1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // Cryptographic API. 4 // 5 // Support for Samsung S5PV210 and Exynos HW acceleration. 6 // 7 // Copyright (C) 2011 NetUP Inc. All rights reserved. 8 // Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved. 9 // 10 // Hash part based on omap-sham.c driver. 11 12 #include <linux/clk.h> 13 #include <linux/crypto.h> 14 #include <linux/dma-mapping.h> 15 #include <linux/err.h> 16 #include <linux/errno.h> 17 #include <linux/init.h> 18 #include <linux/interrupt.h> 19 #include <linux/io.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/of.h> 23 #include <linux/platform_device.h> 24 #include <linux/scatterlist.h> 25 26 #include <crypto/ctr.h> 27 #include <crypto/aes.h> 28 #include <crypto/algapi.h> 29 #include <crypto/scatterwalk.h> 30 31 #include <crypto/hash.h> 32 #include <crypto/md5.h> 33 #include <crypto/sha1.h> 34 #include <crypto/sha2.h> 35 #include <crypto/internal/hash.h> 36 37 #define _SBF(s, v) ((v) << (s)) 38 39 /* Feed control registers */ 40 #define SSS_REG_FCINTSTAT 0x0000 41 #define SSS_FCINTSTAT_HPARTINT BIT(7) 42 #define SSS_FCINTSTAT_HDONEINT BIT(5) 43 #define SSS_FCINTSTAT_BRDMAINT BIT(3) 44 #define SSS_FCINTSTAT_BTDMAINT BIT(2) 45 #define SSS_FCINTSTAT_HRDMAINT BIT(1) 46 #define SSS_FCINTSTAT_PKDMAINT BIT(0) 47 48 #define SSS_REG_FCINTENSET 0x0004 49 #define SSS_FCINTENSET_HPARTINTENSET BIT(7) 50 #define SSS_FCINTENSET_HDONEINTENSET BIT(5) 51 #define SSS_FCINTENSET_BRDMAINTENSET BIT(3) 52 #define SSS_FCINTENSET_BTDMAINTENSET BIT(2) 53 #define SSS_FCINTENSET_HRDMAINTENSET BIT(1) 54 #define SSS_FCINTENSET_PKDMAINTENSET BIT(0) 55 56 #define SSS_REG_FCINTENCLR 0x0008 57 #define SSS_FCINTENCLR_HPARTINTENCLR BIT(7) 58 #define SSS_FCINTENCLR_HDONEINTENCLR BIT(5) 59 #define SSS_FCINTENCLR_BRDMAINTENCLR BIT(3) 60 #define SSS_FCINTENCLR_BTDMAINTENCLR BIT(2) 61 #define SSS_FCINTENCLR_HRDMAINTENCLR BIT(1) 62 #define SSS_FCINTENCLR_PKDMAINTENCLR BIT(0) 63 64 #define SSS_REG_FCINTPEND 0x000C 65 #define SSS_FCINTPEND_HPARTINTP BIT(7) 66 #define SSS_FCINTPEND_HDONEINTP BIT(5) 67 #define SSS_FCINTPEND_BRDMAINTP BIT(3) 68 #define SSS_FCINTPEND_BTDMAINTP BIT(2) 69 #define SSS_FCINTPEND_HRDMAINTP BIT(1) 70 #define SSS_FCINTPEND_PKDMAINTP BIT(0) 71 72 #define SSS_REG_FCFIFOSTAT 0x0010 73 #define SSS_FCFIFOSTAT_BRFIFOFUL BIT(7) 74 #define SSS_FCFIFOSTAT_BRFIFOEMP BIT(6) 75 #define SSS_FCFIFOSTAT_BTFIFOFUL BIT(5) 76 #define SSS_FCFIFOSTAT_BTFIFOEMP BIT(4) 77 #define SSS_FCFIFOSTAT_HRFIFOFUL BIT(3) 78 #define SSS_FCFIFOSTAT_HRFIFOEMP BIT(2) 79 #define SSS_FCFIFOSTAT_PKFIFOFUL BIT(1) 80 #define SSS_FCFIFOSTAT_PKFIFOEMP BIT(0) 81 82 #define SSS_REG_FCFIFOCTRL 0x0014 83 #define SSS_FCFIFOCTRL_DESSEL BIT(2) 84 #define SSS_HASHIN_INDEPENDENT _SBF(0, 0x00) 85 #define SSS_HASHIN_CIPHER_INPUT _SBF(0, 0x01) 86 #define SSS_HASHIN_CIPHER_OUTPUT _SBF(0, 0x02) 87 #define SSS_HASHIN_MASK _SBF(0, 0x03) 88 89 #define SSS_REG_FCBRDMAS 0x0020 90 #define SSS_REG_FCBRDMAL 0x0024 91 #define SSS_REG_FCBRDMAC 0x0028 92 #define SSS_FCBRDMAC_BYTESWAP BIT(1) 93 #define SSS_FCBRDMAC_FLUSH BIT(0) 94 95 #define SSS_REG_FCBTDMAS 0x0030 96 #define SSS_REG_FCBTDMAL 0x0034 97 #define SSS_REG_FCBTDMAC 0x0038 98 #define SSS_FCBTDMAC_BYTESWAP BIT(1) 99 #define SSS_FCBTDMAC_FLUSH BIT(0) 100 101 #define SSS_REG_FCHRDMAS 0x0040 102 #define SSS_REG_FCHRDMAL 0x0044 103 #define SSS_REG_FCHRDMAC 0x0048 104 #define SSS_FCHRDMAC_BYTESWAP BIT(1) 105 #define SSS_FCHRDMAC_FLUSH BIT(0) 106 107 #define SSS_REG_FCPKDMAS 0x0050 108 #define SSS_REG_FCPKDMAL 0x0054 109 #define SSS_REG_FCPKDMAC 0x0058 110 #define SSS_FCPKDMAC_BYTESWAP BIT(3) 111 #define SSS_FCPKDMAC_DESCEND BIT(2) 112 #define SSS_FCPKDMAC_TRANSMIT BIT(1) 113 #define SSS_FCPKDMAC_FLUSH BIT(0) 114 115 #define SSS_REG_FCPKDMAO 0x005C 116 117 /* AES registers */ 118 #define SSS_REG_AES_CONTROL 0x00 119 #define SSS_AES_BYTESWAP_DI BIT(11) 120 #define SSS_AES_BYTESWAP_DO BIT(10) 121 #define SSS_AES_BYTESWAP_IV BIT(9) 122 #define SSS_AES_BYTESWAP_CNT BIT(8) 123 #define SSS_AES_BYTESWAP_KEY BIT(7) 124 #define SSS_AES_KEY_CHANGE_MODE BIT(6) 125 #define SSS_AES_KEY_SIZE_128 _SBF(4, 0x00) 126 #define SSS_AES_KEY_SIZE_192 _SBF(4, 0x01) 127 #define SSS_AES_KEY_SIZE_256 _SBF(4, 0x02) 128 #define SSS_AES_FIFO_MODE BIT(3) 129 #define SSS_AES_CHAIN_MODE_ECB _SBF(1, 0x00) 130 #define SSS_AES_CHAIN_MODE_CBC _SBF(1, 0x01) 131 #define SSS_AES_CHAIN_MODE_CTR _SBF(1, 0x02) 132 #define SSS_AES_MODE_DECRYPT BIT(0) 133 134 #define SSS_REG_AES_STATUS 0x04 135 #define SSS_AES_BUSY BIT(2) 136 #define SSS_AES_INPUT_READY BIT(1) 137 #define SSS_AES_OUTPUT_READY BIT(0) 138 139 #define SSS_REG_AES_IN_DATA(s) (0x10 + (s << 2)) 140 #define SSS_REG_AES_OUT_DATA(s) (0x20 + (s << 2)) 141 #define SSS_REG_AES_IV_DATA(s) (0x30 + (s << 2)) 142 #define SSS_REG_AES_CNT_DATA(s) (0x40 + (s << 2)) 143 #define SSS_REG_AES_KEY_DATA(s) (0x80 + (s << 2)) 144 145 #define SSS_REG(dev, reg) ((dev)->ioaddr + (SSS_REG_##reg)) 146 #define SSS_READ(dev, reg) __raw_readl(SSS_REG(dev, reg)) 147 #define SSS_WRITE(dev, reg, val) __raw_writel((val), SSS_REG(dev, reg)) 148 149 #define SSS_AES_REG(dev, reg) ((dev)->aes_ioaddr + SSS_REG_##reg) 150 #define SSS_AES_WRITE(dev, reg, val) __raw_writel((val), \ 151 SSS_AES_REG(dev, reg)) 152 153 /* HW engine modes */ 154 #define FLAGS_AES_DECRYPT BIT(0) 155 #define FLAGS_AES_MODE_MASK _SBF(1, 0x03) 156 #define FLAGS_AES_CBC _SBF(1, 0x01) 157 #define FLAGS_AES_CTR _SBF(1, 0x02) 158 159 #define AES_KEY_LEN 16 160 #define CRYPTO_QUEUE_LEN 1 161 162 /* HASH registers */ 163 #define SSS_REG_HASH_CTRL 0x00 164 165 #define SSS_HASH_USER_IV_EN BIT(5) 166 #define SSS_HASH_INIT_BIT BIT(4) 167 #define SSS_HASH_ENGINE_SHA1 _SBF(1, 0x00) 168 #define SSS_HASH_ENGINE_MD5 _SBF(1, 0x01) 169 #define SSS_HASH_ENGINE_SHA256 _SBF(1, 0x02) 170 171 #define SSS_HASH_ENGINE_MASK _SBF(1, 0x03) 172 173 #define SSS_REG_HASH_CTRL_PAUSE 0x04 174 175 #define SSS_HASH_PAUSE BIT(0) 176 177 #define SSS_REG_HASH_CTRL_FIFO 0x08 178 179 #define SSS_HASH_FIFO_MODE_DMA BIT(0) 180 #define SSS_HASH_FIFO_MODE_CPU 0 181 182 #define SSS_REG_HASH_CTRL_SWAP 0x0C 183 184 #define SSS_HASH_BYTESWAP_DI BIT(3) 185 #define SSS_HASH_BYTESWAP_DO BIT(2) 186 #define SSS_HASH_BYTESWAP_IV BIT(1) 187 #define SSS_HASH_BYTESWAP_KEY BIT(0) 188 189 #define SSS_REG_HASH_STATUS 0x10 190 191 #define SSS_HASH_STATUS_MSG_DONE BIT(6) 192 #define SSS_HASH_STATUS_PARTIAL_DONE BIT(4) 193 #define SSS_HASH_STATUS_BUFFER_READY BIT(0) 194 195 #define SSS_REG_HASH_MSG_SIZE_LOW 0x20 196 #define SSS_REG_HASH_MSG_SIZE_HIGH 0x24 197 198 #define SSS_REG_HASH_PRE_MSG_SIZE_LOW 0x28 199 #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH 0x2C 200 201 #define SSS_REG_HASH_IV(s) (0xB0 + ((s) << 2)) 202 #define SSS_REG_HASH_OUT(s) (0x100 + ((s) << 2)) 203 204 #define HASH_BLOCK_SIZE 64 205 #define HASH_REG_SIZEOF 4 206 #define HASH_MD5_MAX_REG (MD5_DIGEST_SIZE / HASH_REG_SIZEOF) 207 #define HASH_SHA1_MAX_REG (SHA1_DIGEST_SIZE / HASH_REG_SIZEOF) 208 #define HASH_SHA256_MAX_REG (SHA256_DIGEST_SIZE / HASH_REG_SIZEOF) 209 210 /* 211 * HASH bit numbers, used by device, setting in dev->hash_flags with 212 * functions set_bit(), clear_bit() or tested with test_bit() or BIT(), 213 * to keep HASH state BUSY or FREE, or to signal state from irq_handler 214 * to hash_tasklet. SGS keep track of allocated memory for scatterlist 215 */ 216 #define HASH_FLAGS_BUSY 0 217 #define HASH_FLAGS_FINAL 1 218 #define HASH_FLAGS_DMA_ACTIVE 2 219 #define HASH_FLAGS_OUTPUT_READY 3 220 #define HASH_FLAGS_DMA_READY 4 221 #define HASH_FLAGS_SGS_COPIED 5 222 #define HASH_FLAGS_SGS_ALLOCED 6 223 224 /* HASH HW constants */ 225 #define BUFLEN HASH_BLOCK_SIZE 226 227 #define SSS_HASH_QUEUE_LENGTH 10 228 229 /** 230 * struct samsung_aes_variant - platform specific SSS driver data 231 * @aes_offset: AES register offset from SSS module's base. 232 * @hash_offset: HASH register offset from SSS module's base. 233 * @clk_names: names of clocks needed to run SSS IP 234 * 235 * Specifies platform specific configuration of SSS module. 236 * Note: A structure for driver specific platform data is used for future 237 * expansion of its usage. 