xref: /linux/drivers/crypto/s5p-sss.c (revision 2a52ca7c98960aafb0eca9ef96b2d0c932171357)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Cryptographic API.
4 //
5 // Support for Samsung S5PV210 and Exynos HW acceleration.
6 //
7 // Copyright (C) 2011 NetUP Inc. All rights reserved.
8 // Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
9 //
10 // Hash part based on omap-sham.c driver.
11 
12 #include <linux/clk.h>
13 #include <linux/crypto.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/platform_device.h>
24 #include <linux/scatterlist.h>
25 
26 #include <crypto/ctr.h>
27 #include <crypto/aes.h>
28 #include <crypto/algapi.h>
29 #include <crypto/scatterwalk.h>
30 
31 #include <crypto/hash.h>
32 #include <crypto/md5.h>
33 #include <crypto/sha1.h>
34 #include <crypto/sha2.h>
35 #include <crypto/internal/hash.h>
36 
37 #define _SBF(s, v)			((v) << (s))
38 
39 /* Feed control registers */
40 #define SSS_REG_FCINTSTAT		0x0000
41 #define SSS_FCINTSTAT_HPARTINT		BIT(7)
42 #define SSS_FCINTSTAT_HDONEINT		BIT(5)
43 #define SSS_FCINTSTAT_BRDMAINT		BIT(3)
44 #define SSS_FCINTSTAT_BTDMAINT		BIT(2)
45 #define SSS_FCINTSTAT_HRDMAINT		BIT(1)
46 #define SSS_FCINTSTAT_PKDMAINT		BIT(0)
47 
48 #define SSS_REG_FCINTENSET		0x0004
49 #define SSS_FCINTENSET_HPARTINTENSET	BIT(7)
50 #define SSS_FCINTENSET_HDONEINTENSET	BIT(5)
51 #define SSS_FCINTENSET_BRDMAINTENSET	BIT(3)
52 #define SSS_FCINTENSET_BTDMAINTENSET	BIT(2)
53 #define SSS_FCINTENSET_HRDMAINTENSET	BIT(1)
54 #define SSS_FCINTENSET_PKDMAINTENSET	BIT(0)
55 
56 #define SSS_REG_FCINTENCLR		0x0008
57 #define SSS_FCINTENCLR_HPARTINTENCLR	BIT(7)
58 #define SSS_FCINTENCLR_HDONEINTENCLR	BIT(5)
59 #define SSS_FCINTENCLR_BRDMAINTENCLR	BIT(3)
60 #define SSS_FCINTENCLR_BTDMAINTENCLR	BIT(2)
61 #define SSS_FCINTENCLR_HRDMAINTENCLR	BIT(1)
62 #define SSS_FCINTENCLR_PKDMAINTENCLR	BIT(0)
63 
64 #define SSS_REG_FCINTPEND		0x000C
65 #define SSS_FCINTPEND_HPARTINTP		BIT(7)
66 #define SSS_FCINTPEND_HDONEINTP		BIT(5)
67 #define SSS_FCINTPEND_BRDMAINTP		BIT(3)
68 #define SSS_FCINTPEND_BTDMAINTP		BIT(2)
69 #define SSS_FCINTPEND_HRDMAINTP		BIT(1)
70 #define SSS_FCINTPEND_PKDMAINTP		BIT(0)
71 
72 #define SSS_REG_FCFIFOSTAT		0x0010
73 #define SSS_FCFIFOSTAT_BRFIFOFUL	BIT(7)
74 #define SSS_FCFIFOSTAT_BRFIFOEMP	BIT(6)
75 #define SSS_FCFIFOSTAT_BTFIFOFUL	BIT(5)
76 #define SSS_FCFIFOSTAT_BTFIFOEMP	BIT(4)
77 #define SSS_FCFIFOSTAT_HRFIFOFUL	BIT(3)
78 #define SSS_FCFIFOSTAT_HRFIFOEMP	BIT(2)
79 #define SSS_FCFIFOSTAT_PKFIFOFUL	BIT(1)
80 #define SSS_FCFIFOSTAT_PKFIFOEMP	BIT(0)
81 
82 #define SSS_REG_FCFIFOCTRL		0x0014
83 #define SSS_FCFIFOCTRL_DESSEL		BIT(2)
84 #define SSS_HASHIN_INDEPENDENT		_SBF(0, 0x00)
85 #define SSS_HASHIN_CIPHER_INPUT		_SBF(0, 0x01)
86 #define SSS_HASHIN_CIPHER_OUTPUT	_SBF(0, 0x02)
87 #define SSS_HASHIN_MASK			_SBF(0, 0x03)
88 
89 #define SSS_REG_FCBRDMAS		0x0020
90 #define SSS_REG_FCBRDMAL		0x0024
91 #define SSS_REG_FCBRDMAC		0x0028
92 #define SSS_FCBRDMAC_BYTESWAP		BIT(1)
93 #define SSS_FCBRDMAC_FLUSH		BIT(0)
94 
95 #define SSS_REG_FCBTDMAS		0x0030
96 #define SSS_REG_FCBTDMAL		0x0034
97 #define SSS_REG_FCBTDMAC		0x0038
98 #define SSS_FCBTDMAC_BYTESWAP		BIT(1)
99 #define SSS_FCBTDMAC_FLUSH		BIT(0)
100 
101 #define SSS_REG_FCHRDMAS		0x0040
102 #define SSS_REG_FCHRDMAL		0x0044
103 #define SSS_REG_FCHRDMAC		0x0048
104 #define SSS_FCHRDMAC_BYTESWAP		BIT(1)
105 #define SSS_FCHRDMAC_FLUSH		BIT(0)
106 
107 #define SSS_REG_FCPKDMAS		0x0050
108 #define SSS_REG_FCPKDMAL		0x0054
109 #define SSS_REG_FCPKDMAC		0x0058
110 #define SSS_FCPKDMAC_BYTESWAP		BIT(3)
111 #define SSS_FCPKDMAC_DESCEND		BIT(2)
112 #define SSS_FCPKDMAC_TRANSMIT		BIT(1)
113 #define SSS_FCPKDMAC_FLUSH		BIT(0)
114 
115 #define SSS_REG_FCPKDMAO		0x005C
116 
117 /* AES registers */
118 #define SSS_REG_AES_CONTROL		0x00
119 #define SSS_AES_BYTESWAP_DI		BIT(11)
120 #define SSS_AES_BYTESWAP_DO		BIT(10)
121 #define SSS_AES_BYTESWAP_IV		BIT(9)
122 #define SSS_AES_BYTESWAP_CNT		BIT(8)
123 #define SSS_AES_BYTESWAP_KEY		BIT(7)
124 #define SSS_AES_KEY_CHANGE_MODE		BIT(6)
125 #define SSS_AES_KEY_SIZE_128		_SBF(4, 0x00)
126 #define SSS_AES_KEY_SIZE_192		_SBF(4, 0x01)
127 #define SSS_AES_KEY_SIZE_256		_SBF(4, 0x02)
128 #define SSS_AES_FIFO_MODE		BIT(3)
129 #define SSS_AES_CHAIN_MODE_ECB		_SBF(1, 0x00)
130 #define SSS_AES_CHAIN_MODE_CBC		_SBF(1, 0x01)
131 #define SSS_AES_CHAIN_MODE_CTR		_SBF(1, 0x02)
132 #define SSS_AES_MODE_DECRYPT		BIT(0)
133 
134 #define SSS_REG_AES_STATUS		0x04
135 #define SSS_AES_BUSY			BIT(2)
136 #define SSS_AES_INPUT_READY		BIT(1)
137 #define SSS_AES_OUTPUT_READY		BIT(0)
138 
139 #define SSS_REG_AES_IN_DATA(s)		(0x10 + (s << 2))
140 #define SSS_REG_AES_OUT_DATA(s)		(0x20 + (s << 2))
141 #define SSS_REG_AES_IV_DATA(s)		(0x30 + (s << 2))
142 #define SSS_REG_AES_CNT_DATA(s)		(0x40 + (s << 2))
143 #define SSS_REG_AES_KEY_DATA(s)		(0x80 + (s << 2))
144 
145 #define SSS_REG(dev, reg)		((dev)->ioaddr + (SSS_REG_##reg))
146 #define SSS_READ(dev, reg)		__raw_readl(SSS_REG(dev, reg))
147 #define SSS_WRITE(dev, reg, val)	__raw_writel((val), SSS_REG(dev, reg))
148 
149 #define SSS_AES_REG(dev, reg)		((dev)->aes_ioaddr + SSS_REG_##reg)
150 #define SSS_AES_WRITE(dev, reg, val)    __raw_writel((val), \
151 						SSS_AES_REG(dev, reg))
152 
153 /* HW engine modes */
154 #define FLAGS_AES_DECRYPT		BIT(0)
155 #define FLAGS_AES_MODE_MASK		_SBF(1, 0x03)
156 #define FLAGS_AES_CBC			_SBF(1, 0x01)
157 #define FLAGS_AES_CTR			_SBF(1, 0x02)
158 
159 #define AES_KEY_LEN			16
160 #define CRYPTO_QUEUE_LEN		1
161 
162 /* HASH registers */
163 #define SSS_REG_HASH_CTRL		0x00
164 
165 #define SSS_HASH_USER_IV_EN		BIT(5)
166 #define SSS_HASH_INIT_BIT		BIT(4)
167 #define SSS_HASH_ENGINE_SHA1		_SBF(1, 0x00)
168 #define SSS_HASH_ENGINE_MD5		_SBF(1, 0x01)
169 #define SSS_HASH_ENGINE_SHA256		_SBF(1, 0x02)
170 
171 #define SSS_HASH_ENGINE_MASK		_SBF(1, 0x03)
172 
173 #define SSS_REG_HASH_CTRL_PAUSE		0x04
174 
175 #define SSS_HASH_PAUSE			BIT(0)
176 
177 #define SSS_REG_HASH_CTRL_FIFO		0x08
178 
179 #define SSS_HASH_FIFO_MODE_DMA		BIT(0)
180 #define SSS_HASH_FIFO_MODE_CPU          0
181 
182 #define SSS_REG_HASH_CTRL_SWAP		0x0C
183 
184 #define SSS_HASH_BYTESWAP_DI		BIT(3)
185 #define SSS_HASH_BYTESWAP_DO		BIT(2)
186 #define SSS_HASH_BYTESWAP_IV		BIT(1)
187 #define SSS_HASH_BYTESWAP_KEY		BIT(0)
188 
189 #define SSS_REG_HASH_STATUS		0x10
190 
191 #define SSS_HASH_STATUS_MSG_DONE	BIT(6)
192 #define SSS_HASH_STATUS_PARTIAL_DONE	BIT(4)
193 #define SSS_HASH_STATUS_BUFFER_READY	BIT(0)
194 
195 #define SSS_REG_HASH_MSG_SIZE_LOW	0x20
196 #define SSS_REG_HASH_MSG_SIZE_HIGH	0x24
197 
198 #define SSS_REG_HASH_PRE_MSG_SIZE_LOW	0x28
199 #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH	0x2C
200 
201 #define SSS_REG_HASH_IV(s)		(0xB0 + ((s) << 2))
202 #define SSS_REG_HASH_OUT(s)		(0x100 + ((s) << 2))
203 
204 #define HASH_BLOCK_SIZE			64
205 #define HASH_REG_SIZEOF			4
206 #define HASH_MD5_MAX_REG		(MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
207 #define HASH_SHA1_MAX_REG		(SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
208 #define HASH_SHA256_MAX_REG		(SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
209 
210 /*
211  * HASH bit numbers, used by device, setting in dev->hash_flags with
212  * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
213  * to keep HASH state BUSY or FREE, or to signal state from irq_handler
214  * to hash_tasklet. SGS keep track of allocated memory for scatterlist
215  */
216 #define HASH_FLAGS_BUSY		0
217 #define HASH_FLAGS_FINAL	1
218 #define HASH_FLAGS_DMA_ACTIVE	2
219 #define HASH_FLAGS_OUTPUT_READY	3
220 #define HASH_FLAGS_DMA_READY	4
221 #define HASH_FLAGS_SGS_COPIED	5
222 #define HASH_FLAGS_SGS_ALLOCED	6
223 
224 /* HASH HW constants */
225 #define BUFLEN			HASH_BLOCK_SIZE
226 
227 #define SSS_HASH_QUEUE_LENGTH	10
228 
229 /**
230  * struct samsung_aes_variant - platform specific SSS driver data
231  * @aes_offset: AES register offset from SSS module's base.
