xref: /linux/drivers/crypto/s5p-sss.c (revision 55b078f031f556ea18963bd808e79a1dfaa4be44)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Cryptographic API.
4 //
5 // Support for Samsung S5PV210 and Exynos HW acceleration.
6 //
7 // Copyright (C) 2011 NetUP Inc. All rights reserved.
8 // Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
9 //
10 // Hash part based on omap-sham.c driver.
11 
12 #include <linux/clk.h>
13 #include <linux/crypto.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/platform_device.h>
24 #include <linux/scatterlist.h>
25 
26 #include <crypto/ctr.h>
27 #include <crypto/aes.h>
28 #include <crypto/algapi.h>
29 #include <crypto/scatterwalk.h>
30 
31 #include <crypto/hash.h>
32 #include <crypto/md5.h>
33 #include <crypto/sha.h>
34 #include <crypto/internal/hash.h>
35 
36 #define _SBF(s, v)			((v) << (s))
37 
38 /* Feed control registers */
39 #define SSS_REG_FCINTSTAT		0x0000
40 #define SSS_FCINTSTAT_HPARTINT		BIT(7)
41 #define SSS_FCINTSTAT_HDONEINT		BIT(5)
42 #define SSS_FCINTSTAT_BRDMAINT		BIT(3)
43 #define SSS_FCINTSTAT_BTDMAINT		BIT(2)
44 #define SSS_FCINTSTAT_HRDMAINT		BIT(1)
45 #define SSS_FCINTSTAT_PKDMAINT		BIT(0)
46 
47 #define SSS_REG_FCINTENSET		0x0004
48 #define SSS_FCINTENSET_HPARTINTENSET	BIT(7)
49 #define SSS_FCINTENSET_HDONEINTENSET	BIT(5)
50 #define SSS_FCINTENSET_BRDMAINTENSET	BIT(3)
51 #define SSS_FCINTENSET_BTDMAINTENSET	BIT(2)
52 #define SSS_FCINTENSET_HRDMAINTENSET	BIT(1)
53 #define SSS_FCINTENSET_PKDMAINTENSET	BIT(0)
54 
55 #define SSS_REG_FCINTENCLR		0x0008
56 #define SSS_FCINTENCLR_HPARTINTENCLR	BIT(7)
57 #define SSS_FCINTENCLR_HDONEINTENCLR	BIT(5)
58 #define SSS_FCINTENCLR_BRDMAINTENCLR	BIT(3)
59 #define SSS_FCINTENCLR_BTDMAINTENCLR	BIT(2)
60 #define SSS_FCINTENCLR_HRDMAINTENCLR	BIT(1)
61 #define SSS_FCINTENCLR_PKDMAINTENCLR	BIT(0)
62 
63 #define SSS_REG_FCINTPEND		0x000C
64 #define SSS_FCINTPEND_HPARTINTP		BIT(7)
65 #define SSS_FCINTPEND_HDONEINTP		BIT(5)
66 #define SSS_FCINTPEND_BRDMAINTP		BIT(3)
67 #define SSS_FCINTPEND_BTDMAINTP		BIT(2)
68 #define SSS_FCINTPEND_HRDMAINTP		BIT(1)
69 #define SSS_FCINTPEND_PKDMAINTP		BIT(0)
70 
71 #define SSS_REG_FCFIFOSTAT		0x0010
72 #define SSS_FCFIFOSTAT_BRFIFOFUL	BIT(7)
73 #define SSS_FCFIFOSTAT_BRFIFOEMP	BIT(6)
74 #define SSS_FCFIFOSTAT_BTFIFOFUL	BIT(5)
75 #define SSS_FCFIFOSTAT_BTFIFOEMP	BIT(4)
76 #define SSS_FCFIFOSTAT_HRFIFOFUL	BIT(3)
77 #define SSS_FCFIFOSTAT_HRFIFOEMP	BIT(2)
78 #define SSS_FCFIFOSTAT_PKFIFOFUL	BIT(1)
79 #define SSS_FCFIFOSTAT_PKFIFOEMP	BIT(0)
80 
81 #define SSS_REG_FCFIFOCTRL		0x0014
82 #define SSS_FCFIFOCTRL_DESSEL		BIT(2)
83 #define SSS_HASHIN_INDEPENDENT		_SBF(0, 0x00)
84 #define SSS_HASHIN_CIPHER_INPUT		_SBF(0, 0x01)
85 #define SSS_HASHIN_CIPHER_OUTPUT	_SBF(0, 0x02)
86 #define SSS_HASHIN_MASK			_SBF(0, 0x03)
87 
88 #define SSS_REG_FCBRDMAS		0x0020
89 #define SSS_REG_FCBRDMAL		0x0024
90 #define SSS_REG_FCBRDMAC		0x0028
91 #define SSS_FCBRDMAC_BYTESWAP		BIT(1)
92 #define SSS_FCBRDMAC_FLUSH		BIT(0)
93 
94 #define SSS_REG_FCBTDMAS		0x0030
95 #define SSS_REG_FCBTDMAL		0x0034
96 #define SSS_REG_FCBTDMAC		0x0038
97 #define SSS_FCBTDMAC_BYTESWAP		BIT(1)
98 #define SSS_FCBTDMAC_FLUSH		BIT(0)
99 
100 #define SSS_REG_FCHRDMAS		0x0040
101 #define SSS_REG_FCHRDMAL		0x0044
102 #define SSS_REG_FCHRDMAC		0x0048
103 #define SSS_FCHRDMAC_BYTESWAP		BIT(1)
104 #define SSS_FCHRDMAC_FLUSH		BIT(0)
105 
106 #define SSS_REG_FCPKDMAS		0x0050
107 #define SSS_REG_FCPKDMAL		0x0054
108 #define SSS_REG_FCPKDMAC		0x0058
109 #define SSS_FCPKDMAC_BYTESWAP		BIT(3)
110 #define SSS_FCPKDMAC_DESCEND		BIT(2)
111 #define SSS_FCPKDMAC_TRANSMIT		BIT(1)
112 #define SSS_FCPKDMAC_FLUSH		BIT(0)
113 
114 #define SSS_REG_FCPKDMAO		0x005C
115 
116 /* AES registers */
117 #define SSS_REG_AES_CONTROL		0x00
118 #define SSS_AES_BYTESWAP_DI		BIT(11)
119 #define SSS_AES_BYTESWAP_DO		BIT(10)
120 #define SSS_AES_BYTESWAP_IV		BIT(9)
121 #define SSS_AES_BYTESWAP_CNT		BIT(8)
122 #define SSS_AES_BYTESWAP_KEY		BIT(7)
123 #define SSS_AES_KEY_CHANGE_MODE		BIT(6)
124 #define SSS_AES_KEY_SIZE_128		_SBF(4, 0x00)
125 #define SSS_AES_KEY_SIZE_192		_SBF(4, 0x01)
126 #define SSS_AES_KEY_SIZE_256		_SBF(4, 0x02)
127 #define SSS_AES_FIFO_MODE		BIT(3)
128 #define SSS_AES_CHAIN_MODE_ECB		_SBF(1, 0x00)
129 #define SSS_AES_CHAIN_MODE_CBC		_SBF(1, 0x01)
130 #define SSS_AES_CHAIN_MODE_CTR		_SBF(1, 0x02)
131 #define SSS_AES_MODE_DECRYPT		BIT(0)
132 
133 #define SSS_REG_AES_STATUS		0x04
134 #define SSS_AES_BUSY			BIT(2)
135 #define SSS_AES_INPUT_READY		BIT(1)
136 #define SSS_AES_OUTPUT_READY		BIT(0)
137 
138 #define SSS_REG_AES_IN_DATA(s)		(0x10 + (s << 2))
139 #define SSS_REG_AES_OUT_DATA(s)		(0x20 + (s << 2))
140 #define SSS_REG_AES_IV_DATA(s)		(0x30 + (s << 2))
141 #define SSS_REG_AES_CNT_DATA(s)		(0x40 + (s << 2))
142 #define SSS_REG_AES_KEY_DATA(s)		(0x80 + (s << 2))
143 
144 #define SSS_REG(dev, reg)		((dev)->ioaddr + (SSS_REG_##reg))
145 #define SSS_READ(dev, reg)		__raw_readl(SSS_REG(dev, reg))
146 #define SSS_WRITE(dev, reg, val)	__raw_writel((val), SSS_REG(dev, reg))
147 
148 #define SSS_AES_REG(dev, reg)		((dev)->aes_ioaddr + SSS_REG_##reg)
149 #define SSS_AES_WRITE(dev, reg, val)    __raw_writel((val), \
150 						SSS_AES_REG(dev, reg))
151 
152 /* HW engine modes */
153 #define FLAGS_AES_DECRYPT		BIT(0)
154 #define FLAGS_AES_MODE_MASK		_SBF(1, 0x03)
155 #define FLAGS_AES_CBC			_SBF(1, 0x01)
156 #define FLAGS_AES_CTR			_SBF(1, 0x02)
157 
158 #define AES_KEY_LEN			16
159 #define CRYPTO_QUEUE_LEN		1
160 
161 /* HASH registers */
162 #define SSS_REG_HASH_CTRL		0x00
163 
164 #define SSS_HASH_USER_IV_EN		BIT(5)
165 #define SSS_HASH_INIT_BIT		BIT(4)
166 #define SSS_HASH_ENGINE_SHA1		_SBF(1, 0x00)
167 #define SSS_HASH_ENGINE_MD5		_SBF(1, 0x01)
168 #define SSS_HASH_ENGINE_SHA256		_SBF(1, 0x02)
169 
170 #define SSS_HASH_ENGINE_MASK		_SBF(1, 0x03)
171 
172 #define SSS_REG_HASH_CTRL_PAUSE		0x04
173 
174 #define SSS_HASH_PAUSE			BIT(0)
175 
176 #define SSS_REG_HASH_CTRL_FIFO		0x08
177 
178 #define SSS_HASH_FIFO_MODE_DMA		BIT(0)
179 #define SSS_HASH_FIFO_MODE_CPU          0
180 
181 #define SSS_REG_HASH_CTRL_SWAP		0x0C
182 
183 #define SSS_HASH_BYTESWAP_DI		BIT(3)
184 #define SSS_HASH_BYTESWAP_DO		BIT(2)
185 #define SSS_HASH_BYTESWAP_IV		BIT(1)
186 #define SSS_HASH_BYTESWAP_KEY		BIT(0)
187 
188 #define SSS_REG_HASH_STATUS		0x10
189 
190 #define SSS_HASH_STATUS_MSG_DONE	BIT(6)
191 #define SSS_HASH_STATUS_PARTIAL_DONE	BIT(4)
192 #define SSS_HASH_STATUS_BUFFER_READY	BIT(0)
193 
194 #define SSS_REG_HASH_MSG_SIZE_LOW	0x20
195 #define SSS_REG_HASH_MSG_SIZE_HIGH	0x24
196 
197 #define SSS_REG_HASH_PRE_MSG_SIZE_LOW	0x28
198 #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH	0x2C
199 
200 #define SSS_REG_HASH_IV(s)		(0xB0 + ((s) << 2))
201 #define SSS_REG_HASH_OUT(s)		(0x100 + ((s) << 2))
202 
203 #define HASH_BLOCK_SIZE			64
204 #define HASH_REG_SIZEOF			4
205 #define HASH_MD5_MAX_REG		(MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
206 #define HASH_SHA1_MAX_REG		(SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
207 #define HASH_SHA256_MAX_REG		(SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
208 
209 /*
210  * HASH bit numbers, used by device, setting in dev->hash_flags with
211  * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
212  * to keep HASH state BUSY or FREE, or to signal state from irq_handler
213  * to hash_tasklet. SGS keep track of allocated memory for scatterlist
214  */
215 #define HASH_FLAGS_BUSY		0
216 #define HASH_FLAGS_FINAL	1
217 #define HASH_FLAGS_DMA_ACTIVE	2
218 #define HASH_FLAGS_OUTPUT_READY	3
219 #define HASH_FLAGS_DMA_READY	4
220 #define HASH_FLAGS_SGS_COPIED	5
221 #define HASH_FLAGS_SGS_ALLOCED	6
222 
223 /* HASH HW constants */
224 #define BUFLEN			HASH_BLOCK_SIZE
225 
226 #define SSS_HASH_DMA_LEN_ALIGN	8
227 #define SSS_HASH_DMA_ALIGN_MASK	(SSS_HASH_DMA_LEN_ALIGN - 1)
228 
229 #define SSS_HASH_QUEUE_LENGTH	10
230 
231 /**
232  * struct samsung_aes_variant - platform specific SSS driver data
233  * @aes_offset: AES register offset from SSS module's base.
