xref: /linux/drivers/crypto/qce/sha.c (revision 49b9258b05b97c6464e1964b6a2fddb3ddb65d17)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/cleanup.h>
7 #include <linux/device.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/interrupt.h>
10 #include <crypto/internal/hash.h>
11 
12 #include "common.h"
13 #include "core.h"
14 #include "sha.h"
15 
16 struct qce_sha_saved_state {
17 	u8 pending_buf[QCE_SHA_MAX_BLOCKSIZE];
18 	u8 partial_digest[QCE_SHA_MAX_DIGESTSIZE];
19 	__be32 byte_count[2];
20 	unsigned int pending_buflen;
21 	unsigned int flags;
22 	u64 count;
23 	bool first_blk;
24 };
25 
26 static LIST_HEAD(ahash_algs);
27 
28 static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
29 	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
30 };
31 
32 static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
33 	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
34 	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
35 };
36 
37 static void qce_ahash_done(void *data)
38 {
39 	struct crypto_async_request *async_req = data;
40 	struct ahash_request *req = ahash_request_cast(async_req);
41 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
42 	struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
43 	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
44 	struct qce_device *qce = tmpl->qce;
45 	struct qce_result_dump *result = qce->dma.result_buf;
46 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
47 	int error;
48 	u32 status;
49 
50 	error = qce_dma_terminate_all(&qce->dma);
51 	if (error)
52 		dev_dbg(qce->dev, "ahash dma termination error (%d)\n", error);
53 
54 	dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
55 	dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
56 
57 	memcpy(rctx->digest, result->auth_iv, digestsize);
58 	if (req->result && rctx->last_blk)
59 		memcpy(req->result, result->auth_iv, digestsize);
60 
61 	rctx->byte_count[0] = cpu_to_be32(result->auth_byte_count[0]);
62 	rctx->byte_count[1] = cpu_to_be32(result->auth_byte_count[1]);
63 
64 	error = qce_check_status(qce, &status);
65 	if (error < 0)
66 		dev_dbg(qce->dev, "ahash operation error (%x)\n", status);
67 
68 	req->src = rctx->src_orig;
69 	req->nbytes = rctx->nbytes_orig;
70 	rctx->last_blk = false;
71 	rctx->first_blk = false;
72 
73 	qce->async_req_done(tmpl->qce, error);
74 }
75 
76 static int qce_ahash_async_req_handle(struct crypto_async_request *async_req)
77 {
78 	struct ahash_request *req = ahash_request_cast(async_req);
79 	struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
80 	struct qce_sha_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
81 	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
82 	struct qce_device *qce = tmpl->qce;
83 	unsigned long flags = rctx->flags;
84 	int ret;
85 
86 	if (IS_SHA_HMAC(flags)) {
87 		rctx->authkey = ctx->authkey;
88 		rctx->authklen = QCE_SHA_HMAC_KEY_SIZE;
89 	} else if (IS_CMAC(flags)) {
90 		rctx->authkey = ctx->authkey;
91 		rctx->authklen = AES_KEYSIZE_128;
92 	}
93 
94 	rctx->src_nents = sg_nents_for_len(req->src, req->nbytes);
95 	if (rctx->src_nents < 0) {
96 		dev_err(qce->dev, "Invalid numbers of src SG.\n");
97 		return rctx->src_nents;
98 	}
99 
100 	ret = dma_map_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
101 	if (!ret)
102 		return -EIO;
103 
104 	sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ);
105 
106 	ret = dma_map_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
107 	if (!ret) {
108 		ret = -EIO;
109 		goto error_unmap_src;
110 	}
111 
112 	ret = qce_dma_prep_sgs(&qce->dma, req->src, rctx->src_nents,
113 			       &rctx->result_sg, 1, qce_ahash_done, async_req);
114 	if (ret)
115 		goto error_unmap_dst;
116 
117 	qce_dma_issue_pending(&qce->dma);
118 
119 	ret = qce_start(async_req, tmpl->crypto_alg_type);
120 	if (ret)
121 		goto error_terminate;
122 
123 	return 0;
124 
125 error_terminate:
126 	qce_dma_terminate_all(&qce->dma);
127 error_unmap_dst:
128 	dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
129 error_unmap_src:
130 	dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
