSS_AES_OUTPUT_READY BIT(0) 136 137 #define SSS_REG_AES_IN_DATA(s) (0x10 + (s << 2)) 138 #define SSS_REG_AES_OUT_DATA(s) (0x20 + (s << 2)) 139 #define SSS_REG_AES_IV_DATA(s) (0x30 + (s << 2)) 140 #define SSS_REG_AES_CNT_DATA(s) (0x40 + (s << 2)) 141 #define SSS_REG_AES_KEY_DATA(s) (0x80 + (s << 2)) 142 143 #define SSS_REG(dev, reg) ((dev)->ioaddr + (SSS_REG_##reg)) 144 #define SSS_READ(dev, reg) __raw_readl(SSS_REG(dev, reg)) 145 #define SSS_WRITE(dev, reg, val) __raw_writel((val), SSS_REG(dev, reg)) 146 147 #define SSS_AES_REG(dev, reg) ((dev)->aes_ioaddr + SSS_REG_##reg) 148 #define SSS_AES_WRITE(dev, reg, val) __raw_writel((val), \ 149 SSS_AES_REG(dev, reg)) 150 151 /* HW engine modes */ 152 #define FLAGS_AES_DECRYPT BIT(0) 153 #define FLAGS_AES_MODE_MASK _SBF(1, 0x03) 154 #define FLAGS_AES_CBC _SBF(1, 0x01) 155 #define FLAGS_AES_CTR _SBF(1, 0x02) 156 157 #define AES_KEY_LEN 16 158 #define CRYPTO_QUEUE_LEN 1 159 160 /* HASH registers */ 161 #define SSS_REG_HASH_CTRL 0x00 162 163 #define SSS_HASH_USER_IV_EN BIT(5) 164 #define SSS_HASH_INIT_BIT BIT(4) 165 #define SSS_HASH_ENGINE_SHA1 _SBF(1, 0x00) 166 #define SSS_HASH_ENGINE_MD5 _SBF(1, 0x01) 167 #define SSS_HASH_ENGINE_SHA256 _SBF(1, 0x02) 168 169 #define SSS_HASH_ENGINE_MASK _SBF(1, 0x03) 170 171 #define SSS_REG_HASH_CTRL_PAUSE 0x04 172 173 #define SSS_HASH_PAUSE BIT(0) 174 175 #define SSS_REG_HASH_CTRL_FIFO 0x08 176 177 #define SSS_HASH_FIFO_MODE_DMA BIT(0) 178 #define SSS_HASH_FIFO_MODE_CPU 0 179 180 #define SSS_REG_HASH_CTRL_SWAP 0x0C 181 182 #define SSS_HASH_BYTESWAP_DI BIT(3) 183 #define SSS_HASH_BYTESWAP_DO BIT(2) 184 #define SSS_HASH_BYTESWAP_IV BIT(1) 185 #define SSS_HASH_BYTESWAP_KEY BIT(0) 186 187 #define SSS_REG_HASH_STATUS 0x10 188 189 #define SSS_HASH_STATUS_MSG_DONE BIT(6) 190 #define SSS_HASH_STATUS_PARTIAL_DONE BIT(4) 191 #define SSS_HASH_STATUS_BUFFER_READY BIT(0) 192 193 #define SSS_REG_HASH_MSG_SIZE_LOW 0x20 194 #define SSS_REG_HASH_MSG_SIZE_HIGH 0x24 195 196 #define SSS_REG_HASH_PRE_MSG_SIZE_LOW 0x28 197 #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH 0x2C 198 199 #define SSS_REG_HASH_IV(s) (0xB0 + ((s) << 2)) 200 #define SSS_REG_HASH_OUT(s) (0x100 + ((s) << 2)) 201 202 #define HASH_BLOCK_SIZE 64 203 #define HASH_REG_SIZEOF 4 204 #define HASH_MD5_MAX_REG (MD5_DIGEST_SIZE / HASH_REG_SIZEOF) 205 #define HASH_SHA1_MAX_REG (SHA1_DIGEST_SIZE / HASH_REG_SIZEOF) 206 #define HASH_SHA256_MAX_REG (SHA256_DIGEST_SIZE / HASH_REG_SIZEOF) 207 208 /* 209 * HASH bit numbers, used by device, setting in dev->hash_flags with 210 * functions set_bit(), clear_bit() or tested with test_bit() or BIT(), 211 * to keep HASH state BUSY or FREE, or to signal state from irq_handler 212 * to hash_tasklet. SGS keep track of allocated memory for scatterlist 213 */ 214 #define HASH_FLAGS_BUSY 0 215 #define HASH_FLAGS_FINAL 1 216 #define HASH_FLAGS_DMA_ACTIVE 2 217 #define HASH_FLAGS_OUTPUT_READY 3 218 #define HASH_FLAGS_DMA_READY 4 219 #define HASH_FLAGS_SGS_COPIED 5 220 #define HASH_FLAGS_SGS_ALLOCED 6 221 222 /* HASH HW constants */ 223 #define BUFLEN HASH_BLOCK_SIZE 224 225 #define SSS_HASH_QUEUE_LENGTH 10 226 227 /** 228 * struct samsung_aes_variant - platform specific SSS driver data 229 * @aes_offset: AES register offset from SSS module's base. 230 * @hash_offset: HASH register offset from SSS module's base. 231 * @clk_names: names of clocks needed to run SSS IP 232 * 233 * Specifies platform specific configuration of SSS module. 234 * Note: A structure for driver specific platform data is used for future 235 * expansion of its usage. 236 */ 237 struct samsung_aes_variant { 238 unsigned int aes_offset; 239 unsigned int hash_offset; 240 const char *clk_names[2]; 241 }; 242 243 struct s5p_aes_reqctx { 244 unsigned long mode; 245 }; 246 247 struct s5p_aes_ctx { 248 struct s5p_aes_dev *dev; 249 250 u8 aes_key[AES_MAX_KEY_SIZE]; 251 u8 nonce[CTR_RFC3686_NONCE_SIZE]; 252 int keylen; 253 }; 254 255 /** 256 * struct s5p_aes_dev - Crypto device state container 257 * @dev: Associated device 258 * @clk: Clock for accessing hardware 259 * @pclk: APB bus clock necessary to access the hardware 260 * @ioaddr: Mapped IO memory region 261 * @aes_ioaddr: Per-varian offset for AES block IO memory 262 * @irq_fc: Feed control interrupt line 263 * @req: Crypto request currently handled by the device 264 * @ctx: Configuration for currently handled crypto request 265 * @sg_src: Scatter list with source data for currently handled block 266 * in device. This is DMA-mapped into device. 267 * @sg_dst: Scatter list with destination data for currently handled block 268 * in device. This is DMA-mapped into device. 269 * @sg_src_cpy: In case of unaligned access, copied scatter list 270 * with source data. 271 * @sg_dst_cpy: In case of unaligned access, copied scatter list 272 * with destination data. 273 * @tasklet: New request scheduling jib 274 * @queue: Crypto queue 275 * @busy: Indicates whether the device is currently handling some request 276 * thus it uses some of the fields from this state, like: 277 * req, ctx, sg_src/dst (and copies). This essentially 278 * protects against concurrent access to these fields. 279 * @lock: Lock for protecting both access to device hardware registers 280 * and fields related to current request (including the busy field). 281 * @res: Resources for hash. 282 * @io_hash_base: Per-variant offset for HASH block IO memory. 283 * @hash_lock: Lock for protecting hash_req, hash_queue and hash_flags 284 * variable. 285 * @hash_flags: Flags for current HASH op. 286 * @hash_queue: Async hash queue. 287 * @hash_tasklet: New HASH request scheduling job. 288 * @xmit_buf: Buffer for current HASH request transfer into SSS block. 289 * @hash_req: Current request sending to SSS HASH block. 290 * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block. 291 * @hash_sg_cnt: Counter for hash_sg_iter. 292 * 293 * @use_hash: true if HASH algs enabled 294 */ 295 struct s5p_aes_dev { 296 struct device *dev; 297 struct clk *clk; 298 struct clk *pclk; 299 void __iomem *ioaddr; 300 void __iomem *aes_ioaddr; 301 int irq_fc; 302 303 struct skcipher_request *req; 304 struct s5p_aes_ctx *ctx; 305 struct scatterlist *sg_src; 306 struct scatterlist *sg_dst; 307 308 struct scatterlist *sg_src_cpy; 309 struct scatterlist *sg_dst_cpy; 310 311 struct tasklet_struct tasklet; 312 struct crypto_queue queue; 313 bool busy; 314 spinlock_t lock; 315 316 struct resource *res; 317 void __iomem *io_hash_base; 318 319 spinlock_t hash_lock; /* protect hash_ vars */ 320 unsigned long hash_flags; 321 struct crypto_queue hash_queue; 322 struct tasklet_struct hash_tasklet; 323 324 u8 xmit_buf[BUFLEN]; 325 struct ahash_request *hash_req; 326 struct scatterlist *hash_sg_iter; 327 unsigned int hash_sg_cnt; 328 329 bool use_hash; 330 }; 331 332 /** 333 * struct s5p_hash_reqctx - HASH request context 334 * @dd: Associated device 335 * @op_update: Current request operation (OP_UPDATE or OP_FINAL) 336 * @digcnt: Number of bytes processed by HW (without buffer[] ones) 337 * @digest: Digest message or IV for partial result 338 * @nregs: Number of HW registers for digest or IV read/write 339 * @engine: Bits for selecting type of HASH in SSS block 340 * @sg: sg for DMA transfer 341 * @sg_len: Length of sg for DMA transfer 342 * @sgl: sg for joining buffer and req->src scatterlist 343 * @skip: Skip offset in req->src for current op 344 * @total: Total number of bytes for current request 345 * @finup: Keep state for finup or final. 346 * @error: Keep track of error. 347 * @bufcnt: Number of bytes holded in buffer[] 348 * @buffer: For byte(s) from end of req->src in UPDATE op 349 */ 350 struct s5p_hash_reqctx { 351 struct s5p_aes_dev *dd; 352 bool op_update; 353 354 u64 digcnt; 355 u8 digest[SHA256_DIGEST_SIZE]; 356 357 unsigned int nregs; /* digest_size / sizeof(reg) */ 358 u32 engine; 359 360 struct scatterlist *sg; 361 unsigned int sg_len; 362 struct scatterlist sgl[2]; 363 unsigned int skip; 364 unsigned int total; 365 bool finup; 366 bool error; 367 368 u32 bufcnt; 369 u8 buffer[]; 370 }; 371 372 /** 373 * struct s5p_hash_ctx - HASH transformation context 374 * @dd: Associated device 375 * @flags: Bits for algorithm HASH. 376 * @fallback: Software transformation for zero message or size < BUFLEN. 