232  * @hash_offset: HASH register offset from SSS module's base.
233  * @clk_names: names of clocks needed to run SSS IP
234  *
235  * Specifies platform specific configuration of SSS module.
236  * Note: A structure for driver specific platform data is used for future
237  * expansion of its usage.
238  */
239 struct samsung_aes_variant {
240 	unsigned int			aes_offset;
241 	unsigned int			hash_offset;
242 	const char			*clk_names[2];
243 };
244 
245 struct s5p_aes_reqctx {
246 	unsigned long			mode;
247 };
248 
249 struct s5p_aes_ctx {
250 	struct s5p_aes_dev		*dev;
251 
252 	u8				aes_key[AES_MAX_KEY_SIZE];
253 	u8				nonce[CTR_RFC3686_NONCE_SIZE];
254 	int				keylen;
255 };
256 
257 /**
258  * struct s5p_aes_dev - Crypto device state container
259  * @dev:	Associated device
260  * @clk:	Clock for accessing hardware
261  * @pclk:	APB bus clock necessary to access the hardware
262  * @ioaddr:	Mapped IO memory region
263  * @aes_ioaddr:	Per-varian offset for AES block IO memory
264  * @irq_fc:	Feed control interrupt line
265  * @req:	Crypto request currently handled by the device
266  * @ctx:	Configuration for currently handled crypto request
267  * @sg_src:	Scatter list with source data for currently handled block
268  *		in device.  This is DMA-mapped into device.
269  * @sg_dst:	Scatter list with destination data for currently handled block
270  *		in device. This is DMA-mapped into device.
271  * @sg_src_cpy:	In case of unaligned access, copied scatter list
272  *		with source data.
273  * @sg_dst_cpy:	In case of unaligned access, copied scatter list
274  *		with destination data.
275  * @tasklet:	New request scheduling jib
276  * @queue:	Crypto queue
277  * @busy:	Indicates whether the device is currently handling some request
278  *		thus it uses some of the fields from this state, like:
279  *		req, ctx, sg_src/dst (and copies).  This essentially
280  *		protects against concurrent access to these fields.
281  * @lock:	Lock for protecting both access to device hardware registers
282  *		and fields related to current request (including the busy field).
283  * @res:	Resources for hash.
284  * @io_hash_base: Per-variant offset for HASH block IO memory.
285  * @hash_lock:	Lock for protecting hash_req, hash_queue and hash_flags
286  *		variable.
287  * @hash_flags:	Flags for current HASH op.
288  * @hash_queue:	Async hash queue.
289  * @hash_tasklet: New HASH request scheduling job.
290  * @xmit_buf:	Buffer for current HASH request transfer into SSS block.
291  * @hash_req:	Current request sending to SSS HASH block.
292  * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
293  * @hash_sg_cnt: Counter for hash_sg_iter.
294  *
295  * @use_hash:	true if HASH algs enabled
296  */
297 struct s5p_aes_dev {
298 	struct device			*dev;
299 	struct clk			*clk;
300 	struct clk			*pclk;
301 	void __iomem			*ioaddr;
302 	void __iomem			*aes_ioaddr;
303 	int				irq_fc;
304 
305 	struct skcipher_request		*req;
306 	struct s5p_aes_ctx		*ctx;
307 	struct scatterlist		*sg_src;
308 	struct scatterlist		*sg_dst;
309 
310 	struct scatterlist		*sg_src_cpy;
311 	struct scatterlist		*sg_dst_cpy;
312 
313 	struct tasklet_struct		tasklet;
314 	struct crypto_queue		queue;
315 	bool				busy;
316 	spinlock_t			lock;
317 
318 	struct resource			*res;
319 	void __iomem			*io_hash_base;
320 
321 	spinlock_t			hash_lock; /* protect hash_ vars */
322 	unsigned long			hash_flags;
323 	struct crypto_queue		hash_queue;
324 	struct tasklet_struct		hash_tasklet;
325 
326 	u8				xmit_buf[BUFLEN];
327 	struct ahash_request		*hash_req;
328 	struct scatterlist		*hash_sg_iter;
329 	unsigned int			hash_sg_cnt;
330 
331 	bool				use_hash;
332 };
333 
334 /**
335  * struct s5p_hash_reqctx - HASH request context
336  * @dd:		Associated device
337  * @op_update:	Current request operation (OP_UPDATE or OP_FINAL)
338  * @digcnt:	Number of bytes processed by HW (without buffer[] ones)
339  * @digest:	Digest message or IV for partial result
340  * @nregs:	Number of HW registers for digest or IV read/write
341  * @engine:	Bits for selecting type of HASH in SSS block
342  * @sg:		sg for DMA transfer
343  * @sg_len:	Length of sg for DMA transfer
344  * @sgl:	sg for joining buffer and req->src scatterlist
345  * @skip:	Skip offset in req->src for current op
346  * @total:	Total number of bytes for current request
347  * @finup:	Keep state for finup or final.
348  * @error:	Keep track of error.
349  * @bufcnt:	Number of bytes holded in buffer[]
350  * @buffer:	For byte(s) from end of req->src in UPDATE op
351  */
352 struct s5p_hash_reqctx {
353 	struct s5p_aes_dev	*dd;
354 	bool			op_update;
355 
356 	u64			digcnt;
357 	u8			digest[SHA256_DIGEST_SIZE];
358 
359 	unsigned int		nregs; /* digest_size / sizeof(reg) */
360 	u32			engine;
361 
362 	struct scatterlist	*sg;
363 	unsigned int		sg_len;
364 	struct scatterlist	sgl[2];
365 	unsigned int		skip;
366 	unsigned int		total;
367 	bool			finup;
368 	bool			error;
369 
370 	u32			bufcnt;
371 	u8			buffer[];
372 };
373 
374 /**
375  * struct s5p_hash_ctx - HASH transformation context
376  * @dd:		Associated device
377  * @flags:	Bits for algorithm HASH.
378  * @fallback:	Software transformation for zero message or size < BUFLEN.
