xref: /linux/drivers/crypto/qce/common.c (revision e74e1d55728509b352e4eec4283dd5b2781b2070)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/err.h>
7 #include <linux/interrupt.h>
8 #include <linux/types.h>
9 #include <crypto/scatterwalk.h>
10 #include <crypto/sha.h>
11 
12 #include "cipher.h"
13 #include "common.h"
14 #include "core.h"
15 #include "regs-v5.h"
16 #include "sha.h"
17 
18 static inline u32 qce_read(struct qce_device *qce, u32 offset)
19 {
20 	return readl(qce->base + offset);
21 }
22 
23 static inline void qce_write(struct qce_device *qce, u32 offset, u32 val)
24 {
25 	writel(val, qce->base + offset);
26 }
27 
28 static inline void qce_write_array(struct qce_device *qce, u32 offset,
29 				   const u32 *val, unsigned int len)
30 {
31 	int i;
32 
33 	for (i = 0; i < len; i++)
34 		qce_write(qce, offset + i * sizeof(u32), val[i]);
35 }
36 
37 static inline void
38 qce_clear_array(struct qce_device *qce, u32 offset, unsigned int len)
39 {
40 	int i;
41 
42 	for (i = 0; i < len; i++)
43 		qce_write(qce, offset + i * sizeof(u32), 0);
44 }
45 
46 static u32 qce_config_reg(struct qce_device *qce, int little)
47 {
48 	u32 beats = (qce->burst_size >> 3) - 1;
49 	u32 pipe_pair = qce->pipe_pair_id;
50 	u32 config;
51 
52 	config = (beats << REQ_SIZE_SHIFT) & REQ_SIZE_MASK;
53 	config |= BIT(MASK_DOUT_INTR_SHIFT) | BIT(MASK_DIN_INTR_SHIFT) |
54 		  BIT(MASK_OP_DONE_INTR_SHIFT) | BIT(MASK_ERR_INTR_SHIFT);
55 	config |= (pipe_pair << PIPE_SET_SELECT_SHIFT) & PIPE_SET_SELECT_MASK;
56 	config &= ~HIGH_SPD_EN_N_SHIFT;
57 
58 	if (little)
59 		config |= BIT(LITTLE_ENDIAN_MODE_SHIFT);
60 
61 	return config;
62 }
63 
64 void qce_cpu_to_be32p_array(__be32 *dst, const u8 *src, unsigned int len)
65 {
66 	__be32 *d = dst;
67 	const u8 *s = src;
68 	unsigned int n;
69 
70 	n = len / sizeof(u32);
71 	for (; n > 0; n--) {
72 		*d = cpu_to_be32p((const __u32 *) s);
73 		s += sizeof(__u32);
74 		d++;
75 	}
76 }
77 
78 static void qce_setup_config(struct qce_device *qce)
79 {
80 	u32 config;
81 
82 	/* get big endianness */
83 	config = qce_config_reg(qce, 0);
84 
85 	/* clear status */
86 	qce_write(qce, REG_STATUS, 0);
87 	qce_write(qce, REG_CONFIG, config);
88 }
89 
90 static inline void qce_crypto_go(struct qce_device *qce)
91 {
92 	qce_write(qce, REG_GOPROC, BIT(GO_SHIFT) | BIT(RESULTS_DUMP_SHIFT));
93 }
94 
95 #ifdef CONFIG_CRYPTO_DEV_QCE_SHA
96 static u32 qce_auth_cfg(unsigned long flags, u32 key_size)
97 {
98 	u32 cfg = 0;
99 
100 	if (IS_AES(flags) && (IS_CCM(flags) || IS_CMAC(flags)))
101 		cfg |= AUTH_ALG_AES << AUTH_ALG_SHIFT;
102 	else
103 		cfg |= AUTH_ALG_SHA << AUTH_ALG_SHIFT;
104 
105 	if (IS_CCM(flags) || IS_CMAC(flags)) {
106 		if (key_size == AES_KEYSIZE_128)
107 			cfg |= AUTH_KEY_SZ_AES128 << AUTH_KEY_SIZE_SHIFT;
108 		else if (key_size == AES_KEYSIZE_256)
109 			cfg |= AUTH_KEY_SZ_AES256 << AUTH_KEY_SIZE_SHIFT;
110 	}
111 
112 	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags))
113 		cfg |= AUTH_SIZE_SHA1 << AUTH_SIZE_SHIFT;
114 	else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags))
115 		cfg |= AUTH_SIZE_SHA256 << AUTH_SIZE_SHIFT;
116 	else if (IS_CMAC(flags))
117 		cfg |= AUTH_SIZE_ENUM_16_BYTES << AUTH_SIZE_SHIFT;
118 
119 	if (IS_SHA1(flags) || IS_SHA256(flags))
120 		cfg |= AUTH_MODE_HASH << AUTH_MODE_SHIFT;
121 	else if (IS_SHA1_HMAC(flags) || IS_SHA256_HMAC(flags) ||