377 */ 378 struct s5p_hash_ctx { 379 struct s5p_aes_dev *dd; 380 unsigned long flags; 381 struct crypto_shash *fallback; 382 }; 383 384 static const struct samsung_aes_variant s5p_aes_data = { 385 .aes_offset = 0x4000, 386 .hash_offset = 0x6000, 387 .clk_names = { "secss", }, 388 }; 389 390 static const struct samsung_aes_variant exynos_aes_data = { 391 .aes_offset = 0x200, 392 .hash_offset = 0x400, 393 .clk_names = { "secss", }, 394 }; 395 396 static const struct samsung_aes_variant exynos5433_slim_aes_data = { 397 .aes_offset = 0x400, 398 .hash_offset = 0x800, 399 .clk_names = { "aclk", "pclk", }, 400 }; 401 402 static const struct of_device_id s5p_sss_dt_match[] = { 403 { 404 .compatible = "samsung,s5pv210-secss", 405 .data = &s5p_aes_data, 406 }, 407 { 408 .compatible = "samsung,exynos4210-secss", 409 .data = &exynos_aes_data, 410 }, 411 { 412 .compatible = "samsung,exynos5433-slim-sss", 413 .data = &exynos5433_slim_aes_data, 414 }, 415 { }, 416 }; 417 MODULE_DEVICE_TABLE(of, s5p_sss_dt_match); 418 419 static inline const struct samsung_aes_variant *find_s5p_sss_version 420 (const struct platform_device *pdev) 421 { 422 if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node)) 423 return of_device_get_match_data(&pdev->dev); 424 425 return (const struct samsung_aes_variant *) 426 platform_get_device_id(pdev)->driver_data; 427 } 428 429 static struct s5p_aes_dev *s5p_dev; 430 431 static void s5p_set_dma_indata(struct s5p_aes_dev *dev, 432 const struct scatterlist *sg) 433 { 434 SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg)); 435 SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg)); 436 } 437 438 static void s5p_set_dma_outdata(struct s5p_aes_dev *dev, 439 const struct scatterlist *sg) 440 { 441 SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg)); 442 SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg)); 443 } 444 445 static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg) 446 { 447 int len; 448 449 if (!*sg) 450 return; 451 452 len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE); 453 free_pages((unsigned long)sg_virt(*sg), get_order(len)); 454 455 kfree(*sg); 456 *sg = NULL; 457 } 458 459 static void s5p_sg_done(struct s5p_aes_dev *dev) 460 { 461 struct skcipher_request *req = dev->req; 462 struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req); 463 464 if (dev->sg_dst_cpy) { 465 dev_dbg(dev->dev, 466 "Copying %d bytes of output data back to original place\n", 467 dev->req->cryptlen); 468 memcpy_to_sglist(dev->req->dst, 0, sg_virt(dev->sg_dst_cpy), 469 dev->req->cryptlen); 470 } 471 s5p_free_sg_cpy(dev, &dev->sg_src_cpy); 472 s5p_free_sg_cpy(dev, &dev->sg_dst_cpy); 473 if (reqctx->mode & FLAGS_AES_CBC) 474 memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), AES_BLOCK_SIZE); 475 476 else if (reqctx->mode & FLAGS_AES_CTR) 477 memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), AES_BLOCK_SIZE); 478 } 479 480 /* Calls the completion. Cannot be called with dev->lock hold. */ 481 static void s5p_aes_complete(struct skcipher_request *req, int err) 482 { 483 skcipher_request_complete(req, err); 484 } 485 486 static void s5p_unset_outdata(struct s5p_aes_dev *dev) 487 { 488 dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE); 489 } 490 491 static void s5p_unset_indata(struct s5p_aes_dev *dev) 492 { 493 dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE); 494 } 495 496 static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src, 497 struct scatterlist **dst) 498 { 499 void *pages; 500 int len; 501 502 *dst = kmalloc(sizeof(**dst), GFP_ATOMIC); 503 if (!*dst) 504 return -ENOMEM; 505 506 len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE); 507 pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len)); 508 if (!pages) { 509 kfree(*dst); 510 *dst = NULL; 511 return -ENOMEM; 512 } 513 514 memcpy_from_sglist(pages, src, 0, dev->req->cryptlen); 515 516 sg_init_table(*dst, 1); 517 sg_set_buf(*dst, pages, len); 518 519 return 0; 520 } 521 522 static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg) 523 { 524 if (!sg->length) 525 return -EINVAL; 526 527 if (!dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE)) 528 return -ENOMEM; 529 530 dev->sg_dst = sg; 531 532 return 0; 533 } 534 535 static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg) 536 { 537 if (!sg->length) 538 return -EINVAL; 539 540 if (!dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE)) 541 return -ENOMEM; 542 543 dev->sg_src = sg; 544 545 return 0; 546 } 547 548 /* 549 * Returns -ERRNO on error (mapping of new data failed). 550 * On success returns: 551 * - 0 if there is no more data, 552 * - 1 if new transmitting (output) data is ready and its address+length 553 * have to be written to device (by calling s5p_set_dma_outdata()). 554 */ 555 static int s5p_aes_tx(struct s5p_aes_dev *dev) 556 { 557 int ret = 0; 558 559 s5p_unset_outdata(dev); 560 561 if (!sg_is_last(dev->sg_dst)) { 562 ret = s5p_set_outdata(dev, sg_next(dev->sg_dst)); 563 if (!ret) 564 ret = 1; 565 } 566 567 return ret; 568 } 569 570 /* 571 * Returns -ERRNO on error (mapping of new data failed). 572 * On success returns: 573 * - 0 if there is no more data, 574 * - 1 if new receiving (input) data is ready and its address+length 575 * have to be written to device (by calling s5p_set_dma_indata()). 576 */ 577 static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/) 578 { 579 int ret = 0; 580 581 s5p_unset_indata(dev); 582 583 if (!sg_is_last(dev->sg_src)) { 584 ret = s5p_set_indata(dev, sg_next(dev->sg_src)); 585 if (!ret) 586 ret = 1; 587 } 588 589 return ret; 590 } 591 592 static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset) 593 { 594 return __raw_readl(dd->io_hash_base + offset); 595 } 596 597 static inline void s5p_hash_write(struct s5p_aes_dev *dd, 598 u32 offset, u32 value) 599 { 600 __raw_writel(value, dd->io_hash_base + offset); 601 } 602 603 /** 604 * s5p_set_dma_hashdata() - start DMA with sg 605 * @dev: device 606 * @sg: scatterlist ready to DMA transmit 607 */ 608 static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev, 609 const struct scatterlist *sg) 610 { 611 dev->hash_sg_cnt--; 612 SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg)); 613 SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */ 614 } 615 616 /** 617 * s5p_hash_rx() - get next hash_sg_iter 618 * @dev: device 619 * 620 * Return: 621 * 2 if there is no more data and it is UPDATE op 622 * 1 if new receiving (input) data is ready and can be written to device 623 * 0 if there is no more data and it is FINAL op 624 */ 625 static int s5p_hash_rx(struct s5p_aes_dev *dev) 626 { 627 if (dev->hash_sg_cnt > 0) { 628 dev->hash_sg_iter = sg_next(dev->hash_sg_iter); 629 return 1; 630 } 631 632 set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags); 633 if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags)) 634 return 0; 635 636 return 2; 637 } 638 639 static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id) 640 { 641 struct platform_device *pdev = dev_id; 642 struct s5p_aes_dev *dev = platform_get_drvdata(pdev); 643 struct skcipher_request *req; 644 int err_dma_tx = 0; 645 int err_dma_rx = 0; 646 int err_dma_hx = 0; 647 bool tx_end = false; 648 bool hx_end = false; 649 unsigned long flags; 650 u32 status, st_bits; 651 int err; 652 653 spin_lock_irqsave(&dev->lock, flags); 654 655 /* 656 * Handle rx or tx interrupt. If there is still data (scatterlist did not 657 * reach end), then map next scatterlist entry. 658 * In case of such mapping error, s5p_aes_complete() should be called. 