379  */
380 struct s5p_hash_ctx {
381 	struct s5p_aes_dev	*dd;
382 	unsigned long		flags;
383 	struct crypto_shash	*fallback;
384 };
385 
386 static const struct samsung_aes_variant s5p_aes_data = {
387 	.aes_offset	= 0x4000,
388 	.hash_offset	= 0x6000,
389 	.clk_names	= { "secss", },
390 };
391 
392 static const struct samsung_aes_variant exynos_aes_data = {
393 	.aes_offset	= 0x200,
394 	.hash_offset	= 0x400,
395 	.clk_names	= { "secss", },
396 };
397 
398 static const struct samsung_aes_variant exynos5433_slim_aes_data = {
399 	.aes_offset	= 0x400,
400 	.hash_offset	= 0x800,
401 	.clk_names	= { "aclk", "pclk", },
402 };
403 
404 static const struct of_device_id s5p_sss_dt_match[] = {
405 	{
406 		.compatible = "samsung,s5pv210-secss",
407 		.data = &s5p_aes_data,
408 	},
409 	{
410 		.compatible = "samsung,exynos4210-secss",
411 		.data = &exynos_aes_data,
412 	},
413 	{
414 		.compatible = "samsung,exynos5433-slim-sss",
415 		.data = &exynos5433_slim_aes_data,
416 	},
417 	{ },
418 };
419 MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
420 
421 static inline const struct samsung_aes_variant *find_s5p_sss_version
422 				   (const struct platform_device *pdev)
423 {
424 	if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node))
425 		return of_device_get_match_data(&pdev->dev);
426 
427 	return (const struct samsung_aes_variant *)
428 			platform_get_device_id(pdev)->driver_data;
429 }
430 
431 static struct s5p_aes_dev *s5p_dev;
432 
433 static void s5p_set_dma_indata(struct s5p_aes_dev *dev,
434 			       const struct scatterlist *sg)
435 {
436 	SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
437 	SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
438 }
439 
440 static void s5p_set_dma_outdata(struct s5p_aes_dev *dev,
441 				const struct scatterlist *sg)
442 {
443 	SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
444 	SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
445 }
446 
447 static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
448 {
449 	int len;
450 
451 	if (!*sg)
452 		return;
453 
454 	len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
455 	free_pages((unsigned long)sg_virt(*sg), get_order(len));
456 
457 	kfree(*sg);
458 	*sg = NULL;
459 }
460 
461 static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg,
462 			    unsigned int nbytes, int out)
463 {
464 	struct scatter_walk walk;
465 
466 	if (!nbytes)
467 		return;
468 
469 	scatterwalk_start(&walk, sg);
470 	scatterwalk_copychunks(buf, &walk, nbytes, out);
471 	scatterwalk_done(&walk, out, 0);
472 }
473 
474 static void s5p_sg_done(struct s5p_aes_dev *dev)
475 {
476 	struct skcipher_request *req = dev->req;
477 	struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
478 
479 	if (dev->sg_dst_cpy) {
480 		dev_dbg(dev->dev,
481 			"Copying %d bytes of output data back to original place\n",
482 			dev->req->cryptlen);
483 		s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst,
484 				dev->req->cryptlen, 1);
485 	}
486 	s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
487 	s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
488 	if (reqctx->mode & FLAGS_AES_CBC)
489 		memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), AES_BLOCK_SIZE);
490 
491 	else if (reqctx->mode & FLAGS_AES_CTR)
492 		memcpy_fromio(req->iv, dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), AES_BLOCK_SIZE);
493 }
494 
495 /* Calls the completion. Cannot be called with dev->lock hold. */
496 static void s5p_aes_complete(struct skcipher_request *req, int err)
497 {
498 	skcipher_request_complete(req, err);
499 }
500 
501 static void s5p_unset_outdata(struct s5p_aes_dev *dev)
502 {
503 	dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
504 }
505 
506 static void s5p_unset_indata(struct s5p_aes_dev *dev)
507 {
508 	dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
509 }
510 
511 static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
512 			   struct scatterlist **dst)
513 {
514 	void *pages;
515 	int len;
516 
517 	*dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
518 	if (!*dst)
519 		return -ENOMEM;
520 
521 	len = ALIGN(dev->req->cryptlen, AES_BLOCK_SIZE);
522 	pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
523 	if (!pages) {
524 		kfree(*dst);
525 		*dst = NULL;
526 		return -ENOMEM;
527 	}
528 
529 	s5p_sg_copy_buf(pages, src, dev->req->cryptlen, 0);
530 
531 	sg_init_table(*dst, 1);
532 	sg_set_buf(*dst, pages, len);
533 
534 	return 0;
535 }
536 
537 static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
538 {
539 	if (!sg->length)
540 		return -EINVAL;
541 
542 	if (!dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE))
543 		return -ENOMEM;
544 
545 	dev->sg_dst = sg;
546 
547 	return 0;
548 }
549 
550 static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
551 {
552 	if (!sg->length)
553 		return -EINVAL;
554 
555 	if (!dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE))
556 		return -ENOMEM;
557 
558 	dev->sg_src = sg;
559 
560 	return 0;
561 }
562 
563 /*
564  * Returns -ERRNO on error (mapping of new data failed).
565  * On success returns:
566  *  - 0 if there is no more data,
567  *  - 1 if new transmitting (output) data is ready and its address+length
568  *     have to be written to device (by calling s5p_set_dma_outdata()).
569  */
570 static int s5p_aes_tx(struct s5p_aes_dev *dev)
571 {
572 	int ret = 0;
573 
574 	s5p_unset_outdata(dev);
575 
576 	if (!sg_is_last(dev->sg_dst)) {
577 		ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
578 		if (!ret)
579 			ret = 1;
580 	}
581 
582 	return ret;
583 }
584 
585 /*
586  * Returns -ERRNO on error (mapping of new data failed).
587  * On success returns:
588  *  - 0 if there is no more data,
589  *  - 1 if new receiving (input) data is ready and its address+length
590  *     have to be written to device (by calling s5p_set_dma_indata()).
591  */
592 static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
593 {
594 	int ret = 0;
595 
596 	s5p_unset_indata(dev);
597 
598 	if (!sg_is_last(dev->sg_src)) {
599 		ret = s5p_set_indata(dev, sg_next(dev->sg_src));
600 		if (!ret)
601 			ret = 1;
602 	}
603 
604 	return ret;
605 }
606 
607 static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset)
608 {
609 	return __raw_readl(dd->io_hash_base + offset);
610 }
611 
612 static inline void s5p_hash_write(struct s5p_aes_dev *dd,
613 				  u32 offset, u32 value)
614 {
615 	__raw_writel(value, dd->io_hash_base + offset);
616 }
617 
618 /**
619  * s5p_set_dma_hashdata() - start DMA with sg
620  * @dev:	device
621  * @sg:		scatterlist ready to DMA transmit
622  */
623 static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev,
624 				 const struct scatterlist *sg)
625 {
626 	dev->hash_sg_cnt--;
627 	SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg));
628 	SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */
629 }
630 
631 /**
632  * s5p_hash_rx() - get next hash_sg_iter
633  * @dev:	device
634  *
635  * Return:
636  * 2	if there is no more data and it is UPDATE op
637  * 1	if new receiving (input) data is ready and can be written to device
638  * 0	if there is no more data and it is FINAL op
639  */
640 static int s5p_hash_rx(struct s5p_aes_dev *dev)
641 {
642 	if (dev->hash_sg_cnt > 0) {
643 		dev->hash_sg_iter = sg_next(dev->hash_sg_iter);
644 		return 1;
645 	}
646 
647 	set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags);
648 	if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags))
649 		return 0;
650 
651 	return 2;
652 }
653 
654 static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
655 {
656 	struct platform_device *pdev = dev_id;
657 	struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
658 	struct skcipher_request *req;
659 	int err_dma_tx = 0;
660 	int err_dma_rx = 0;
661 	int err_dma_hx = 0;
662 	bool tx_end = false;
663 	bool hx_end = false;
664 	unsigned long flags;
665 	u32 status, st_bits;
666 	int err;
667 
668 	spin_lock_irqsave(&dev->lock, flags);
669 
670 	/*
671 	 * Handle rx or tx interrupt. If there is still data (scatterlist did not
672 	 * reach end), then map next scatterlist entry.
673 	 * In case of such mapping error, s5p_aes_complete() should be called.
674 	 *
675 	 * If there is no more data in tx scatter list, call s5p_aes_complete()
676 	 * and schedule new tasklet.
677 	 *
678 	 * Handle hx interrupt. If there is still data map next entry.
679 	 */
680 	status = SSS_READ(dev, FCINTSTAT);
681 	if (status & SSS_FCINTSTAT_BRDMAINT)
682 		err_dma_rx = s5p_aes_rx(dev);
683 
684 	if (status & SSS_FCINTSTAT_BTDMAINT) {
685 		if (sg_is_last(dev->sg_dst))
686 			tx_end = true;
687 		err_dma_tx = s5p_aes_tx(dev);
688 	}
689 
690 	if (status & SSS_FCINTSTAT_HRDMAINT)
691 		err_dma_hx = s5p_hash_rx(dev);
692 
693 	st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT |
694 				SSS_FCINTSTAT_HRDMAINT);
695 	/* clear DMA bits */
696 	SSS_WRITE(dev, FCINTPEND, st_bits);
697 
698 	/* clear HASH irq bits */
699 	if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) {
700 		/* cannot have both HPART and HDONE */
701 		if (status & SSS_FCINTSTAT_HPARTINT)
702 			st_bits = SSS_HASH_STATUS_PARTIAL_DONE;
703 
704 		if (status & SSS_FCINTSTAT_HDONEINT)
705 			st_bits = SSS_HASH_STATUS_MSG_DONE;
706 
707 		set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags);
708 		s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits);
709 		hx_end = true;
710 		/* when DONE or PART, do not handle HASH DMA */
711 		err_dma_hx = 0;
712 	}
713 
714 	if (err_dma_rx < 0) {
715 		err = err_dma_rx;
716 		goto error;
717 	}
718 	if (err_dma_tx < 0) {
719 		err = err_dma_tx;
720 		goto error;
721 	}
722 
723 	if (tx_end) {
724 		s5p_sg_done(dev);
725 		if (err_dma_hx == 1)
726 			s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
727 
728 		spin_unlock_irqrestore(&dev->lock, flags);
729 
730 		s5p_aes_complete(dev->req, 0);
731 		/* Device is still busy */
732 		tasklet_schedule(&dev->tasklet);
733 	} else {
734 		/*
735 		 * Writing length of DMA block (either receiving or
736 		 * transmitting) will start the operation immediately, so this
737 		 * should be done at the end (even after clearing pending
738 		 * interrupts to not miss the interrupt).
739 		 */
740 		if (err_dma_tx == 1)
741 			s5p_set_dma_outdata(dev, dev->sg_dst);
742 		if (err_dma_rx == 1)
743 			s5p_set_dma_indata(dev, dev->sg_src);
744 		if (err_dma_hx == 1)
745 			s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
746 
747 		spin_unlock_irqrestore(&dev->lock, flags);
748 	}
749 
750 	goto hash_irq_end;
751 
752 error:
753 	s5p_sg_done(dev);
754 	dev->busy = false;
755 	req = dev->req;
756 	if (err_dma_hx == 1)
757 		s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
758 
759 	spin_unlock_irqrestore(&dev->lock, flags);
760 	s5p_aes_complete(req, err);
761 
762 hash_irq_end:
763 	/*
764 	 * Note about else if:
765 	 *   when hash_sg_iter reaches end and its UPDATE op,
766 	 *   issue SSS_HASH_PAUSE and wait for HPART irq
767 	 */
768 	if (hx_end)
769 		tasklet_schedule(&dev->hash_tasklet);
770 	else if (err_dma_hx == 2)
771 		s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE,
772 			       SSS_HASH_PAUSE);
773 
774 	return IRQ_HANDLED;
775 }
776 
777 /**
778  * s5p_hash_read_msg() - read message or IV from HW
779  * @req:	AHASH request
780  */
781 static void s5p_hash_read_msg(struct ahash_request *req)
782 {
783 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
784 	struct s5p_aes_dev *dd = ctx->dd;
785 	u32 *hash = (u32 *)ctx->digest;
786 	unsigned int i;
787 
788 	for (i = 0; i < ctx->nregs; i++)
789 		hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i));
790 }
791 
792 /**
793  * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
794  * @dd:		device
795  * @ctx:	request context
796  */
797 static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd,
798 				  const struct s5p_hash_reqctx *ctx)
799 {
800 	const u32 *hash = (const u32 *)ctx->digest;
801 	unsigned int i;
802 
803 	for (i = 0; i < ctx->nregs; i++)
804 		s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]);
805 }
806 
807 /**
808  * s5p_hash_write_iv() - write IV for next partial/finup op.