122 		 IS_CBC(flags) || IS_CTR(flags))
123 		cfg |= AUTH_MODE_HMAC << AUTH_MODE_SHIFT;
124 	else if (IS_AES(flags) && IS_CCM(flags))
125 		cfg |= AUTH_MODE_CCM << AUTH_MODE_SHIFT;
126 	else if (IS_AES(flags) && IS_CMAC(flags))
127 		cfg |= AUTH_MODE_CMAC << AUTH_MODE_SHIFT;
128 
129 	if (IS_SHA(flags) || IS_SHA_HMAC(flags))
130 		cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
131 
132 	if (IS_CCM(flags))
133 		cfg |= QCE_MAX_NONCE_WORDS << AUTH_NONCE_NUM_WORDS_SHIFT;
134 
135 	if (IS_CBC(flags) || IS_CTR(flags) || IS_CCM(flags) ||
136 	    IS_CMAC(flags))
137 		cfg |= BIT(AUTH_LAST_SHIFT) | BIT(AUTH_FIRST_SHIFT);
138 
139 	return cfg;
140 }
141 
142 static int qce_setup_regs_ahash(struct crypto_async_request *async_req,
143 				u32 totallen, u32 offset)
144 {
145 	struct ahash_request *req = ahash_request_cast(async_req);
146 	struct crypto_ahash *ahash = __crypto_ahash_cast(async_req->tfm);
147 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
148 	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
149 	struct qce_device *qce = tmpl->qce;
150 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
151 	unsigned int blocksize = crypto_tfm_alg_blocksize(async_req->tfm);
152 	__be32 auth[SHA256_DIGEST_SIZE / sizeof(__be32)] = {0};
153 	__be32 mackey[QCE_SHA_HMAC_KEY_SIZE / sizeof(__be32)] = {0};
154 	u32 auth_cfg = 0, config;
155 	unsigned int iv_words;
156 
157 	/* if not the last, the size has to be on the block boundary */
158 	if (!rctx->last_blk && req->nbytes % blocksize)
159 		return -EINVAL;
160 
161 	qce_setup_config(qce);
162 
163 	if (IS_CMAC(rctx->flags)) {
164 		qce_write(qce, REG_AUTH_SEG_CFG, 0);
165 		qce_write(qce, REG_ENCR_SEG_CFG, 0);
166 		qce_write(qce, REG_ENCR_SEG_SIZE, 0);
167 		qce_clear_array(qce, REG_AUTH_IV0, 16);
168 		qce_clear_array(qce, REG_AUTH_KEY0, 16);
169 		qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
170 
171 		auth_cfg = qce_auth_cfg(rctx->flags, rctx->authklen);
172 	}
173 
174 	if (IS_SHA_HMAC(rctx->flags) || IS_CMAC(rctx->flags)) {
175 		u32 authkey_words = rctx->authklen / sizeof(u32);
176 
177 		qce_cpu_to_be32p_array(mackey, rctx->authkey, rctx->authklen);
178 		qce_write_array(qce, REG_AUTH_KEY0, (u32 *)mackey,
179 				authkey_words);
180 	}
181 
182 	if (IS_CMAC(rctx->flags))
183 		goto go_proc;
184 
185 	if (rctx->first_blk)
186 		memcpy(auth, rctx->digest, digestsize);
187 	else
188 		qce_cpu_to_be32p_array(auth, rctx->digest, digestsize);
189 
190 	iv_words = (IS_SHA1(rctx->flags) || IS_SHA1_HMAC(rctx->flags)) ? 5 : 8;
191 	qce_write_array(qce, REG_AUTH_IV0, (u32 *)auth, iv_words);
192 
193 	if (rctx->first_blk)
194 		qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
195 	else
196 		qce_write_array(qce, REG_AUTH_BYTECNT0,
197 				(u32 *)rctx->byte_count, 2);
198 
199 	auth_cfg = qce_auth_cfg(rctx->flags, 0);
200 
201 	if (rctx->last_blk)
202 		auth_cfg |= BIT(AUTH_LAST_SHIFT);
203 	else
204 		auth_cfg &= ~BIT(AUTH_LAST_SHIFT);
205 
206 	if (rctx->first_blk)
207 		auth_cfg |= BIT(AUTH_FIRST_SHIFT);
208 	else
209 		auth_cfg &= ~BIT(AUTH_FIRST_SHIFT);
210 
211 go_proc:
212 	qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
213 	qce_write(qce, REG_AUTH_SEG_SIZE, req->nbytes);
214 	qce_write(qce, REG_AUTH_SEG_START, 0);
215 	qce_write(qce, REG_ENCR_SEG_CFG, 0);