238 */ 239 struct samsung_aes_variant { 240 unsigned int aes_offset; 241 unsigned int hash_offset; 242 const char *clk_names[2]; 243 }; 244 245 struct s5p_aes_reqctx { 246 unsigned long mode; 247 }; 248 249 struct s5p_aes_ctx { 250 struct s5p_aes_dev *dev; 251 252 u8 aes_key[AES_MAX_KEY_SIZE]; 253 u8 nonce[CTR_RFC3686_NONCE_SIZE]; 254 int keylen; 255 }; 256 257 /** 258 * struct s5p_aes_dev - Crypto device state container 259 * @dev: Associated device 260 * @clk: Clock for accessing hardware 261 * @pclk: APB bus clock necessary to access the hardware 262 * @ioaddr: Mapped IO memory region 263 * @aes_ioaddr: Per-varian offset for AES block IO memory 264 * @irq_fc: Feed control interrupt line 265 * @req: Crypto request currently handled by the device 266 * @ctx: Configuration for currently handled crypto request 267 * @sg_src: Scatter list with source data for currently handled block 268 * in device. This is DMA-mapped into device. 269 * @sg_dst: Scatter list with destination data for currently handled block 270 * in device. This is DMA-mapped into device. 271 * @sg_src_cpy: In case of unaligned access, copied scatter list 272 * with source data. 273 * @sg_dst_cpy: In case of unaligned access, copied scatter list 274 * with destination data. 275 * @tasklet: New request scheduling jib 276 * @queue: Crypto queue 277 * @busy: Indicates whether the device is currently handling some request 278 * thus it uses some of the fields from this state, like: 279 * req, ctx, sg_src/dst (and copies). This essentially 280 * protects against concurrent access to these fields. 281 * @lock: Lock for protecting both access to device hardware registers 282 * and fields related to current request (including the busy field). 283 * @res: Resources for hash. 284 * @io_hash_base: Per-variant offset for HASH block IO memory. 285 * @hash_lock: Lock for protecting hash_req, hash_queue and hash_flags 286 * variable. 287 * @hash_flags: Flags for current HASH op. 288 * @hash_queue: Async hash queue. 289 * @hash_tasklet: New HASH request scheduling job. 290 * @xmit_buf: Buffer for current HASH request transfer into SSS block. 291 * @hash_req: Current request sending to SSS HASH block. 292 * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block. 293 * @hash_sg_cnt: Counter for hash_sg_iter. 294 * 295 * @use_hash: true if HASH algs enabled 296 */ 297 struct s5p_aes_dev { 298 struct device *dev; 299 struct clk *clk; 300 struct clk *pclk; 301 void __iomem *ioaddr; 302 void __iomem *aes_ioaddr; 303 int irq_fc; 304 305 struct skcipher_request *req; 306 struct s5p_aes_ctx *ctx; 307 struct scatterlist *sg_src; 308 struct scatterlist *sg_dst; 309 310 struct scatterlist *sg_src_cpy; 311 struct scatterlist *sg_dst_cpy; 312 313 struct tasklet_struct tasklet; 314 struct crypto_queue queue; 315 bool busy; 316 spinlock_t lock; 317 318 struct resource *res; 319 void __iomem *io_hash_base; 320 321 spinlock_t hash_lock; /* protect hash_ vars */ 322 unsigned long hash_flags; 323 struct crypto_queue hash_queue; 324 struct tasklet_struct hash_tasklet; 325 326 u8 xmit_buf[BUFLEN]; 327 struct ahash_request *hash_req; 328 struct scatterlist *hash_sg_iter; 329 unsigned int hash_sg_cnt; 330 331 bool use_hash; 332 }; 333 334 /** 335 * struct s5p_hash_reqctx - HASH request context 336 * @dd: Associated device 337 * @op_update: Current request operation (OP_UPDATE or OP_FINAL) 338 * @digcnt: Number of bytes processed by HW (without buffer[] ones) 339 * @digest: Digest message or IV for partial result 340 * @nregs: Number of HW registers for digest or IV read/write 341 * @engine: Bits for selecting type of HASH in SSS block 342 * @sg: sg for DMA transfer 343 * @sg_len: Length of sg for DMA transfer 344 * @sgl: sg for joining buffer and req->src scatterlist 345 * @skip: Skip offset in req->src for current op 346 * @total: Total number of bytes for current request 347 * @finup: Keep state for finup or final. 348 * @error: Keep track of error. 349 * @bufcnt: Number of bytes holded in buffer[] 350 * @buffer: For byte(s) from end of req->src in UPDATE op 351 */ 352 struct s5p_hash_reqctx { 353 struct s5p_aes_dev *dd; 354 bool op_update; 355 356 u64 digcnt; 357 u8 digest[SHA256_DIGEST_SIZE]; 358 359 unsigned int nregs; /* digest_size / sizeof(reg) */ 360 u32 engine; 361 362 struct scatterlist *sg; 363 unsigned int sg_len; 364 struct scatterlist sgl[2]; 365 unsigned int skip; 366 unsigned int total; 367 bool finup; 368 bool error; 369 370 u32 bufcnt; 371 u8 buffer[]; 372 }; 373 374 /** 375 * struct s5p_hash_ctx - HASH transformation context 376 * @dd: Associated device 377 * @flags: Bits for algorithm HASH. 378 * @fallback: Software transformation for zero message or size < BUFLEN. 379 */ 380 struct s5p_hash_ctx { 381 struct s5p_aes_dev *dd; 382 unsigned long flags; 383 struct crypto_shash *fallback; 384 }; 385 386 static const struct samsung_aes_variant s5p_aes_data = { 387 .aes_offset = 0x4000, 388 .hash_offset = 0x6000, 389 .clk_names = { "secss", }, 390 }; 391 392 static const struct samsung_aes_variant exynos_aes_data = { 393 .aes_offset = 0x200, 394 .hash_offset = 0x400, 395 .clk_names = { "secss", }, 396 }; 397 398 static const struct samsung_aes_variant exynos5433_slim_aes_data = { 399 .aes_offset = 0x400, 400 .hash_offset = 0x800, 401 .clk_names = { "aclk", "pclk", }, 402 }; 403 404 static const struct of_device_id s5p_sss_dt_match[] = { 405 { 406 .compatible = "samsung,s5pv210-secss", 407 .data = &s5p_aes_data, 408 }, 409 { 410 .compatible = "samsung,exynos4210-secss", 411 .data = &exynos_aes_data, 412 }, 413 { 414 .compatible = "samsung,exynos5433-slim-sss", 415 .data = &exynos5433_slim_aes_data, 416 }, 417 { }, 418 }; 419 MODULE_DEVICE_TABLE(of, s5p_sss_dt_match); 420 421 static inline const struct samsung_aes_variant *find_s5p_sss_version 422 (const struct platform_device *pdev) 423 { 424 if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node)) 425 return of_device_get_match_data(&pdev->dev); 426 427 return (const struct samsung_aes_variant *) 428 platform_get_device_id(pdev)->driver_data; 429 } 430 431 static struct s5p_aes_dev *s5p_dev; 432 433 static void s5p_set_dma_indata(struct s5p_aes_dev *dev, 434 const struct scatterlist *sg) 435 { 436 SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg)); 437 SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg)); 438 } 439 440 static void s5p_set_dma_outdata(struct s5p_aes_dev *dev, 441 const struct scatterlist *sg) 442 { 443 SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg)); 444 SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg)); 445 } 446 447 static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg) 448 { 449 int len; 450 451 if (!*sg) 452 return; 453 454 len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE); 455 free_pages((unsigned long)sg_virt(*sg), get_order(len)); 456 457 kfree(*sg); 458 *sg = NULL; 459 } 460 461 static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg, 462 unsigned int nbytes, int out) 463 { 464 struct scatter_walk walk; 465 466 if (!nbytes) 467 return; 468 469 scatterwalk_start(&walk, sg); 470 scatterwalk_copychunks(buf, &walk, nbytes, out); 471 scatterwalk_done(&walk, out, 0); 472 } 473 474 static void s5p_sg_done(struct s5p_aes_dev *dev) 475 { 476 struct skcipher_request *req = dev->req; 477 struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req); 478 479 if (dev->sg_dst_cpy) { 480 dev_dbg(dev->dev, 481 "Copying %d bytes of output data back to original place\n", 482 dev->req->cryptlen); 483 s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst, 484 dev->req->cryptlen, 1); 485 } 486 s5p_free_sg_cpy(dev, &dev->sg_src_cpy); 487 s5p_free_sg_cpy(dev, &dev->sg_dst_cpy); 488 if (reqctx->mode & FLAGS_AES_CBC) 489 memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), AES_BLOCK_SIZE); 490 491 else if (reqctx->mode & FLAGS_AES_CTR) 492 memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), AES_BLOCK_SIZE); 493 } 494 495 /* Calls the completion. Cannot be called with dev->lock hold. */ 496 static void s5p_aes_complete(struct skcipher_request *req, int err) 497 { 498 skcipher_request_complete(req, err); 499 } 500 501 static void s5p_unset_outdata(struct s5p_aes_dev *dev) 502 { 503 dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE); 504 } 505 506 static void s5p_unset_indata(struct s5p_aes_dev *dev) 507 { 508 dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE); 509 } 510 511 static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src, 512 struct scatterlist **dst) 513 { 514 void *pages; 515 int len; 516 517 *dst = kmalloc(sizeof(**dst), GFP_ATOMIC); 518 if (!