234  * @hash_offset: HASH register offset from SSS module's base.
235  *
236  * Specifies platform specific configuration of SSS module.
237  * Note: A structure for driver specific platform data is used for future
238  * expansion of its usage.
239  */
240 struct samsung_aes_variant {
241 	unsigned int			aes_offset;
242 	unsigned int			hash_offset;
243 };
244 
245 struct s5p_aes_reqctx {
246 	unsigned long			mode;
247 };
248 
249 struct s5p_aes_ctx {
250 	struct s5p_aes_dev		*dev;
251 
252 	u8				aes_key[AES_MAX_KEY_SIZE];
253 	u8				nonce[CTR_RFC3686_NONCE_SIZE];
254 	int				keylen;
255 };
256 
257 /**
258  * struct s5p_aes_dev - Crypto device state container
259  * @dev:	Associated device
260  * @clk:	Clock for accessing hardware
261  * @ioaddr:	Mapped IO memory region
262  * @aes_ioaddr:	Per-varian offset for AES block IO memory
263  * @irq_fc:	Feed control interrupt line
264  * @req:	Crypto request currently handled by the device
265  * @ctx:	Configuration for currently handled crypto request
266  * @sg_src:	Scatter list with source data for currently handled block
267  *		in device.  This is DMA-mapped into device.
268  * @sg_dst:	Scatter list with destination data for currently handled block
269  *		in device. This is DMA-mapped into device.
270  * @sg_src_cpy:	In case of unaligned access, copied scatter list
271  *		with source data.
272  * @sg_dst_cpy:	In case of unaligned access, copied scatter list
273  *		with destination data.
274  * @tasklet:	New request scheduling jib
275  * @queue:	Crypto queue
276  * @busy:	Indicates whether the device is currently handling some request
277  *		thus it uses some of the fields from this state, like:
278  *		req, ctx, sg_src/dst (and copies).  This essentially
279  *		protects against concurrent access to these fields.
280  * @lock:	Lock for protecting both access to device hardware registers
281  *		and fields related to current request (including the busy field).
282  * @res:	Resources for hash.
283  * @io_hash_base: Per-variant offset for HASH block IO memory.
284  * @hash_lock:	Lock for protecting hash_req, hash_queue and hash_flags
285  *		variable.
286  * @hash_flags:	Flags for current HASH op.
287  * @hash_queue:	Async hash queue.
288  * @hash_tasklet: New HASH request scheduling job.
289  * @xmit_buf:	Buffer for current HASH request transfer into SSS block.
290  * @hash_req:	Current request sending to SSS HASH block.
291  * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
292  * @hash_sg_cnt: Counter for hash_sg_iter.
293  *
294  * @use_hash:	true if HASH algs enabled
295  */
296 struct s5p_aes_dev {
297 	struct device			*dev;
298 	struct clk			*clk;
299 	void __iomem			*ioaddr;
300 	void __iomem			*aes_ioaddr;
301 	int				irq_fc;
302 
303 	struct ablkcipher_request	*req;
304 	struct s5p_aes_ctx		*ctx;
305 	struct scatterlist		*sg_src;
306 	struct scatterlist		*sg_dst;
307 
308 	struct scatterlist		*sg_src_cpy;
309 	struct scatterlist		*sg_dst_cpy;
310 
311 	struct tasklet_struct		tasklet;
312 	struct crypto_queue		queue;
313 	bool				busy;
314 	spinlock_t			lock;
315 
316 	struct resource			*res;
317 	void __iomem			*io_hash_base;
318 
319 	spinlock_t			hash_lock; /* protect hash_ vars */
320 	unsigned long			hash_flags;
321 	struct crypto_queue		hash_queue;
322 	struct tasklet_struct		hash_tasklet;
323 
324 	u8				xmit_buf[BUFLEN];
325 	struct ahash_request		*hash_req;
326 	struct scatterlist		*hash_sg_iter;
327 	unsigned int			hash_sg_cnt;
328 
329 	bool				use_hash;
330 };
331 
332 /**
333  * struct s5p_hash_reqctx - HASH request context
334  * @dd:		Associated device
335  * @op_update:	Current request operation (OP_UPDATE or OP_FINAL)
336  * @digcnt:	Number of bytes processed by HW (without buffer[] ones)
337  * @digest:	Digest message or IV for partial result
338  * @nregs:	Number of HW registers for digest or IV read/write
339  * @engine:	Bits for selecting type of HASH in SSS block
340  * @sg:		sg for DMA transfer
341  * @sg_len:	Length of sg for DMA transfer
342  * @sgl[]:	sg for joining buffer and req->src scatterlist
343  * @skip:	Skip offset in req->src for current op
344  * @total:	Total number of bytes for current request
345  * @finup:	Keep state for finup or final.
346  * @error:	Keep track of error.
347  * @bufcnt:	Number of bytes holded in buffer[]
348  * @buffer[]:	For byte(s) from end of req->src in UPDATE op
349  */
350 struct s5p_hash_reqctx {
351 	struct s5p_aes_dev	*dd;
352 	bool			op_update;
353 
354 	u64			digcnt;
355 	u8			digest[SHA256_DIGEST_SIZE];
356 
357 	unsigned int		nregs; /* digest_size / sizeof(reg) */
358 	u32			engine;
359 
360 	struct scatterlist	*sg;
361 	unsigned int		sg_len;
362 	struct scatterlist	sgl[2];
363 	unsigned int		skip;
364 	unsigned int		total;
365 	bool			finup;
366 	bool			error;
367 
368 	u32			bufcnt;
369 	u8			buffer[0];
370 };
371 
372 /**
373  * struct s5p_hash_ctx - HASH transformation context
374  * @dd:		Associated device
375  * @flags:	Bits for algorithm HASH.
376  * @fallback:	Software transformation for zero message or size < BUFLEN.