659 * 660 * If there is no more data in tx scatter list, call s5p_aes_complete() 661 * and schedule new tasklet. 662 * 663 * Handle hx interrupt. If there is still data map next entry. 664 */ 665 status = SSS_READ(dev, FCINTSTAT); 666 if (status & SSS_FCINTSTAT_BRDMAINT) 667 err_dma_rx = s5p_aes_rx(dev); 668 669 if (status & SSS_FCINTSTAT_BTDMAINT) { 670 if (sg_is_last(dev->sg_dst)) 671 tx_end = true; 672 err_dma_tx = s5p_aes_tx(dev); 673 } 674 675 if (status & SSS_FCINTSTAT_HRDMAINT) 676 err_dma_hx = s5p_hash_rx(dev); 677 678 st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT | 679 SSS_FCINTSTAT_HRDMAINT); 680 /* clear DMA bits */ 681 SSS_WRITE(dev, FCINTPEND, st_bits); 682 683 /* clear HASH irq bits */ 684 if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) { 685 /* cannot have both HPART and HDONE */ 686 if (status & SSS_FCINTSTAT_HPARTINT) 687 st_bits = SSS_HASH_STATUS_PARTIAL_DONE; 688 689 if (status & SSS_FCINTSTAT_HDONEINT) 690 st_bits = SSS_HASH_STATUS_MSG_DONE; 691 692 set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags); 693 s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits); 694 hx_end = true; 695 /* when DONE or PART, do not handle HASH DMA */ 696 err_dma_hx = 0; 697 } 698 699 if (err_dma_rx < 0) { 700 err = err_dma_rx; 701 goto error; 702 } 703 if (err_dma_tx < 0) { 704 err = err_dma_tx; 705 goto error; 706 } 707 708 if (tx_end) { 709 s5p_sg_done(dev); 710 if (err_dma_hx == 1) 711 s5p_set_dma_hashdata(dev, dev->hash_sg_iter); 712 713 spin_unlock_irqrestore(&dev->lock, flags); 714 715 s5p_aes_complete(dev->req, 0); 716 /* Device is still busy */ 717 tasklet_schedule(&dev->tasklet); 718 } else { 719 /* 720 * Writing length of DMA block (either receiving or 721 * transmitting) will start the operation immediately, so this 722 * should be done at the end (even after clearing pending 723 * interrupts to not miss the interrupt). 724 */ 725 if (err_dma_tx == 1) 726 s5p_set_dma_outdata(dev, dev->sg_dst); 727 if (err_dma_rx == 1) 728 s5p_set_dma_indata(dev, dev->sg_src); 729 if (err_dma_hx == 1) 730 s5p_set_dma_hashdata(dev, dev->hash_sg_iter); 731 732 spin_unlock_irqrestore(&dev->lock, flags); 733 } 734 735 goto hash_irq_end; 736 737 error: 738 s5p_sg_done(dev); 739 dev->busy = false; 740 req = dev->req; 741 if (err_dma_hx == 1) 742 s5p_set_dma_hashdata(dev, dev->hash_sg_iter); 743 744 spin_unlock_irqrestore(&dev->lock, flags); 745 s5p_aes_complete(req, err); 746 747 hash_irq_end: 748 /* 749 * Note about else if: 750 * when hash_sg_iter reaches end and its UPDATE op, 751 * issue SSS_HASH_PAUSE and wait for HPART irq 752 */ 753 if (hx_end) 754 tasklet_schedule(&dev->hash_tasklet); 755 else if (err_dma_hx == 2) 756 s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE, 757 SSS_HASH_PAUSE); 758 759 return IRQ_HANDLED; 760 } 761 762 /** 763 * s5p_hash_read_msg() - read message or IV from HW 764 * @req: AHASH request 765 */ 766 static void s5p_hash_read_msg(struct ahash_request *req) 767 { 768 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 769 struct s5p_aes_dev *dd = ctx->dd; 770 u32 *hash = (u32 *)ctx->digest; 771 unsigned int i; 772 773 for (i = 0; i < ctx->nregs; i++) 774 hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i)); 775 } 776 777 /** 778 * s5p_hash_write_ctx_iv() - write IV for next partial/finup op. 779 * @dd: device 780 * @ctx: request context 781 */ 782 static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd, 783 const struct s5p_hash_reqctx *ctx) 784 { 785 const u32 *hash = (const u32 *)ctx->digest; 786 unsigned int i; 787 788 for (i = 0; i < ctx->nregs; i++) 789 s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]); 790 } 791 792 /** 793 * s5p_hash_write_iv() - write IV for next partial/finup op. 794 * @req: AHASH request 795 */ 796 static void s5p_hash_write_iv(struct ahash_request *req) 797 { 798 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 799 800 s5p_hash_write_ctx_iv(ctx->dd, ctx); 801 } 802 803 /** 804 * s5p_hash_copy_result() - copy digest into req->result 805 * @req: AHASH request 806 */ 807 static void s5p_hash_copy_result(struct ahash_request *req) 808 { 809 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 810 811 if (!req->result) 812 return; 813 814 memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF); 815 } 816 817 /** 818 * s5p_hash_dma_flush() - flush HASH DMA 819 * @dev: secss device 820 */ 821 static void s5p_hash_dma_flush(struct s5p_aes_dev *dev) 822 { 823 SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH); 824 } 825 826 /** 827 * s5p_hash_dma_enable() - enable DMA mode for HASH 828 * @dev: secss device 829 * 830 * enable DMA mode for HASH 831 */ 832 static void s5p_hash_dma_enable(struct s5p_aes_dev *dev) 833 { 834 s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA); 835 } 836 837 /** 838 * s5p_hash_irq_disable() - disable irq HASH signals 839 * @dev: secss device 840 * @flags: bitfield with irq's to be disabled 841 */ 842 static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags) 843 { 844 SSS_WRITE(dev, FCINTENCLR, flags); 845 } 846 847 /** 848 * s5p_hash_irq_enable() - enable irq signals 849 * @dev: secss device 850 * @flags: bitfield with irq's to be enabled 851 */ 852 static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags) 853 { 854 SSS_WRITE(dev, FCINTENSET, flags); 855 } 856 857 /** 858 * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH 859 * @dev: secss device 860 * @hashflow: HASH stream flow with/without crypto AES/DES 861 */ 862 static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow) 863 { 864 unsigned long flags; 865 u32 flow; 866 867 spin_lock_irqsave(&dev->lock, flags); 868 869 flow = SSS_READ(dev, FCFIFOCTRL); 870 flow &= ~SSS_HASHIN_MASK; 871 flow |= hashflow; 872 SSS_WRITE(dev, FCFIFOCTRL, flow); 873 874 spin_unlock_irqrestore(&dev->lock, flags); 875 } 876 877 /** 878 * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS 879 * @dev: secss device 880 * @hashflow: HASH stream flow with/without AES/DES 881 * 882 * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW, 883 * enable HASH irq's HRDMA, HDONE, HPART 884 */ 885 static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow) 886 { 887 s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR | 888 SSS_FCINTENCLR_HDONEINTENCLR | 889 SSS_FCINTENCLR_HPARTINTENCLR); 890 s5p_hash_dma_flush(dev); 891 892 s5p_hash_dma_enable(dev); 893 s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK); 894 s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET | 895 SSS_FCINTENSET_HDONEINTENSET | 896 SSS_FCINTENSET_HPARTINTENSET); 897 } 898 899 /** 900 * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing 901 * @dd: secss device 902 * @length: length for request 903 * @final: true if final op 904 * 905 * Prepare SSS HASH block for processing bytes in DMA mode. If it is called 906 * after previous updates, fill up IV words. For final, calculate and set 907 * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH 908 * length as 2^63 so it will be never reached and set to zero prelow and 909 * prehigh. 910 * 911 * This function does not start DMA transfer. 