131 	return ret;
132 }
133 
134 static int qce_ahash_init(struct ahash_request *req)
135 {
136 	struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
137 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
138 	const u32 *std_iv = tmpl->std_iv;
139 
140 	memset(rctx, 0, sizeof(*rctx));
141 	rctx->first_blk = true;
142 	rctx->last_blk = false;
143 	rctx->flags = tmpl->alg_flags;
144 	memcpy(rctx->digest, std_iv, sizeof(rctx->digest));
145 
146 	return 0;
147 }
148 
149 static int qce_ahash_export(struct ahash_request *req, void *out)
150 {
151 	struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
152 	struct qce_sha_saved_state *export_state = out;
153 
154 	memcpy(export_state->pending_buf, rctx->buf, rctx->buflen);
155 	memcpy(export_state->partial_digest, rctx->digest, sizeof(rctx->digest));
156 	export_state->byte_count[0] = rctx->byte_count[0];
157 	export_state->byte_count[1] = rctx->byte_count[1];
158 	export_state->pending_buflen = rctx->buflen;
159 	export_state->count = rctx->count;
160 	export_state->first_blk = rctx->first_blk;
161 	export_state->flags = rctx->flags;
162 
163 	return 0;
164 }
165 
166 static int qce_ahash_import(struct ahash_request *req, const void *in)
167 {
168 	struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
169 	const struct qce_sha_saved_state *import_state = in;
170 
171 	memset(rctx, 0, sizeof(*rctx));
172 	rctx->count = import_state->count;
173 	rctx->buflen = import_state->pending_buflen;
174 	rctx->first_blk = import_state->first_blk;
175 	rctx->flags = import_state->flags;
176 	rctx->byte_count[0] = import_state->byte_count[0];
177 	rctx->byte_count[1] = import_state->byte_count[1];
178 	memcpy(rctx->buf, import_state->pending_buf, rctx->buflen);
179 	memcpy(rctx->digest, import_state->partial_digest, sizeof(rctx->digest));
180 
181 	return 0;
182 }
183 
184 static int qce_ahash_update(struct ahash_request *req)
185 {
186 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
187 	struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
188 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
189 	struct qce_device *qce = tmpl->qce;
190 	struct scatterlist *sg_last, *sg;
191 	unsigned int total, len;
192 	unsigned int hash_later;
193 	unsigned int nbytes;
194 	unsigned int blocksize;
195 
196 	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
197 	rctx->count += req->nbytes;
198 
199 	/* check for buffer from previous updates and append it */
200 	total = req->nbytes + rctx->buflen;
201 
202 	if (total <= blocksize) {
203 		scatterwalk_map_and_copy(rctx->buf + rctx->buflen, req->src,
204 					 0, req->nbytes, 0);
205 		rctx->buflen += req->nbytes;
206 		return 0;
207 	}
208 
209 	/* save the original req structure fields */
210 	rctx->src_orig = req->src;
211 	rctx->nbytes_orig = req->nbytes;
212 
213 	/*
214 	 * if we have data from previous update copy them on buffer. The old
215 	 * data will be combined with current request bytes.
216 	 */
217 	if (rctx->buflen)
218 		memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
219 
220 	/* calculate how many bytes will be hashed later */
221 	hash_later = total % blocksize;
222 
223 	/*
224 	 * At this point, there is more than one block size of data.  If
225 	 * the available data to transfer is exactly a multiple of block
226 	 * size, save the last block to be transferred in qce_ahash_final
227 	 * (with the last block bit set) if this is indeed the end of data
228 	 * stream. If not this saved block will be transferred as part of
229 	 * next update. If this block is not held back and if this is
230 	 * indeed the end of data stream, the digest obtained will be wrong
231 	 * since qce_ahash_final will see that rctx->buflen is 0 and return
232 	 * doing nothing which in turn means that a digest will not be
233 	 * copied to the destination result buffer.  qce_ahash_final cannot
234 	 * be made to alter this behavior and allowed to proceed if
235 	 * rctx->buflen is 0 because the crypto engine BAM does not allow
236 	 * for zero length transfers.