809  * @req:	AHASH request
810  */
811 static void s5p_hash_write_iv(struct ahash_request *req)
812 {
813 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
814 
815 	s5p_hash_write_ctx_iv(ctx->dd, ctx);
816 }
817 
818 /**
819  * s5p_hash_copy_result() - copy digest into req->result
820  * @req:	AHASH request
821  */
822 static void s5p_hash_copy_result(struct ahash_request *req)
823 {
824 	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
825 
826 	if (!req->result)
827 		return;
828 
829 	memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF);
830 }
831 
832 /**
833  * s5p_hash_dma_flush() - flush HASH DMA
834  * @dev:	secss device
835  */
836 static void s5p_hash_dma_flush(struct s5p_aes_dev *dev)
837 {
838 	SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH);
839 }
840 
841 /**
842  * s5p_hash_dma_enable() - enable DMA mode for HASH
843  * @dev:	secss device
844  *
845  * enable DMA mode for HASH
846  */
847 static void s5p_hash_dma_enable(struct s5p_aes_dev *dev)
848 {
849 	s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA);
850 }
851 
852 /**
853  * s5p_hash_irq_disable() - disable irq HASH signals
854  * @dev:	secss device
855  * @flags:	bitfield with irq's to be disabled
856  */
857 static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags)
858 {
859 	SSS_WRITE(dev, FCINTENCLR, flags);
860 }
861 
862 /**
863  * s5p_hash_irq_enable() - enable irq signals
864  * @dev:	secss device
865  * @flags:	bitfield with irq's to be enabled
866  */
867 static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags)
868 {
869 	SSS_WRITE(dev, FCINTENSET, flags);
870 }
871 
872 /**
873  * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
874  * @dev:	secss device
875  * @hashflow:	HASH stream flow with/without crypto AES/DES
876  */
877 static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow)
878 {
879 	unsigned long flags;
880 	u32 flow;
881 
882 	spin_lock_irqsave(&dev->lock, flags);
883 
884 	flow = SSS_READ(dev, FCFIFOCTRL);
885 	flow &= ~SSS_HASHIN_MASK;
886 	flow |= hashflow;
887 	SSS_WRITE(dev, FCFIFOCTRL, flow);
888 
889 	spin_unlock_irqrestore(&dev->lock, flags);
890 }
891 
892 /**
893  * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
894  * @dev:	secss device
895  * @hashflow:	HASH stream flow with/without AES/DES
896  *
897  * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
898  * enable HASH irq's HRDMA, HDONE, HPART
899  */
900 static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow)
901 {
902 	s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR |
903 			     SSS_FCINTENCLR_HDONEINTENCLR |
904 			     SSS_FCINTENCLR_HPARTINTENCLR);
905 	s5p_hash_dma_flush(dev);
906 
907 	s5p_hash_dma_enable(dev);
908 	s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK);
909 	s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET |
910 			    SSS_FCINTENSET_HDONEINTENSET |
911 			    SSS_FCINTENSET_HPARTINTENSET);
912 }
913 
914 /**
915  * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
916  * @dd:		secss device
917  * @length:	length for request
918  * @final:	true if final op
919  *
920  * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
921  * after previous updates, fill up IV words. For final, calculate and set
922  * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
923  * length as 2^63 so it will be never reached and set to zero prelow and
924  * prehigh.
925  *
926  * This function does not start DMA transfer.
927  */
928 static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length,
929 				bool final)
930 {
931 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
932 	u32 prelow, prehigh, low, high;
933 	u32 configflags, swapflags;
934 	u64 tmplen;
935 
936 	configflags = ctx->engine | SSS_HASH_INIT_BIT;
937 
938 	if (likely(ctx->digcnt)) {
939 		s5p_hash_write_ctx_iv(dd, ctx);
940 		configflags |= SSS_HASH_USER_IV_EN;
941 	}
942 
943 	if (final) {
944 		/* number of bytes for last part */
945 		low = length;
946 		high = 0;
947 		/* total number of bits prev hashed */
948 		tmplen = ctx->digcnt * 8;
949 		prelow = (u32)tmplen;
950 		prehigh = (u32)(tmplen >> 32);
951 	} else {
952 		prelow = 0;
953 		prehigh = 0;
954 		low = 0;
955 		high = BIT(31);
956 	}
957 
958 	swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO |
959 		    SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY;
960 
961 	s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low);
962 	s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high);
963 	s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow);
964 	s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh);
965 
966 	s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags);
967 	s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags);
968 }
969 
970 /**
971  * s5p_hash_xmit_dma() - start DMA hash processing
972  * @dd:		secss device
973  * @length:	length for request
974  * @final:	true if final op
975  *
976  * Update digcnt here, as it is needed for finup/final op.
977  */
978 static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length,
979 			     bool final)
980 {
981 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
982 	unsigned int cnt;
983 
984 	cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
985 	if (!cnt) {
986 		dev_err(dd->dev, "dma_map_sg error\n");
987 		ctx->error = true;
988 		return -EINVAL;
989 	}
990 
991 	set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
992 	dd->hash_sg_iter = ctx->sg;
993 	dd->hash_sg_cnt = cnt;
994 	s5p_hash_write_ctrl(dd, length, final);
995 	ctx->digcnt += length;
996 	ctx->total -= length;
997 
998 	/* catch last interrupt */
999 	if (final)
1000 		set_bit(HASH_FLAGS_FINAL, &dd->hash_flags);
1001 
1002 	s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */
1003 
1004 	return -EINPROGRESS;
1005 }
1006 
1007 /**
1008  * s5p_hash_copy_sgs() - copy request's bytes into new buffer
1009  * @ctx:	request context
1010  * @sg:		source scatterlist request
1011  * @new_len:	number of bytes to process from sg
1012  *
1013  * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
1014  * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
1015  * with allocated buffer.
1016  *
1017  * Set bit in dd->hash_flag so we can free it after irq ends processing.
1018  */
1019 static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx,
1020 			     struct scatterlist *sg, unsigned int new_len)
1021 {
1022 	unsigned int pages, len;
1023 	void *buf;
1024 
1025 	len = new_len + ctx->bufcnt;
1026 	pages = get_order(len);
1027 
1028 	buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1029 	if (!buf) {
1030 		dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n");
1031 		ctx->error = true;
1032 		return -ENOMEM;
1033 	}
1034 
1035 	if (ctx->bufcnt)
1036 		memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
1037 
1038 	scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip,
1039 				 new_len, 0);
1040 	sg_init_table(ctx->sgl, 1);
1041 	sg_set_buf(ctx->sgl, buf, len);
1042 	ctx->sg = ctx->sgl;
1043 	ctx->sg_len = 1;
1044 	ctx->bufcnt = 0;
1045 	ctx->skip = 0;
1046 	set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags);
1047 
1048 	return 0;
1049 }
1050 
1051 /**
1052  * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1053  * @ctx:	request context
1054  * @sg:		source scatterlist request
1055  * @new_len:	number of bytes to process from sg
1056  *
1057  * Allocate new scatterlist table, copy data for HASH into it. If there was
1058  * xmit_buf filled, prepare it first, then copy page, length and offset from
1059  * source sg into it, adjusting begin and/or end for skip offset and
1060  * hash_later value.
1061  *
1062  * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1063  * it after irq ends processing.
1064  */
1065 static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx,
1066 				  struct scatterlist *sg, unsigned int new_len)
1067 {
1068 	unsigned int skip = ctx->skip, n = sg_nents(sg);
1069 	struct scatterlist *tmp;
1070 	unsigned int len;
1071 
1072 	if (ctx->bufcnt)
1073 		n++;
1074 
1075 	ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
1076 	if (!ctx->sg) {
1077 		ctx->error = true;
1078 		return -ENOMEM;
1079 	}
1080 
1081 	sg_init_table(ctx->sg, n);
1082 
1083 	tmp = ctx->sg;
1084 
1085 	ctx->sg_len = 0;
1086 
1087 	if (ctx->bufcnt) {
1088 		sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
1089 		tmp = sg_next(tmp);
1090 		ctx->sg_len++;
1091 	}
1092 
1093 	while (sg && skip >= sg->length) {
1094 		skip -= sg->length;
1095 		sg = sg_next(sg);
1096 	}
1097 
1098 	while (sg && new_len) {
1099 		len = sg->length - skip;
1100 		if (new_len < len)
1101 			len = new_len;
1102 
1103 		new_len -= len;
1104 		sg_set_page(tmp, sg_page(sg), len, sg->offset + skip);
1105 		skip = 0;
1106 		if (new_len <= 0)
1107 			sg_mark_end(tmp);
1108 
1109 		tmp = sg_next(tmp);
1110 		ctx->sg_len++;
1111 		sg = sg_next(sg);
1112 	}
1113 
1114 	set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags);
1115 
1116 	return 0;
1117 }
1118 
1119 /**
1120  * s5p_hash_prepare_sgs() - prepare sg for processing
1121  * @ctx:	request context
1122  * @sg:		source scatterlist request
1123  * @new_len:	number of bytes to process from sg
1124  * @final:	final flag
1125  *
1126  * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1127  * sg table have good aligned elements (list_ok). If one of this checks fails,
1128  * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1129  * data into this buffer and prepare request in sgl, or (2) allocates new sg
1130  * table and prepare sg elements.
1131  *
1132  * For digest or finup all conditions can be good, and we may not need any
1133  * fixes.