377  */
378 struct s5p_hash_ctx {
379 	struct s5p_aes_dev	*dd;
380 	unsigned long		flags;
381 	struct crypto_shash	*fallback;
382 };
383 
384 static const struct samsung_aes_variant s5p_aes_data = {
385 	.aes_offset	= 0x4000,
386 	.hash_offset	= 0x6000,
387 };
388 
389 static const struct samsung_aes_variant exynos_aes_data = {
390 	.aes_offset	= 0x200,
391 	.hash_offset	= 0x400,
392 };
393 
394 static const struct of_device_id s5p_sss_dt_match[] = {
395 	{
396 		.compatible = "samsung,s5pv210-secss",
397 		.data = &s5p_aes_data,
398 	},
399 	{
400 		.compatible = "samsung,exynos4210-secss",
401 		.data = &exynos_aes_data,
402 	},
403 	{ },
404 };
405 MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
406 
407 static inline const struct samsung_aes_variant *find_s5p_sss_version
408 				   (const struct platform_device *pdev)
409 {
410 	if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node)) {
411 		const struct of_device_id *match;
412 
413 		match = of_match_node(s5p_sss_dt_match,
414 					pdev->dev.of_node);
415 		return (const struct samsung_aes_variant *)match->data;
416 	}
417 	return (const struct samsung_aes_variant *)
418 			platform_get_device_id(pdev)->driver_data;
419 }
420 
421 static struct s5p_aes_dev *s5p_dev;
422 
423 static void s5p_set_dma_indata(struct s5p_aes_dev *dev,
424 			       const struct scatterlist *sg)
425 {
426 	SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
427 	SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
428 }
429 
430 static void s5p_set_dma_outdata(struct s5p_aes_dev *dev,
431 				const struct scatterlist *sg)
432 {
433 	SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
434 	SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
435 }
436 
437 static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
438 {
439 	int len;
440 
441 	if (!*sg)
442 		return;
443 
444 	len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
445 	free_pages((unsigned long)sg_virt(*sg), get_order(len));
446 
447 	kfree(*sg);
448 	*sg = NULL;
449 }
450 
451 static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg,
452 			    unsigned int nbytes, int out)
453 {
454 	struct scatter_walk walk;
455 
456 	if (!nbytes)
457 		return;
458 
459 	scatterwalk_start(&walk, sg);
460 	scatterwalk_copychunks(buf, &walk, nbytes, out);
461 	scatterwalk_done(&walk, out, 0);
462 }
463 
464 static void s5p_sg_done(struct s5p_aes_dev *dev)
465 {
466 	if (dev->sg_dst_cpy) {
467 		dev_dbg(dev->dev,
468 			"Copying %d bytes of output data back to original place\n",
469 			dev->req->nbytes);
470 		s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst,
471 				dev->req->nbytes, 1);
472 	}
473 	s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
474 	s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
475 }
476 
477 /* Calls the completion. Cannot be called with dev->lock hold. */
478 static void s5p_aes_complete(struct ablkcipher_request *req, int err)
479 {
480 	req->base.complete(&req->base, err);
481 }
482 
483 static void s5p_unset_outdata(struct s5p_aes_dev *dev)
484 {
485 	dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
486 }
487 
488 static void s5p_unset_indata(struct s5p_aes_dev *dev)
489 {
490 	dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
491 }
492 
493 static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
494 			   struct scatterlist **dst)
495 {
496 	void *pages;
497 	int len;
498 
499 	*dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
500 	if (!*dst)
501 		return -ENOMEM;
502 
503 	len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
504 	pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
505 	if (!pages) {
506 		kfree(*dst);
507 		*dst = NULL;
508 		return -ENOMEM;
509 	}
510 
511 	s5p_sg_copy_buf(pages, src, dev->req->nbytes, 0);
512 
513 	sg_init_table(*dst, 1);
514 	sg_set_buf(*dst, pages, len);
515 
516 	return 0;
517 }
518 
519 static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
520 {
521 	if (!sg->length)
522 		return -EINVAL;
523 
524 	if (!dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE))
525 		return -ENOMEM;
526 
527 	dev->sg_dst = sg;
528 
529 	return 0;
530 }
531 
532 static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
533 {
534 	if (!sg->length)
535 		return -EINVAL;
536 
537 	if (!dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE))
538 		return -ENOMEM;
539 
540 	dev->sg_src = sg;
541 
542 	return 0;
543 }
544 
545 /*
546  * Returns -ERRNO on error (mapping of new data failed).
547  * On success returns:
548  *  - 0 if there is no more data,
549  *  - 1 if new transmitting (output) data is ready and its address+length
550  *     have to be written to device (by calling s5p_set_dma_outdata()).
551  */
552 static int s5p_aes_tx(struct s5p_aes_dev *dev)
553 {
554 	int ret = 0;
555 
556 	s5p_unset_outdata(dev);
557 
558 	if (!sg_is_last(dev->sg_dst)) {
559 		ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
560 		if (!ret)
561 			ret = 1;
562 	}
563 
564 	return ret;
565 }
566 
567 /*
568  * Returns -ERRNO on error (mapping of new data failed).
569  * On success returns:
570  *  - 0 if there is no more data,
571  *  - 1 if new receiving (input) data is ready and its address+length
572  *     have to be written to device (by calling s5p_set_dma_indata()).
573  */
574 static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
575 {
576 	int ret = 0;
577 
578 	s5p_unset_indata(dev);
579 
580 	if (!sg_is_last(dev->sg_src)) {
581 		ret = s5p_set_indata(dev, sg_next(dev->sg_src));
582 		if (!ret)
583 			ret = 1;
584 	}
585 
586 	return ret;
587 }
588 
589 static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset)
590 {
591 	return __raw_readl(dd->io_hash_base + offset);
592 }
593 
594 static inline void s5p_hash_write(struct s5p_aes_dev *dd,
595 				  u32 offset, u32 value)
596 {
597 	__raw_writel(value, dd->io_hash_base + offset);
598 }
599 
600 /**
601  * s5p_set_dma_hashdata() - start DMA with sg
602  * @dev:	device
603  * @sg:		scatterlist ready to DMA transmit
604  */
605 static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev,
606 				 const struct scatterlist *sg)
607 {
608 	dev->hash_sg_cnt--;
609 	SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg));
610 	SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */
611 }
612 
613 /**
614  * s5p_hash_rx() - get next hash_sg_iter
615  * @dev:	device
616  *
617  * Return:
618  * 2	if there is no more data and it is UPDATE op
619  * 1	if new receiving (input) data is ready and can be written to device
620  * 0	if there is no more data and it is FINAL op
621  */
622 static int s5p_hash_rx(struct s5p_aes_dev *dev)
623 {
624 	if (dev->hash_sg_cnt > 0) {
625 		dev->hash_sg_iter = sg_next(dev->hash_sg_iter);
626 		return 1;
627 	}
628 
629 	set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags);
630 	if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags))
631 		return 0;
632 
633 	return 2;
634 }
635 
636 static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
637 {
638 	struct platform_device *pdev = dev_id;
639 	struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
640 	struct ablkcipher_request *req;
641 	int err_dma_tx = 0;
642 	int err_dma_rx = 0;
643 	int err_dma_hx = 0;
644 	bool tx_end = false;
645 	bool hx_end = false;
646 	unsigned long flags;
647 	u32 status, st_bits;
648 	int err;
649 
650 	spin_lock_irqsave(&dev->lock, flags);
651 
652 	/*
653 	 * Handle rx or tx interrupt. If there is still data (scatterlist did not
654 	 * reach end), then map next scatterlist entry.
655 	 * In case of such mapping error, s5p_aes_complete() should be called.
656 	 *
657 	 * If there is no more data in tx scatter list, call s5p_aes_complete()
658 	 * and schedule new tasklet.
659 	 *
660 	 * Handle hx interrupt. If there is still data map next entry.
661 	 */
662 	status = SSS_READ(dev, FCINTSTAT);
663 	if (status & SSS_FCINTSTAT_BRDMAINT)
664 		err_dma_rx = s5p_aes_rx(dev);
665 
666 	if (status & SSS_FCINTSTAT_BTDMAINT) {
667 		if (sg_is_last(dev->sg_dst))
668 			tx_end = true;
669 		err_dma_tx = s5p_aes_tx(dev);
670 	}
671 
672 	if (status & SSS_FCINTSTAT_HRDMAINT)
673 		err_dma_hx = s5p_hash_rx(dev);
674 
675 	st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT |
676 				SSS_FCINTSTAT_HRDMAINT);
677 	/* clear DMA bits */
678 	SSS_WRITE(dev, FCINTPEND, st_bits);
679 
680 	/* clear HASH irq bits */
681 	if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) {
682 		/* cannot have both HPART and HDONE */
683 		if (status & SSS_FCINTSTAT_HPARTINT)
684 			st_bits = SSS_HASH_STATUS_PARTIAL_DONE;
685 
686 		if (status & SSS_FCINTSTAT_HDONEINT)
687 			st_bits = SSS_HASH_STATUS_MSG_DONE;
688 
689 		set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags);
690 		s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits);
691 		hx_end = true;
692 		/* when DONE or PART, do not handle HASH DMA */
693 		err_dma_hx = 0;
694 	}
695 
696 	if (err_dma_rx < 0) {
697 		err = err_dma_rx;
698 		goto error;
699 	}
700 	if (err_dma_tx < 0) {
701 		err = err_dma_tx;
702 		goto error;
703 	}
704 
705 	if (tx_end) {
706 		s5p_sg_done(dev);
707 		if (err_dma_hx == 1)
708 			s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
709 
710 		spin_unlock_irqrestore(&dev->lock, flags);
711 
712 		s5p_aes_complete(dev->req, 0);
713 		/* Device is still busy */
714 		tasklet_schedule(&dev->tasklet);
715 	} else {
716 		/*
717 		 * Writing length of DMA block (either receiving or
718 		 * transmitting) will start the operation immediately, so this
719 		 * should be done at the end (even after clearing pending
720 		 * interrupts to not miss the interrupt).
721 		 */
722 		if (err_dma_tx == 1)
723 			s5p_set_dma_outdata(dev, dev->sg_dst);
724 		if (err_dma_rx == 1)
725 			s5p_set_dma_indata(dev, dev->sg_src);
726 		if (err_dma_hx == 1)
727 			s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
728 
729 		spin_unlock_irqrestore(&dev->lock, flags);
730 	}
731 
732 	goto hash_irq_end;
733 
734 error:
735 	s5p_sg_done(dev);
736 	dev->busy = false;
737 	req = dev->req;
738 	if (err_dma_hx == 1)
739 		s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
740 
741 	spin_unlock_irqrestore(&dev->lock, flags);
742 	s5p_aes_complete(req, err);
743 
744 hash_irq_end:
745 	/*
746 	 * Note about else if:
747 	 *   when hash_sg_iter reaches end and its UPDATE op,
748 	 *   issue SSS_HASH_PAUSE and wait for HPART irq
749 	 */
750 	if (hx_end)
751 		tasklet_schedule(&dev->hash_tasklet);
752 	else if (err_dma_hx == 2)
753 		s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE,
754 			       SSS_HASH_PAUSE);
755 
756 	return IRQ_HANDLED;
757 }
758 
759 /**
760  * s5p_hash_read_msg() - read message or IV from HW
761  * @req:	AHASH request
762  */
763 static void s5p_hash_read_msg(struct ahash_request *req)
764 {
765 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
766 	struct s5p_aes_dev *dd = ctx->dd;
767 	u32 *hash = (u32 *)ctx->digest;
768 	unsigned int i;
769 
770 	for (i = 0; i < ctx->nregs; i++)
771 		hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i));
772 }
773 
774 /**
775  * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
776  * @dd:		device
777  * @ctx:	request context
778  */
779 static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd,
780 				  const struct s5p_hash_reqctx *ctx)
781 {
782 	const u32 *hash = (const u32 *)ctx->digest;
783 	unsigned int i;
784 
785 	for (i = 0; i < ctx->nregs; i++)
786 		s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]);
787 }
788 
789 /**
790  * s5p_hash_write_iv() - write IV for next partial/finup op.