912 */ 913 static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length, 914 bool final) 915 { 916 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req); 917 u32 prelow, prehigh, low, high; 918 u32 configflags, swapflags; 919 u64 tmplen; 920 921 configflags = ctx->engine | SSS_HASH_INIT_BIT; 922 923 if (likely(ctx->digcnt)) { 924 s5p_hash_write_ctx_iv(dd, ctx); 925 configflags |= SSS_HASH_USER_IV_EN; 926 } 927 928 if (final) { 929 /* number of bytes for last part */ 930 low = length; 931 high = 0; 932 /* total number of bits prev hashed */ 933 tmplen = ctx->digcnt * 8; 934 prelow = (u32)tmplen; 935 prehigh = (u32)(tmplen >> 32); 936 } else { 937 prelow = 0; 938 prehigh = 0; 939 low = 0; 940 high = BIT(31); 941 } 942 943 swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO | 944 SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY; 945 946 s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low); 947 s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high); 948 s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow); 949 s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh); 950 951 s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags); 952 s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags); 953 } 954 955 /** 956 * s5p_hash_xmit_dma() - start DMA hash processing 957 * @dd: secss device 958 * @length: length for request 959 * @final: true if final op 960 * 961 * Update digcnt here, as it is needed for finup/final op. 962 */ 963 static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length, 964 bool final) 965 { 966 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req); 967 unsigned int cnt; 968 969 cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE); 970 if (!cnt) { 971 dev_err(dd->dev, "dma_map_sg error\n"); 972 ctx->error = true; 973 return -EINVAL; 974 } 975 976 set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags); 977 dd->hash_sg_iter = ctx->sg; 978 dd->hash_sg_cnt = cnt; 979 s5p_hash_write_ctrl(dd, length, final); 980 ctx->digcnt += length; 981 ctx->total -= length; 982 983 /* catch last interrupt */ 984 if (final) 985 set_bit(HASH_FLAGS_FINAL, &dd->hash_flags); 986 987 s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */ 988 989 return -EINPROGRESS; 990 } 991 992 /** 993 * s5p_hash_copy_sgs() - copy request's bytes into new buffer 994 * @ctx: request context 995 * @sg: source scatterlist request 996 * @new_len: number of bytes to process from sg 997 * 998 * Allocate new buffer, copy data for HASH into it. If there was xmit_buf 999 * filled, copy it first, then copy data from sg into it. Prepare one sgl[0] 1000 * with allocated buffer. 1001 * 1002 * Set bit in dd->hash_flag so we can free it after irq ends processing. 1003 */ 1004 static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx, 1005 struct scatterlist *sg, unsigned int new_len) 1006 { 1007 unsigned int pages, len; 1008 void *buf; 1009 1010 len = new_len + ctx->bufcnt; 1011 pages = get_order(len); 1012 1013 buf = (void *)__get_free_pages(GFP_ATOMIC, pages); 1014 if (!buf) { 1015 dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n"); 1016 ctx->error = true; 1017 return -ENOMEM; 1018 } 1019 1020 if (ctx->bufcnt) 1021 memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt); 1022 1023 memcpy_from_sglist(buf + ctx->bufcnt, sg, ctx->skip, new_len); 1024 sg_init_table(ctx->sgl, 1); 1025 sg_set_buf(ctx->sgl, buf, len); 1026 ctx->sg = ctx->sgl; 1027 ctx->sg_len = 1; 1028 ctx->bufcnt = 0; 1029 ctx->skip = 0; 1030 set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags); 1031 1032 return 0; 1033 } 1034 1035 /** 1036 * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy 1037 * @ctx: request context 1038 * @sg: source scatterlist request 1039 * @new_len: number of bytes to process from sg 1040 * 1041 * Allocate new scatterlist table, copy data for HASH into it. If there was 1042 * xmit_buf filled, prepare it first, then copy page, length and offset from 1043 * source sg into it, adjusting begin and/or end for skip offset and 1044 * hash_later value. 1045 * 1046 * Resulting sg table will be assigned to ctx->sg. Set flag so we can free 1047 * it after irq ends processing. 1048 */ 1049 static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx, 1050 struct scatterlist *sg, unsigned int new_len) 1051 { 1052 unsigned int skip = ctx->skip, n = sg_nents(sg); 1053 struct scatterlist *tmp; 1054 unsigned int len; 1055 1056 if (ctx->bufcnt) 1057 n++; 1058 1059 ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL); 1060 if (!ctx->sg) { 1061 ctx->error = true; 1062 return -ENOMEM; 1063 } 1064 1065 sg_init_table(ctx->sg, n); 1066 1067 tmp = ctx->sg; 1068 1069 ctx->sg_len = 0; 1070 1071 if (ctx->bufcnt) { 1072 sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt); 1073 tmp = sg_next(tmp); 1074 ctx->sg_len++; 1075 } 1076 1077 while (sg && skip >= sg->length) { 1078 skip -= sg->length; 1079 sg = sg_next(sg); 1080 } 1081 1082 while (sg && new_len) { 1083 len = sg->length - skip; 1084 if (new_len < len) 1085 len = new_len; 1086 1087 new_len -= len; 1088 sg_set_page(tmp, sg_page(sg), len, sg->offset + skip); 1089 skip = 0; 1090 if (new_len <= 0) 1091 sg_mark_end(tmp); 1092 1093 tmp = sg_next(tmp); 1094 ctx->sg_len++; 1095 sg = sg_next(sg); 1096 } 1097 1098 set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags); 1099 1100 return 0; 1101 } 1102 1103 /** 1104 * s5p_hash_prepare_sgs() - prepare sg for processing 1105 * @ctx: request context 1106 * @sg: source scatterlist request 1107 * @new_len: number of bytes to process from sg 1108 * @final: final flag 1109 * 1110 * Check two conditions: (1) if buffers in sg have len aligned data, and (2) 1111 * sg table have good aligned elements (list_ok). If one of this checks fails, 1112 * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy 1113 * data into this buffer and prepare request in sgl, or (2) allocates new sg 1114 * table and prepare sg elements. 1115 * 1116 * For digest or finup all conditions can be good, and we may not need any 1117 * fixes. 1118 */ 1119 static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx, 1120 struct scatterlist *sg, 1121 unsigned int new_len, bool final) 1122 { 1123 unsigned int skip = ctx->skip, nbytes = new_len, n = 0; 1124 bool aligned = true, list_ok = true; 1125 struct scatterlist *sg_tmp = sg; 1126 1127 if (!sg || !sg->length || !new_len) 1128 return 0; 1129 1130 if (skip || !final) 1131 list_ok = false; 1132 1133 while (nbytes > 0 && sg_tmp) { 1134 n++; 1135 if (skip >= sg_tmp->length) { 1136 skip -= sg_tmp->length; 1137 if (!sg_tmp->length) { 1138 aligned = false; 1139 break; 1140 } 1141 } else { 1142 if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) { 1143 aligned = false; 1144 break; 1145 } 1146 1147 if (nbytes < sg_tmp->length - skip) { 1148 list_ok = false; 1149 break; 1150 } 1151 1152 nbytes -= sg_tmp->length - skip; 1153 skip = 0; 1154 } 1155 1156 sg_tmp = sg_next(sg_tmp); 1157 } 1158 1159 if (!aligned) 1160 return s5p_hash_copy_sgs(ctx, sg, new_len); 1161 else if (!list_ok) 1162 return s5p_hash_copy_sg_lists(ctx, sg, new_len); 1163 1164 /* 1165 * Have aligned data from previous operation and/or current 1166 * Note: will enter here only if (digest or finup) and aligned 1167 */ 1168 if (ctx->bufcnt) { 1169 ctx->sg_len = n; 1170 sg_init_table(ctx->sgl, 2); 1171 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt); 1172 sg_chain(ctx->sgl, 2, sg); 1173 ctx->sg = ctx->sgl; 1174 ctx->sg_len++; 1175 } else { 1176 ctx->sg = sg; 1177 ctx->sg_len = n; 1178 } 1179 1180 return 0; 1181 } 1182 1183 /** 1184 * s5p_hash_prepare_request() - prepare request for processing 1185 * @req: AHASH request 1186 * @update: true if UPDATE op 1187 * 1188 * Note 1: we can have update flag _and_ final flag at the same time. 1189 * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or 1190 * either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or 1191 * we have final op 1192 */ 1193 static int s5p_hash_prepare_request(struct ahash_request *req, bool update) 1194 { 1195 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1196 bool final = ctx->finup; 1197 int xmit_len, hash_later, nbytes; 1198 int ret; 1199 1200 if (update) 1201 nbytes = req->nbytes; 1202 else 1203 nbytes = 0; 1204 1205 ctx->total = nbytes + ctx->bufcnt; 1206 if (!ctx->total) 1207 return 0; 1208 1209 if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) { 1210 /* bytes left from previous request, so fill up to BUFLEN */ 1211 int len = BUFLEN - ctx->bufcnt % BUFLEN; 1212 1213 if (len > nbytes) 1214 len = nbytes; 1215 1216 memcpy_from_sglist(ctx->buffer + ctx->bufcnt, req->src, 0, len); 1217 ctx->bufcnt += len; 1218 nbytes -= len; 1219 ctx->skip = len; 1220 } else { 1221 ctx->skip = 0; 1222 } 1223 1224 if (ctx->bufcnt) 1225 memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt); 1226 1227 xmit_len = ctx->total; 1228 if (final) { 1229 hash_later = 0; 1230 } else { 1231 if (IS_ALIGNED(xmit_len, BUFLEN)) 1232 xmit_len -= BUFLEN; 1233 else 1234 xmit_len -= xmit_len & (BUFLEN - 1); 1235 1236 hash_later = ctx->total - xmit_len; 1237 /* copy hash_later bytes from end of req->src */ 1238 /* previous bytes are in xmit_buf, so no overwrite */ 1239 memcpy_from_sglist(ctx->buffer, req->src, 1240 req->nbytes - hash_later, hash_later); 1241 } 1242 1243 if (xmit_len > BUFLEN) { 1244 ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later, 1245 final); 1246 if (ret) 1247 return ret; 1248 } else { 1249 /* have buffered data only */ 1250 if (unlikely(!ctx->bufcnt)) { 1251 /* first update didn't fill up buffer */ 1252 memcpy_from_sglist(ctx->dd->xmit_buf, req->src, 1253 0, xmit_len); 1254 } 1255 1256 sg_init_table(ctx->sgl, 1); 1257 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len); 1258 1259 ctx->sg = ctx->sgl; 1260 ctx->sg_len = 1; 1261 } 1262 1263 ctx->bufcnt = hash_later; 1264 if (!final) 1265 ctx->total = xmit_len; 1266 1267 return 0; 1268 } 1269 1270 /** 1271 * s5p_hash_update_dma_stop() - unmap DMA 1272 * @dd: secss device 1273 * 1274 * Unmap scatterlist ctx->sg. 1275 */ 1276 static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd) 1277 { 1278 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req); 1279 1280 dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE); 1281 clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags); 1282 } 1283 1284 /** 1285 * s5p_hash_finish() - copy calculated digest to crypto layer 1286 * @req: AHASH request 1287 */ 1288 static void s5p_hash_finish(struct ahash_request *req) 1289 { 1290 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1291 struct s5p_aes_dev *dd = ctx->dd; 1292 1293 if (ctx->digcnt) 1294 s5p_hash_copy_result(req); 1295 1296 dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt); 1297 } 1298 1299 /** 1300 * s5p_hash_finish_req() - finish request 1301 * @req: AHASH request 1302 * @err: error 1303 */ 1304 static void s5p_hash_finish_req(struct ahash_request *req, int err) 1305 { 1306 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1307 struct s5p_aes_dev *dd = ctx->dd; 1308 unsigned long flags; 1309 1310 if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags)) 1311 free_pages((unsigned long)sg_virt(ctx->sg), 1312 get_order(ctx->sg->length)); 1313 1314 if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags)) 1315 kfree(ctx->sg); 1316 1317 ctx->sg = NULL; 1318 dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) | 1319 BIT(HASH_FLAGS_SGS_COPIED)); 1320 1321 if (!err && !ctx->error) { 1322 s5p_hash_read_msg(req); 1323 if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags)) 1324 s5p_hash_finish(req); 1325 } else { 1326 ctx->error = true; 1327 } 1328 1329 spin_lock_irqsave(&dd->hash_lock, flags); 1330 dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) | 1331 BIT(HASH_FLAGS_DMA_READY) | 1332 BIT(HASH_FLAGS_OUTPUT_READY)); 1333 spin_unlock_irqrestore(&dd->hash_lock, flags); 1334 1335 if (req->base.complete) 1336 ahash_request_complete(req, err); 1337 } 1338 1339 /** 1340 * s5p_hash_handle_queue() - handle hash queue 1341 * @dd: device s5p_aes_dev 1342 * @req: AHASH request 1343 * 1344 * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the 1345 * device then processes the first request from the dd->queue 1346 * 1347 * Returns: see s5p_hash_final below. 1348 */ 1349 static int s5p_hash_handle_queue(struct s5p_aes_dev *dd, 1350 struct ahash_request *req) 1351 { 1352 struct crypto_async_request *async_req, *backlog; 1353 struct s5p_hash_reqctx *ctx; 1354 unsigned long flags; 1355 int err = 0, ret = 0; 1356 1357 retry: 1358 spin_lock_irqsave(&dd->hash_lock, flags); 1359 if (req) 1360 ret = ahash_enqueue_request(&dd->hash_queue, req); 1361 1362 if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) { 1363 spin_unlock_irqrestore(&dd->hash_lock, flags); 1364 return ret; 1365 } 1366 1367 backlog = crypto_get_backlog(&dd->hash_queue); 1368 async_req = crypto_dequeue_request(&dd->hash_queue); 1369 if (async_req) 1370 set_bit(HASH_FLAGS_BUSY, &dd->hash_flags); 1371 1372 spin_unlock_irqrestore(&dd->hash_lock, flags); 1373 1374 if (!async_req) 1375 return ret; 1376 1377 if (backlog) 1378 crypto_request_complete(backlog, -EINPROGRESS); 1379 1380 req = ahash_request_cast(async_req); 1381 dd->hash_req = req; 1382 ctx = ahash_request_ctx(req); 1383 1384 err = s5p_hash_prepare_request(req, ctx->op_update); 1385 if (err || !ctx->total) 1386 goto out; 1387 1388 dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n", 1389 ctx->op_update, req->nbytes); 1390 1391 s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT); 1392 if (ctx->digcnt) 1393 s5p_hash_write_iv(req); /* restore hash IV */ 1394 1395 if (ctx->op_update) { /* HASH_OP_UPDATE */ 1396 err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup); 1397 if (err != -EINPROGRESS && ctx->finup && !ctx->error) 1398 /* no final() after finup() */ 1399 err = s5p_hash_xmit_dma(dd, ctx->total, true); 1400 } else { /* HASH_OP_FINAL */ 1401 err = s5p_hash_xmit_dma(dd, ctx->total, true); 1402 } 1403 out: 1404 if (err != -EINPROGRESS) { 1405 /* hash_tasklet_cb will not finish it, so do it here */ 1406 s5p_hash_finish_req(req, err); 1407 req = NULL; 1408 1409 /* 1410 * Execute next request immediately if there is anything 1411 * in queue. 1412 */ 1413 goto retry; 1414 } 1415 1416 return ret; 1417 } 1418 1419 /** 1420 * s5p_hash_tasklet_cb() - hash tasklet 1421 * @data: ptr to s5p_aes_dev 1422 */ 1423 static void s5p_hash_tasklet_cb(unsigned long data) 1424 { 1425 struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data; 1426 1427 if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) { 1428 s5p_hash_handle_queue(dd, NULL); 1429 return; 1430 } 1431 1432 if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) { 1433 if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE, 1434 &dd->hash_flags)) { 1435 s5p_hash_update_dma_stop(dd); 1436 } 1437 1438 if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY, 1439 &dd->hash_flags)) { 1440 /* hash or semi-hash ready */ 1441 clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags); 1442 goto finish; 1443 } 1444 } 1445 1446 return; 1447 1448 finish: 1449 /* finish curent request */ 1450 s5p_hash_finish_req(dd->hash_req, 0); 1451 1452 /* If we are not busy, process next req */ 1453 if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) 1454 s5p_hash_handle_queue(dd, NULL); 1455 } 1456 1457 /** 1458 * s5p_hash_enqueue() - enqueue request 1459 * @req: AHASH request 1460 * @op: operation UPDATE (true) or FINAL (false) 1461 * 1462 * Returns: see s5p_hash_final below. 1463 */ 1464 static int s5p_hash_enqueue(struct ahash_request *req, bool op) 1465 { 1466 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1467 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm); 1468 1469 ctx->op_update = op; 1470 1471 return s5p_hash_handle_queue(tctx->dd, req); 1472 } 1473 1474 /** 1475 * s5p_hash_update() - process the hash input data 1476 * @req: AHASH request 1477 * 1478 * If request will fit in buffer, copy it and return immediately 1479 * else enqueue it with OP_UPDATE. 1480 * 1481 * Returns: see s5p_hash_final below. 1482 */ 1483 static int s5p_hash_update(struct ahash_request *req) 1484 { 1485 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1486 1487 if (!req->nbytes) 1488 return 0; 1489 1490 if (ctx->bufcnt + req->nbytes <= BUFLEN) { 1491 memcpy_from_sglist(ctx->buffer + ctx->bufcnt, req->src, 1492 0, req->nbytes); 1493 ctx->bufcnt += req->nbytes; 1494 return 0; 1495 } 1496 1497 return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */ 1498 } 1499 1500 /** 1501 * s5p_hash_final() - close up hash and calculate digest 1502 * @req: AHASH request 1503 * 1504 * Note: in final req->src do not have any data, and req->nbytes can be 1505 * non-zero. 1506 * 1507 * If there were no input data processed yet and the buffered hash data is 1508 * less than BUFLEN (64) then calculate the final hash immediately by using 1509 * SW algorithm fallback. 