*dst) 519 return -ENOMEM; 520 521 len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE); 522 pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len)); 523 if (!pages) { 524 kfree(*dst); 525 *dst = NULL; 526 return -ENOMEM; 527 } 528 529 s5p_sg_copy_buf(pages, src, dev->req->cryptlen, 0); 530 531 sg_init_table(*dst, 1); 532 sg_set_buf(*dst, pages, len); 533 534 return 0; 535 } 536 537 static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg) 538 { 539 if (!sg->length) 540 return -EINVAL; 541 542 if (!dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE)) 543 return -ENOMEM; 544 545 dev->sg_dst = sg; 546 547 return 0; 548 } 549 550 static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg) 551 { 552 if (!sg->length) 553 return -EINVAL; 554 555 if (!dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE)) 556 return -ENOMEM; 557 558 dev->sg_src = sg; 559 560 return 0; 561 } 562 563 /* 564 * Returns -ERRNO on error (mapping of new data failed). 565 * On success returns: 566 * - 0 if there is no more data, 567 * - 1 if new transmitting (output) data is ready and its address+length 568 * have to be written to device (by calling s5p_set_dma_outdata()). 569 */ 570 static int s5p_aes_tx(struct s5p_aes_dev *dev) 571 { 572 int ret = 0; 573 574 s5p_unset_outdata(dev); 575 576 if (!sg_is_last(dev->sg_dst)) { 577 ret = s5p_set_outdata(dev, sg_next(dev->sg_dst)); 578 if (!ret) 579 ret = 1; 580 } 581 582 return ret; 583 } 584 585 /* 586 * Returns -ERRNO on error (mapping of new data failed). 587 * On success returns: 588 * - 0 if there is no more data, 589 * - 1 if new receiving (input) data is ready and its address+length 590 * have to be written to device (by calling s5p_set_dma_indata()). 591 */ 592 static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/) 593 { 594 int ret = 0; 595 596 s5p_unset_indata(dev); 597 598 if (!sg_is_last(dev->sg_src)) { 599 ret = s5p_set_indata(dev, sg_next(dev->sg_src)); 600 if (!ret) 601 ret = 1; 602 } 603 604 return ret; 605 } 606 607 static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset) 608 { 609 return __raw_readl(dd->io_hash_base + offset); 610 } 611 612 static inline void s5p_hash_write(struct s5p_aes_dev *dd, 613 u32 offset, u32 value) 614 { 615 __raw_writel(value, dd->io_hash_base + offset); 616 } 617 618 /** 619 * s5p_set_dma_hashdata() - start DMA with sg 620 * @dev: device 621 * @sg: scatterlist ready to DMA transmit 622 */ 623 static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev, 624 const struct scatterlist *sg) 625 { 626 dev->hash_sg_cnt--; 627 SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg)); 628 SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */ 629 } 630 631 /** 632 * s5p_hash_rx() - get next hash_sg_iter 633 * @dev: device 634 * 635 * Return: 636 * 2 if there is no more data and it is UPDATE op 637 * 1 if new receiving (input) data is ready and can be written to device 638 * 0 if there is no more data and it is FINAL op 639 */ 640 static int s5p_hash_rx(struct s5p_aes_dev *dev) 641 { 642 if (dev->hash_sg_cnt > 0) { 643 dev->hash_sg_iter = sg_next(dev->hash_sg_iter); 644 return 1; 645 } 646 647 set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags); 648 if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags)) 649 return 0; 650 651 return 2; 652 } 653 654 static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id) 655 { 656 struct platform_device *pdev = dev_id; 657 struct s5p_aes_dev *dev = platform_get_drvdata(pdev); 658 struct skcipher_request *req; 659 int err_dma_tx = 0; 660 int err_dma_rx = 0; 661 int err_dma_hx = 0; 662 bool tx_end = false; 663 bool hx_end = false; 664 unsigned long flags; 665 u32 status, st_bits; 666 int err; 667 668 spin_lock_irqsave(&dev->lock, flags); 669 670 /* 671 * Handle rx or tx interrupt. If there is still data (scatterlist did not 672 * reach end), then map next scatterlist entry. 673 * In case of such mapping error, s5p_aes_complete() should be called. 674 * 675 * If there is no more data in tx scatter list, call s5p_aes_complete() 676 * and schedule new tasklet. 677 * 678 * Handle hx interrupt. If there is still data map next entry. 679 */ 680 status = SSS_READ(dev, FCINTSTAT); 681 if (status & SSS_FCINTSTAT_BRDMAINT) 682 err_dma_rx = s5p_aes_rx(dev); 683 684 if (status & SSS_FCINTSTAT_BTDMAINT) { 685 if (sg_is_last(dev->sg_dst)) 686 tx_end = true; 687 err_dma_tx = s5p_aes_tx(dev); 688 } 689 690 if (status & SSS_FCINTSTAT_HRDMAINT) 691 err_dma_hx = s5p_hash_rx(dev); 692 693 st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT | 694 SSS_FCINTSTAT_HRDMAINT); 695 /* clear DMA bits */ 696 SSS_WRITE(dev, FCINTPEND, st_bits); 697 698 /* clear HASH irq bits */ 699 if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) { 700 /* cannot have both HPART and HDONE */ 701 if (status & SSS_FCINTSTAT_HPARTINT) 702 st_bits = SSS_HASH_STATUS_PARTIAL_DONE; 703 704 if (status & SSS_FCINTSTAT_HDONEINT) 705 st_bits = SSS_HASH_STATUS_MSG_DONE; 706 707 set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags); 708 s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits); 709 hx_end = true; 710 /* when DONE or PART, do not handle HASH DMA */ 711 err_dma_hx = 0; 712 } 713 714 if (err_dma_rx < 0) { 715 err = err_dma_rx; 716 goto error; 717 } 718 if (err_dma_tx < 0) { 719 err = err_dma_tx; 720 goto error; 721 } 722 723 if (tx_end) { 724 s5p_sg_done(dev); 725 if (err_dma_hx == 1) 726 s5p_set_dma_hashdata(dev, dev->hash_sg_iter); 727 728 spin_unlock_irqrestore(&dev->lock, flags); 729 730 s5p_aes_complete(dev->req, 0); 731 /* Device is still busy */ 732 tasklet_schedule(&dev->tasklet); 733 } else { 734 /* 735 * Writing length of DMA block (either receiving or 736 * transmitting) will start the operation immediately, so this 737 * should be done at the end (even after clearing pending 738 * interrupts to not miss the interrupt). 739 */ 740 if (err_dma_tx == 1) 741 s5p_set_dma_outdata(dev, dev->sg_dst); 742 if (err_dma_rx == 1) 743 s5p_set_dma_indata(dev, dev->sg_src); 744 if (err_dma_hx == 1) 745 s5p_set_dma_hashdata(dev, dev->hash_sg_iter); 746 747 spin_unlock_irqrestore(&dev->lock, flags); 748 } 749 750 goto hash_irq_end; 751 752 error: 753 s5p_sg_done(dev); 754 dev->busy = false; 755 req = dev->req; 756 if (err_dma_hx == 1) 757 s5p_set_dma_hashdata(dev, dev->hash_sg_iter); 758 759 spin_unlock_irqrestore(&dev->lock, flags); 760 s5p_aes_complete(req, err); 761 762 hash_irq_end: 763 /* 764 * Note about else if: 765 * when hash_sg_iter reaches end and its UPDATE op, 766 * issue SSS_HASH_PAUSE and wait for HPART irq 767 */ 768 if (hx_end) 769 tasklet_schedule(&dev->hash_tasklet); 770 else if (err_dma_hx == 2) 771 s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE, 772 SSS_HASH_PAUSE); 773 774 return IRQ_HANDLED; 775 } 776 777 /** 778 * s5p_hash_read_msg() - read message or IV from HW 779 * @req: AHASH request 780 */ 781 static void s5p_hash_read_msg(struct ahash_request *req) 782 { 783 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 784 struct s5p_aes_dev *dd = ctx->dd; 785 u32 *hash = (u32 *)ctx->digest; 786 unsigned int i; 787 788 for (i = 0; i < ctx->nregs; i++) 789 hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i)); 790 } 791 792 /** 793 * s5p_hash_write_ctx_iv() - write IV for next partial/finup op. 794 * @dd: device 795 * @ctx: request context 796 */ 797 static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd, 798 const struct s5p_hash_reqctx *ctx) 799 { 800 const u32 *hash = (const u32 *)ctx->digest; 801 unsigned int i; 802 803 for (i = 0; i < ctx->nregs; i++) 804 s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]); 805 } 806 807 /** 808 * s5p_hash_write_iv() - write IV for next partial/finup op. 809 * @req: AHASH request 810 */ 811 static void s5p_hash_write_iv(struct ahash_request *req) 812 { 813 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 814 815 s5p_hash_write_ctx_iv(ctx->dd, ctx); 816 } 817 818 /** 819 * s5p_hash_copy_result() - copy digest into req->result 820 * @req: AHASH request 821 */ 822 static void s5p_hash_copy_result(struct ahash_request *req) 823 { 824 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 825 826 if (!req->result) 827 return; 828 829 memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF); 830 } 831 832 /** 833 * s5p_hash_dma_flush() - flush HASH DMA 834 * @dev: secss device 835 */ 836 static void s5p_hash_dma_flush(struct s5p_aes_dev *dev) 837 { 838 SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH); 839 } 840 841 /** 842 * s5p_hash_dma_enable() - enable DMA mode for HASH 843 * @dev: secss device 844 * 845 * enable DMA mode for HASH 846 */ 847 static void s5p_hash_dma_enable(struct s5p_aes_dev *dev) 848 { 849 s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA); 850 } 851 852 /** 853 * s5p_hash_irq_disable() - disable irq HASH signals 854 * @dev: secss device 855 * @flags: bitfield with irq's to be disabled 856 */ 857 static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags) 858 { 859 SSS_WRITE(dev, FCINTENCLR, flags); 860 } 861 862 /** 863 * s5p_hash_irq_enable() - enable irq signals 864 * @dev: secss device 865 * @flags: bitfield with irq's to be enabled 866 */ 867 static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags) 868 { 869 SSS_WRITE(dev, FCINTENSET, flags); 870 } 871 872 /** 873 * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH 874 * @dev: secss device 875 * @hashflow: HASH stream flow with/without crypto AES/DES 876 */ 877 static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow) 878 { 879 unsigned long flags; 880 u32 flow; 881 882 spin_lock_irqsave(&dev->lock, flags); 883 884 flow = SSS_READ(dev, FCFIFOCTRL); 885 flow &= ~SSS_HASHIN_MASK; 886 flow |= hashflow; 887 SSS_WRITE(dev, FCFIFOCTRL, flow); 888 889 spin_unlock_irqrestore(&dev->lock, flags); 890 } 891 892 /** 893 * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS 894 * @dev: secss device 895 * @hashflow: HASH stream flow with/without AES/DES 896 * 897 * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW, 898 * enable HASH irq's HRDMA, HDONE, HPART 899 */ 900 static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow) 901 { 902 s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR | 903 SSS_FCINTENCLR_HDONEINTENCLR | 904 SSS_FCINTENCLR_HPARTINTENCLR); 905 s5p_hash_dma_flush(dev); 906 907 s5p_hash_dma_enable(dev); 908 s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK); 909 s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET | 910 SSS_FCINTENSET_HDONEINTENSET | 911 SSS_FCINTENSET_HPARTINTENSET); 912 } 913 914 /** 915 * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing 916 * @dd: secss device 917 * @length: length for request 918 * @final: true if final op 919 * 920 * Prepare SSS HASH block for processing bytes in DMA mode. If it is called 921 * after previous updates, fill up IV words. For final, calculate and set 922 * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH 923 * length as 2^63 so it will be never reached and set to zero prelow and 924 * prehigh. 925 * 926 * This function does not start DMA transfer. 927 */ 928 static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length, 929 bool final) 930 { 931 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req); 932 u32 prelow, prehigh, low, high; 933 u32 configflags, swapflags; 934 u64 tmplen; 935 936 configflags = ctx->engine | SSS_HASH_INIT_BIT; 937 938 if (likely(ctx->digcnt)) { 939 s5p_hash_write_ctx_iv(dd, ctx); 940 configflags |= SSS_HASH_USER_IV_EN; 941 } 942 943 if (final) { 944 /* number of bytes for last part */ 945 low = length; 946 high = 0; 947 /* total number of bits prev hashed */ 948 tmplen = ctx->digcnt * 8; 949 prelow = (u32)tmplen; 950 prehigh = (u32)(tmplen >> 32); 951 } else { 952 prelow = 0; 953 prehigh = 0; 954 low = 0; 955 high = BIT(31); 956 } 957 958 swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO | 959 SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY; 960 961 s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low); 962 s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high); 963 s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow); 964 s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh); 965 966 s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags); 967 s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags); 968 } 969 970 /** 971 * s5p_hash_xmit_dma() - start DMA hash processing 972 * @dd: secss device 973 * @length: length for request 974 * @final: true if final op 975 * 976 * Update digcnt here, as it is needed for finup/final op. 977 */ 978 static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length, 979 bool final) 980 { 981 struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req); 982 unsigned int cnt; 983 984 cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE); 985 if (!cnt) { 986 dev_err(dd->dev, "dma_map_sg error\n"); 987 ctx->error = true; 988 return -EINVAL; 989 } 990 991 set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags); 992 dd->hash_sg_iter = ctx->sg; 993 dd->hash_sg_cnt = cnt; 994 s5p_hash_write_ctrl(dd, length, final); 995 ctx->digcnt += length; 996 ctx->total -= length; 997 998 /* catch last interrupt */ 999 if (final) 1000 set_bit(HASH_FLAGS_FINAL, &dd->hash_flags); 1001 1002 s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */ 1003 1004 return -EINPROGRESS; 1005 } 1006 1007 /** 1008 * s5p_hash_copy_sgs() - copy request's bytes into new buffer 1009 * @ctx: request context 1010 * @sg: source scatterlist request 1011 * @new_len: number of bytes to process from sg 1012 * 1013 * Allocate new buffer, copy data for HASH into it. If there was xmit_buf 1014 * filled, copy it first, then copy data from sg into it. Prepare one sgl[0] 1015 * with allocated buffer. 1016 * 1017 * Set bit in dd->hash_flag so we can free it after irq ends processing. 1018 */ 1019 static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx, 1020 struct scatterlist *sg, unsigned int new_len) 1021 { 1022 unsigned int pages, len; 1023 void *buf; 1024 1025 len = new_len + ctx->bufcnt; 1026 pages = get_order(len); 1027 1028 buf = (void *)__get_free_pages(GFP_ATOMIC, pages); 1029 if (!buf) { 1030 dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n"); 1031 ctx->error = true; 1032 return -ENOMEM; 1033 } 1034 1035 if (ctx->bufcnt) 1036 memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt); 1037 1038 scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip, 1039 new_len, 0); 1040 sg_init_table(ctx->sgl, 1); 1041 sg_set_buf(ctx->sgl, buf, len); 1042 ctx->sg = ctx->sgl; 1043 ctx->sg_len = 1; 1044 ctx->bufcnt = 0; 1045 ctx->skip = 0; 1046 set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags); 1047 1048 return 0; 1049 } 1050 1051 /** 1052 * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy 1053 * @ctx: request context 1054 * @sg: source scatterlist request 1055 * @new_len: number of bytes to process from sg 1056 * 1057 * Allocate new scatterlist table, copy data for HASH into it. If there was 1058 * xmit_buf filled, prepare it first, then copy page, length and offset from 1059 * source sg into it, adjusting begin and/or end for skip offset and 1060 * hash_later value. 1061 * 1062 * Resulting sg table will be assigned to ctx->sg. Set flag so we can free 1063 * it after irq ends processing. 1064 */ 1065 static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx, 1066 struct scatterlist *sg, unsigned int new_len) 1067 { 1068 unsigned int skip = ctx->skip, n = sg_nents(sg); 1069 struct scatterlist *tmp; 1070 unsigned int len; 1071 1072 if (ctx->bufcnt) 1073 n++; 1074 1075 ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL); 1076 if (!ctx->sg) { 1077 ctx->error = true; 1078 return -ENOMEM; 1079 } 1080 1081 sg_init_table(ctx->sg, n); 1082 1083 tmp = ctx->sg; 1084 1085 ctx->sg_len = 0; 1086 1087 if (ctx->bufcnt) { 1088 sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt); 1089 tmp = sg_next(tmp); 1090 ctx->sg_len++; 1091 } 1092 1093 while (sg && skip >= sg->length) { 1094 skip -= sg->length; 1095 sg = sg_next(sg); 1096 } 1097 1098 while (sg && new_len) { 1099 len = sg->length - skip; 1100 if (new_len < len) 1101 len = new_len; 1102 1103 new_len -= len; 1104 sg_set_page(tmp, sg_page(sg), len, sg->offset + skip); 1105 skip = 0; 1106 if (new_len <= 0) 1107 sg_mark_end(tmp); 1108 1109 tmp = sg_next(tmp); 1110 ctx->sg_len++; 1111 sg = sg_next(sg); 1112 } 1113 1114 set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags); 1115 1116 return 0; 1117 } 1118 1119 /** 1120 * s5p_hash_prepare_sgs() - prepare sg for processing 1121 * @ctx: request context 1122 * @sg: source scatterlist request 1123 * @new_len: number of bytes to process from sg 1124 * @final: final flag 1125 * 1126 * Check two conditions: (1) if buffers in sg have len aligned data, and (2) 1127 * sg table have good aligned elements (list_ok). If one of this checks fails, 1128 * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy 1129 * data into this buffer and prepare request in sgl, or (2) allocates new sg 1130 * table and prepare sg elements. 1131 * 1132 * For digest or finup all conditions can be good, and we may not need any 1133 * fixes. 