237 	 */
238 	if (!hash_later)
239 		hash_later = blocksize;
240 
241 	if (hash_later) {
242 		unsigned int src_offset = req->nbytes - hash_later;
243 		scatterwalk_map_and_copy(rctx->buf, req->src, src_offset,
244 					 hash_later, 0);
245 	}
246 
247 	/* here nbytes is multiple of blocksize */
248 	nbytes = total - hash_later;
249 
250 	len = rctx->buflen;
251 	sg = sg_last = req->src;
252 
253 	while (len < nbytes && sg) {
254 		if (len + sg_dma_len(sg) > nbytes)
255 			break;
256 		len += sg_dma_len(sg);
257 		sg_last = sg;
258 		sg = sg_next(sg);
259 	}
260 
261 	if (!sg_last)
262 		return -EINVAL;
263 
264 	if (rctx->buflen) {
265 		sg_init_table(rctx->sg, 2);
266 		sg_set_buf(rctx->sg, rctx->tmpbuf, rctx->buflen);
267 		sg_chain(rctx->sg, 2, req->src);
268 		req->src = rctx->sg;
269 	}
270 
271 	req->nbytes = nbytes;
272 	rctx->buflen = hash_later;
273 
274 	return qce->async_req_enqueue(tmpl->qce, &req->base);
275 }
276 
277 static int qce_ahash_final(struct ahash_request *req)
278 {
279 	struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
280 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
281 	struct qce_device *qce = tmpl->qce;
282 
283 	if (!rctx->buflen) {
284 		if (tmpl->hash_zero)
285 			memcpy(req->result, tmpl->hash_zero,
286 					tmpl->alg.ahash.halg.digestsize);
287 		return 0;
288 	}
289 
290 	rctx->last_blk = true;
291 
292 	rctx->src_orig = req->src;
293 	rctx->nbytes_orig = req->nbytes;
294 
295 	memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
296 	sg_init_one(rctx->sg, rctx->tmpbuf, rctx->buflen);
297 
298 	req->src = rctx->sg;
299 	req->nbytes = rctx->buflen;
300 
301 	return qce->async_req_enqueue(tmpl->qce, &req->base);
302 }
303 
304 static int qce_ahash_digest(struct ahash_request *req)
305 {
306 	struct qce_sha_reqctx *rctx = ahash_request_ctx_dma(req);
307 	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
308 	struct qce_device *qce = tmpl->qce;
309 	int ret;
310 
311 	ret = qce_ahash_init(req);
312 	if (ret)
313 		return ret;
314 
315 	rctx->src_orig = req->src;
316 	rctx->nbytes_orig = req->nbytes;
317 	rctx->first_blk = true;
318 	rctx->last_blk = true;
319 
320 	if (!rctx->nbytes_orig) {
321 		if (tmpl->hash_zero)
322 			memcpy(req->result, tmpl->hash_zero,
323 					tmpl->alg.ahash.halg.digestsize);
324 		return 0;
325 	}
326 
327 	return qce->async_req_enqueue(tmpl->qce, &req->base);
328 }
329 
330 static int qce_ahash_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
331 				 unsigned int keylen)
332 {
333 	unsigned int digestsize = crypto_ahash_digestsize(tfm);
334 	struct qce_sha_ctx *ctx = crypto_tfm_ctx(&tfm->base);
335 	struct crypto_wait wait;
336 	struct ahash_request *req;
337 	struct scatterlist sg;
338 	unsigned int blocksize;
339 	struct crypto_ahash *ahash_tfm;
340 	int ret;
341 	const char *alg_name;
342 
343 	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