216 	qce_write(qce, REG_SEG_SIZE, req->nbytes);
217 
218 	/* get little endianness */
219 	config = qce_config_reg(qce, 1);
220 	qce_write(qce, REG_CONFIG, config);
221 
222 	qce_crypto_go(qce);
223 
224 	return 0;
225 }
226 #endif
227 
228 #ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER
229 static u32 qce_encr_cfg(unsigned long flags, u32 aes_key_size)
230 {
231 	u32 cfg = 0;
232 
233 	if (IS_AES(flags)) {
234 		if (aes_key_size == AES_KEYSIZE_128)
235 			cfg |= ENCR_KEY_SZ_AES128 << ENCR_KEY_SZ_SHIFT;
236 		else if (aes_key_size == AES_KEYSIZE_256)
237 			cfg |= ENCR_KEY_SZ_AES256 << ENCR_KEY_SZ_SHIFT;
238 	}
239 
240 	if (IS_AES(flags))
241 		cfg |= ENCR_ALG_AES << ENCR_ALG_SHIFT;
242 	else if (IS_DES(flags) || IS_3DES(flags))
243 		cfg |= ENCR_ALG_DES << ENCR_ALG_SHIFT;
244 
245 	if (IS_DES(flags))
246 		cfg |= ENCR_KEY_SZ_DES << ENCR_KEY_SZ_SHIFT;
247 
248 	if (IS_3DES(flags))
249 		cfg |= ENCR_KEY_SZ_3DES << ENCR_KEY_SZ_SHIFT;
250 
251 	switch (flags & QCE_MODE_MASK) {
252 	case QCE_MODE_ECB:
253 		cfg |= ENCR_MODE_ECB << ENCR_MODE_SHIFT;
254 		break;
255 	case QCE_MODE_CBC:
256 		cfg |= ENCR_MODE_CBC << ENCR_MODE_SHIFT;
257 		break;
258 	case QCE_MODE_CTR:
259 		cfg |= ENCR_MODE_CTR << ENCR_MODE_SHIFT;
260 		break;
261 	case QCE_MODE_XTS:
262 		cfg |= ENCR_MODE_XTS << ENCR_MODE_SHIFT;
263 		break;
264 	case QCE_MODE_CCM:
265 		cfg |= ENCR_MODE_CCM << ENCR_MODE_SHIFT;
266 		cfg |= LAST_CCM_XFR << LAST_CCM_SHIFT;
267 		break;
268 	default:
269 		return ~0;
270 	}
271 
272 	return cfg;
273 }
274 
275 static void qce_xts_swapiv(__be32 *dst, const u8 *src, unsigned int ivsize)
276 {
277 	u8 swap[QCE_AES_IV_LENGTH];
278 	u32 i, j;
279 
280 	if (ivsize > QCE_AES_IV_LENGTH)
281 		return;
282 
283 	memset(swap, 0, QCE_AES_IV_LENGTH);
284 
285 	for (i = (QCE_AES_IV_LENGTH - ivsize), j = ivsize - 1;
286 	     i < QCE_AES_IV_LENGTH; i++, j--)
287 		swap[i] = src[j];
288 
289 	qce_cpu_to_be32p_array(dst, swap, QCE_AES_IV_LENGTH);
290 }
291 
292 static void qce_xtskey(struct qce_device *qce, const u8 *enckey,
293 		       unsigned int enckeylen, unsigned int cryptlen)
294 {
295 	u32 xtskey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0};
296 	unsigned int xtsklen = enckeylen / (2 * sizeof(u32));
297 	unsigned int xtsdusize;
298 
299 	qce_cpu_to_be32p_array((__be32 *)xtskey, enckey + enckeylen / 2,
300 			       enckeylen / 2);
301 	qce_write_array(qce, REG_ENCR_XTS_KEY0, xtskey, xtsklen);
302 
303 	/* xts du size 512B */
304 	xtsdusize = min_t(u32, QCE_SECTOR_SIZE, cryptlen);
305 	qce_write(qce, REG_ENCR_XTS_DU_SIZE, xtsdusize);
306 }
307 
308 static int qce_setup_regs_skcipher(struct crypto_async_request *async_req,
309 				     u32 totallen, u32 offset)
310 {
311 	struct skcipher_request *req = skcipher_request_cast(async_req);
312 	struct qce_cipher_reqctx *rctx = skcipher_request_ctx(req);
313 	struct qce_cipher_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
314 	struct qce_alg_template *tmpl = to_cipher_tmpl(crypto_skcipher_reqtfm(req));
315 	struct qce_device *qce = tmpl->qce;
316 	__be32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(__be32)] = {0};
317 	__be32 enciv[QCE_MAX_IV_SIZE / sizeof(__be32)] = {0};
318 	unsigned int enckey_words, enciv_words;
319 	unsigned int keylen;
320 	u32 encr_cfg = 0, auth_cfg = 0, config;
321 	unsigned int ivsize = rctx->ivsize;