1134 */ 1135 static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx, 1136 struct scatterlist *sg, 1137 unsigned int new_len, bool final) 1138 { 1139 unsigned int skip = ctx->skip, nbytes = new_len, n = 0; 1140 bool aligned = true, list_ok = true; 1141 struct scatterlist *sg_tmp = sg; 1142 1143 if (!sg || !sg->length || !new_len) 1144 return 0; 1145 1146 if (skip || !final) 1147 list_ok = false; 1148 1149 while (nbytes > 0 && sg_tmp) { 1150 n++; 1151 if (skip >= sg_tmp->length) { 1152 skip -= sg_tmp->length; 1153 if (!sg_tmp->length) { 1154 aligned = false; 1155 break; 1156 } 1157 } else { 1158 if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) { 1159 aligned = false; 1160 break; 1161 } 1162 1163 if (nbytes < sg_tmp->length - skip) { 1164 list_ok = false; 1165 break; 1166 } 1167 1168 nbytes -= sg_tmp->length - skip; 1169 skip = 0; 1170 } 1171 1172 sg_tmp = sg_next(sg_tmp); 1173 } 1174 1175 if (!aligned) 1176 return s5p_hash_copy_sgs(ctx, sg, new_len); 1177 else if (!list_ok) 1178 return s5p_hash_copy_sg_lists(ctx, sg, new_len); 1179 1180 /* 1181 * Have aligned data from previous operation and/or current 1182 * Note: will enter here only if (digest or finup) and aligned 1183 */ 1184 if (ctx->bufcnt) { 1185 ctx->sg_len = n; 1186 sg_init_table(ctx->sgl, 2); 1187 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt); 1188 sg_chain(ctx->sgl, 2, sg); 1189 ctx->sg = ctx->sgl; 1190 ctx->sg_len++; 1191 } else { 1192 ctx->sg = sg; 1193 ctx->sg_len = n; 1194 } 1195 1196 return 0; 1197 } 1198 1199 /** 1200 * s5p_hash_prepare_request() - prepare request for processing 1201 * @req: AHASH request 1202 * @update: true if UPDATE op 1203 * 1204 * Note 1: we can have update flag _and_ final flag at the same time. 1205 * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or 1206 * either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or 1207 * we have final op 1208 */ 1209 static int s5p_hash_prepare_request(struct ahash_request *req, bool update) 1210 { 1211 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1212 bool final = ctx->finup; 1213 int xmit_len, hash_later, nbytes; 1214 int ret; 1215 1216 if (update) 1217 nbytes = req->nbytes; 1218 else 1219 nbytes = 0; 1220 1221 ctx->total = nbytes + ctx->bufcnt; 1222 if (!ctx->total) 1223 return 0; 1224 1225 if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) { 1226 /* bytes left from previous request, so fill up to BUFLEN */ 1227 int len = BUFLEN - ctx->bufcnt % BUFLEN; 1228 1229 if (len > nbytes) 1230 len = nbytes; 1231 1232 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src, 1233 0, len, 0); 1234 ctx->bufcnt += len; 1235 nbytes -= len; 1236 ctx->skip = len; 1237 } else { 1238 ctx->skip = 0; 1239 } 1240 1241 if (ctx->bufcnt) 1242 memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt); 1243 1244 xmit_len = ctx->total; 1245 if (final) { 1246 hash_later = 0; 1247 } else { 1248 if (IS_ALIGNED(xmit_len, BUFLEN)) 1249 xmit_len -= BUFLEN; 1250 else 1251 xmit_len -= xmit_len & (BUFLEN - 1); 1252 1253 hash_later = ctx->total - xmit_len; 1254 /* copy hash_later bytes from end of req->src */ 1255 /* previous bytes are in xmit_buf, so no overwrite */ 1256 scatterwalk_map_and_copy(ctx->buffer, req->src, 1257 req->nbytes - hash_later, 1258 hash_later, 0); 1259 } 1260 1261 if (xmit_len > BUFLEN) { 1262 ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later, 1263 final); 1264 if (ret) 1265 return ret; 1266 } else { 1267 /* have buffered data only */ 1268 if (unlikely(!ctx->bufcnt)) { 1269 /* first update didn't fill up buffer */ 1270 scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src, 1271 0, xmit_len, 0); 1272 } 1273 1274 sg_init_table(ctx->sgl, 1); 1275 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len); 1276 1277 ctx->sg = ctx->sgl; 1278 ctx->sg_len = 1; 1279 } 1280 1281 ctx->bufcnt = hash_later; 1282 if (!final) 1283 ctx->total = xmit_len; 1284 1285 return 0; 1286 } 1287 1288 /** 1289 * s5p_hash_update_dma_stop() - unmap DMA 1290 * @dd: secss device 1291 * 1292 * Unmap scatterlist ctx->sg. 1293 */ 1294 static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd) 1295 { 1296 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req); 1297 1298 dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE); 1299 clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags); 1300 } 1301 1302 /** 1303 * s5p_hash_finish() - copy calculated digest to crypto layer 1304 * @req: AHASH request 1305 */ 1306 static void s5p_hash_finish(struct ahash_request *req) 1307 { 1308 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1309 struct s5p_aes_dev *dd = ctx->dd; 1310 1311 if (ctx->digcnt) 1312 s5p_hash_copy_result(req); 1313 1314 dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt); 1315 } 1316 1317 /** 1318 * s5p_hash_finish_req() - finish request 1319 * @req: AHASH request 1320 * @err: error 1321 */ 1322 static void s5p_hash_finish_req(struct ahash_request *req, int err) 1323 { 1324 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1325 struct s5p_aes_dev *dd = ctx->dd; 1326 unsigned long flags; 1327 1328 if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags)) 1329 free_pages((unsigned long)sg_virt(ctx->sg), 1330 get_order(ctx->sg->length)); 1331 1332 if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags)) 1333 kfree(ctx->sg); 1334 1335 ctx->sg = NULL; 1336 dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) | 1337 BIT(HASH_FLAGS_SGS_COPIED)); 1338 1339 if (!err && !ctx->error) { 1340 s5p_hash_read_msg(req); 1341 if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags)) 1342 s5p_hash_finish(req); 1343 } else { 1344 ctx->error = true; 1345 } 1346 1347 spin_lock_irqsave(&dd->hash_lock, flags); 1348 dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) | 1349 BIT(HASH_FLAGS_DMA_READY) | 1350 BIT(HASH_FLAGS_OUTPUT_READY)); 1351 spin_unlock_irqrestore(&dd->hash_lock, flags); 1352 1353 if (req->base.complete) 1354 ahash_request_complete(req, err); 1355 } 1356 1357 /** 1358 * s5p_hash_handle_queue() - handle hash queue 1359 * @dd: device s5p_aes_dev 1360 * @req: AHASH request 1361 * 1362 * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the 1363 * device then processes the first request from the dd->queue 1364 * 1365 * Returns: see s5p_hash_final below. 1366 */ 1367 static int s5p_hash_handle_queue(struct s5p_aes_dev *dd, 1368 struct ahash_request *req) 1369 { 1370 struct crypto_async_request *async_req, *backlog; 1371 struct s5p_hash_reqctx *ctx; 1372 unsigned long flags; 1373 int err = 0, ret = 0; 1374 1375 retry: 1376 spin_lock_irqsave(&dd->hash_lock, flags); 1377 if (req) 1378 ret = ahash_enqueue_request(&dd->hash_queue, req); 1379 1380 if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) { 1381 spin_unlock_irqrestore(&dd->hash_lock, flags); 1382 return ret; 1383 } 1384 1385 backlog = crypto_get_backlog(&dd->hash_queue); 1386 async_req = crypto_dequeue_request(&dd->hash_queue); 1387 if (async_req) 1388 set_bit(HASH_FLAGS_BUSY, &dd->hash_flags); 1389 1390 spin_unlock_irqrestore(&dd->hash_lock, flags); 1391 1392 if (!async_req) 1393 return ret; 1394 1395 if (backlog) 1396 crypto_request_complete(backlog, -EINPROGRESS); 1397 1398 req = ahash_request_cast(async_req); 1399 dd->hash_req = req; 1400 ctx = ahash_request_ctx(req); 1401 1402 err = s5p_hash_prepare_request(req, ctx->op_update); 1403 if (err || !ctx->total) 1404 goto out; 1405 1406 dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n", 1407 ctx->op_update, req->nbytes); 1408 1409 s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT); 1410 if (ctx->digcnt) 1411 s5p_hash_write_iv(req); /* restore hash IV */ 1412 1413 if (ctx->op_update) { /* HASH_OP_UPDATE */ 1414 err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup); 1415 if (err != -EINPROGRESS && ctx->finup && !ctx->error) 1416 /* no final() after finup() */ 1417 err = s5p_hash_xmit_dma(dd, ctx->total, true); 1418 } else { /* HASH_OP_FINAL */ 1419 err = s5p_hash_xmit_dma(dd, ctx->total, true); 1420 } 1421 out: 1422 if (err != -EINPROGRESS) { 1423 /* hash_tasklet_cb will not finish it, so do it here */ 1424 s5p_hash_finish_req(req, err); 1425 req = NULL; 1426 1427 /* 1428 * Execute next request immediately if there is anything 1429 * in queue. 