791  * @req:	AHASH request
792  */
793 static void s5p_hash_write_iv(struct ahash_request *req)
794 {
795 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
796 
797 	s5p_hash_write_ctx_iv(ctx->dd, ctx);
798 }
799 
800 /**
801  * s5p_hash_copy_result() - copy digest into req->result
802  * @req:	AHASH request
803  */
804 static void s5p_hash_copy_result(struct ahash_request *req)
805 {
806 	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
807 
808 	if (!req->result)
809 		return;
810 
811 	memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF);
812 }
813 
814 /**
815  * s5p_hash_dma_flush() - flush HASH DMA
816  * @dev:	secss device
817  */
818 static void s5p_hash_dma_flush(struct s5p_aes_dev *dev)
819 {
820 	SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH);
821 }
822 
823 /**
824  * s5p_hash_dma_enable() - enable DMA mode for HASH
825  * @dev:	secss device
826  *
827  * enable DMA mode for HASH
828  */
829 static void s5p_hash_dma_enable(struct s5p_aes_dev *dev)
830 {
831 	s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA);
832 }
833 
834 /**
835  * s5p_hash_irq_disable() - disable irq HASH signals
836  * @dev:	secss device
837  * @flags:	bitfield with irq's to be disabled
838  */
839 static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags)
840 {
841 	SSS_WRITE(dev, FCINTENCLR, flags);
842 }
843 
844 /**
845  * s5p_hash_irq_enable() - enable irq signals
846  * @dev:	secss device
847  * @flags:	bitfield with irq's to be enabled
848  */
849 static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags)
850 {
851 	SSS_WRITE(dev, FCINTENSET, flags);
852 }
853 
854 /**
855  * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
856  * @dev:	secss device
857  * @hashflow:	HASH stream flow with/without crypto AES/DES
858  */
859 static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow)
860 {
861 	unsigned long flags;
862 	u32 flow;
863 
864 	spin_lock_irqsave(&dev->lock, flags);
865 
866 	flow = SSS_READ(dev, FCFIFOCTRL);
867 	flow &= ~SSS_HASHIN_MASK;
868 	flow |= hashflow;
869 	SSS_WRITE(dev, FCFIFOCTRL, flow);
870 
871 	spin_unlock_irqrestore(&dev->lock, flags);
872 }
873 
874 /**
875  * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
876  * @dev:	secss device
877  * @hashflow:	HASH stream flow with/without AES/DES
878  *
879  * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
880  * enable HASH irq's HRDMA, HDONE, HPART
881  */
882 static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow)
883 {
884 	s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR |
885 			     SSS_FCINTENCLR_HDONEINTENCLR |
886 			     SSS_FCINTENCLR_HPARTINTENCLR);
887 	s5p_hash_dma_flush(dev);
888 
889 	s5p_hash_dma_enable(dev);
890 	s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK);
891 	s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET |
892 			    SSS_FCINTENSET_HDONEINTENSET |
893 			    SSS_FCINTENSET_HPARTINTENSET);
894 }
895 
896 /**
897  * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
898  * @dd:		secss device
899  * @length:	length for request
900  * @final:	true if final op
901  *
902  * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
903  * after previous updates, fill up IV words. For final, calculate and set
904  * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
905  * length as 2^63 so it will be never reached and set to zero prelow and
906  * prehigh.
907  *
908  * This function does not start DMA transfer.
909  */
910 static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length,
911 				bool final)
912 {
913 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
914 	u32 prelow, prehigh, low, high;
915 	u32 configflags, swapflags;
916 	u64 tmplen;
917 
918 	configflags = ctx->engine | SSS_HASH_INIT_BIT;
919 
920 	if (likely(ctx->digcnt)) {
921 		s5p_hash_write_ctx_iv(dd, ctx);
922 		configflags |= SSS_HASH_USER_IV_EN;
923 	}
924 
925 	if (final) {
926 		/* number of bytes for last part */
927 		low = length;
928 		high = 0;
929 		/* total number of bits prev hashed */
930 		tmplen = ctx->digcnt * 8;
931 		prelow = (u32)tmplen;
932 		prehigh = (u32)(tmplen >> 32);
933 	} else {
934 		prelow = 0;
935 		prehigh = 0;
936 		low = 0;
937 		high = BIT(31);
938 	}
939 
940 	swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO |
941 		    SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY;
942 
943 	s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low);
944 	s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high);
945 	s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow);
946 	s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh);
947 
948 	s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags);
949 	s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags);
950 }
951 
952 /**
953  * s5p_hash_xmit_dma() - start DMA hash processing
954  * @dd:		secss device
955  * @length:	length for request
956  * @final:	true if final op
957  *
958  * Update digcnt here, as it is needed for finup/final op.
959  */
960 static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length,
961 			     bool final)
962 {
963 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
964 	unsigned int cnt;
965 
966 	cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
967 	if (!cnt) {
968 		dev_err(dd->dev, "dma_map_sg error\n");
969 		ctx->error = true;
970 		return -EINVAL;
971 	}
972 
973 	set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
974 	dd->hash_sg_iter = ctx->sg;
975 	dd->hash_sg_cnt = cnt;
976 	s5p_hash_write_ctrl(dd, length, final);
977 	ctx->digcnt += length;
978 	ctx->total -= length;
979 
980 	/* catch last interrupt */
981 	if (final)
982 		set_bit(HASH_FLAGS_FINAL, &dd->hash_flags);
983 
984 	s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */
985 
986 	return -EINPROGRESS;
987 }
988 
989 /**
990  * s5p_hash_copy_sgs() - copy request's bytes into new buffer
991  * @ctx:	request context
992  * @sg:		source scatterlist request
993  * @new_len:	number of bytes to process from sg
994  *
995  * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
996  * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
997  * with allocated buffer.
998  *
999  * Set bit in dd->hash_flag so we can free it after irq ends processing.
1000  */
1001 static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx,
1002 			     struct scatterlist *sg, unsigned int new_len)
1003 {
1004 	unsigned int pages, len;
1005 	void *buf;
1006 
1007 	len = new_len + ctx->bufcnt;
1008 	pages = get_order(len);
1009 
1010 	buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1011 	if (!buf) {
1012 		dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n");
1013 		ctx->error = true;
1014 		return -ENOMEM;
1015 	}
1016 
1017 	if (ctx->bufcnt)
1018 		memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
1019 
1020 	scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip,
1021 				 new_len, 0);
1022 	sg_init_table(ctx->sgl, 1);
1023 	sg_set_buf(ctx->sgl, buf, len);
1024 	ctx->sg = ctx->sgl;
1025 	ctx->sg_len = 1;
1026 	ctx->bufcnt = 0;
1027 	ctx->skip = 0;
1028 	set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags);
1029 
1030 	return 0;
1031 }
1032 
1033 /**
1034  * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1035  * @ctx:	request context
1036  * @sg:		source scatterlist request
1037  * @new_len:	number of bytes to process from sg
1038  *
1039  * Allocate new scatterlist table, copy data for HASH into it. If there was
1040  * xmit_buf filled, prepare it first, then copy page, length and offset from
1041  * source sg into it, adjusting begin and/or end for skip offset and
1042  * hash_later value.
1043  *
1044  * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1045  * it after irq ends processing.
1046  */
1047 static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx,
1048 				  struct scatterlist *sg, unsigned int new_len)
1049 {
1050 	unsigned int skip = ctx->skip, n = sg_nents(sg);
1051 	struct scatterlist *tmp;
1052 	unsigned int len;
1053 
1054 	if (ctx->bufcnt)
1055 		n++;
1056 
1057 	ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
1058 	if (!ctx->sg) {
1059 		ctx->error = true;
1060 		return -ENOMEM;
1061 	}
1062 
1063 	sg_init_table(ctx->sg, n);
1064 
1065 	tmp = ctx->sg;
1066 
1067 	ctx->sg_len = 0;
1068 
1069 	if (ctx->bufcnt) {
1070 		sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
1071 		tmp = sg_next(tmp);
1072 		ctx->sg_len++;
1073 	}
1074 
1075 	while (sg && skip >= sg->length) {
1076 		skip -= sg->length;
1077 		sg = sg_next(sg);
1078 	}
1079 
1080 	while (sg && new_len) {
1081 		len = sg->length - skip;
1082 		if (new_len < len)
1083 			len = new_len;
1084 
1085 		new_len -= len;
1086 		sg_set_page(tmp, sg_page(sg), len, sg->offset + skip);
1087 		skip = 0;
1088 		if (new_len <= 0)
1089 			sg_mark_end(tmp);
1090 
1091 		tmp = sg_next(tmp);
1092 		ctx->sg_len++;
1093 		sg = sg_next(sg);
1094 	}
1095 
1096 	set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags);
1097 
1098 	return 0;
1099 }
1100 
1101 /**
1102  * s5p_hash_prepare_sgs() - prepare sg for processing
1103  * @ctx:	request context
1104  * @sg:		source scatterlist request
1105  * @nbytes:	number of bytes to process from sg
1106  * @final:	final flag
1107  *
1108  * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1109  * sg table have good aligned elements (list_ok). If one of this checks fails,
1110  * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1111  * data into this buffer and prepare request in sgl, or (2) allocates new sg
1112  * table and prepare sg elements.
1113  *
1114  * For digest or finup all conditions can be good, and we may not need any
1115  * fixes.
1116  */
1117 static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx,
1118 				struct scatterlist *sg,
1119 				unsigned int new_len, bool final)
1120 {
1121 	unsigned int skip = ctx->skip, nbytes = new_len, n = 0;
1122 	bool aligned = true, list_ok = true;
1123 	struct scatterlist *sg_tmp = sg;
1124 
1125 	if (!sg || !sg->length || !new_len)
1126 		return 0;
1127 
1128 	if (skip || !final)
1129 		list_ok = false;
1130 
1131 	while (nbytes > 0 && sg_tmp) {
1132 		n++;
1133 		if (skip >= sg_tmp->length) {
1134 			skip -= sg_tmp->length;
1135 			if (!sg_tmp->length) {
1136 				aligned = false;
1137 				break;
1138 			}
1139 		} else {
1140 			if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) {
1141 				aligned = false;
1142 				break;
1143 			}
1144 
1145 			if (nbytes < sg_tmp->length - skip) {
1146 				list_ok = false;
1147 				break;
1148 			}
1149 
1150 			nbytes -= sg_tmp->length - skip;
1151 			skip = 0;
1152 		}
1153 
1154 		sg_tmp = sg_next(sg_tmp);
1155 	}
1156 
1157 	if (!aligned)
1158 		return s5p_hash_copy_sgs(ctx, sg, new_len);
1159 	else if (!list_ok)
1160 		return s5p_hash_copy_sg_lists(ctx, sg, new_len);
1161 
1162 	/*
1163 	 * Have aligned data from previous operation and/or current
1164 	 * Note: will enter here only if (digest or finup) and aligned
1165 	 */
1166 	if (ctx->bufcnt) {
1167 		ctx->sg_len = n;
1168 		sg_init_table(ctx->sgl, 2);
1169 		sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt);
1170 		sg_chain(ctx->sgl, 2, sg);
1171 		ctx->sg = ctx->sgl;
1172 		ctx->sg_len++;
1173 	} else {
1174 		ctx->sg = sg;
1175 		ctx->sg_len = n;
1176 	}
1177 
1178 	return 0;
1179 }
1180 
1181 /**
1182  * s5p_hash_prepare_request() - prepare request for processing
1183  * @req:	AHASH request
1184  * @update:	true if UPDATE op
1185  *
1186  * Note 1: we can have update flag _and_ final flag at the same time.
