xref: /linux/drivers/crypto/qce/common.c (revision 6607aa6f6b68fc9b5955755f1b1be125cf2a9d03)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/err.h>
7 #include <linux/interrupt.h>
8 #include <linux/types.h>
9 #include <crypto/scatterwalk.h>
10 #include <crypto/sha1.h>
11 #include <crypto/sha2.h>
12 
13 #include "cipher.h"
14 #include "common.h"
15 #include "core.h"
16 #include "regs-v5.h"
17 #include "sha.h"
18 
19 static inline u32 qce_read(struct qce_device *qce, u32 offset)
20 {
21 	return readl(qce->base + offset);
22 }
23 
24 static inline void qce_write(struct qce_device *qce, u32 offset, u32 val)
25 {
26 	writel(val, qce->base + offset);
27 }
28 
29 static inline void qce_write_array(struct qce_device *qce, u32 offset,
30 				   const u32 *val, unsigned int len)
31 {
32 	int i;
33 
34 	for (i = 0; i < len; i++)
35 		qce_write(qce, offset + i * sizeof(u32), val[i]);
36 }
37 
38 static inline void
39 qce_clear_array(struct qce_device *qce, u32 offset, unsigned int len)
40 {
41 	int i;
42 
43 	for (i = 0; i < len; i++)
44 		qce_write(qce, offset + i * sizeof(u32), 0);
45 }
46 
47 static u32 qce_config_reg(struct qce_device *qce, int little)
48 {
49 	u32 beats = (qce->burst_size >> 3) - 1;
50 	u32 pipe_pair = qce->pipe_pair_id;
51 	u32 config;
52 
53 	config = (beats << REQ_SIZE_SHIFT) & REQ_SIZE_MASK;
54 	config |= BIT(MASK_DOUT_INTR_SHIFT) | BIT(MASK_DIN_INTR_SHIFT) |
55 		  BIT(MASK_OP_DONE_INTR_SHIFT) | BIT(MASK_ERR_INTR_SHIFT);
56 	config |= (pipe_pair << PIPE_SET_SELECT_SHIFT) & PIPE_SET_SELECT_MASK;
57 	config &= ~HIGH_SPD_EN_N_SHIFT;
58 
59 	if (little)
60 		config |= BIT(LITTLE_ENDIAN_MODE_SHIFT);
61 
62 	return config;
63 }
64 
65 void qce_cpu_to_be32p_array(__be32 *dst, const u8 *src, unsigned int len)
66 {
67 	__be32 *d = dst;
68 	const u8 *s = src;
69 	unsigned int n;
70 
71 	n = len / sizeof(u32);
72 	for (; n > 0; n--) {
73 		*d = cpu_to_be32p((const __u32 *) s);
74 		s += sizeof(__u32);
75 		d++;
76 	}
77 }
78 
79 static void qce_setup_config(struct qce_device *qce)
80 {
81 	u32 config;
82 
83 	/* get big endianness */
84 	config = qce_config_reg(qce, 0);
85 
86 	/* clear status */
87 	qce_write(qce, REG_STATUS, 0);
88 	qce_write(qce, REG_CONFIG, config);
89 }
90 
91 static inline void qce_crypto_go(struct qce_device *qce)
92 {
93 	qce_write(qce, REG_GOPROC, BIT(GO_SHIFT) | BIT(RESULTS_DUMP_SHIFT));
94 }
95 
96 #ifdef CONFIG_CRYPTO_DEV_QCE_SHA
97 static u32 qce_auth_cfg(unsigned long flags, u32 key_size)
98 {
99 	u32 cfg = 0;
100 
101 	if (IS_AES(flags) && (IS_CCM(flags) || IS_CMAC(flags)))
102 		cfg |= AUTH_ALG_AES << AUTH_ALG_SHIFT;
103 	else
104 		cfg |= AUTH_ALG_SHA << AUTH_ALG_SHIFT;
105 
106 	if (IS_CCM(flags) || IS_CMAC(flags)) {
107 		if (key_size == AES_KEYSIZE_128)
108 			cfg |= AUTH_KEY_SZ_AES128 << AUTH_KEY_SIZE_SHIFT;
109 		else if (key_size == AES_KEYSIZE_256)
110 			cfg |= AUTH_KEY_SZ_AES256 << AUTH_KEY_SIZE_SHIFT;
111 	}
112 
113 	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags))
114 		cfg |= AUTH_SIZE_SHA1 << AUTH_SIZE_SHIFT;
115 	else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags))
116 		cfg |= AUTH_SIZE_SHA256 << AUTH_SIZE_SHIFT;
117 	else if (IS_CMAC(flags))
118 		cfg |= AUTH_SIZE_ENUM_16_BYTES << AUTH_SIZE_SHIFT;
119 
120 	if (IS_SHA1(flags) || IS_SHA256(flags))
121 		cfg |= AUTH_MODE_HASH << AUTH_MODE_SHIFT;
122 	else if (IS_SHA1_HMAC(flags) || IS_SHA256_HMAC(flags) ||
123 		 IS_CBC(flags) || IS_CTR(flags))
124 		cfg |= AUTH_MODE_HMAC << AUTH_MODE_SHIFT;
125 	else if (IS_AES(flags) && IS_CCM(flags))
126 		cfg |= AUTH_MODE_CCM << AUTH_MODE_SHIFT;
127 	else if (IS_AES(flags) && IS_CMAC(flags))
128 		cfg |= AUTH_MODE_CMAC << AUTH_MODE_SHIFT;
129 