1134  */
1135 static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx,
1136 				struct scatterlist *sg,
1137 				unsigned int new_len, bool final)
1138 {
1139 	unsigned int skip = ctx->skip, nbytes = new_len, n = 0;
1140 	bool aligned = true, list_ok = true;
1141 	struct scatterlist *sg_tmp = sg;
1142 
1143 	if (!sg || !sg->length || !new_len)
1144 		return 0;
1145 
1146 	if (skip || !final)
1147 		list_ok = false;
1148 
1149 	while (nbytes > 0 && sg_tmp) {
1150 		n++;
1151 		if (skip >= sg_tmp->length) {
1152 			skip -= sg_tmp->length;
1153 			if (!sg_tmp->length) {
1154 				aligned = false;
1155 				break;
1156 			}
1157 		} else {
1158 			if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) {
1159 				aligned = false;
1160 				break;
1161 			}
1162 
1163 			if (nbytes < sg_tmp->length - skip) {
1164 				list_ok = false;
1165 				break;
1166 			}
1167 
1168 			nbytes -= sg_tmp->length - skip;
1169 			skip = 0;
1170 		}
1171 
1172 		sg_tmp = sg_next(sg_tmp);
1173 	}
1174 
1175 	if (!aligned)
1176 		return s5p_hash_copy_sgs(ctx, sg, new_len);
1177 	else if (!list_ok)
1178 		return s5p_hash_copy_sg_lists(ctx, sg, new_len);
1179 
1180 	/*
1181 	 * Have aligned data from previous operation and/or current
1182 	 * Note: will enter here only if (digest or finup) and aligned
1183 	 */
1184 	if (ctx->bufcnt) {
1185 		ctx->sg_len = n;
1186 		sg_init_table(ctx->sgl, 2);
1187 		sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt);
1188 		sg_chain(ctx->sgl, 2, sg);
1189 		ctx->sg = ctx->sgl;
1190 		ctx->sg_len++;
1191 	} else {
1192 		ctx->sg = sg;
1193 		ctx->sg_len = n;
1194 	}
1195 
1196 	return 0;
1197 }
1198 
1199 /**
1200  * s5p_hash_prepare_request() - prepare request for processing
1201  * @req:	AHASH request
1202  * @update:	true if UPDATE op
1203  *
1204  * Note 1: we can have update flag _and_ final flag at the same time.
1205  * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1206  *	   either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1207  *	   we have final op
1208  */
1209 static int s5p_hash_prepare_request(struct ahash_request *req, bool update)
1210 {
1211 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1212 	bool final = ctx->finup;
1213 	int xmit_len, hash_later, nbytes;
1214 	int ret;
1215 
1216 	if (update)
1217 		nbytes = req->nbytes;
1218 	else
1219 		nbytes = 0;
1220 
1221 	ctx->total = nbytes + ctx->bufcnt;
1222 	if (!ctx->total)
1223 		return 0;
1224 
1225 	if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) {
1226 		/* bytes left from previous request, so fill up to BUFLEN */
1227 		int len = BUFLEN - ctx->bufcnt % BUFLEN;
1228 
1229 		if (len > nbytes)
1230 			len = nbytes;
1231 
1232 		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1233 					 0, len, 0);
1234 		ctx->bufcnt += len;
1235 		nbytes -= len;
1236 		ctx->skip = len;
1237 	} else {
1238 		ctx->skip = 0;
1239 	}
1240 
1241 	if (ctx->bufcnt)
1242 		memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt);
1243 
1244 	xmit_len = ctx->total;
1245 	if (final) {
1246 		hash_later = 0;
1247 	} else {
1248 		if (IS_ALIGNED(xmit_len, BUFLEN))
1249 			xmit_len -= BUFLEN;
1250 		else
1251 			xmit_len -= xmit_len & (BUFLEN - 1);
1252 
1253 		hash_later = ctx->total - xmit_len;
1254 		/* copy hash_later bytes from end of req->src */
1255 		/* previous bytes are in xmit_buf, so no overwrite */
1256 		scatterwalk_map_and_copy(ctx->buffer, req->src,
1257 					 req->nbytes - hash_later,
1258 					 hash_later, 0);
1259 	}
1260 
1261 	if (xmit_len > BUFLEN) {
1262 		ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later,
1263 					   final);
1264 		if (ret)
1265 			return ret;
1266 	} else {
1267 		/* have buffered data only */
1268 		if (unlikely(!ctx->bufcnt)) {
1269 			/* first update didn't fill up buffer */
1270 			scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src,
1271 						 0, xmit_len, 0);
1272 		}
1273 
1274 		sg_init_table(ctx->sgl, 1);
1275 		sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len);
1276 
1277 		ctx->sg = ctx->sgl;
1278 		ctx->sg_len = 1;
1279 	}
1280 
1281 	ctx->bufcnt = hash_later;
1282 	if (!final)
1283 		ctx->total = xmit_len;
1284 
1285 	return 0;
1286 }
1287 
1288 /**
1289  * s5p_hash_update_dma_stop() - unmap DMA
1290  * @dd:		secss device
1291  *
1292  * Unmap scatterlist ctx->sg.
1293  */
1294 static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd)
1295 {
1296 	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
1297 
1298 	dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
1299 	clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
1300 }
1301 
1302 /**
1303  * s5p_hash_finish() - copy calculated digest to crypto layer
1304  * @req:	AHASH request
1305  */
1306 static void s5p_hash_finish(struct ahash_request *req)
1307 {
1308 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1309 	struct s5p_aes_dev *dd = ctx->dd;
1310 
1311 	if (ctx->digcnt)
1312 		s5p_hash_copy_result(req);
1313 
1314 	dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt);
1315 }
1316 
1317 /**
1318  * s5p_hash_finish_req() - finish request
1319  * @req:	AHASH request
1320  * @err:	error
1321  */
1322 static void s5p_hash_finish_req(struct ahash_request *req, int err)
1323 {
1324 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1325 	struct s5p_aes_dev *dd = ctx->dd;
1326 	unsigned long flags;
1327 
1328 	if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags))
1329 		free_pages((unsigned long)sg_virt(ctx->sg),
1330 			   get_order(ctx->sg->length));
1331 
1332 	if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags))
1333 		kfree(ctx->sg);
1334 
1335 	ctx->sg = NULL;
1336 	dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) |
1337 			    BIT(HASH_FLAGS_SGS_COPIED));
1338 
1339 	if (!err && !ctx->error) {
1340 		s5p_hash_read_msg(req);
1341 		if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags))
1342 			s5p_hash_finish(req);
1343 	} else {
1344 		ctx->error = true;
1345 	}
1346 
1347 	spin_lock_irqsave(&dd->hash_lock, flags);
1348 	dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) |
1349 			    BIT(HASH_FLAGS_DMA_READY) |
1350 			    BIT(HASH_FLAGS_OUTPUT_READY));
1351 	spin_unlock_irqrestore(&dd->hash_lock, flags);
1352 
1353 	if (req->base.complete)
1354 		ahash_request_complete(req, err);
1355 }
1356 
1357 /**
1358  * s5p_hash_handle_queue() - handle hash queue
1359  * @dd:		device s5p_aes_dev
1360  * @req:	AHASH request
1361  *
1362  * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1363  * device then processes the first request from the dd->queue
1364  *
1365  * Returns: see s5p_hash_final below.
1366  */
1367 static int s5p_hash_handle_queue(struct s5p_aes_dev *dd,
1368 				 struct ahash_request *req)
1369 {
1370 	struct crypto_async_request *async_req, *backlog;
1371 	struct s5p_hash_reqctx *ctx;
1372 	unsigned long flags;
1373 	int err = 0, ret = 0;
1374 
1375 retry:
1376 	spin_lock_irqsave(&dd->hash_lock, flags);
1377 	if (req)
1378 		ret = ahash_enqueue_request(&dd->hash_queue, req);
1379 
1380 	if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1381 		spin_unlock_irqrestore(&dd->hash_lock, flags);
1382 		return ret;
1383 	}
1384 
1385 	backlog = crypto_get_backlog(&dd->hash_queue);
1386 	async_req = crypto_dequeue_request(&dd->hash_queue);
1387 	if (async_req)
1388 		set_bit(HASH_FLAGS_BUSY, &dd->hash_flags);
1389 
1390 	spin_unlock_irqrestore(&dd->hash_lock, flags);
1391 
1392 	if (!async_req)
1393 		return ret;
1394 
1395 	if (backlog)
1396 		crypto_request_complete(backlog, -EINPROGRESS);
1397 
1398 	req = ahash_request_cast(async_req);
1399 	dd->hash_req = req;
1400 	ctx = ahash_request_ctx(req);
1401 
1402 	err = s5p_hash_prepare_request(req, ctx->op_update);
1403 	if (err || !ctx->total)
1404 		goto out;
1405 
1406 	dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n",
1407 		ctx->op_update, req->nbytes);
1408 
1409 	s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT);
1410 	if (ctx->digcnt)
1411 		s5p_hash_write_iv(req); /* restore hash IV */
1412 
1413 	if (ctx->op_update) { /* HASH_OP_UPDATE */
1414 		err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup);
1415 		if (err != -EINPROGRESS && ctx->finup && !ctx->error)
1416 			/* no final() after finup() */
1417 			err = s5p_hash_xmit_dma(dd, ctx->total, true);
1418 	} else { /* HASH_OP_FINAL */
1419 		err = s5p_hash_xmit_dma(dd, ctx->total, true);
1420 	}
1421 out:
1422 	if (err != -EINPROGRESS) {
1423 		/* hash_tasklet_cb will not finish it, so do it here */
1424 		s5p_hash_finish_req(req, err);
1425 		req = NULL;
1426 
1427 		/*
1428 		 * Execute next request immediately if there is anything
1429 		 * in queue.
1430 		 */
1431 		goto retry;
1432 	}
1433 
1434 	return ret;
1435 }
1436 
1437 /**
1438  * s5p_hash_tasklet_cb() - hash tasklet
1439  * @data:	ptr to s5p_aes_dev
1440  */
1441 static void s5p_hash_tasklet_cb(unsigned long data)
1442 {
1443 	struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data;
1444 
1445 	if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1446 		s5p_hash_handle_queue(dd, NULL);
1447 		return;
1448 	}
1449 
1450 	if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) {
1451 		if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE,
1452 				       &dd->hash_flags)) {
1453 			s5p_hash_update_dma_stop(dd);
1454 		}
1455 
1456 		if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY,
1457 				       &dd->hash_flags)) {
1458 			/* hash or semi-hash ready */
1459 			clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags);
1460 			goto finish;
1461 		}
1462 	}
1463 
1464 	return;
1465 
1466 finish:
1467 	/* finish curent request */
1468 	s5p_hash_finish_req(dd->hash_req, 0);
1469 
1470 	/* If we are not busy, process next req */
1471 	if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags))
1472 		s5p_hash_handle_queue(dd, NULL);
1473 }
1474 
1475 /**
1476  * s5p_hash_enqueue() - enqueue request
1477  * @req:	AHASH request
1478  * @op:		operation UPDATE (true) or FINAL (false)
1479  *
1480  * Returns: see s5p_hash_final below.