1187  * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1188  *	   either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1189  *	   we have final op
1190  */
1191 static int s5p_hash_prepare_request(struct ahash_request *req, bool update)
1192 {
1193 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1194 	bool final = ctx->finup;
1195 	int xmit_len, hash_later, nbytes;
1196 	int ret;
1197 
1198 	if (update)
1199 		nbytes = req->nbytes;
1200 	else
1201 		nbytes = 0;
1202 
1203 	ctx->total = nbytes + ctx->bufcnt;
1204 	if (!ctx->total)
1205 		return 0;
1206 
1207 	if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) {
1208 		/* bytes left from previous request, so fill up to BUFLEN */
1209 		int len = BUFLEN - ctx->bufcnt % BUFLEN;
1210 
1211 		if (len > nbytes)
1212 			len = nbytes;
1213 
1214 		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1215 					 0, len, 0);
1216 		ctx->bufcnt += len;
1217 		nbytes -= len;
1218 		ctx->skip = len;
1219 	} else {
1220 		ctx->skip = 0;
1221 	}
1222 
1223 	if (ctx->bufcnt)
1224 		memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt);
1225 
1226 	xmit_len = ctx->total;
1227 	if (final) {
1228 		hash_later = 0;
1229 	} else {
1230 		if (IS_ALIGNED(xmit_len, BUFLEN))
1231 			xmit_len -= BUFLEN;
1232 		else
1233 			xmit_len -= xmit_len & (BUFLEN - 1);
1234 
1235 		hash_later = ctx->total - xmit_len;
1236 		/* copy hash_later bytes from end of req->src */
1237 		/* previous bytes are in xmit_buf, so no overwrite */
1238 		scatterwalk_map_and_copy(ctx->buffer, req->src,
1239 					 req->nbytes - hash_later,
1240 					 hash_later, 0);
1241 	}
1242 
1243 	if (xmit_len > BUFLEN) {
1244 		ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later,
1245 					   final);
1246 		if (ret)
1247 			return ret;
1248 	} else {
1249 		/* have buffered data only */
1250 		if (unlikely(!ctx->bufcnt)) {
1251 			/* first update didn't fill up buffer */
1252 			scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src,
1253 						 0, xmit_len, 0);
1254 		}
1255 
1256 		sg_init_table(ctx->sgl, 1);
1257 		sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len);
1258 
1259 		ctx->sg = ctx->sgl;
1260 		ctx->sg_len = 1;
1261 	}
1262 
1263 	ctx->bufcnt = hash_later;
1264 	if (!final)
1265 		ctx->total = xmit_len;
1266 
1267 	return 0;
1268 }
1269 
1270 /**
1271  * s5p_hash_update_dma_stop() - unmap DMA
1272  * @dd:		secss device
1273  *
1274  * Unmap scatterlist ctx->sg.
1275  */
1276 static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd)
1277 {
1278 	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
1279 
1280 	dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
1281 	clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
1282 }
1283 
1284 /**
1285  * s5p_hash_finish() - copy calculated digest to crypto layer
1286  * @req:	AHASH request
1287  */
1288 static void s5p_hash_finish(struct ahash_request *req)
1289 {
1290 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1291 	struct s5p_aes_dev *dd = ctx->dd;
1292 
1293 	if (ctx->digcnt)
1294 		s5p_hash_copy_result(req);
1295 
1296 	dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt);
1297 }
1298 
1299 /**
1300  * s5p_hash_finish_req() - finish request
1301  * @req:	AHASH request
1302  * @err:	error
1303  */
1304 static void s5p_hash_finish_req(struct ahash_request *req, int err)
1305 {
1306 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1307 	struct s5p_aes_dev *dd = ctx->dd;
1308 	unsigned long flags;
1309 
1310 	if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags))
1311 		free_pages((unsigned long)sg_virt(ctx->sg),
1312 			   get_order(ctx->sg->length));
1313 
1314 	if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags))
1315 		kfree(ctx->sg);
1316 
1317 	ctx->sg = NULL;
1318 	dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) |
1319 			    BIT(HASH_FLAGS_SGS_COPIED));
1320 
1321 	if (!err && !ctx->error) {
1322 		s5p_hash_read_msg(req);
1323 		if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags))
1324 			s5p_hash_finish(req);
1325 	} else {
1326 		ctx->error = true;
1327 	}
1328 
1329 	spin_lock_irqsave(&dd->hash_lock, flags);
1330 	dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) |
1331 			    BIT(HASH_FLAGS_DMA_READY) |
1332 			    BIT(HASH_FLAGS_OUTPUT_READY));
1333 	spin_unlock_irqrestore(&dd->hash_lock, flags);
1334 
1335 	if (req->base.complete)
1336 		req->base.complete(&req->base, err);
1337 }
1338 
1339 /**
1340  * s5p_hash_handle_queue() - handle hash queue
1341  * @dd:		device s5p_aes_dev
1342  * @req:	AHASH request
1343  *
1344  * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1345  * device then processes the first request from the dd->queue
1346  *
1347  * Returns: see s5p_hash_final below.
1348  */
1349 static int s5p_hash_handle_queue(struct s5p_aes_dev *dd,
1350 				 struct ahash_request *req)
1351 {
1352 	struct crypto_async_request *async_req, *backlog;
1353 	struct s5p_hash_reqctx *ctx;
1354 	unsigned long flags;
1355 	int err = 0, ret = 0;
1356 
1357 retry:
1358 	spin_lock_irqsave(&dd->hash_lock, flags);
1359 	if (req)
1360 		ret = ahash_enqueue_request(&dd->hash_queue, req);
1361 
1362 	if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1363 		spin_unlock_irqrestore(&dd->hash_lock, flags);
1364 		return ret;
1365 	}
1366 
1367 	backlog = crypto_get_backlog(&dd->hash_queue);
1368 	async_req = crypto_dequeue_request(&dd->hash_queue);
1369 	if (async_req)
1370 		set_bit(HASH_FLAGS_BUSY, &dd->hash_flags);
1371 
1372 	spin_unlock_irqrestore(&dd->hash_lock, flags);
1373 
1374 	if (!async_req)
1375 		return ret;
1376 
1377 	if (backlog)
1378 		backlog->complete(backlog, -EINPROGRESS);
1379 
1380 	req = ahash_request_cast(async_req);
1381 	dd->hash_req = req;
1382 	ctx = ahash_request_ctx(req);
1383 
1384 	err = s5p_hash_prepare_request(req, ctx->op_update);
1385 	if (err || !ctx->total)
1386 		goto out;
1387 
1388 	dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n",
1389 		ctx->op_update, req->nbytes);
1390 
1391 	s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT);
1392 	if (ctx->digcnt)
1393 		s5p_hash_write_iv(req); /* restore hash IV */
1394 
1395 	if (ctx->op_update) { /* HASH_OP_UPDATE */
1396 		err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup);
1397 		if (err != -EINPROGRESS && ctx->finup && !ctx->error)
1398 			/* no final() after finup() */
1399 			err = s5p_hash_xmit_dma(dd, ctx->total, true);
1400 	} else { /* HASH_OP_FINAL */
1401 		err = s5p_hash_xmit_dma(dd, ctx->total, true);
1402 	}
1403 out:
1404 	if (err != -EINPROGRESS) {
1405 		/* hash_tasklet_cb will not finish it, so do it here */
1406 		s5p_hash_finish_req(req, err);
1407 		req = NULL;
1408 
1409 		/*
1410 		 * Execute next request immediately if there is anything
1411 		 * in queue.
1412 		 */
1413 		goto retry;
1414 	}
1415 
1416 	return ret;
1417 }
1418 
1419 /**
1420  * s5p_hash_tasklet_cb() - hash tasklet
1421  * @data:	ptr to s5p_aes_dev
1422  */
1423 static void s5p_hash_tasklet_cb(unsigned long data)
1424 {
1425 	struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data;
1426 
1427 	if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1428 		s5p_hash_handle_queue(dd, NULL);
1429 		return;
1430 	}
1431 
1432 	if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) {
1433 		if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE,
1434 				       &dd->hash_flags)) {
1435 			s5p_hash_update_dma_stop(dd);
1436 		}
1437 
1438 		if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY,
1439 				       &dd->hash_flags)) {
1440 			/* hash or semi-hash ready */
1441 			clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags);
1442 			goto finish;
1443 		}
1444 	}
1445 
1446 	return;
1447 
1448 finish:
1449 	/* finish curent request */
1450 	s5p_hash_finish_req(dd->hash_req, 0);
1451 
1452 	/* If we are not busy, process next req */
1453 	if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags))
1454 		s5p_hash_handle_queue(dd, NULL);
1455 }
1456 
1457 /**
1458  * s5p_hash_enqueue() - enqueue request
1459  * @req:	AHASH request
1460  * @op:		operation UPDATE (true) or FINAL (false)
1461  *
1462  * Returns: see s5p_hash_final below.
1463  */
1464 static int s5p_hash_enqueue(struct ahash_request *req, bool op)
1465 {
1466 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1467 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1468 
1469 	ctx->op_update = op;
1470 
1471 	return s5p_hash_handle_queue(tctx->dd, req);
1472 }
1473 
1474 /**
1475  * s5p_hash_update() - process the hash input data
1476  * @req:	AHASH request
1477  *
1478  * If request will fit in buffer, copy it and return immediately
1479  * else enqueue it with OP_UPDATE.