344 	memset(ctx->authkey, 0, sizeof(ctx->authkey));
345 
346 	if (keylen <= blocksize) {
347 		memcpy(ctx->authkey, key, keylen);
348 		return 0;
349 	}
350 
351 	if (digestsize == SHA1_DIGEST_SIZE)
352 		alg_name = "sha1-qce";
353 	else if (digestsize == SHA256_DIGEST_SIZE)
354 		alg_name = "sha256-qce";
355 	else
356 		return -EINVAL;
357 
358 	ahash_tfm = crypto_alloc_ahash(alg_name, 0, 0);
359 	if (IS_ERR(ahash_tfm))
360 		return PTR_ERR(ahash_tfm);
361 
362 	req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
363 	if (!req) {
364 		ret = -ENOMEM;
365 		goto err_free_ahash;
366 	}
367 
368 	crypto_init_wait(&wait);
369 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
370 				   crypto_req_done, &wait);
371 	crypto_ahash_clear_flags(ahash_tfm, ~0);
372 
373 	u8 *buf __free(kfree) = kzalloc(keylen + QCE_MAX_ALIGN_SIZE,
374 					GFP_KERNEL);
375 	if (!buf) {
376 		ret = -ENOMEM;
377 		goto err_free_req;
378 	}
379 
380 	memcpy(buf, key, keylen);
381 	sg_init_one(&sg, buf, keylen);
382 	ahash_request_set_crypt(req, &sg, ctx->authkey, keylen);
383 
384 	ret = crypto_wait_req(crypto_ahash_digest(req), &wait);
385 
386 err_free_req:
387 	ahash_request_free(req);
388 err_free_ahash:
389 	crypto_free_ahash(ahash_tfm);
390 	return ret;
391 }
392 
393 static int qce_ahash_cra_init(struct crypto_tfm *tfm)
394 {
395 	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
396 	struct qce_sha_ctx *ctx = crypto_tfm_ctx(tfm);
397 
398 	crypto_ahash_set_reqsize_dma(ahash, sizeof(struct qce_sha_reqctx));
399 	memset(ctx, 0, sizeof(*ctx));
400 	return 0;
401 }
402 
403 struct qce_ahash_def {
404 	unsigned long flags;
405 	const char *name;
406 	const char *drv_name;
407 	unsigned int digestsize;
408 	unsigned int blocksize;
409 	unsigned int statesize;
410 	const u32 *std_iv;
411 };
412 
413 static const struct qce_ahash_def ahash_def[] = {
414 	{
415 		.flags		= QCE_HASH_SHA1,
416 		.name		= "sha1",
417 		.drv_name	= "sha1-qce",
418 		.digestsize	= SHA1_DIGEST_SIZE,
419 		.blocksize	= SHA1_BLOCK_SIZE,
420 		.statesize	= sizeof(struct qce_sha_saved_state),
421 		.std_iv		= std_iv_sha1,
422 	},
423 	{
424 		.flags		= QCE_HASH_SHA256,
425 		.name		= "sha256",
426 		.drv_name	= "sha256-qce",
427 		.digestsize	= SHA256_DIGEST_SIZE,
428 		.blocksize	= SHA256_BLOCK_SIZE,
429 		.statesize	= sizeof(struct qce_sha_saved_state),
430 		.std_iv		= std_iv_sha256,
431 	},
432 	{
433 		.flags		= QCE_HASH_SHA1_HMAC,
434 		.name		= "hmac(sha1)",
435 		.drv_name	= "hmac-sha1-qce",
436 		.digestsize	= SHA1_DIGEST_SIZE,
437 		.blocksize	= SHA1_BLOCK_SIZE,
438 		.statesize	= sizeof(struct qce_sha_saved_state),
439 		.std_iv		= std_iv_sha1,
440 	},
441 	{
442 		.flags		= QCE_HASH_SHA256_HMAC,
443 		.name		= "hmac(sha256)",
444 		.drv_name	= "hmac-sha256-qce",
445 		.digestsize	= SHA256_DIGEST_SIZE,
446 		.blocksize	= SHA256_BLOCK_SIZE,