1481  */
1482 static int s5p_hash_enqueue(struct ahash_request *req, bool op)
1483 {
1484 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1485 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1486 
1487 	ctx->op_update = op;
1488 
1489 	return s5p_hash_handle_queue(tctx->dd, req);
1490 }
1491 
1492 /**
1493  * s5p_hash_update() - process the hash input data
1494  * @req:	AHASH request
1495  *
1496  * If request will fit in buffer, copy it and return immediately
1497  * else enqueue it with OP_UPDATE.
1498  *
1499  * Returns: see s5p_hash_final below.
1500  */
1501 static int s5p_hash_update(struct ahash_request *req)
1502 {
1503 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1504 
1505 	if (!req->nbytes)
1506 		return 0;
1507 
1508 	if (ctx->bufcnt + req->nbytes <= BUFLEN) {
1509 		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1510 					 0, req->nbytes, 0);
1511 		ctx->bufcnt += req->nbytes;
1512 		return 0;
1513 	}
1514 
1515 	return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */
1516 }
1517 
1518 /**
1519  * s5p_hash_final() - close up hash and calculate digest
1520  * @req:	AHASH request
1521  *
1522  * Note: in final req->src do not have any data, and req->nbytes can be
1523  * non-zero.
1524  *
1525  * If there were no input data processed yet and the buffered hash data is
1526  * less than BUFLEN (64) then calculate the final hash immediately by using
1527  * SW algorithm fallback.
1528  *
1529  * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1530  * and finalize hash message in HW. Note that if digcnt!=0 then there were
1531  * previous update op, so there are always some buffered bytes in ctx->buffer,
1532  * which means that ctx->bufcnt!=0
1533  *
1534  * Returns:
1535  * 0 if the request has been processed immediately,
1536  * -EINPROGRESS if the operation has been queued for later execution or is set
1537  *		to processing by HW,
1538  * -EBUSY if queue is full and request should be resubmitted later,
1539  * other negative values denotes an error.
1540  */
1541 static int s5p_hash_final(struct ahash_request *req)
1542 {
1543 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1544 
1545 	ctx->finup = true;
1546 	if (ctx->error)
1547 		return -EINVAL; /* uncompleted hash is not needed */
1548 
1549 	if (!ctx->digcnt && ctx->bufcnt < BUFLEN) {
1550 		struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1551 
1552 		return crypto_shash_tfm_digest(tctx->fallback, ctx->buffer,
1553 					       ctx->bufcnt, req->result);
1554 	}
1555 
1556 	return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */
1557 }
1558 
1559 /**
1560  * s5p_hash_finup() - process last req->src and calculate digest
1561  * @req:	AHASH request containing the last update data
1562  *
1563  * Return values: see s5p_hash_final above.
1564  */
1565 static int s5p_hash_finup(struct ahash_request *req)
1566 {
1567 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1568 	int err1, err2;
1569 
1570 	ctx->finup = true;
1571 
1572 	err1 = s5p_hash_update(req);
1573 	if (err1 == -EINPROGRESS || err1 == -EBUSY)
1574 		return err1;
1575 
1576 	/*
1577 	 * final() has to be always called to cleanup resources even if
1578 	 * update() failed, except EINPROGRESS or calculate digest for small
1579 	 * size
1580 	 */
1581 	err2 = s5p_hash_final(req);
1582 
1583 	return err1 ?: err2;
1584 }
1585 
1586 /**
1587  * s5p_hash_init() - initialize AHASH request contex
1588  * @req:	AHASH request
1589  *
1590  * Init async hash request context.
1591  */
1592 static int s5p_hash_init(struct ahash_request *req)
1593 {
1594 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1595 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1596 	struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1597 
1598 	ctx->dd = tctx->dd;
1599 	ctx->error = false;
1600 	ctx->finup = false;
1601 	ctx->bufcnt = 0;
1602 	ctx->digcnt = 0;
1603 	ctx->total = 0;
1604 	ctx->skip = 0;
1605 
1606 	dev_dbg(tctx->dd->dev, "init: digest size: %d\n",
1607 		crypto_ahash_digestsize(tfm));
1608 
1609 	switch (crypto_ahash_digestsize(tfm)) {
1610 	case MD5_DIGEST_SIZE:
1611 		ctx->engine = SSS_HASH_ENGINE_MD5;
1612 		ctx->nregs = HASH_MD5_MAX_REG;
1613 		break;
1614 	case SHA1_DIGEST_SIZE:
1615 		ctx->engine = SSS_HASH_ENGINE_SHA1;
1616 		ctx->nregs = HASH_SHA1_MAX_REG;
1617 		break;
1618 	case SHA256_DIGEST_SIZE:
1619 		ctx->engine = SSS_HASH_ENGINE_SHA256;
1620 		ctx->nregs = HASH_SHA256_MAX_REG;
1621 		break;
1622 	default:
1623 		ctx->error = true;
1624 		return -EINVAL;
1625 	}
1626 
1627 	return 0;
1628 }
1629 
1630 /**
1631  * s5p_hash_digest - calculate digest from req->src
1632  * @req:	AHASH request
1633  *
1634  * Return values: see s5p_hash_final above.
1635  */
1636 static int s5p_hash_digest(struct ahash_request *req)
1637 {
1638 	return s5p_hash_init(req) ?: s5p_hash_finup(req);
1639 }
1640 
1641 /**
1642  * s5p_hash_cra_init_alg - init crypto alg transformation
1643  * @tfm:	crypto transformation
1644  */
1645 static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm)
1646 {
1647 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1648 	const char *alg_name = crypto_tfm_alg_name(tfm);
1649 
1650 	tctx->dd = s5p_dev;
1651 	/* Allocate a fallback and abort if it failed. */
1652 	tctx->fallback = crypto_alloc_shash(alg_name, 0,
1653 					    CRYPTO_ALG_NEED_FALLBACK);
1654 	if (IS_ERR(tctx->fallback)) {
1655 		pr_err("fallback alloc fails for '%s'\n", alg_name);
1656 		return PTR_ERR(tctx->fallback);
1657 	}
1658 
1659 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1660 				 sizeof(struct s5p_hash_reqctx) + BUFLEN);
1661 
1662 	return 0;
1663 }
1664 
1665 /**
1666  * s5p_hash_cra_init - init crypto tfm
1667  * @tfm:	crypto transformation
1668  */
1669 static int s5p_hash_cra_init(struct crypto_tfm *tfm)
1670 {
1671 	return s5p_hash_cra_init_alg(tfm);
1672 }
1673 
1674 /**
1675  * s5p_hash_cra_exit - exit crypto tfm
1676  * @tfm:	crypto transformation
1677  *
1678  * free allocated fallback
1679  */
1680 static void s5p_hash_cra_exit(struct crypto_tfm *tfm)
1681 {
1682 	struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1683 
1684 	crypto_free_shash(tctx->fallback);
1685 	tctx->fallback = NULL;
1686 }
1687 
1688 /**
1689  * s5p_hash_export - export hash state
1690  * @req:	AHASH request
1691  * @out:	buffer for exported state
1692  */
1693 static int s5p_hash_export(struct ahash_request *req, void *out)
1694 {
1695 	const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1696 
1697 	memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt);
1698 
1699 	return 0;
1700 }
1701 
1702 /**
1703  * s5p_hash_import - import hash state
1704  * @req:	AHASH request
1705  * @in:		buffer with state to be imported from
1706  */
1707 static int s5p_hash_import(struct ahash_request *req, const void *in)
1708 {
1709 	struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1710 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1711 	struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1712 	const struct s5p_hash_reqctx *ctx_in = in;
1713 
1714 	memcpy(ctx, in, sizeof(*ctx) + BUFLEN);
1715 	if (ctx_in->bufcnt > BUFLEN) {
1716 		ctx->error = true;
1717 		return -EINVAL;
1718 	}
1719 
1720 	ctx->dd = tctx->dd;
1721 	ctx->error = false;
1722 
1723 	return 0;
1724 }
1725 
1726 static struct ahash_alg algs_sha1_md5_sha256[] = {
1727 {
1728 	.init		= s5p_hash_init,
1729 	.update		= s5p_hash_update,
1730 	.final		= s5p_hash_final,
1731 	.finup		= s5p_hash_finup,
1732 	.digest		= s5p_hash_digest,
1733 	.export		= s5p_hash_export,
1734 	.import		= s5p_hash_import,
1735 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1736 	.halg.digestsize	= SHA1_DIGEST_SIZE,
1737 	.halg.base	= {
1738 		.cra_name		= "sha1",
1739 		.cra_driver_name	= "exynos-sha1",
1740 		.cra_priority		= 100,
1741 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1742 					  CRYPTO_ALG_ASYNC |
1743 					  CRYPTO_ALG_NEED_FALLBACK,
1744 		.cra_blocksize		= HASH_BLOCK_SIZE,
1745 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1746 		.cra_module		= THIS_MODULE,
1747 		.cra_init		= s5p_hash_cra_init,
1748 		.cra_exit		= s5p_hash_cra_exit,
1749 	}
1750 },
1751 {
1752 	.init		= s5p_hash_init,
1753 	.update		= s5p_hash_update,
1754 	.final		= s5p_hash_final,
1755 	.finup		= s5p_hash_finup,
1756 	.digest		= s5p_hash_digest,
1757 	.export		= s5p_hash_export,
1758 	.import		= s5p_hash_import,
1759 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1760 	.halg.digestsize	= MD5_DIGEST_SIZE,
1761 	.halg.base	= {
1762 		.cra_name		= "md5",
1763 		.cra_driver_name	= "exynos-md5",
1764 		.cra_priority		= 100,
1765 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1766 					  CRYPTO_ALG_ASYNC |