1480  *
1481  * Returns: see s5p_hash_final below.
1482  */
1483 static int s5p_hash_update(struct ahash_request *req)
1484 {
1485 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1486 
1487 	if (!req->nbytes)
1488 		return 0;
1489 
1490 	if (ctx->bufcnt + req->nbytes <= BUFLEN) {
1491 		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1492 					 0, req->nbytes, 0);
1493 		ctx->bufcnt += req->nbytes;
1494 		return 0;
1495 	}
1496 
1497 	return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */
1498 }
1499 
1500 /**
1501  * s5p_hash_shash_digest() - calculate shash digest
1502  * @tfm:	crypto transformation
1503  * @flags:	tfm flags
1504  * @data:	input data
1505  * @len:	length of data
1506  * @out:	output buffer
1507  */
1508 static int s5p_hash_shash_digest(struct crypto_shash *tfm, u32 flags,
1509 				 const u8 *data, unsigned int len, u8 *out)
1510 {
1511 	SHASH_DESC_ON_STACK(shash, tfm);
1512 
1513 	shash->tfm = tfm;
1514 	shash->flags = flags & ~CRYPTO_TFM_REQ_MAY_SLEEP;
1515 
1516 	return crypto_shash_digest(shash, data, len, out);
1517 }
1518 
1519 /**
1520  * s5p_hash_final_shash() - calculate shash digest
1521  * @req:	AHASH request
1522  */
1523 static int s5p_hash_final_shash(struct ahash_request *req)
1524 {
1525 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1526 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1527 
1528 	return s5p_hash_shash_digest(tctx->fallback, req->base.flags,
1529 				     ctx->buffer, ctx->bufcnt, req->result);
1530 }
1531 
1532 /**
1533  * s5p_hash_final() - close up hash and calculate digest
1534  * @req:	AHASH request
1535  *
1536  * Note: in final req->src do not have any data, and req->nbytes can be
1537  * non-zero.
1538  *
1539  * If there were no input data processed yet and the buffered hash data is
1540  * less than BUFLEN (64) then calculate the final hash immediately by using
1541  * SW algorithm fallback.
1542  *
1543  * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1544  * and finalize hash message in HW. Note that if digcnt!=0 then there were
1545  * previous update op, so there are always some buffered bytes in ctx->buffer,
1546  * which means that ctx->bufcnt!=0
1547  *
1548  * Returns:
1549  * 0 if the request has been processed immediately,
1550  * -EINPROGRESS if the operation has been queued for later execution or is set
1551  *		to processing by HW,
1552  * -EBUSY if queue is full and request should be resubmitted later,
1553  * other negative values denotes an error.
1554  */
1555 static int s5p_hash_final(struct ahash_request *req)
1556 {
1557 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1558 
1559 	ctx->finup = true;
1560 	if (ctx->error)
1561 		return -EINVAL; /* uncompleted hash is not needed */
1562 
1563 	if (!ctx->digcnt && ctx->bufcnt < BUFLEN)
1564 		return s5p_hash_final_shash(req);
1565 
1566 	return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */
1567 }
1568 
1569 /**
1570  * s5p_hash_finup() - process last req->src and calculate digest
1571  * @req:	AHASH request containing the last update data
1572  *
1573  * Return values: see s5p_hash_final above.
1574  */
1575 static int s5p_hash_finup(struct ahash_request *req)
1576 {
1577 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1578 	int err1, err2;
1579 
1580 	ctx->finup = true;
1581 
1582 	err1 = s5p_hash_update(req);
1583 	if (err1 == -EINPROGRESS || err1 == -EBUSY)
1584 		return err1;
1585 
1586 	/*
1587 	 * final() has to be always called to cleanup resources even if
1588 	 * update() failed, except EINPROGRESS or calculate digest for small
1589 	 * size
1590 	 */
1591 	err2 = s5p_hash_final(req);
1592 
1593 	return err1 ?: err2;
1594 }
1595 
1596 /**
1597  * s5p_hash_init() - initialize AHASH request contex
1598  * @req:	AHASH request
1599  *
1600  * Init async hash request context.
1601  */
1602 static int s5p_hash_init(struct ahash_request *req)
1603 {
1604 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1605 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1606 	struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1607 
1608 	ctx->dd = tctx->dd;
1609 	ctx->error = false;
1610 	ctx->finup = false;
1611 	ctx->bufcnt = 0;
1612 	ctx->digcnt = 0;
1613 	ctx->total = 0;
1614 	ctx->skip = 0;
1615 
1616 	dev_dbg(tctx->dd->dev, "init: digest size: %d\n",
1617 		crypto_ahash_digestsize(tfm));
1618 
1619 	switch (crypto_ahash_digestsize(tfm)) {
1620 	case MD5_DIGEST_SIZE:
1621 		ctx->engine = SSS_HASH_ENGINE_MD5;
1622 		ctx->nregs = HASH_MD5_MAX_REG;
1623 		break;
1624 	case SHA1_DIGEST_SIZE:
1625 		ctx->engine = SSS_HASH_ENGINE_SHA1;
1626 		ctx->nregs = HASH_SHA1_MAX_REG;
1627 		break;
1628 	case SHA256_DIGEST_SIZE:
1629 		ctx->engine = SSS_HASH_ENGINE_SHA256;
1630 		ctx->nregs = HASH_SHA256_MAX_REG;
1631 		break;
1632 	default:
1633 		ctx->error = true;
1634 		return -EINVAL;
1635 	}
1636 
1637 	return 0;
1638 }
1639 
1640 /**
1641  * s5p_hash_digest - calculate digest from req->src
1642  * @req:	AHASH request
1643  *
1644  * Return values: see s5p_hash_final above.
1645  */
1646 static int s5p_hash_digest(struct ahash_request *req)
1647 {
1648 	return s5p_hash_init(req) ?: s5p_hash_finup(req);
1649 }
1650 
1651 /**
1652  * s5p_hash_cra_init_alg - init crypto alg transformation
1653  * @tfm:	crypto transformation
1654  */
1655 static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm)
1656 {
1657 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1658 	const char *alg_name = crypto_tfm_alg_name(tfm);
1659 
1660 	tctx->dd = s5p_dev;
1661 	/* Allocate a fallback and abort if it failed. */
1662 	tctx->fallback = crypto_alloc_shash(alg_name, 0,
1663 					    CRYPTO_ALG_NEED_FALLBACK);
1664 	if (IS_ERR(tctx->fallback)) {
1665 		pr_err("fallback alloc fails for '%s'\n", alg_name);
1666 		return PTR_ERR(tctx->fallback);
1667 	}
1668 
1669 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1670 				 sizeof(struct s5p_hash_reqctx) + BUFLEN);
1671 
1672 	return 0;
1673 }
1674 
1675 /**
1676  * s5p_hash_cra_init - init crypto tfm
1677  * @tfm:	crypto transformation
1678  */
1679 static int s5p_hash_cra_init(struct crypto_tfm *tfm)
1680 {
1681 	return s5p_hash_cra_init_alg(tfm);
1682 }
1683 
1684 /**
1685  * s5p_hash_cra_exit - exit crypto tfm
1686  * @tfm:	crypto transformation
1687  *
1688  * free allocated fallback
1689  */
1690 static void s5p_hash_cra_exit(struct crypto_tfm *tfm)
1691 {
1692 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1693 
1694 	crypto_free_shash(tctx->fallback);
1695 	tctx->fallback = NULL;
1696 }
1697 
1698 /**
1699  * s5p_hash_export - export hash state
1700  * @req:	AHASH request
1701  * @out:	buffer for exported state
1702  */
1703 static int s5p_hash_export(struct ahash_request *req, void *out)
1704 {
1705 	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1706 
1707 	memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt);
1708 
1709 	return 0;
1710 }
1711 
1712 /**
1713  * s5p_hash_import - import hash state
1714  * @req:	AHASH request
1715  * @in:		buffer with state to be imported from
1716  */
1717 static int s5p_hash_import(struct ahash_request *req, const void *in)
1718 {
1719 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1720 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1721 	struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1722 	const struct s5p_hash_reqctx *ctx_in = in;
1723 
1724 	memcpy(ctx, in, sizeof(*ctx) + BUFLEN);
1725 	if (ctx_in->bufcnt > BUFLEN) {
1726 		ctx->error = true;
1727 		return -EINVAL;
1728 	}
1729 
1730 	ctx->dd = tctx->dd;
1731 	ctx->error = false;
1732 
1733 	return 0;
1734 }
1735 
1736 static struct ahash_alg algs_sha1_md5_sha256[] = {
1737 {
1738 	.init		= s5p_hash_init,
1739 	.update		= s5p_hash_update,
1740 	.final		= s5p_hash_final,
1741 	.finup		= s5p_hash_finup,
1742 	.digest		= s5p_hash_digest,
1743 	.export		= s5p_hash_export,
1744 	.import		= s5p_hash_import,
1745 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1746 	.halg.digestsize	= SHA1_DIGEST_SIZE,
1747 	.halg.base	= {
1748 		.cra_name		= "sha1",
1749 		.cra_driver_name	= "exynos-sha1",
1750 		.cra_priority		= 100,
1751 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1752 					  CRYPTO_ALG_ASYNC |
1753 					  CRYPTO_ALG_NEED_FALLBACK,
1754 		.cra_blocksize		= HASH_BLOCK_SIZE,
1755 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1756 		.cra_alignmask		= SSS_HASH_DMA_ALIGN_MASK,
1757 		.cra_module		= THIS_MODULE,
1758 		.cra_init		= s5p_hash_cra_init,
1759 		.cra_exit		= s5p_hash_cra_exit,
1760 	}
1761 },
1762 {
1763 	.init		= s5p_hash_init,
1764 	.update		= s5p_hash_update,
1765 	.final		= s5p_hash_final,
1766 	.finup		= s5p_hash_finup,
1767 	.digest		= s5p_hash_digest,