1510 * 1511 * Otherwise enqueues the current AHASH request with OP_FINAL operation op 1512 * and finalize hash message in HW. Note that if digcnt!=0 then there were 1513 * previous update op, so there are always some buffered bytes in ctx->buffer, 1514 * which means that ctx->bufcnt!=0 1515 * 1516 * Returns: 1517 * 0 if the request has been processed immediately, 1518 * -EINPROGRESS if the operation has been queued for later execution or is set 1519 * to processing by HW, 1520 * -EBUSY if queue is full and request should be resubmitted later, 1521 * other negative values denotes an error. 1522 */ 1523 static int s5p_hash_final(struct ahash_request *req) 1524 { 1525 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1526 1527 ctx->finup = true; 1528 if (ctx->error) 1529 return -EINVAL; /* uncompleted hash is not needed */ 1530 1531 if (!ctx->digcnt && ctx->bufcnt < BUFLEN) { 1532 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm); 1533 1534 return crypto_shash_tfm_digest(tctx->fallback, ctx->buffer, 1535 ctx->bufcnt, req->result); 1536 } 1537 1538 return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */ 1539 } 1540 1541 /** 1542 * s5p_hash_finup() - process last req->src and calculate digest 1543 * @req: AHASH request containing the last update data 1544 * 1545 * Return values: see s5p_hash_final above. 1546 */ 1547 static int s5p_hash_finup(struct ahash_request *req) 1548 { 1549 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1550 int err1, err2; 1551 1552 ctx->finup = true; 1553 1554 err1 = s5p_hash_update(req); 1555 if (err1 == -EINPROGRESS || err1 == -EBUSY) 1556 return err1; 1557 1558 /* 1559 * final() has to be always called to cleanup resources even if 1560 * update() failed, except EINPROGRESS or calculate digest for small 1561 * size 1562 */ 1563 err2 = s5p_hash_final(req); 1564 1565 return err1 ?: err2; 1566 } 1567 1568 /** 1569 * s5p_hash_init() - initialize AHASH request contex 1570 * @req: AHASH request 1571 * 1572 * Init async hash request context. 1573 */ 1574 static int s5p_hash_init(struct ahash_request *req) 1575 { 1576 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1577 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 1578 struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm); 1579 1580 ctx->dd = tctx->dd; 1581 ctx->error = false; 1582 ctx->finup = false; 1583 ctx->bufcnt = 0; 1584 ctx->digcnt = 0; 1585 ctx->total = 0; 1586 ctx->skip = 0; 1587 1588 dev_dbg(tctx->dd->dev, "init: digest size: %d\n", 1589 crypto_ahash_digestsize(tfm)); 1590 1591 switch (crypto_ahash_digestsize(tfm)) { 1592 case MD5_DIGEST_SIZE: 1593 ctx->engine = SSS_HASH_ENGINE_MD5; 1594 ctx->nregs = HASH_MD5_MAX_REG; 1595 break; 1596 case SHA1_DIGEST_SIZE: 1597 ctx->engine = SSS_HASH_ENGINE_SHA1; 1598 ctx->nregs = HASH_SHA1_MAX_REG; 1599 break; 1600 case SHA256_DIGEST_SIZE: 1601 ctx->engine = SSS_HASH_ENGINE_SHA256; 1602 ctx->nregs = HASH_SHA256_MAX_REG; 1603 break; 1604 default: 1605 ctx->error = true; 1606 return -EINVAL; 1607 } 1608 1609 return 0; 1610 } 1611 1612 /** 1613 * s5p_hash_digest - calculate digest from req->src 1614 * @req: AHASH request 1615 * 1616 * Return values: see s5p_hash_final above. 1617 */ 1618 static int s5p_hash_digest(struct ahash_request *req) 1619 { 1620 return s5p_hash_init(req) ?: s5p_hash_finup(req); 1621 } 1622 1623 /** 1624 * s5p_hash_cra_init_alg - init crypto alg transformation 1625 * @tfm: crypto transformation 1626 */ 1627 static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm) 1628 { 1629 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm); 1630 const char *alg_name = crypto_tfm_alg_name(tfm); 1631 1632 tctx->dd = s5p_dev; 1633 /* Allocate a fallback and abort if it failed. */ 1634 tctx->fallback = crypto_alloc_shash(alg_name, 0, 1635 CRYPTO_ALG_NEED_FALLBACK); 1636 if (IS_ERR(tctx->fallback)) { 1637 pr_err("fallback alloc fails for '%s'\n", alg_name); 1638 return PTR_ERR(tctx->fallback); 1639 } 1640 1641 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), 1642 sizeof(struct s5p_hash_reqctx) + BUFLEN); 1643 1644 return 0; 1645 } 1646 1647 /** 1648 * s5p_hash_cra_init - init crypto tfm 1649 * @tfm: crypto transformation 1650 */ 1651 static int s5p_hash_cra_init(struct crypto_tfm *tfm) 1652 { 1653 return s5p_hash_cra_init_alg(tfm); 1654 } 1655 1656 /** 1657 * s5p_hash_cra_exit - exit crypto tfm 1658 * @tfm: crypto transformation 1659 * 1660 * free allocated fallback 1661 */ 1662 static void s5p_hash_cra_exit(struct crypto_tfm *tfm) 1663 { 1664 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm); 1665 1666 crypto_free_shash(tctx->fallback); 1667 tctx->fallback = NULL; 1668 } 1669 1670 /** 1671 * s5p_hash_export - export hash state 1672 * @req: AHASH request 1673 * @out: buffer for exported state 1674 */ 1675 static int s5p_hash_export(struct ahash_request *req, void *out) 1676 { 1677 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1678 1679 memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt); 1680 1681 return 0; 1682 } 1683 1684 /** 1685 * s5p_hash_import - import hash state 1686 * @req: AHASH request 1687 * @in: buffer with state to be imported from 1688 */ 1689 static int s5p_hash_import(struct ahash_request *req, const void *in) 1690 { 1691 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1692 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 1693 struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm); 1694 const struct s5p_hash_reqctx *ctx_in = in; 1695 1696 memcpy(ctx, in, sizeof(*ctx) + BUFLEN); 1697 if (ctx_in->bufcnt > BUFLEN) { 1698 ctx->error = true; 1699 return -EINVAL; 1700 } 1701 1702 ctx->dd = tctx->dd; 1703 ctx->error = false; 1704 1705 return 0; 1706 } 1707 1708 static struct ahash_alg algs_sha1_md5_sha256[] = { 1709 { 1710 .init = s5p_hash_init, 1711 .update = s5p_hash_update, 1712 .final = s5p_hash_final, 1713 .finup = s5p_hash_finup, 1714 .digest = s5p_hash_digest, 1715 .export = s5p_hash_export, 1716 .import = s5p_hash_import, 1717 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN, 1718 .halg.digestsize = SHA1_DIGEST_SIZE, 1719 .halg.base = { 1720 .cra_name = "sha1", 1721 .cra_driver_name = "exynos-sha1", 1722 .cra_priority = 100, 1723 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1724 CRYPTO_ALG_ASYNC | 1725 CRYPTO_ALG_NEED_FALLBACK, 1726 .cra_blocksize = HASH_BLOCK_SIZE, 1727 .cra_ctxsize = sizeof(struct s5p_hash_ctx), 1728 .cra_module = THIS_MODULE, 1729 .cra_init = s5p_hash_cra_init, 1730 .cra_exit = s5p_hash_cra_exit, 1731 } 1732 }, 1733 { 1734 .init = s5p_hash_init, 1735 .update = s5p_hash_update, 1736 .final = s5p_hash_final, 1737 .finup = s5p_hash_finup, 1738 .digest = s5p_hash_digest, 1739 .export = s5p_hash_export, 1740 .import = s5p_hash_import, 1741 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN, 1742 .halg.digestsize = MD5_DIGEST_SIZE, 1743 .halg.base = { 1744 .cra_name = "md5", 1745 .cra_driver_name = "exynos-md5", 1746 .cra_priority = 100, 1747 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1748 CRYPTO_ALG_ASYNC | 1749 CRYPTO_ALG_NEED_FALLBACK, 1750 .cra_blocksize = HASH_BLOCK_SIZE, 1751 .cra_ctxsize = sizeof(struct s5p_hash_ctx), 1752 .cra_module = THIS_MODULE, 1753 .cra_init = s5p_hash_cra_init, 1754 .cra_exit = s5p_hash_cra_exit, 1755 } 1756 }, 1757 { 1758 .init = s5p_hash_init, 1759 .update = s5p_hash_update, 1760 .final = s5p_hash_final, 1761 .finup = s5p_hash_finup, 1762 .digest = s5p_hash_digest, 1763 .export = s5p_hash_export, 1764 .import = s5p_hash_import, 1765 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN, 1766 .halg.digestsize = SHA256_DIGEST_SIZE, 1767 .halg.base = { 1768 .cra_name = "sha256", 1769 .cra_driver_name = "exynos-sha256", 1770 .cra_priority = 100, 1771 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1772 CRYPTO_ALG_ASYNC | 1773 CRYPTO_ALG_NEED_FALLBACK, 1774 .cra_blocksize = HASH_BLOCK_SIZE, 1775 .cra_ctxsize = sizeof(struct s5p_hash_ctx), 1776 .cra_module = THIS_MODULE, 1777 .cra_init = s5p_hash_cra_init, 1778 .cra_exit = s5p_hash_cra_exit, 1779 } 1780 } 1781 1782 }; 1783 1784 static void s5p_set_aes(struct s5p_aes_dev *dev, 1785 const u8 *key, const u8 *iv, const u8 *ctr, 1786 unsigned int keylen) 1787 { 1788 void __iomem *keystart; 1789 1790 if (iv) 1791 memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv, 1792 AES_BLOCK_SIZE); 1793 1794 if (ctr) 1795 memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), ctr, 1796 AES_BLOCK_SIZE); 1797 1798 if (keylen == AES_KEYSIZE_256) 1799 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0); 1800 else if (keylen == AES_KEYSIZE_192) 1801 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2); 1802 else 1803 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4); 1804 1805 memcpy_toio(keystart, key, keylen); 1806 } 1807 1808 static bool s5p_is_sg_aligned(struct scatterlist *sg) 1809 { 1810 while (sg) { 1811 if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE)) 1812 return false; 1813 sg = sg_next(sg); 1814 } 1815 1816 return true; 1817 } 1818 1819 static int s5p_set_indata_start(struct s5p_aes_dev *dev, 1820 struct skcipher_request *req) 1821 { 1822 struct scatterlist *sg; 1823 int err; 1824 1825 dev->sg_src_cpy = NULL; 1826 sg = req->src; 1827 if (!s5p_is_sg_aligned(sg)) { 1828 dev_dbg(dev->dev, 1829 "At least one unaligned source scatter list, making a copy\n"); 1830 err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy); 1831 if (err) 1832 return err; 1833 1834 sg = dev->sg_src_cpy; 1835 } 1836 1837 err = s5p_set_indata(dev, sg); 1838 if (err) { 1839 s5p_free_sg_cpy(dev, &dev->sg_src_cpy); 1840 return err; 1841 } 1842 1843 return 0; 1844 } 1845 1846 static int s5p_set_outdata_start(struct s5p_aes_dev *dev, 1847 struct skcipher_request *req) 1848 { 1849 struct scatterlist *sg; 1850 int err; 1851 1852 dev->sg_dst_cpy = NULL; 1853 sg = req->dst; 1854 if (!s5p_is_sg_aligned(sg)) { 1855 dev_dbg(dev->dev, 1856 "At least one unaligned dest scatter list, making a copy\n"); 1857 err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy); 1858 if (err) 1859 return err; 1860 1861 sg = dev->sg_dst_cpy; 1862 } 1863 1864 err = s5p_set_outdata(dev, sg); 1865 if (err) { 1866 s5p_free_sg_cpy(dev, &dev->sg_dst_cpy); 1867 return err; 1868 } 1869 1870 return 0; 1871 } 1872 1873 static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode) 1874 { 1875 struct skcipher_request *req = dev->req; 1876 u32 aes_control; 1877 unsigned long flags; 1878 int err; 1879 u8 *iv, *ctr; 1880 1881 /* This sets bit [13:12] to 00, which selects 128-bit counter */ 1882 aes_control = SSS_AES_KEY_CHANGE_MODE; 1883 if (mode & FLAGS_AES_DECRYPT) 1884 aes_control |= SSS_AES_MODE_DECRYPT; 1885 1886 if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) { 1887 aes_control |= SSS_AES_CHAIN_MODE_CBC; 1888 iv = req->iv; 1889 ctr = NULL; 1890 } else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) { 1891 aes_control |= SSS_AES_CHAIN_MODE_CTR; 1892 iv = NULL; 1893 ctr = req->iv; 1894 } else { 1895 iv = NULL; /* AES_ECB */ 1896 ctr = NULL; 1897 } 1898 1899 if (dev->ctx->keylen == AES_KEYSIZE_192) 1900 aes_control |= SSS_AES_KEY_SIZE_192; 1901 else if (dev->ctx->keylen == AES_KEYSIZE_256) 1902 aes_control |= SSS_AES_KEY_SIZE_256; 1903 1904 aes_control |= SSS_AES_FIFO_MODE; 1905 1906 /* as a variant it is possible to use byte swapping on DMA side */ 1907 aes_control |= SSS_AES_BYTESWAP_DI 1908 | SSS_AES_BYTESWAP_DO 1909 | SSS_AES_BYTESWAP_IV 1910 | SSS_AES_BYTESWAP_KEY 1911 | SSS_AES_BYTESWAP_CNT; 1912 1913 spin_lock_irqsave(&dev->lock, flags); 1914 1915 SSS_WRITE(dev, FCINTENCLR, 1916 SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR); 1917 SSS_WRITE(dev, FCFIFOCTRL, 0x00); 1918 1919 err = s5p_set_indata_start(dev, req); 1920 if (err) 1921 goto indata_error; 1922 1923 err = s5p_set_outdata_start(dev, req); 1924 if (err) 1925 goto outdata_error; 1926 1927 SSS_AES_WRITE(dev, AES_CONTROL, aes_control); 1928 s5p_set_aes(dev, dev->ctx->aes_key, iv, ctr, dev->ctx->keylen); 1929 1930 s5p_set_dma_indata(dev, dev->sg_src); 1931 s5p_set_dma_outdata(dev, dev->sg_dst); 1932 1933 SSS_WRITE(dev, FCINTENSET, 1934 SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET); 1935 1936 spin_unlock_irqrestore(&dev->lock, flags); 1937 1938 return; 1939 1940 outdata_error: 1941 s5p_unset_indata(dev); 1942 1943 indata_error: 1944 s5p_sg_done(dev); 1945 dev->busy = false; 1946 spin_unlock_irqrestore(&dev->lock, flags); 1947 s5p_aes_complete(req, err); 1948 } 1949 1950 static void s5p_tasklet_cb(unsigned long data) 1951 { 1952 struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data; 1953 struct crypto_async_request *async_req, *backlog; 1954 struct s5p_aes_reqctx *reqctx; 1955 unsigned long flags; 1956 1957 spin_lock_irqsave(&dev->lock, flags); 1958 backlog = crypto_get_backlog(&dev->queue); 1959 async_req = crypto_dequeue_request(&dev->queue); 1960 1961 if (!async_req) { 1962 dev->busy = false; 1963 spin_unlock_irqrestore(&dev->lock, flags); 1964 return; 1965 } 1966 spin_unlock_irqrestore(&dev->lock, flags); 1967 1968 if (backlog) 1969 crypto_request_complete(backlog, -EINPROGRESS); 1970 1971 dev->req = skcipher_request_cast(async_req); 1972 dev->ctx = crypto_tfm_ctx(dev->req->base.tfm); 1973 reqctx = skcipher_request_ctx(dev->req); 1974 1975 s5p_aes_crypt_start(dev, reqctx->mode); 1976 } 1977 1978 static int s5p_aes_handle_req(struct s5p_aes_dev *dev, 1979 struct skcipher_request *req) 1980 { 1981 unsigned long flags; 1982 int err; 1983 1984 spin_lock_irqsave(&dev->lock, flags); 1985 err = crypto_enqueue_request(&dev->queue, &req->base); 1986 if (dev->busy) { 1987 spin_unlock_irqrestore(&dev->lock, flags); 1988 return err; 1989 } 1990 dev->busy = true; 1991 1992 spin_unlock_irqrestore(&dev->lock, flags); 1993 1994 tasklet_schedule(&dev->tasklet); 1995 1996 return err; 1997 } 1998 1999 static int s5p_aes_crypt(struct skcipher_request *req, unsigned long mode) 2000 { 2001 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 2002 struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req); 2003 struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm); 2004 struct s5p_aes_dev *dev = ctx->dev; 2005 2006 if (!req->cryptlen) 2007 return 0; 2008 2009 if (!IS_ALIGNED(req->cryptlen, AES_BLOCK_SIZE) && 2010 ((mode & FLAGS_AES_MODE_MASK) != FLAGS_AES_CTR)) { 2011 dev_dbg(dev->dev, "request size is not exact amount of AES blocks\n"); 2012 return -EINVAL; 2013 } 2014 2015 reqctx->mode = mode; 2016 2017 return s5p_aes_handle_req(dev, req); 2018 } 2019 2020 static int s5p_aes_setkey(struct crypto_skcipher *cipher, 2021 const u8 *key, unsigned int keylen) 2022 { 2023 struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher); 2024 struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm); 2025 2026 if (keylen != AES_KEYSIZE_128 && 2027 keylen != AES_KEYSIZE_192 && 2028 keylen != AES_KEYSIZE_256) 2029 return -EINVAL; 2030 2031 memcpy(ctx->aes_key, key, keylen); 2032 ctx->keylen = keylen; 2033 2034 return 0; 2035 } 2036 2037 static int s5p_aes_ecb_encrypt(struct skcipher_request *req) 2038 { 2039 return s5p_aes_crypt(req, 0); 2040 } 2041 2042 static int s5p_aes_ecb_decrypt(struct skcipher_request *req) 2043 { 2044 return s5p_aes_crypt(req, FLAGS_AES_DECRYPT); 2045 } 2046 2047 static int s5p_aes_cbc_encrypt(struct skcipher_request *req) 2048 { 2049 return s5p_aes_crypt(req, FLAGS_AES_CBC); 2050 } 2051 2052 static int s5p_aes_cbc_decrypt(struct skcipher_request *req) 2053 { 2054 return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC); 2055 } 2056 2057 static int s5p_aes_ctr_crypt(struct