447 		.statesize	= sizeof(struct qce_sha_saved_state),
448 		.std_iv		= std_iv_sha256,
449 	},
450 };
451 
452 static int qce_ahash_register_one(const struct qce_ahash_def *def,
453 				  struct qce_device *qce)
454 {
455 	struct qce_alg_template *tmpl;
456 	struct ahash_alg *alg;
457 	struct crypto_alg *base;
458 	int ret;
459 
460 	tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL);
461 	if (!tmpl)
462 		return -ENOMEM;
463 
464 	tmpl->std_iv = def->std_iv;
465 
466 	alg = &tmpl->alg.ahash;
467 	alg->init = qce_ahash_init;
468 	alg->update = qce_ahash_update;
469 	alg->final = qce_ahash_final;
470 	alg->digest = qce_ahash_digest;
471 	alg->export = qce_ahash_export;
472 	alg->import = qce_ahash_import;
473 	if (IS_SHA_HMAC(def->flags))
474 		alg->setkey = qce_ahash_hmac_setkey;
475 	alg->halg.digestsize = def->digestsize;
476 	alg->halg.statesize = def->statesize;
477 
478 	if (IS_SHA1(def->flags))
479 		tmpl->hash_zero = sha1_zero_message_hash;
480 	else if (IS_SHA256(def->flags))
481 		tmpl->hash_zero = sha256_zero_message_hash;
482 
483 	base = &alg->halg.base;
484 	base->cra_blocksize = def->blocksize;
485 	base->cra_priority = 175;
486 	base->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
487 	base->cra_ctxsize = sizeof(struct qce_sha_ctx);
488 	base->cra_alignmask = 0;
489 	base->cra_module = THIS_MODULE;
490 	base->cra_init = qce_ahash_cra_init;
491 
492 	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
493 	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
494 		 def->drv_name);
495 
496 	INIT_LIST_HEAD(&tmpl->entry);
497 	tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_AHASH;
498 	tmpl->alg_flags = def->flags;
499 	tmpl->qce = qce;
500 
501 	ret = crypto_register_ahash(alg);
502 	if (ret) {
503 		dev_err(qce->dev, "%s registration failed\n", base->cra_name);
504 		kfree(tmpl);
505 		return ret;
506 	}
507 
508 	list_add_tail(&tmpl->entry, &ahash_algs);
509 	dev_dbg(qce->dev, "%s is registered\n", base->cra_name);
510 	return 0;
511 }
512 
513 static void qce_ahash_unregister(struct qce_device *qce)
514 {
515 	struct qce_alg_template *tmpl, *n;
516 
517 	list_for_each_entry_safe(tmpl, n, &ahash_algs, entry) {
518 		crypto_unregister_ahash(&tmpl->alg.ahash);
519 		list_del(&tmpl->entry);
520 		kfree(tmpl);
521 	}
522 }
523 
524 static int qce_ahash_register(struct qce_device *qce)
525 {
526 	int ret, i;
527 
528 	for (i = 0; i < ARRAY_SIZE(ahash_def); i++) {
529 		ret = qce_ahash_register_one(&ahash_def[i], qce);
530 		if (ret)
531 			goto err;
532 	}
533 
534 	return 0;
535 err:
536 	qce_ahash_unregister(qce);
537 	return ret;
538 }
539 
540 const struct qce_algo_ops ahash_ops = {
541 	.type = CRYPTO_ALG_TYPE_AHASH,
542 	.register_algs = qce_ahash_register,
543 	.unregister_algs = qce_ahash_unregister,
544 	.async_req_handle = qce_ahash_async_req_handle,
545 };
546