322 	unsigned long flags = rctx->flags;
323 
324 	qce_setup_config(qce);
325 
326 	if (IS_XTS(flags))
327 		keylen = ctx->enc_keylen / 2;
328 	else
329 		keylen = ctx->enc_keylen;
330 
331 	qce_cpu_to_be32p_array(enckey, ctx->enc_key, keylen);
332 	enckey_words = keylen / sizeof(u32);
333 
334 	qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
335 
336 	encr_cfg = qce_encr_cfg(flags, keylen);
337 
338 	if (IS_DES(flags)) {
339 		enciv_words = 2;
340 		enckey_words = 2;
341 	} else if (IS_3DES(flags)) {
342 		enciv_words = 2;
343 		enckey_words = 6;
344 	} else if (IS_AES(flags)) {
345 		if (IS_XTS(flags))
346 			qce_xtskey(qce, ctx->enc_key, ctx->enc_keylen,
347 				   rctx->cryptlen);
348 		enciv_words = 4;
349 	} else {
350 		return -EINVAL;
351 	}
352 
353 	qce_write_array(qce, REG_ENCR_KEY0, (u32 *)enckey, enckey_words);
354 
355 	if (!IS_ECB(flags)) {
356 		if (IS_XTS(flags))
357 			qce_xts_swapiv(enciv, rctx->iv, ivsize);
358 		else
359 			qce_cpu_to_be32p_array(enciv, rctx->iv, ivsize);
360 
361 		qce_write_array(qce, REG_CNTR0_IV0, (u32 *)enciv, enciv_words);
362 	}
363 
364 	if (IS_ENCRYPT(flags))
365 		encr_cfg |= BIT(ENCODE_SHIFT);
366 
367 	qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg);
368 	qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen);
369 	qce_write(qce, REG_ENCR_SEG_START, offset & 0xffff);
370 
371 	if (IS_CTR(flags)) {
372 		qce_write(qce, REG_CNTR_MASK, ~0);
373 		qce_write(qce, REG_CNTR_MASK0, ~0);
374 		qce_write(qce, REG_CNTR_MASK1, ~0);
375 		qce_write(qce, REG_CNTR_MASK2, ~0);
376 	}
377 
378 	qce_write(qce, REG_SEG_SIZE, totallen);
379 
380 	/* get little endianness */
381 	config = qce_config_reg(qce, 1);
382 	qce_write(qce, REG_CONFIG, config);
383 
384 	qce_crypto_go(qce);
385 
386 	return 0;
387 }
388 #endif
389 
390 int qce_start(struct crypto_async_request *async_req, u32 type, u32 totallen,
391 	      u32 offset)
392 {
393 	switch (type) {
394 #ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER
395 	case CRYPTO_ALG_TYPE_SKCIPHER:
396 		return qce_setup_regs_skcipher(async_req, totallen, offset);
397 #endif
398 #ifdef CONFIG_CRYPTO_DEV_QCE_SHA
399 	case CRYPTO_ALG_TYPE_AHASH:
400 		return qce_setup_regs_ahash(async_req, totallen, offset);
401 #endif
402 	default:
403 		return -EINVAL;
404 	}
405 }
406 
407 #define STATUS_ERRORS	\
408 		(BIT(SW_ERR_SHIFT) | BIT(AXI_ERR_SHIFT) | BIT(HSD_ERR_SHIFT))
409 
410 int qce_check_status(struct qce_device *qce, u32 *status)
411 {
412 	int ret = 0;
413 
414 	*status = qce_read(qce, REG_STATUS);
415 
416 	/*
417 	 * Don't use result dump status. The operation may not be complete.
418 	 * Instead, use the status we just read from device. In case, we need to
419 	 * use result_status from result dump the result_status needs to be byte
420 	 * swapped, since we set the device to little endian.
421 	 */
422 	if (*status & STATUS_ERRORS || !(*status & BIT(OPERATION_DONE_SHIFT)))
423 		ret = -ENXIO;
424 
425 	return ret;
426 }
427 
428 void qce_get_version(struct qce_device *qce, u32 *major, u32 *minor, u32 *step)
429 {
430 	u32 val;
431 
432 	val = qce_read(qce, REG_VERSION);
433 	*major = (val & CORE_MAJOR_REV_MASK) >> CORE_MAJOR_REV_SHIFT;
434 	*minor = (val & CORE_MINOR_REV_MASK) >> CORE_MINOR_REV_SHIFT;
435 	*step = (val & CORE_STEP_REV_MASK) >> CORE_STEP_REV_SHIFT;
436 }
437