skcipher_request *req) 2058 { 2059 return s5p_aes_crypt(req, FLAGS_AES_CTR); 2060 } 2061 2062 static int s5p_aes_init_tfm(struct crypto_skcipher *tfm) 2063 { 2064 struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm); 2065 2066 ctx->dev = s5p_dev; 2067 crypto_skcipher_set_reqsize(tfm, sizeof(struct s5p_aes_reqctx)); 2068 2069 return 0; 2070 } 2071 2072 static struct skcipher_alg algs[] = { 2073 { 2074 .base.cra_name = "ecb(aes)", 2075 .base.cra_driver_name = "ecb-aes-s5p", 2076 .base.cra_priority = 100, 2077 .base.cra_flags = CRYPTO_ALG_ASYNC | 2078 CRYPTO_ALG_KERN_DRIVER_ONLY, 2079 .base.cra_blocksize = AES_BLOCK_SIZE, 2080 .base.cra_ctxsize = sizeof(struct s5p_aes_ctx), 2081 .base.cra_alignmask = 0x0f, 2082 .base.cra_module = THIS_MODULE, 2083 2084 .min_keysize = AES_MIN_KEY_SIZE, 2085 .max_keysize = AES_MAX_KEY_SIZE, 2086 .setkey = s5p_aes_setkey, 2087 .encrypt = s5p_aes_ecb_encrypt, 2088 .decrypt = s5p_aes_ecb_decrypt, 2089 .init = s5p_aes_init_tfm, 2090 }, 2091 { 2092 .base.cra_name = "cbc(aes)", 2093 .base.cra_driver_name = "cbc-aes-s5p", 2094 .base.cra_priority = 100, 2095 .base.cra_flags = CRYPTO_ALG_ASYNC | 2096 CRYPTO_ALG_KERN_DRIVER_ONLY, 2097 .base.cra_blocksize = AES_BLOCK_SIZE, 2098 .base.cra_ctxsize = sizeof(struct s5p_aes_ctx), 2099 .base.cra_alignmask = 0x0f, 2100 .base.cra_module = THIS_MODULE, 2101 2102 .min_keysize = AES_MIN_KEY_SIZE, 2103 .max_keysize = AES_MAX_KEY_SIZE, 2104 .ivsize = AES_BLOCK_SIZE, 2105 .setkey = s5p_aes_setkey, 2106 .encrypt = s5p_aes_cbc_encrypt, 2107 .decrypt = s5p_aes_cbc_decrypt, 2108 .init = s5p_aes_init_tfm, 2109 }, 2110 { 2111 .base.cra_name = "ctr(aes)", 2112 .base.cra_driver_name = "ctr-aes-s5p", 2113 .base.cra_priority = 100, 2114 .base.cra_flags = CRYPTO_ALG_ASYNC | 2115 CRYPTO_ALG_KERN_DRIVER_ONLY, 2116 .base.cra_blocksize = 1, 2117 .base.cra_ctxsize = sizeof(struct s5p_aes_ctx), 2118 .base.cra_alignmask = 0x0f, 2119 .base.cra_module = THIS_MODULE, 2120 2121 .min_keysize = AES_MIN_KEY_SIZE, 2122 .max_keysize = AES_MAX_KEY_SIZE, 2123 .ivsize = AES_BLOCK_SIZE, 2124 .setkey = s5p_aes_setkey, 2125 .encrypt = s5p_aes_ctr_crypt, 2126 .decrypt = s5p_aes_ctr_crypt, 2127 .init = s5p_aes_init_tfm, 2128 }, 2129 }; 2130 2131 static int s5p_aes_probe(struct platform_device *pdev) 2132 { 2133 struct device *dev = &pdev->dev; 2134 int i, j, err; 2135 const struct samsung_aes_variant *variant; 2136 struct s5p_aes_dev *pdata; 2137 struct resource *res; 2138 unsigned int hash_i; 2139 2140 if (s5p_dev) 2141 return -EEXIST; 2142 2143 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); 2144 if (!pdata) 2145 return -ENOMEM; 2146 2147 variant = find_s5p_sss_version(pdev); 2148 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2149 if (!res) 2150 return -EINVAL; 2151 2152 /* 2153 * Note: HASH and PRNG uses the same registers in secss, avoid 2154 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG 2155 * is enabled in config. We need larger size for HASH registers in 2156 * secss, current describe only AES/DES 2157 */ 2158 if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) { 2159 if (variant == &exynos_aes_data) { 2160 res->end += 0x300; 2161 pdata->use_hash = true; 2162 } 2163 } 2164 2165 pdata->res = res; 2166 pdata->ioaddr = devm_ioremap_resource(dev, res); 2167 if (IS_ERR(pdata->ioaddr)) { 2168 if (!pdata->use_hash) 2169 return PTR_ERR(pdata->ioaddr); 2170 /* try AES without HASH */ 2171 res->end -= 0x300; 2172 pdata->use_hash = false; 2173 pdata->ioaddr = devm_ioremap_resource(dev, res); 2174 if (IS_ERR(pdata->ioaddr)) 2175 return PTR_ERR(pdata->ioaddr); 2176 } 2177 2178 pdata->clk = devm_clk_get(dev, variant->clk_names[0]); 2179 if (IS_ERR(pdata->clk)) 2180 return dev_err_probe(dev, PTR_ERR(pdata->clk), 2181 "failed to find secss clock %s\n", 2182 variant->clk_names[0]); 2183 2184 err = clk_prepare_enable(pdata->clk); 2185 if (err < 0) { 2186 dev_err(dev, "Enabling clock %s failed, err %d\n", 2187 variant->clk_names[0], err); 2188 return err; 2189 } 2190 2191 if (variant->clk_names[1]) { 2192 pdata->pclk = devm_clk_get(dev, variant->clk_names[1]); 2193 if (IS_ERR(pdata->pclk)) { 2194 err = dev_err_probe(dev, PTR_ERR(pdata->pclk), 2195 "failed to find clock %s\n", 2196 variant->clk_names[1]); 2197 goto err_clk; 2198 } 2199 2200 err = clk_prepare_enable(pdata->pclk); 2201 if (err < 0) { 2202 dev_err(dev, "Enabling clock %s failed, err %d\n", 2203 variant->clk_names[0], err); 2204 goto err_clk; 2205 } 2206 } else { 2207 pdata->pclk = NULL; 2208 } 2209 2210 spin_lock_init(&pdata->lock); 2211 spin_lock_init(&pdata->hash_lock); 2212 2213 pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset; 2214 pdata->io_hash_base = pdata->ioaddr + variant->hash_offset; 2215 2216 pdata->irq_fc = platform_get_irq(pdev, 0); 2217 if (pdata->irq_fc < 0) { 2218 err = pdata->irq_fc; 2219 dev_warn(dev, "feed control interrupt is not available.\n"); 2220 goto err_irq; 2221 } 2222 err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL, 2223 s5p_aes_interrupt, IRQF_ONESHOT, 2224 pdev->name, pdev); 2225 if (err < 0) { 2226 dev_warn(dev, "feed control interrupt is not available.\n"); 2227 goto err_irq; 2228 } 2229 2230 pdata->busy = false; 2231 pdata->dev = dev; 2232 platform_set_drvdata(pdev, pdata); 2233 s5p_dev = pdata; 2234 2235 tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata); 2236 crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN); 2237 2238 for (i = 0; i < ARRAY_SIZE(algs); i++) { 2239 err = crypto_register_skcipher(&algs[i]); 2240 if (err) 2241 goto err_algs; 2242 } 2243 2244 if (pdata->use_hash) { 2245 tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb, 2246 (unsigned long)pdata); 2247 crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH); 2248 2249 for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256); 2250 hash_i++) { 2251 struct ahash_alg *alg; 2252 2253 alg = &algs_sha1_md5_sha256[hash_i]; 2254 err = crypto_register_ahash(alg); 2255 if (err) { 2256 dev_err(dev, "can't register '%s': %d\n", 2257 alg->halg.base.cra_driver_name, err); 2258 goto err_hash; 2259 } 2260 } 2261 } 2262 2263 dev_info(dev, "s5p-sss driver registered\n"); 2264 2265 return 0; 2266 2267 err_hash: 2268 for (j = hash_i - 1; j >= 0; j--) 2269 crypto_unregister_ahash(&algs_sha1_md5_sha256[j]); 2270 2271 tasklet_kill(&pdata->hash_tasklet); 2272 res->end -= 0x300; 2273 2274 err_algs: 2275 if (i < ARRAY_SIZE(algs)) 2276 dev_err(dev, "can't register '%s': %d\n", algs[i].base.cra_name, 2277 err); 2278 2279 for (j = 0; j < i; j++) 2280 crypto_unregister_skcipher(&algs[j]); 2281 2282 tasklet_kill(&pdata->tasklet); 2283 2284 err_irq: 2285 clk_disable_unprepare(pdata->pclk); 2286 2287 err_clk: 2288 clk_disable_unprepare(pdata->clk); 2289 s5p_dev = NULL; 2290 2291 return err; 2292 } 2293 2294 static void s5p_aes_remove(struct platform_device *pdev) 2295 { 2296 struct s5p_aes_dev *pdata = platform_get_drvdata(pdev); 2297 int i; 2298 2299 for (i = 0; i < ARRAY_SIZE(algs); i++) 2300 crypto_unregister_skcipher(&algs[i]); 2301 2302 tasklet_kill(&pdata->tasklet); 2303 if (pdata->use_hash) { 2304 for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--) 2305 crypto_unregister_ahash(&algs_sha1_md5_sha256[i]); 2306 2307 pdata->res->end -= 0x300; 2308 tasklet_kill(&pdata->hash_tasklet); 2309 pdata->use_hash = false; 2310 } 2311 2312 clk_disable_unprepare(pdata->pclk); 2313 2314 clk_disable_unprepare(pdata->clk); 2315 s5p_dev = NULL; 2316 } 2317 2318 static struct platform_driver s5p_aes_crypto = { 2319 .probe = s5p_aes_probe, 2320 .remove = s5p_aes_remove, 2321 .driver = { 2322 .name = "s5p-secss", 2323 .of_match_table = s5p_sss_dt_match, 2324 }, 2325 }; 2326 2327 module_platform_driver(s5p_aes_crypto); 2328 2329 MODULE_DESCRIPTION("S5PV210 AES hw acceleration support."); 2330 MODULE_LICENSE("GPL v2"); 2331 MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>"); 2332 MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>"); 2333