1430 */ 1431 goto retry; 1432 } 1433 1434 return ret; 1435 } 1436 1437 /** 1438 * s5p_hash_tasklet_cb() - hash tasklet 1439 * @data: ptr to s5p_aes_dev 1440 */ 1441 static void s5p_hash_tasklet_cb(unsigned long data) 1442 { 1443 struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data; 1444 1445 if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) { 1446 s5p_hash_handle_queue(dd, NULL); 1447 return; 1448 } 1449 1450 if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) { 1451 if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE, 1452 &dd->hash_flags)) { 1453 s5p_hash_update_dma_stop(dd); 1454 } 1455 1456 if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY, 1457 &dd->hash_flags)) { 1458 /* hash or semi-hash ready */ 1459 clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags); 1460 goto finish; 1461 } 1462 } 1463 1464 return; 1465 1466 finish: 1467 /* finish curent request */ 1468 s5p_hash_finish_req(dd->hash_req, 0); 1469 1470 /* If we are not busy, process next req */ 1471 if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) 1472 s5p_hash_handle_queue(dd, NULL); 1473 } 1474 1475 /** 1476 * s5p_hash_enqueue() - enqueue request 1477 * @req: AHASH request 1478 * @op: operation UPDATE (true) or FINAL (false) 1479 * 1480 * Returns: see s5p_hash_final below. 1481 */ 1482 static int s5p_hash_enqueue(struct ahash_request *req, bool op) 1483 { 1484 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1485 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm); 1486 1487 ctx->op_update = op; 1488 1489 return s5p_hash_handle_queue(tctx->dd, req); 1490 } 1491 1492 /** 1493 * s5p_hash_update() - process the hash input data 1494 * @req: AHASH request 1495 * 1496 * If request will fit in buffer, copy it and return immediately 1497 * else enqueue it with OP_UPDATE. 1498 * 1499 * Returns: see s5p_hash_final below. 1500 */ 1501 static int s5p_hash_update(struct ahash_request *req) 1502 { 1503 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1504 1505 if (!req->nbytes) 1506 return 0; 1507 1508 if (ctx->bufcnt + req->nbytes <= BUFLEN) { 1509 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src, 1510 0, req->nbytes, 0); 1511 ctx->bufcnt += req->nbytes; 1512 return 0; 1513 } 1514 1515 return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */ 1516 } 1517 1518 /** 1519 * s5p_hash_final() - close up hash and calculate digest 1520 * @req: AHASH request 1521 * 1522 * Note: in final req->src do not have any data, and req->nbytes can be 1523 * non-zero. 1524 * 1525 * If there were no input data processed yet and the buffered hash data is 1526 * less than BUFLEN (64) then calculate the final hash immediately by using 1527 * SW algorithm fallback. 1528 * 1529 * Otherwise enqueues the current AHASH request with OP_FINAL operation op 1530 * and finalize hash message in HW. Note that if digcnt!=0 then there were 1531 * previous update op, so there are always some buffered bytes in ctx->buffer, 1532 * which means that ctx->bufcnt!=0 1533 * 1534 * Returns: 1535 * 0 if the request has been processed immediately, 1536 * -EINPROGRESS if the operation has been queued for later execution or is set 1537 * to processing by HW, 1538 * -EBUSY if queue is full and request should be resubmitted later, 1539 * other negative values denotes an error. 1540 */ 1541 static int s5p_hash_final(struct ahash_request *req) 1542 { 1543 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1544 1545 ctx->finup = true; 1546 if (ctx->error) 1547 return -EINVAL; /* uncompleted hash is not needed */ 1548 1549 if (!ctx->digcnt && ctx->bufcnt < BUFLEN) { 1550 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm); 1551 1552 return crypto_shash_tfm_digest(tctx->fallback, ctx->buffer, 1553 ctx->bufcnt, req->result); 1554 } 1555 1556 return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */ 1557 } 1558 1559 /** 1560 * s5p_hash_finup() - process last req->src and calculate digest 1561 * @req: AHASH request containing the last update data 1562 * 1563 * Return values: see s5p_hash_final above. 1564 */ 1565 static int s5p_hash_finup(struct ahash_request *req) 1566 { 1567 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1568 int err1, err2; 1569 1570 ctx->finup = true; 1571 1572 err1 = s5p_hash_update(req); 1573 if (err1 == -EINPROGRESS || err1 == -EBUSY) 1574 return err1; 1575 1576 /* 1577 * final() has to be always called to cleanup resources even if 1578 * update() failed, except EINPROGRESS or calculate digest for small 1579 * size 1580 */ 1581 err2 = s5p_hash_final(req); 1582 1583 return err1 ?: err2; 1584 } 1585 1586 /** 1587 * s5p_hash_init() - initialize AHASH request contex 1588 * @req: AHASH request 1589 * 1590 * Init async hash request context. 1591 */ 1592 static int s5p_hash_init(struct ahash_request *req) 1593 { 1594 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1595 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 1596 struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm); 1597 1598 ctx->dd = tctx->dd; 1599 ctx->error = false; 1600 ctx->finup = false; 1601 ctx->bufcnt = 0; 1602 ctx->digcnt = 0; 1603 ctx->total = 0; 1604 ctx->skip = 0; 1605 1606 dev_dbg(tctx->dd->dev, "init: digest size: %d\n", 1607 crypto_ahash_digestsize(tfm)); 1608 1609 switch (crypto_ahash_digestsize(tfm)) { 1610 case MD5_DIGEST_SIZE: 1611 ctx->engine = SSS_HASH_ENGINE_MD5; 1612 ctx->nregs = HASH_MD5_MAX_REG; 1613 break; 1614 case SHA1_DIGEST_SIZE: 1615 ctx->engine = SSS_HASH_ENGINE_SHA1; 1616 ctx->nregs = HASH_SHA1_MAX_REG; 1617 break; 1618 case SHA256_DIGEST_SIZE: 1619 ctx->engine = SSS_HASH_ENGINE_SHA256; 1620 ctx->nregs = HASH_SHA256_MAX_REG; 1621 break; 1622 default: 1623 ctx->error = true; 1624 return -EINVAL; 1625 } 1626 1627 return 0; 1628 } 1629 1630 /** 1631 * s5p_hash_digest - calculate digest from req->src 1632 * @req: AHASH request 1633 * 1634 * Return values: see s5p_hash_final above. 1635 */ 1636 static int s5p_hash_digest(struct ahash_request *req) 1637 { 1638 return s5p_hash_init(req) ?: s5p_hash_finup(req); 1639 } 1640 1641 /** 1642 * s5p_hash_cra_init_alg - init crypto alg transformation 1643 * @tfm: crypto transformation 1644 */ 1645 static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm) 1646 { 1647 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm); 1648 const char *alg_name = crypto_tfm_alg_name(tfm); 1649 1650 tctx->dd = s5p_dev; 1651 /* Allocate a fallback and abort if it failed. */ 1652 tctx->fallback = crypto_alloc_shash(alg_name, 0, 1653 CRYPTO_ALG_NEED_FALLBACK); 1654 if (IS_ERR(tctx->fallback)) { 1655 pr_err("fallback alloc fails for '%s'\n", alg_name); 1656 return PTR_ERR(tctx->fallback); 1657 } 1658 1659 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), 1660 sizeof(struct s5p_hash_reqctx) + BUFLEN); 1661 1662 return 0; 1663 } 1664 1665 /** 1666 * s5p_hash_cra_init - init crypto tfm 1667 * @tfm: crypto transformation 1668 */ 1669 static int s5p_hash_cra_init(struct crypto_tfm *tfm) 1670 { 1671 return s5p_hash_cra_init_alg(tfm); 1672 } 1673 1674 /** 1675 * s5p_hash_cra_exit - exit crypto tfm 1676 * @tfm: crypto transformation 1677 * 1678 * free allocated fallback 1679 */ 1680 static void s5p_hash_cra_exit(struct crypto_tfm *tfm) 1681 { 1682 struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm); 1683 1684 crypto_free_shash(tctx->fallback); 1685 tctx->fallback = NULL; 1686 } 1687 1688 /** 1689 * s5p_hash_export - export hash state 1690 * @req: AHASH request 1691 * @out: buffer for exported state 1692 */ 1693 static int s5p_hash_export(struct ahash_request *req, void *out) 1694 { 1695 const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1696 1697 memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt); 1698 1699 return 0; 1700 } 1701 1702 /** 1703 * s5p_hash_import - import hash state 1704 * @req: AHASH request 1705 * @in: buffer with state to be imported from 1706 */ 1707 static int s5p_hash_import(struct ahash_request *req, const void *in) 1708 { 1709 struct s5p_hash_reqctx *ctx = ahash_request_ctx(req); 1710 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 1711 struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm); 1712 const struct s5p_hash_reqctx *ctx_in = in; 1713 1714 memcpy(ctx, in, sizeof(*ctx) + BUFLEN); 1715 if (ctx_in->bufcnt > BUFLEN) { 1716 ctx->error = true; 1717 return -EINVAL; 1718 } 1719 1720 ctx->dd = tctx->dd; 1721 ctx->error = false; 1722 1723 return 0; 1724 } 1725 1726 static struct ahash_alg algs_sha1_md5_sha256[] = { 1727 { 1728 .init = s5p_hash_init, 1729 .update = s5p_hash_update, 1730 .final = s5p_hash_final, 1731 .finup = s5p_hash_finup, 1732 .digest = s5p_hash_digest, 1733 .export = s5p_hash_export, 1734 .import = s5p_hash_import, 1735 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN, 1736 .halg.digestsize = SHA1_DIGEST_SIZE, 1737 .halg.base = { 1738 .cra_name = "sha1", 1739 .cra_driver_name = "exynos-sha1", 1740 .cra_priority = 100, 1741 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1742 CRYPTO_ALG_ASYNC | 1743 CRYPTO_ALG_NEED_FALLBACK, 1744 .cra_blocksize = HASH_BLOCK_SIZE, 1745 .cra_ctxsize = sizeof(struct s5p_hash_ctx), 1746 .cra_module = THIS_MODULE, 1747 .cra_init = s5p_hash_cra_init, 1748 .cra_exit = s5p_hash_cra_exit, 1749 } 1750 }, 1751 { 1752 .init = s5p_hash_init, 1753 .update = s5p_hash_update, 1754 .final = s5p_hash_final, 1755 .finup = s5p_hash_finup, 1756 .digest = s5p_hash_digest, 1757 .export = s5p_hash_export, 1758 .import = s5p_hash_import, 1759 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN, 1760 .halg.digestsize = MD5_DIGEST_SIZE, 1761 .halg.base = { 1762 .cra_name = "md5", 1763 .cra_driver_name = "exynos-md5", 1764 .cra_priority = 100, 1765 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1766 CRYPTO_ALG_ASYNC | 1767 CRYPTO_ALG_NEED_FALLBACK, 1768 .cra_blocksize = HASH_BLOCK_SIZE, 1769 .cra_ctxsize = sizeof(struct s5p_hash_ctx), 1770 .cra_module = THIS_MODULE, 1771 .cra_init = s5p_hash_cra_init, 1772 .cra_exit = s5p_hash_cra_exit, 1773 } 1774 }, 1775 { 1776 .init = s5p_hash_init, 1777 .update = s5p_hash_update, 1778 .final = s5p_hash_final, 1779 .finup = s5p_hash_finup, 1780 .digest = s5p_hash_digest, 1781 .export = s5p_hash_export, 1782 .import = s5p_hash_import, 1783 .