1767 					  CRYPTO_ALG_NEED_FALLBACK,
1768 		.cra_blocksize		= HASH_BLOCK_SIZE,
1769 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1770 		.cra_module		= THIS_MODULE,
1771 		.cra_init		= s5p_hash_cra_init,
1772 		.cra_exit		= s5p_hash_cra_exit,
1773 	}
1774 },
1775 {
1776 	.init		= s5p_hash_init,
1777 	.update		= s5p_hash_update,
1778 	.final		= s5p_hash_final,
1779 	.finup		= s5p_hash_finup,
1780 	.digest		= s5p_hash_digest,
1781 	.export		= s5p_hash_export,
1782 	.import		= s5p_hash_import,
1783 	.halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1784 	.halg.digestsize	= SHA256_DIGEST_SIZE,
1785 	.halg.base	= {
1786 		.cra_name		= "sha256",
1787 		.cra_driver_name	= "exynos-sha256",
1788 		.cra_priority		= 100,
1789 		.cra_flags		= CRYPTO_ALG_KERN_DRIVER_ONLY |
1790 					  CRYPTO_ALG_ASYNC |
1791 					  CRYPTO_ALG_NEED_FALLBACK,
1792 		.cra_blocksize		= HASH_BLOCK_SIZE,
1793 		.cra_ctxsize		= sizeof(struct s5p_hash_ctx),
1794 		.cra_module		= THIS_MODULE,
1795 		.cra_init		= s5p_hash_cra_init,
1796 		.cra_exit		= s5p_hash_cra_exit,
1797 	}
1798 }
1799 
1800 };
1801 
1802 static void s5p_set_aes(struct s5p_aes_dev *dev,
1803 			const u8 *key, const u8 *iv, const u8 *ctr,
1804 			unsigned int keylen)
1805 {
1806 	void __iomem *keystart;
1807 
1808 	if (iv)
1809 		memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv,
1810 			    AES_BLOCK_SIZE);
1811 
1812 	if (ctr)
1813 		memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), ctr,
1814 			    AES_BLOCK_SIZE);
1815 
1816 	if (keylen == AES_KEYSIZE_256)
1817 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
1818 	else if (keylen == AES_KEYSIZE_192)
1819 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
1820 	else
1821 		keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
1822 
1823 	memcpy_toio(keystart, key, keylen);
1824 }
1825 
1826 static bool s5p_is_sg_aligned(struct scatterlist *sg)
1827 {
1828 	while (sg) {
1829 		if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
1830 			return false;
1831 		sg = sg_next(sg);
1832 	}
1833 
1834 	return true;
1835 }
1836 
1837 static int s5p_set_indata_start(struct s5p_aes_dev *dev,
1838 				struct skcipher_request *req)
1839 {
1840 	struct scatterlist *sg;
1841 	int err;
1842 
1843 	dev->sg_src_cpy = NULL;
1844 	sg = req->src;
1845 	if (!s5p_is_sg_aligned(sg)) {
1846 		dev_dbg(dev->dev,
1847 			"At least one unaligned source scatter list, making a copy\n");
1848 		err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
1849 		if (err)
1850 			return err;
1851 
1852 		sg = dev->sg_src_cpy;
1853 	}
1854 
1855 	err = s5p_set_indata(dev, sg);
1856 	if (err) {
1857 		s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
1858 		return err;
1859 	}
1860 
1861 	return 0;
1862 }
1863 
1864 static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
1865 				 struct skcipher_request *req)
1866 {
1867 	struct scatterlist *sg;
1868 	int err;
1869 
1870 	dev->sg_dst_cpy = NULL;
1871 	sg = req->dst;
1872 	if (!s5p_is_sg_aligned(sg)) {
1873 		dev_dbg(dev->dev,
1874 			"At least one unaligned dest scatter list, making a copy\n");
1875 		err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
1876 		if (err)
1877 			return err;
1878 
1879 		sg = dev->sg_dst_cpy;
1880 	}
1881 
1882 	err = s5p_set_outdata(dev, sg);
1883 	if (err) {
1884 		s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
1885 		return err;
1886 	}
1887 
1888 	return 0;
1889 }
1890 
1891 static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
1892 {
1893 	struct skcipher_request *req = dev->req;
1894 	u32 aes_control;
1895 	unsigned long flags;
1896 	int err;
1897 	u8 *iv, *ctr;
1898 
1899 	/* This sets bit [13:12] to 00, which selects 128-bit counter */
1900 	aes_control = SSS_AES_KEY_CHANGE_MODE;
1901 	if (mode & FLAGS_AES_DECRYPT)
1902 		aes_control |= SSS_AES_MODE_DECRYPT;
1903 
1904 	if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) {
1905 		aes_control |= SSS_AES_CHAIN_MODE_CBC;
1906 		iv = req->iv;
1907 		ctr = NULL;
1908 	} else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) {
1909 		aes_control |= SSS_AES_CHAIN_MODE_CTR;
1910 		iv = NULL;
1911 		ctr = req->iv;
1912 	} else {
1913 		iv = NULL; /* AES_ECB */
1914 		ctr = NULL;
1915 	}
1916 
1917 	if (dev->ctx->keylen == AES_KEYSIZE_192)
1918 		aes_control |= SSS_AES_KEY_SIZE_192;
1919 	else if (dev->ctx->keylen == AES_KEYSIZE_256)
1920 		aes_control |= SSS_AES_KEY_SIZE_256;
1921 
1922 	aes_control |= SSS_AES_FIFO_MODE;
1923 
1924 	/* as a variant it is possible to use byte swapping on DMA side */
1925 	aes_control |= SSS_AES_BYTESWAP_DI
1926 		    |  SSS_AES_BYTESWAP_DO
1927 		    |  SSS_AES_BYTESWAP_IV
1928 		    |  SSS_AES_BYTESWAP_KEY
1929 		    |  SSS_AES_BYTESWAP_CNT;
1930 
1931 	spin_lock_irqsave(&dev->lock, flags);
1932 
1933 	SSS_WRITE(dev, FCINTENCLR,
1934 		  SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
1935 	SSS_WRITE(dev, FCFIFOCTRL, 0x00);
1936 
1937 	err = s5p_set_indata_start(dev, req);
1938 	if (err)
1939 		goto indata_error;
1940 
1941 	err = s5p_set_outdata_start(dev, req);
1942 	if (err)
1943 		goto outdata_error;
1944 
1945 	SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
1946 	s5p_set_aes(dev, dev->ctx->aes_key, iv, ctr, dev->ctx->keylen);
1947 
1948 	s5p_set_dma_indata(dev,  dev->sg_src);
1949 	s5p_set_dma_outdata(dev, dev->sg_dst);
1950 
1951 	SSS_WRITE(dev, FCINTENSET,
1952 		  SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
1953 
1954 	spin_unlock_irqrestore(&dev->lock, flags);
1955 
1956 	return;
1957 
1958 outdata_error:
1959 	s5p_unset_indata(dev);
1960 
1961 indata_error:
1962 	s5p_sg_done(dev);
1963 	dev->busy = false;
1964 	spin_unlock_irqrestore(&dev->lock, flags);
1965 	s5p_aes_complete(req, err);
1966 }
1967 
1968 static void s5p_tasklet_cb(unsigned long data)
1969 {
1970 	struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
1971 	struct crypto_async_request *async_req, *backlog;
1972 	struct s5p_aes_reqctx *reqctx;
1973 	unsigned long flags;
1974 
1975 	spin_lock_irqsave(&dev->lock, flags);
1976 	backlog   = crypto_get_backlog(&dev->queue);
1977 	async_req = crypto_dequeue_request(&dev->queue);
1978 
1979 	if (!async_req) {
1980 		dev->busy = false;
1981 		spin_unlock_irqrestore(&dev->lock, flags);
1982 		return;
1983 	}
1984 	spin_unlock_irqrestore(&dev->lock, flags);
1985 
1986 	if (backlog)
1987 		crypto_request_complete(backlog, -EINPROGRESS);
1988 
1989 	dev->req = skcipher_request_cast(async_req);
1990 	dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
1991 	reqctx   = skcipher_request_ctx(dev->req);
1992 
1993 	s5p_aes_crypt_start(dev, reqctx->mode);
1994 }
1995 
1996 static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
1997 			      struct skcipher_request *req)
1998 {
1999 	unsigned long flags;
2000 	int err;
2001 
2002 	spin_lock_irqsave(&dev->lock, flags);
2003 	err = crypto_enqueue_request(&dev->queue, &req->base);
2004 	if (dev->busy) {
2005 		spin_unlock_irqrestore(&dev->lock, flags);
2006 		return err;
2007 	}
2008 	dev->busy = true;
2009 
2010 	spin_unlock_irqrestore(&dev->lock, flags);
2011 
2012 	tasklet_schedule(&dev->tasklet);
2013 
2014 	return err;
2015 }
2016 
2017 static int s5p_aes_crypt(struct skcipher_request *req, unsigned long mode)
2018 {
2019 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
2020 	struct s5p_aes_reqctx *reqctx = skcipher_request_ctx(req);
2021 	struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2022 	struct s5p_aes_dev *dev = ctx->dev;
2023 
2024 	if (!req->cryptlen)
2025 		return 0;
2026 
2027 	if (!IS_ALIGNED(req->cryptlen, AES_BLOCK_SIZE) &&
2028 			((mode & FLAGS_AES_MODE_MASK) != FLAGS_AES_CTR)) {
2029 		dev_dbg(dev->dev, "request size is not exact amount of AES blocks\n");
2030 		return -EINVAL;
2031 	}
2032 
2033 	reqctx->mode = mode;
2034 
2035 	return s5p_aes_handle_req(dev, req);
2036 }
2037 
2038 static int s5p_aes_setkey(struct crypto_skcipher *cipher,
2039 			  const u8 *key, unsigned int keylen)
2040 {
2041 	struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher);
2042 	struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2043 
2044 	if (keylen != AES_KEYSIZE_128 &&
2045 	    keylen != AES_KEYSIZE_192 &&
2046 	    keylen != AES_KEYSIZE_256)
2047 		return -EINVAL;
2048 
2049 	memcpy(ctx->aes_key, key, keylen);
2050 	ctx->keylen = keylen;
2051 
2052 	return 0;
2053 }
2054 
2055 static int s5p_aes_ecb_encrypt(struct skcipher_request *req)
2056 {
2057 	return s5p_aes_crypt(req, 0);
2058 }
2059 
2060 static int s5p_aes_ecb_decrypt(struct skcipher_request *req)
2061 {
2062 	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
2063 }
2064 
2065 static int s5p_aes_cbc_encrypt(struct skcipher_request *req)