1768 	.export		= s5p_hash_export,
1769 	.import		= s5p_hash_import,
1770 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1771 	.halg.digestsize	= MD5_DIGEST_SIZE,
1772 	.halg.base	= {
1773 		.cra_name		= "md5",
1774 		.cra_driver_name	= "exynos-md5",
1775 		.cra_priority		= 100,
1776 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1777 					  CRYPTO_ALG_ASYNC |
1778 					  CRYPTO_ALG_NEED_FALLBACK,
1779 		.cra_blocksize		= HASH_BLOCK_SIZE,
1780 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1781 		.cra_alignmask		= SSS_HASH_DMA_ALIGN_MASK,
1782 		.cra_module		= THIS_MODULE,
1783 		.cra_init		= s5p_hash_cra_init,
1784 		.cra_exit		= s5p_hash_cra_exit,
1785 	}
1786 },
1787 {
1788 	.init		= s5p_hash_init,
1789 	.update		= s5p_hash_update,
1790 	.final		= s5p_hash_final,
1791 	.finup		= s5p_hash_finup,
1792 	.digest		= s5p_hash_digest,
1793 	.export		= s5p_hash_export,
1794 	.import		= s5p_hash_import,
1795 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1796 	.halg.digestsize	= SHA256_DIGEST_SIZE,
1797 	.halg.base	= {
1798 		.cra_name		= "sha256",
1799 		.cra_driver_name	= "exynos-sha256",
1800 		.cra_priority		= 100,
1801 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1802 					  CRYPTO_ALG_ASYNC |
1803 					  CRYPTO_ALG_NEED_FALLBACK,
1804 		.cra_blocksize		= HASH_BLOCK_SIZE,
1805 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1806 		.cra_alignmask		= SSS_HASH_DMA_ALIGN_MASK,
1807 		.cra_module		= THIS_MODULE,
1808 		.cra_init		= s5p_hash_cra_init,
1809 		.cra_exit		= s5p_hash_cra_exit,
1810 	}
1811 }
1812 
1813 };
1814 
1815 static void s5p_set_aes(struct s5p_aes_dev *dev,
1816 			const u8 *key, const u8 *iv, const u8 *ctr,
1817 			unsigned int keylen)
1818 {
1819 	void __iomem *keystart;
1820 
1821 	if (iv)
1822 		memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv, 0x10);
1823 
1824 	if (ctr)
1825 		memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), ctr, 0x10);
1826 
1827 	if (keylen == AES_KEYSIZE_256)
1828 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
1829 	else if (keylen == AES_KEYSIZE_192)
1830 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
1831 	else
1832 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
1833 
1834 	memcpy_toio(keystart, key, keylen);
1835 }
1836 
1837 static bool s5p_is_sg_aligned(struct scatterlist *sg)
1838 {
1839 	while (sg) {
1840 		if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
1841 			return false;
1842 		sg = sg_next(sg);
1843 	}
1844 
1845 	return true;
1846 }
1847 
1848 static int s5p_set_indata_start(struct s5p_aes_dev *dev,
1849 				struct ablkcipher_request *req)
1850 {
1851 	struct scatterlist *sg;
1852 	int err;
1853 
1854 	dev->sg_src_cpy = NULL;
1855 	sg = req->src;
1856 	if (!s5p_is_sg_aligned(sg)) {
1857 		dev_dbg(dev->dev,
1858 			"At least one unaligned source scatter list, making a copy\n");
1859 		err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
1860 		if (err)
1861 			return err;
1862 
1863 		sg = dev->sg_src_cpy;
1864 	}
1865 
1866 	err = s5p_set_indata(dev, sg);
1867 	if (err) {
1868 		s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
1869 		return err;
1870 	}
1871 
1872 	return 0;
1873 }
1874 
1875 static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
1876 				 struct ablkcipher_request *req)
1877 {
1878 	struct scatterlist *sg;
1879 	int err;
1880 
1881 	dev->sg_dst_cpy = NULL;
1882 	sg = req->dst;
1883 	if (!s5p_is_sg_aligned(sg)) {
1884 		dev_dbg(dev->dev,
1885 			"At least one unaligned dest scatter list, making a copy\n");
1886 		err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
1887 		if (err)
1888 			return err;
1889 
1890 		sg = dev->sg_dst_cpy;
1891 	}
1892 
1893 	err = s5p_set_outdata(dev, sg);
1894 	if (err) {
1895 		s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
1896 		return err;
1897 	}
1898 
1899 	return 0;
1900 }
1901 
1902 static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
1903 {
1904 	struct ablkcipher_request *req = dev->req;
1905 	u32 aes_control;
1906 	unsigned long flags;
1907 	int err;
1908 	u8 *iv, *ctr;
1909 
1910 	/* This sets bit [13:12] to 00, which selects 128-bit counter */
1911 	aes_control = SSS_AES_KEY_CHANGE_MODE;
1912 	if (mode & FLAGS_AES_DECRYPT)
1913 		aes_control |= SSS_AES_MODE_DECRYPT;
1914 
1915 	if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) {
1916 		aes_control |= SSS_AES_CHAIN_MODE_CBC;
1917 		iv = req->info;
1918 		ctr = NULL;
1919 	} else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) {
1920 		aes_control |= SSS_AES_CHAIN_MODE_CTR;
1921 		iv = NULL;
1922 		ctr = req->info;
1923 	} else {
1924 		iv = NULL; /* AES_ECB */
1925 		ctr = NULL;
1926 	}
1927 
1928 	if (dev->ctx->keylen == AES_KEYSIZE_192)
1929 		aes_control |= SSS_AES_KEY_SIZE_192;
1930 	else if (dev->ctx->keylen == AES_KEYSIZE_256)
1931 		aes_control |= SSS_AES_KEY_SIZE_256;
1932 
1933 	aes_control |= SSS_AES_FIFO_MODE;
1934 
1935 	/* as a variant it is possible to use byte swapping on DMA side */
1936 	aes_control |= SSS_AES_BYTESWAP_DI
1937 		    |  SSS_AES_BYTESWAP_DO
1938 		    |  SSS_AES_BYTESWAP_IV
1939 		    |  SSS_AES_BYTESWAP_KEY
1940 		    |  SSS_AES_BYTESWAP_CNT;
1941 
1942 	spin_lock_irqsave(&dev->lock, flags);
1943 
1944 	SSS_WRITE(dev, FCINTENCLR,
1945 		  SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
1946 	SSS_WRITE(dev, FCFIFOCTRL, 0x00);
1947 
1948 	err = s5p_set_indata_start(dev, req);
1949 	if (err)
1950 		goto indata_error;
1951 
1952 	err = s5p_set_outdata_start(dev, req);
1953 	if (err)
1954 		goto outdata_error;
1955 
1956 	SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
1957 	s5p_set_aes(dev, dev->ctx->aes_key, iv, ctr, dev->ctx->keylen);
1958 
1959 	s5p_set_dma_indata(dev,  dev->sg_src);
1960 	s5p_set_dma_outdata(dev, dev->sg_dst);
1961 
1962 	SSS_WRITE(dev, FCINTENSET,
1963 		  SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
1964 
1965 	spin_unlock_irqrestore(&dev->lock, flags);
1966 
1967 	return;
1968 
1969 outdata_error:
1970 	s5p_unset_indata(dev);
1971 
1972 indata_error:
1973 	s5p_sg_done(dev);
1974 	dev->busy = false;
1975 	spin_unlock_irqrestore(&dev->lock, flags);
1976 	s5p_aes_complete(req, err);
1977 }
1978 
1979 static void s5p_tasklet_cb(unsigned long data)
1980 {
1981 	struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
1982 	struct crypto_async_request *async_req, *backlog;
1983 	struct s5p_aes_reqctx *reqctx;
1984 	unsigned long flags;
1985 
1986 	spin_lock_irqsave(&dev->lock, flags);
1987 	backlog   = crypto_get_backlog(&dev->queue);
1988 	async_req = crypto_dequeue_request(&dev->queue);
1989 
1990 	if (!async_req) {
1991 		dev->busy = false;
1992 		spin_unlock_irqrestore(&dev->lock, flags);
1993 		return;
1994 	}
1995 	spin_unlock_irqrestore(&dev->lock, flags);
1996 
1997 	if (backlog)
1998 		backlog->complete(backlog, -EINPROGRESS);
1999 
2000 	dev->req = ablkcipher_request_cast(async_req);
2001 	dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
2002 	reqctx   = ablkcipher_request_ctx(dev->req);
2003 
2004 	s5p_aes_crypt_start(dev, reqctx->mode);
2005 }
2006 
2007 static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
2008 			      struct ablkcipher_request *req)
2009 {
2010 	unsigned long flags;
2011 	int err;
2012 
2013 	spin_lock_irqsave(&dev->lock, flags);
2014 	err = ablkcipher_enqueue_request(&dev->queue, req);
2015 	if (dev->busy) {
2016 		spin_unlock_irqrestore(&dev->lock, flags);
2017 		return err;
2018 	}
2019 	dev->busy = true;
2020 
2021 	spin_unlock_irqrestore(&dev->lock, flags);
2022 
2023 	tasklet_schedule(&dev->tasklet);
2024 
2025 	return err;
2026 }
2027 
2028 static int s5p_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
2029 {
2030 	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
2031 	struct s5p_aes_reqctx *reqctx = ablkcipher_request_ctx(req);
2032 	struct s5p_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
2033 	struct s5p_aes_dev *dev = ctx->dev;
2034 
2035 	if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE) &&
2036 			((mode & FLAGS_AES_MODE_MASK) != FLAGS_AES_CTR)) {
2037 		dev_err(dev->dev, "request size is not exact amount of AES blocks\n");
2038 		return -EINVAL;
2039 	}
2040 
2041 	reqctx->mode = mode;
2042 
2043 	return s5p_aes_handle_req(dev, req);
2044 }
2045 
2046 static int s5p_aes_setkey(struct crypto_ablkcipher *cipher,
2047 			  const u8 *key, unsigned int keylen)
2048 {
2049 	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
2050 	struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2051 
2052 	if (keylen != AES_KEYSIZE_128 &&
2053 	    keylen != AES_KEYSIZE_192 &&
2054 	    keylen != AES_KEYSIZE_256)
2055 		return -EINVAL;
2056 