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN, 1784 .halg.digestsize = SHA256_DIGEST_SIZE, 1785 .halg.base = { 1786 .cra_name = "sha256", 1787 .cra_driver_name = "exynos-sha256", 1788 .cra_priority = 100, 1789 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1790 CRYPTO_ALG_ASYNC | 1791 CRYPTO_ALG_NEED_FALLBACK, 1792 .cra_blocksize = HASH_BLOCK_SIZE, 1793 .cra_ctxsize = sizeof(struct s5p_hash_ctx), 1794 .cra_module = THIS_MODULE, 1795 .cra_init = s5p_hash_cra_init, 1796 .cra_exit = s5p_hash_cra_exit, 1797 } 1798 } 1799 1800 }; 1801 1802 static void s5p_set_aes(struct s5p_aes_dev *dev, 1803 const u8 *key, const u8 *iv, const u8 *ctr, 1804 unsigned int keylen) 1805 { 1806 void __iomem *keystart; 1807 1808 if (iv) 1809 memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv, 1810 AES_BLOCK_SIZE); 1811 1812 if (ctr) 1813 memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), ctr, 1814 AES_BLOCK_SIZE); 1815 1816 if (keylen == AES_KEYSIZE_256) 1817 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0); 1818 else if (keylen == AES_KEYSIZE_192) 1819 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2); 1820 else 1821 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4); 1822 1823 memcpy_toio(keystart, key, keylen); 1824 } 1825 1826 static bool s5p_is_sg_aligned(struct scatterlist *sg) 1827 { 1828 while (sg) { 1829 if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE)) 1830 return false; 1831 sg = sg_next(sg); 1832 } 1833 1834 return true; 1835 } 1836 1837 static int s5p_set_indata_start(struct s5p_aes_dev *dev, 1838 struct skcipher_request *req) 1839 { 1840 struct scatterlist *sg; 1841 int err; 1842 1843 dev->sg_src_cpy = NULL; 1844 sg = req->src; 1845 if (!s5p_is_sg_aligned(sg)) { 1846 dev_dbg(dev->dev, 1847 "At least one unaligned source scatter list, making a copy\n"); 1848 err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy); 1849 if (err) 1850 return err; 1851 1852 sg = dev->sg_src_cpy; 1853 } 1854 1855 err = s5p_set_indata(dev, sg); 1856 if (err) { 1857 s5p_free_sg_cpy(dev, &dev->sg_src_cpy); 1858 return err; 1859 } 1860 1861 return 0; 1862 } 1863 1864 static int s5p_set_outdata_start(struct s5p_aes_dev *dev, 1865 struct skcipher_request *req) 1866 { 1867 struct scatterlist *sg; 1868 int err; 1869 1870 dev->sg_dst_cpy = NULL; 1871 sg = req->dst; 1872 if (!s5p_is_sg_aligned(sg)) { 1873 dev_dbg(dev->dev, 1874 "At least one unaligned dest scatter list, making a copy\n"); 1875 err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy); 1876 if (err) 1877 return err; 1878 1879 sg = dev->sg_dst_cpy; 1880 } 1881 1882 err = s5p_set_outdata(dev, sg); 1883 if (err) { 1884 s5p_free_sg_cpy(dev, &dev->sg_dst_cpy); 1885 return err; 1886 } 1887 1888 return 0; 1889 } 1890 1891 static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode) 1892 { 1893 struct skcipher_request *req = dev->req; 1894 u32 aes_control; 1895 unsigned long flags; 1896 int err; 1897 u8 *iv, *ctr; 1898 1899 /* This sets bit [13:12] to 00, which selects 128-bit counter */ 1900 aes_control = SSS_AES_KEY_CHANGE_MODE; 1901 if (mode & FLAGS_AES_DECRYPT) 1902 aes_control |= SSS_AES_MODE_DECRYPT; 1903 1904 if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) { 1905 aes_control |= SSS_AES_CHAIN_MODE_CBC; 1906 iv = req->iv; 1907 ctr = NULL; 1908 } else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) { 1909 aes_control |= SSS_AES_CHAIN_MODE_CTR; 1910 iv = NULL; 1911 ctr = req->iv; 1912 } else { 1913 iv = NULL; /* AES_ECB */ 1914 ctr = NULL; 1915 } 1916 1917 if (dev->ctx->keylen == AES_KEYSIZE_192) 1918 aes_control |= SSS_AES_KEY_SIZE_192; 1919 else if (dev->ctx->keylen == AES_KEYSIZE_256) 1920 aes_control |= SSS_AES_KEY_SIZE_256; 1921 1922 aes_control |= SSS_AES_FIFO_MODE; 1923 1924 /* as a variant it is possible to use byte swapping on DMA side */ 1925 aes_control |= SSS_AES_BYTESWAP_DI 1926 | SSS_AES_BYTESWAP_DO 1927 | SSS_AES_BYTESWAP_IV 1928 | SSS_AES_BYTESWAP_KEY 1929 | SSS_AES_BYTESWAP_CNT; 1930 1931 spin_lock_irqsave(&dev->lock, flags); 1932 1933 SSS_WRITE(dev, FCINTENCLR, 1934 SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR); 1935 SSS_WRITE(dev, FCFIFOCTRL, 0x00); 1936 1937 err = s5p_set_indata_start(dev, req); 1938 if (err) 1939 goto indata_error; 1940 1941 err = s5p_set_outdata_start(dev, req); 1942 if (err) 1943 goto outdata_error; 1944 1945 SSS_AES_WRITE(dev, AES_CONTROL, aes_control); 1946 s5p_set_aes(dev, dev->ctx->aes_key, iv, ctr, dev->ctx->keylen); 1947 1948 s5p_set_dma_indata(dev, dev->sg_src); 1949 s5p_set_dma_outdata(dev, dev->sg_dst); 1950 1951 SSS_WRITE(dev, FCINTENSET, 1952 SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET); 1953 1954 spin_unlock_irqrestore(&dev->lock, flags); 1955 1956 return; 1957 1958 outdata_error: 1959 s5p_unset_indata(dev); 1960 1961 indata_error: 1962 s5p_sg_done(dev); 1963 dev->busy = false; 1964 spin_unlock_irqrestore(&dev->lock, flags); 1965 s5p_aes_complete(req, err); 1966 } 1967 1968 static void s5p_tasklet_cb(unsigned long data) 1969 { 1970 struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data; 1971 struct crypto_async_request *async_req, *backlog; 1972 struct s5p_aes_reqctx *reqctx; 1973 unsigned long flags; 1974 1975 spin_lock_irqsave(&dev->lock, flags); 1976 backlog = crypto_get_backlog(&dev->queue); 1977 async_req = crypto_dequeue_request(&dev->queue); 1978 1979 if (!async_req) { 1980 dev->busy = false; 1981 spin_unlock_irqrestore(&dev->lock, flags); 1982 return; 1983 } 1984 spin_unlock_irqrestore(&dev->lock, flags); 1985 1986 if (backlog) 1987 crypto_request_complete(backlog, -EINPROGRESS); 1988 1989 dev->req = skcipher_request_cast(async_req); 1990 dev->ctx = crypto_tfm_ctx(dev->req->base.tfm); 1991 reqctx = skcipher_request_ctx(dev->req); 1992 1993 s5p_aes_crypt_start(dev, reqctx->mode); 1994 } 1995 1996 static int s5p_aes_handle_req(struct s5p_aes_dev *dev, 1997 struct skcipher_request *req) 1998 { 1999 unsigned long flags; 2000 int err; 2001 2002 spin_lock_irqsave(&dev->lock, flags); 2003 err = crypto_enqueue_request(&dev->queue, &req->base); 2004 if (dev->busy) { 2005 spin_unlock_irqrestore(&dev->lock, flags); 2006 return err; 2007 } 2008 dev->busy = true; 2009 2010 spin_unlock_irqrestore(&dev->lock, flags); 2011 2012 tasklet_schedule(&dev->tasklet); 2013 2014 return err; 2015 } 2016 2017 static int s5p_aes_crypt(struct skcipher_request *req, unsigned long mode) 2018 { 2019 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 2020 struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req); 2021 struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm); 2022 struct s5p_aes_dev *dev = ctx->dev; 2023 2024 if (!req->cryptlen) 2025 return 0; 2026 2027 if (!IS_ALIGNED(req->cryptlen, AES_BLOCK_SIZE) && 2028 ((mode & FLAGS_AES_MODE_MASK) != FLAGS_AES_CTR)) { 2029 dev_dbg(dev->dev, "request size is not exact amount of AES blocks\n"); 2030 return -EINVAL; 2031 } 2032 2033 reqctx->mode = mode; 2034 2035 return s5p_aes_handle_req(dev, req); 2036 } 2037 2038 static int s5p_aes_setkey(struct crypto_skcipher *cipher, 2039 const u8 *key, unsigned int keylen) 2040 { 2041 struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher); 2042 struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm); 2043 2044 if (keylen != AES_KEYSIZE_128 && 2045 keylen != AES_KEYSIZE_192 && 2046 keylen != AES_KEYSIZE_256) 2047 return -EINVAL; 2048 2049 memcpy(ctx->aes_key, key, keylen); 2050 ctx->keylen = keylen; 2051 