2066 {
2067 	return s5p_aes_crypt(req, FLAGS_AES_CBC);
2068 }
2069 
2070 static int s5p_aes_cbc_decrypt(struct skcipher_request *req)
2071 {
2072 	return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
2073 }
2074 
2075 static int s5p_aes_ctr_crypt(struct skcipher_request *req)
2076 {
2077 	return s5p_aes_crypt(req, FLAGS_AES_CTR);
2078 }
2079 
2080 static int s5p_aes_init_tfm(struct crypto_skcipher *tfm)
2081 {
2082 	struct s5p_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
2083 
2084 	ctx->dev = s5p_dev;
2085 	crypto_skcipher_set_reqsize(tfm, sizeof(struct s5p_aes_reqctx));
2086 
2087 	return 0;
2088 }
2089 
2090 static struct skcipher_alg algs[] = {
2091 	{
2092 		.base.cra_name		= "ecb(aes)",
2093 		.base.cra_driver_name	= "ecb-aes-s5p",
2094 		.base.cra_priority	= 100,
2095 		.base.cra_flags		= CRYPTO_ALG_ASYNC |
2096 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2097 		.base.cra_blocksize	= AES_BLOCK_SIZE,
2098 		.base.cra_ctxsize	= sizeof(struct s5p_aes_ctx),
2099 		.base.cra_alignmask	= 0x0f,
2100 		.base.cra_module	= THIS_MODULE,
2101 
2102 		.min_keysize		= AES_MIN_KEY_SIZE,
2103 		.max_keysize		= AES_MAX_KEY_SIZE,
2104 		.setkey			= s5p_aes_setkey,
2105 		.encrypt		= s5p_aes_ecb_encrypt,
2106 		.decrypt		= s5p_aes_ecb_decrypt,
2107 		.init			= s5p_aes_init_tfm,
2108 	},
2109 	{
2110 		.base.cra_name		= "cbc(aes)",
2111 		.base.cra_driver_name	= "cbc-aes-s5p",
2112 		.base.cra_priority	= 100,
2113 		.base.cra_flags		= CRYPTO_ALG_ASYNC |
2114 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2115 		.base.cra_blocksize	= AES_BLOCK_SIZE,
2116 		.base.cra_ctxsize	= sizeof(struct s5p_aes_ctx),
2117 		.base.cra_alignmask	= 0x0f,
2118 		.base.cra_module	= THIS_MODULE,
2119 
2120 		.min_keysize		= AES_MIN_KEY_SIZE,
2121 		.max_keysize		= AES_MAX_KEY_SIZE,
2122 		.ivsize			= AES_BLOCK_SIZE,
2123 		.setkey			= s5p_aes_setkey,
2124 		.encrypt		= s5p_aes_cbc_encrypt,
2125 		.decrypt		= s5p_aes_cbc_decrypt,
2126 		.init			= s5p_aes_init_tfm,
2127 	},
2128 	{
2129 		.base.cra_name		= "ctr(aes)",
2130 		.base.cra_driver_name	= "ctr-aes-s5p",
2131 		.base.cra_priority	= 100,
2132 		.base.cra_flags		= CRYPTO_ALG_ASYNC |
2133 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
2134 		.base.cra_blocksize	= 1,
2135 		.base.cra_ctxsize	= sizeof(struct s5p_aes_ctx),
2136 		.base.cra_alignmask	= 0x0f,
2137 		.base.cra_module	= THIS_MODULE,
2138 
2139 		.min_keysize		= AES_MIN_KEY_SIZE,
2140 		.max_keysize		= AES_MAX_KEY_SIZE,
2141 		.ivsize			= AES_BLOCK_SIZE,
2142 		.setkey			= s5p_aes_setkey,
2143 		.encrypt		= s5p_aes_ctr_crypt,
2144 		.decrypt		= s5p_aes_ctr_crypt,
2145 		.init			= s5p_aes_init_tfm,
2146 	},
2147 };
2148 
2149 static int s5p_aes_probe(struct platform_device *pdev)
2150 {
2151 	struct device *dev = &pdev->dev;
2152 	int i, j, err;
2153 	const struct samsung_aes_variant *variant;
2154 	struct s5p_aes_dev *pdata;
2155 	struct resource *res;
2156 	unsigned int hash_i;
2157 
2158 	if (s5p_dev)
2159 		return -EEXIST;
2160 
2161 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2162 	if (!pdata)
2163 		return -ENOMEM;
2164 
2165 	variant = find_s5p_sss_version(pdev);
2166 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2167 	if (!res)
2168 		return -EINVAL;
2169 
2170 	/*
2171 	 * Note: HASH and PRNG uses the same registers in secss, avoid
2172 	 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2173 	 * is enabled in config. We need larger size for HASH registers in
2174 	 * secss, current describe only AES/DES
2175 	 */
2176 	if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) {
2177 		if (variant == &exynos_aes_data) {
2178 			res->end += 0x300;
2179 			pdata->use_hash = true;
2180 		}
2181 	}
2182 
2183 	pdata->res = res;
2184 	pdata->ioaddr = devm_ioremap_resource(dev, res);
2185 	if (IS_ERR(pdata->ioaddr)) {
2186 		if (!pdata->use_hash)
2187 			return PTR_ERR(pdata->ioaddr);
2188 		/* try AES without HASH */
2189 		res->end -= 0x300;
2190 		pdata->use_hash = false;
2191 		pdata->ioaddr = devm_ioremap_resource(dev, res);
2192 		if (IS_ERR(pdata->ioaddr))
2193 			return PTR_ERR(pdata->ioaddr);
2194 	}
2195 
2196 	pdata->clk = devm_clk_get(dev, variant->clk_names[0]);
2197 	if (IS_ERR(pdata->clk))
2198 		return dev_err_probe(dev, PTR_ERR(pdata->clk),
2199 				     "failed to find secss clock %s\n",
2200 				     variant->clk_names[0]);
2201 
2202 	err = clk_prepare_enable(pdata->clk);
2203 	if (err < 0) {
2204 		dev_err(dev, "Enabling clock %s failed, err %d\n",
2205 			variant->clk_names[0], err);
2206 		return err;
2207 	}
2208 
2209 	if (variant->clk_names[1]) {
2210 		pdata->pclk = devm_clk_get(dev, variant->clk_names[1]);
2211 		if (IS_ERR(pdata->pclk)) {
2212 			err = dev_err_probe(dev, PTR_ERR(pdata->pclk),
2213 					    "failed to find clock %s\n",
2214 					    variant->clk_names[1]);
2215 			goto err_clk;
2216 		}
2217 
2218 		err = clk_prepare_enable(pdata->pclk);
2219 		if (err < 0) {
2220 			dev_err(dev, "Enabling clock %s failed, err %d\n",
2221 				variant->clk_names[0], err);
2222 			goto err_clk;
2223 		}
2224 	} else {
2225 		pdata->pclk = NULL;
2226 	}
2227 
2228 	spin_lock_init(&pdata->lock);
2229 	spin_lock_init(&pdata->hash_lock);
2230 
2231 	pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
2232 	pdata->io_hash_base = pdata->ioaddr + variant->hash_offset;
2233 
2234 	pdata->irq_fc = platform_get_irq(pdev, 0);
2235 	if (pdata->irq_fc < 0) {
2236 		err = pdata->irq_fc;
2237 		dev_warn(dev, "feed control interrupt is not available.\n");
2238 		goto err_irq;
2239 	}
2240 	err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
2241 					s5p_aes_interrupt, IRQF_ONESHOT,
2242 					pdev->name, pdev);
2243 	if (err < 0) {
2244 		dev_warn(dev, "feed control interrupt is not available.\n");
2245 		goto err_irq;
2246 	}
2247 
2248 	pdata->busy = false;
2249 	pdata->dev = dev;
2250 	platform_set_drvdata(pdev, pdata);
2251 	s5p_dev = pdata;
2252 
2253 	tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
2254 	crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
2255 
2256 	for (i = 0; i < ARRAY_SIZE(algs); i++) {
2257 		err = crypto_register_skcipher(&algs[i]);
2258 		if (err)
2259 			goto err_algs;
2260 	}
2261 
2262 	if (pdata->use_hash) {
2263 		tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb,
2264 			     (unsigned long)pdata);
2265 		crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH);
2266 
2267 		for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256);
2268 		     hash_i++) {
2269 			struct ahash_alg *alg;
2270 
2271 			alg = &algs_sha1_md5_sha256[hash_i];
2272 			err = crypto_register_ahash(alg);
2273 			if (err) {
2274 				dev_err(dev, "can't register '%s': %d\n",
2275 					alg->halg.base.cra_driver_name, err);
2276 				goto err_hash;
2277 			}
2278 		}
2279 	}
2280 
2281 	dev_info(dev, "s5p-sss driver registered\n");
2282 
2283 	return 0;
2284 
2285 err_hash:
2286 	for (j = hash_i - 1; j >= 0; j--)
2287 		crypto_unregister_ahash(&algs_sha1_md5_sha256[j]);
2288 
2289 	tasklet_kill(&pdata->hash_tasklet);
2290 	res->end -= 0x300;
2291 
2292 err_algs:
2293 	if (i < ARRAY_SIZE(algs))
2294 		dev_err(dev, "can't register '%s': %d\n", algs[i].base.cra_name,
2295 			err);
2296 
2297 	for (j = 0; j < i; j++)
2298 		crypto_unregister_skcipher(&algs[j]);
2299 
2300 	tasklet_kill(&pdata->tasklet);
2301 
2302 err_irq:
2303 	clk_disable_unprepare(pdata->pclk);
2304 
2305 err_clk:
2306 	clk_disable_unprepare(pdata->clk);
2307 	s5p_dev = NULL;
2308 
2309 	return err;
2310 }
2311 
2312 static void s5p_aes_remove(struct platform_device *pdev)
2313 {
2314 	struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
2315 	int i;
2316 
2317 	for (i = 0; i < ARRAY_SIZE(algs); i++)
2318 		crypto_unregister_skcipher(&algs[i]);
2319 
2320 	tasklet_kill(&pdata->tasklet);
2321 	if (pdata->use_hash) {
2322 		for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--)
2323 			crypto_unregister_ahash(&algs_sha1_md5_sha256[i]);
2324 
2325 		pdata->res->end -= 0x300;
2326 		tasklet_kill(&pdata->hash_tasklet);
2327 		pdata->use_hash = false;
2328 	}
2329 
2330 	clk_disable_unprepare(pdata->pclk);
2331 
2332 	clk_disable_unprepare(pdata->clk);
2333 	s5p_dev = NULL;
2334 }
2335 
2336 static struct platform_driver s5p_aes_crypto = {
2337 	.probe	= s5p_aes_probe,
2338 	.remove_new = s5p_aes_remove,
2339 	.driver	= {
2340 		.name	= "s5p-secss",
2341 		.of_match_table = s5p_sss_dt_match,
2342 	},
2343 };
2344 
2345 module_platform_driver(s5p_aes_crypto);
2346 
2347 MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2348 MODULE_LICENSE("GPL v2");
2349 MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
2350 MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");
2351