2057 	memcpy(ctx->aes_key, key, keylen);
2058 	ctx->keylen = keylen;
2059 
2060 	return 0;
2061 }
2062 
2063 static int s5p_aes_ecb_encrypt(struct ablkcipher_request *req)
2064 {
2065 	return s5p_aes_crypt(req, 0);
2066 }
2067 
2068 static int s5p_aes_ecb_decrypt(struct ablkcipher_request *req)
2069 {
2070 	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
2071 }
2072 
2073 static int s5p_aes_cbc_encrypt(struct ablkcipher_request *req)
2074 {
2075 	return s5p_aes_crypt(req, FLAGS_AES_CBC);
2076 }
2077 
2078 static int s5p_aes_cbc_decrypt(struct ablkcipher_request *req)
2079 {
2080 	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
2081 }
2082 
2083 static int s5p_aes_ctr_crypt(struct ablkcipher_request *req)
2084 {
2085 	return s5p_aes_crypt(req, FLAGS_AES_CTR);
2086 }
2087 
2088 static int s5p_aes_cra_init(struct crypto_tfm *tfm)
2089 {
2090 	struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2091 
2092 	ctx->dev = s5p_dev;
2093 	tfm->crt_ablkcipher.reqsize = sizeof(struct s5p_aes_reqctx);
2094 
2095 	return 0;
2096 }
2097 
2098 static struct crypto_alg algs[] = {
2099 	{
2100 		.cra_name		= "ecb(aes)",
2101 		.cra_driver_name	= "ecb-aes-s5p",
2102 		.cra_priority		= 100,
2103 		.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
2104 					  CRYPTO_ALG_ASYNC |
2105 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2106 		.cra_blocksize		= AES_BLOCK_SIZE,
2107 		.cra_ctxsize		= sizeof(struct s5p_aes_ctx),
2108 		.cra_alignmask		= 0x0f,
2109 		.cra_type		= &crypto_ablkcipher_type,
2110 		.cra_module		= THIS_MODULE,
2111 		.cra_init		= s5p_aes_cra_init,
2112 		.cra_u.ablkcipher = {
2113 			.min_keysize	= AES_MIN_KEY_SIZE,
2114 			.max_keysize	= AES_MAX_KEY_SIZE,
2115 			.setkey		= s5p_aes_setkey,
2116 			.encrypt	= s5p_aes_ecb_encrypt,
2117 			.decrypt	= s5p_aes_ecb_decrypt,
2118 		}
2119 	},
2120 	{
2121 		.cra_name		= "cbc(aes)",
2122 		.cra_driver_name	= "cbc-aes-s5p",
2123 		.cra_priority		= 100,
2124 		.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
2125 					  CRYPTO_ALG_ASYNC |
2126 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2127 		.cra_blocksize		= AES_BLOCK_SIZE,
2128 		.cra_ctxsize		= sizeof(struct s5p_aes_ctx),
2129 		.cra_alignmask		= 0x0f,
2130 		.cra_type		= &crypto_ablkcipher_type,
2131 		.cra_module		= THIS_MODULE,
2132 		.cra_init		= s5p_aes_cra_init,
2133 		.cra_u.ablkcipher = {
2134 			.min_keysize	= AES_MIN_KEY_SIZE,
2135 			.max_keysize	= AES_MAX_KEY_SIZE,
2136 			.ivsize		= AES_BLOCK_SIZE,
2137 			.setkey		= s5p_aes_setkey,
2138 			.encrypt	= s5p_aes_cbc_encrypt,
2139 			.decrypt	= s5p_aes_cbc_decrypt,
2140 		}
2141 	},
2142 	{
2143 		.cra_name		= "ctr(aes)",
2144 		.cra_driver_name	= "ctr-aes-s5p",
2145 		.cra_priority		= 100,
2146 		.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
2147 					  CRYPTO_ALG_ASYNC |
2148 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2149 		.cra_blocksize		= AES_BLOCK_SIZE,
2150 		.cra_ctxsize		= sizeof(struct s5p_aes_ctx),
2151 		.cra_alignmask		= 0x0f,
2152 		.cra_type		= &crypto_ablkcipher_type,
2153 		.cra_module		= THIS_MODULE,
2154 		.cra_init		= s5p_aes_cra_init,
2155 		.cra_u.ablkcipher = {
2156 			.min_keysize	= AES_MIN_KEY_SIZE,
2157 			.max_keysize	= AES_MAX_KEY_SIZE,
2158 			.ivsize		= AES_BLOCK_SIZE,
2159 			.setkey		= s5p_aes_setkey,
2160 			.encrypt	= s5p_aes_ctr_crypt,
2161 			.decrypt	= s5p_aes_ctr_crypt,
2162 		}
2163 	},
2164 };
2165 
2166 static int s5p_aes_probe(struct platform_device *pdev)
2167 {
2168 	struct device *dev = &pdev->dev;
2169 	int i, j, err = -ENODEV;
2170 	const struct samsung_aes_variant *variant;
2171 	struct s5p_aes_dev *pdata;
2172 	struct resource *res;
2173 	unsigned int hash_i;
2174 
2175 	if (s5p_dev)
2176 		return -EEXIST;
2177 
2178 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2179 	if (!pdata)
2180 		return -ENOMEM;
2181 
2182 	variant = find_s5p_sss_version(pdev);
2183 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2184 
2185 	/*
2186 	 * Note: HASH and PRNG uses the same registers in secss, avoid
2187 	 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2188 	 * is enabled in config. We need larger size for HASH registers in
2189 	 * secss, current describe only AES/DES
2190 	 */
2191 	if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) {
2192 		if (variant == &exynos_aes_data) {
2193 			res->end += 0x300;
2194 			pdata->use_hash = true;
2195 		}
2196 	}
2197 
2198 	pdata->res = res;
2199 	pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
2200 	if (IS_ERR(pdata->ioaddr)) {
2201 		if (!pdata->use_hash)
2202 			return PTR_ERR(pdata->ioaddr);
2203 		/* try AES without HASH */
2204 		res->end -= 0x300;
2205 		pdata->use_hash = false;
2206 		pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
2207 		if (IS_ERR(pdata->ioaddr))
2208 			return PTR_ERR(pdata->ioaddr);
2209 	}
2210 
2211 	pdata->clk = devm_clk_get(dev, "secss");
2212 	if (IS_ERR(pdata->clk)) {
2213 		dev_err(dev, "failed to find secss clock source\n");
2214 		return -ENOENT;
2215 	}
2216 
2217 	err = clk_prepare_enable(pdata->clk);
2218 	if (err < 0) {
2219 		dev_err(dev, "Enabling SSS clk failed, err %d\n", err);
2220 		return err;
2221 	}
2222 
2223 	spin_lock_init(&pdata->lock);
2224 	spin_lock_init(&pdata->hash_lock);
2225 
2226 	pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
2227 	pdata->io_hash_base = pdata->ioaddr + variant->hash_offset;
2228 
2229 	pdata->irq_fc = platform_get_irq(pdev, 0);
2230 	if (pdata->irq_fc < 0) {
2231 		err = pdata->irq_fc;
2232 		dev_warn(dev, "feed control interrupt is not available.\n");
2233 		goto err_irq;
2234 	}
2235 	err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
2236 					s5p_aes_interrupt, IRQF_ONESHOT,
2237 					pdev->name, pdev);
2238 	if (err < 0) {
2239 		dev_warn(dev, "feed control interrupt is not available.\n");
2240 		goto err_irq;
2241 	}
2242 
2243 	pdata->busy = false;
2244 	pdata->dev = dev;
2245 	platform_set_drvdata(pdev, pdata);
2246 	s5p_dev = pdata;
2247 
2248 	tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
2249 	crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
2250 
2251 	for (i = 0; i < ARRAY_SIZE(algs); i++) {
2252 		err = crypto_register_alg(&algs[i]);
2253 		if (err)
2254 			goto err_algs;
2255 	}
2256 
2257 	if (pdata->use_hash) {
2258 		tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb,
2259 			     (unsigned long)pdata);
2260 		crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH);
2261 
2262 		for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256);
2263 		     hash_i++) {
2264 			struct ahash_alg *alg;
2265 
2266 			alg = &algs_sha1_md5_sha256[hash_i];
2267 			err = crypto_register_ahash(alg);
2268 			if (err) {
2269 				dev_err(dev, "can't register '%s': %d\n",
2270 					alg->halg.base.cra_driver_name, err);
2271 				goto err_hash;
2272 			}
2273 		}
2274 	}
2275 
2276 	dev_info(dev, "s5p-sss driver registered\n");
2277 
2278 	return 0;
2279 
2280 err_hash:
2281 	for (j = hash_i - 1; j >= 0; j--)
2282 		crypto_unregister_ahash(&algs_sha1_md5_sha256[j]);
2283 
2284 	tasklet_kill(&pdata->hash_tasklet);
2285 	res->end -= 0x300;
2286 
2287 err_algs:
2288 	if (i < ARRAY_SIZE(algs))
2289 		dev_err(dev, "can't register '%s': %d\n", algs[i].cra_name,
2290 			err);
2291 
2292 	for (j = 0; j < i; j++)
2293 		crypto_unregister_alg(&algs[j]);
2294 
2295 	tasklet_kill(&pdata->tasklet);
2296 
2297 err_irq:
2298 	clk_disable_unprepare(pdata->clk);
2299 
2300 	s5p_dev = NULL;
2301 
2302 	return err;
2303 }
2304 
2305 static int s5p_aes_remove(struct platform_device *pdev)
2306 {
2307 	struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
2308 	int i;
2309 
2310 	if (!pdata)
2311 		return -ENODEV;
2312 
2313 	for (i = 0; i < ARRAY_SIZE(algs); i++)
2314 		crypto_unregister_alg(&algs[i]);
2315 
2316 	tasklet_kill(&pdata->tasklet);
2317 	if (pdata->use_hash) {
2318 		for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--)
2319 			crypto_unregister_ahash(&algs_sha1_md5_sha256[i]);
2320 
2321 		pdata->res->end -= 0x300;
2322 		tasklet_kill(&pdata->hash_tasklet);
2323 		pdata->use_hash = false;
2324 	}
2325 
2326 	clk_disable_unprepare(pdata->clk);
2327 	s5p_dev = NULL;
2328 
2329 	return 0;
2330 }
2331 
2332 static struct platform_driver s5p_aes_crypto = {
2333 	.probe	= s5p_aes_probe,
2334 	.remove	= s5p_aes_remove,
2335 	.driver	= {
2336 		.name	= "s5p-secss",
2337 		.of_match_table = s5p_sss_dt_match,
2338 	},
2339 };
2340 
2341 module_platform_driver(s5p_aes_crypto);
2342 
2343 MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2344 MODULE_LICENSE("GPL v2");
2345 MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
2346 MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");
2347