2052 return 0; 2053 } 2054 2055 static int s5p_aes_ecb_encrypt(struct skcipher_request *req) 2056 { 2057 return s5p_aes_crypt(req, 0); 2058 } 2059 2060 static int s5p_aes_ecb_decrypt(struct skcipher_request *req) 2061 { 2062 return s5p_aes_crypt(req, FLAGS_AES_DECRYPT); 2063 } 2064 2065 static int s5p_aes_cbc_encrypt(struct skcipher_request *req) 2066 { 2067 return s5p_aes_crypt(req, FLAGS_AES_CBC); 2068 } 2069 2070 static int s5p_aes_cbc_decrypt(struct skcipher_request *req) 2071 { 2072 return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC); 2073 } 2074 2075 static int s5p_aes_ctr_crypt(struct skcipher_request *req) 2076 { 2077 return s5p_aes_crypt(req, FLAGS_AES_CTR); 2078 } 2079 2080 static int s5p_aes_init_tfm(struct crypto_skcipher *tfm) 2081 { 2082 struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm); 2083 2084 ctx->dev = s5p_dev; 2085 crypto_skcipher_set_reqsize(tfm, sizeof(struct s5p_aes_reqctx)); 2086 2087 return 0; 2088 } 2089 2090 static struct skcipher_alg algs[] = { 2091 { 2092 .base.cra_name = "ecb(aes)", 2093 .base.cra_driver_name = "ecb-aes-s5p", 2094 .base.cra_priority = 100, 2095 .base.cra_flags = CRYPTO_ALG_ASYNC | 2096 CRYPTO_ALG_KERN_DRIVER_ONLY, 2097 .base.cra_blocksize = AES_BLOCK_SIZE, 2098 .base.cra_ctxsize = sizeof(struct s5p_aes_ctx), 2099 .base.cra_alignmask = 0x0f, 2100 .base.cra_module = THIS_MODULE, 2101 2102 .min_keysize = AES_MIN_KEY_SIZE, 2103 .max_keysize = AES_MAX_KEY_SIZE, 2104 .setkey = s5p_aes_setkey, 2105 .encrypt = s5p_aes_ecb_encrypt, 2106 .decrypt = s5p_aes_ecb_decrypt, 2107 .init = s5p_aes_init_tfm, 2108 }, 2109 { 2110 .base.cra_name = "cbc(aes)", 2111 .base.cra_driver_name = "cbc-aes-s5p", 2112 .base.cra_priority = 100, 2113 .base.cra_flags = CRYPTO_ALG_ASYNC | 2114 CRYPTO_ALG_KERN_DRIVER_ONLY, 2115 .base.cra_blocksize = AES_BLOCK_SIZE, 2116 .base.cra_ctxsize = sizeof(struct s5p_aes_ctx), 2117 .base.cra_alignmask = 0x0f, 2118 .base.cra_module = THIS_MODULE, 2119 2120 .min_keysize = AES_MIN_KEY_SIZE, 2121 .max_keysize = AES_MAX_KEY_SIZE, 2122 .ivsize = AES_BLOCK_SIZE, 2123 .setkey = s5p_aes_setkey, 2124 .encrypt = s5p_aes_cbc_encrypt, 2125 .decrypt = s5p_aes_cbc_decrypt, 2126 .init = s5p_aes_init_tfm, 2127 }, 2128 { 2129 .base.cra_name = "ctr(aes)", 2130 .base.cra_driver_name = "ctr-aes-s5p", 2131 .base.cra_priority = 100, 2132 .base.cra_flags = CRYPTO_ALG_ASYNC | 2133 CRYPTO_ALG_KERN_DRIVER_ONLY, 2134 .base.cra_blocksize = 1, 2135 .base.cra_ctxsize = sizeof(struct s5p_aes_ctx), 2136 .base.cra_alignmask = 0x0f, 2137 .base.cra_module = THIS_MODULE, 2138 2139 .min_keysize = AES_MIN_KEY_SIZE, 2140 .max_keysize = AES_MAX_KEY_SIZE, 2141 .ivsize = AES_BLOCK_SIZE, 2142 .setkey = s5p_aes_setkey, 2143 .encrypt = s5p_aes_ctr_crypt, 2144 .decrypt = s5p_aes_ctr_crypt, 2145 .init = s5p_aes_init_tfm, 2146 }, 2147 }; 2148 2149 static int s5p_aes_probe(struct platform_device *pdev) 2150 { 2151 struct device *dev = &pdev->dev; 2152 int i, j, err; 2153 const struct samsung_aes_variant *variant; 2154 struct s5p_aes_dev *pdata; 2155 struct resource *res; 2156 unsigned int hash_i; 2157 2158 if (s5p_dev) 2159 return -EEXIST; 2160 2161 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); 2162 if (!pdata) 2163 return -ENOMEM; 2164 2165 variant = find_s5p_sss_version(pdev); 2166 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2167 if (!res) 2168 return -EINVAL; 2169 2170 /* 2171 * Note: HASH and PRNG uses the same registers in secss, avoid 2172 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG 2173 * is enabled in config. We need larger size for HASH registers in 2174 * secss, current describe only AES/DES 2175 */ 2176 if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) { 2177 if (variant == &exynos_aes_data) { 2178 res->end += 0x300; 2179 pdata->use_hash = true; 2180 } 2181 } 2182 2183 pdata->res = res; 2184 pdata->ioaddr = devm_ioremap_resource(dev, res); 2185 if (IS_ERR(pdata->ioaddr)) { 2186 if (!pdata->use_hash) 2187 return PTR_ERR(pdata->ioaddr); 2188 /* try AES without HASH */ 2189 res->end -= 0x300; 2190 pdata->use_hash = false; 2191 pdata->ioaddr = devm_ioremap_resource(dev, res); 2192 if (IS_ERR(pdata->ioaddr)) 2193 return PTR_ERR(pdata->ioaddr); 2194 } 2195 2196 pdata->clk = devm_clk_get(dev, variant->clk_names[0]); 2197 if (IS_ERR(pdata->clk)) 2198 return dev_err_probe(dev, PTR_ERR(pdata->clk), 2199 "failed to find secss clock %s\n", 2200 variant->clk_names[0]); 2201 2202 err = clk_prepare_enable(pdata->clk); 2203 if (err < 0) { 2204 dev_err(dev, "Enabling clock %s failed, err %d\n", 2205 variant->clk_names[0], err); 2206 return err; 2207 } 2208 2209 if (variant->clk_names[1]) { 2210 pdata->pclk = devm_clk_get(dev, variant->clk_names[1]); 2211 if (IS_ERR(pdata->pclk)) { 2212 err = dev_err_probe(dev, PTR_ERR(pdata->pclk), 2213 "failed to find clock %s\n", 2214 variant->clk_names[1]); 2215 goto err_clk; 2216 } 2217 2218 err = clk_prepare_enable(pdata->pclk); 2219 if (err < 0) { 2220 dev_err(dev, "Enabling clock %s failed, err %d\n", 2221 variant->clk_names[0], err); 2222 goto err_clk; 2223 } 2224 } else { 2225 pdata->pclk = NULL; 2226 } 2227 2228 spin_lock_init(&pdata->lock); 2229 spin_lock_init(&pdata->hash_lock); 2230 2231 pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset; 2232 pdata->io_hash_base = pdata->ioaddr + variant->hash_offset; 2233 2234 pdata->irq_fc = platform_get_irq(pdev, 0); 2235 if (pdata->irq_fc < 0) { 2236 err = pdata->irq_fc; 2237 dev_warn(dev, "feed control interrupt is not available.\n"); 2238 goto err_irq; 2239 } 2240 err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL, 2241 s5p_aes_interrupt, IRQF_ONESHOT, 2242 pdev->name, pdev); 2243 if (err < 0) { 2244 dev_warn(dev, "feed control interrupt is not available.\n"); 2245 goto err_irq; 2246 } 2247 2248 pdata->busy = false; 2249 pdata->dev = dev; 2250 platform_set_drvdata(pdev, pdata); 2251 s5p_dev = pdata; 2252 2253 tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata); 2254 crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN); 2255 2256 for (i = 0; i < ARRAY_SIZE(algs); i++) { 2257 err = crypto_register_skcipher(&algs[i]); 2258 if (err) 2259 goto err_algs; 2260 } 2261 2262 if (pdata->use_hash) { 2263 tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb, 2264 (unsigned long)pdata); 2265 crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH); 2266 2267 for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256); 2268 hash_i++) { 2269 struct ahash_alg *alg; 2270 2271 alg = &algs_sha1_md5_sha256[hash_i]; 2272 err = crypto_register_ahash(alg); 2273 if (err) { 2274 dev_err(dev, "can't register '%s': %d\n", 2275 alg->halg.base.cra_driver_name, err); 2276 goto err_hash; 2277 } 2278 } 2279 } 2280 2281 dev_info(dev, "s5p-sss driver registered\n"); 2282 2283 return 0; 2284 2285 err_hash: 2286 for (j = hash_i - 1; j >= 0; j--) 2287 crypto_unregister_ahash(&algs_sha1_md5_sha256[j]); 2288 2289 tasklet_kill(&pdata->hash_tasklet); 2290 res->end -= 0x300; 2291 2292 err_algs: 2293 if (i < ARRAY_SIZE(algs)) 2294 dev_err(dev, "can't register '%s': %d\n", algs[i].base.cra_name, 2295 err); 2296 2297 for (j = 0; j < i; j++) 2298 crypto_unregister_skcipher(&algs[j]); 2299 2300 tasklet_kill(&pdata->tasklet); 2301 2302 err_irq: 2303 clk_disable_unprepare(pdata->pclk); 2304 2305 err_clk: 2306 clk_disable_unprepare(pdata->clk); 2307 s5p_dev = NULL; 2308 2309 return err; 2310 } 2311 2312 static void s5p_aes_remove(struct platform_device *pdev) 2313 { 2314 struct s5p_aes_dev *pdata = platform_get_drvdata(pdev); 2315 int i; 2316 2317 for (i = 0; i < ARRAY_SIZE(algs); i++) 2318 crypto_unregister_skcipher(&algs[i]); 2319 2320 tasklet_kill(&pdata->tasklet); 2321 if (pdata->use_hash) { 2322 for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--) 2323 crypto_unregister_ahash(&algs_sha1_md5_sha256[i]); 2324 2325 pdata->res->end -= 0x300; 2326 tasklet_kill(&pdata->hash_tasklet); 2327 pdata->use_hash = false; 2328 } 2329 2330 clk_disable_unprepare(pdata->pclk); 2331 2332 clk_disable_unprepare(pdata->clk); 2333 s5p_dev = NULL; 2334 } 2335 2336 static struct platform_driver s5p_aes_crypto = { 2337 .probe = s5p_aes_probe, 2338 .remove = s5p_aes_remove, 2339 .driver = { 2340 .name = "s5p-secss", 2341 .of_match_table = s5p_sss_dt_match, 2342 }, 2343 }; 2344 2345 module_platform_driver(s5p_aes_crypto); 2346 2347 MODULE_DESCRIPTION("S5PV210 AES hw acceleration support."); 2348 MODULE_LICENSE("GPL v2"); 2349 MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>"); 2350 MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>"); 2351