130 	if (IS_SHA(flags) || IS_SHA_HMAC(flags))
131 		cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
132 
133 	if (IS_CCM(flags))
134 		cfg |= QCE_MAX_NONCE_WORDS << AUTH_NONCE_NUM_WORDS_SHIFT;
135 
136 	if (IS_CBC(flags) || IS_CTR(flags) || IS_CCM(flags) ||
137 	    IS_CMAC(flags))
138 		cfg |= BIT(AUTH_LAST_SHIFT) | BIT(AUTH_FIRST_SHIFT);
139 
140 	return cfg;
141 }
142 
143 static int qce_setup_regs_ahash(struct crypto_async_request *async_req,
144 				u32 totallen, u32 offset)
145 {
146 	struct ahash_request *req = ahash_request_cast(async_req);
147 	struct crypto_ahash *ahash = __crypto_ahash_cast(async_req->tfm);
148 	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
149 	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
150 	struct qce_device *qce = tmpl->qce;
151 	unsigned int digestsize = crypto_ahash_digestsize(ahash);
152 	unsigned int blocksize = crypto_tfm_alg_blocksize(async_req->tfm);
153 	__be32 auth[SHA256_DIGEST_SIZE / sizeof(__be32)] = {0};
154 	__be32 mackey[QCE_SHA_HMAC_KEY_SIZE / sizeof(__be32)] = {0};
155 	u32 auth_cfg = 0, config;
156 	unsigned int iv_words;
157 
158 	/* if not the last, the size has to be on the block boundary */
159 	if (!rctx->last_blk && req->nbytes % blocksize)
160 		return -EINVAL;
161 
162 	qce_setup_config(qce);
163 
164 	if (IS_CMAC(rctx->flags)) {
165 		qce_write(qce, REG_AUTH_SEG_CFG, 0);
166 		qce_write(qce, REG_ENCR_SEG_CFG, 0);
167 		qce_write(qce, REG_ENCR_SEG_SIZE, 0);
168 		qce_clear_array(qce, REG_AUTH_IV0, 16);
169 		qce_clear_array(qce, REG_AUTH_KEY0, 16);
170 		qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
171 
172 		auth_cfg = qce_auth_cfg(rctx->flags, rctx->authklen);
173 	}
174 
175 	if (IS_SHA_HMAC(rctx->flags) || IS_CMAC(rctx->flags)) {
176 		u32 authkey_words = rctx->authklen / sizeof(u32);
177 
178 		qce_cpu_to_be32p_array(mackey, rctx->authkey, rctx->authklen);
179 		qce_write_array(qce, REG_AUTH_KEY0, (u32 *)mackey,
180 				authkey_words);
181 	}
182 
183 	if (IS_CMAC(rctx->flags))
184 		goto go_proc;
185 
186 	if (rctx->first_blk)
187 		memcpy(auth, rctx->digest, digestsize);
188 	else
189 		qce_cpu_to_be32p_array(auth, rctx->digest, digestsize);
190 
191 	iv_words = (IS_SHA1(rctx->flags) || IS_SHA1_HMAC(rctx->flags)) ? 5 : 8;
192 	qce_write_array(qce, REG_AUTH_IV0, (u32 *)auth, iv_words);
193 
194 	if (rctx->first_blk)
195 		qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
196 	else
197 		qce_write_array(qce, REG_AUTH_BYTECNT0,
198 				(u32 *)rctx->byte_count, 2);
199 
200 	auth_cfg = qce_auth_cfg(rctx->flags, 0);
201 
202 	if (rctx->last_blk)
203 		auth_cfg |= BIT(AUTH_LAST_SHIFT);
204 	else
205 		auth_cfg &= ~BIT(AUTH_LAST_SHIFT);
206 
207 	if (rctx->first_blk)
208 		auth_cfg |= BIT(AUTH_FIRST_SHIFT);
209 	else
210 		auth_cfg &= ~BIT(AUTH_FIRST_SHIFT);
211 
212 go_proc:
213 	qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
214 	qce_write(qce, REG_AUTH_SEG_SIZE, req->nbytes);
215 	qce_write(qce, REG_AUTH_SEG_START, 0);
216 	qce_write(qce, REG_ENCR_SEG_CFG, 0);
217 	qce_write(qce, REG_SEG_SIZE, req->nbytes);
218 
219 	/* get little endianness */
220 	config = qce_config_reg(qce, 1);
221 	qce_write(qce, REG_CONFIG, config);
222 
223 	qce_crypto_go(qce);
224 
225 	return 0;
226 }
227 #endif
228 
229 #ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER
230 static u32 qce_encr_cfg(unsigned long flags, u32 aes_key_size)
231 {
232 	u32 cfg = 0;
233 
234 	if (IS_AES(flags)) {
235 		if (aes_key_size == AES_KEYSIZE_128)
236 			cfg |= ENCR_KEY_SZ_AES128 << ENCR_KEY_SZ_SHIFT;
237 		else if (aes_key_size == AES_KEYSIZE_256)
238 			cfg |= ENCR_KEY_SZ_AES256 << ENCR_KEY_SZ_SHIFT;
239 	}
240 
241 	if (IS_AES(flags))
242 		cfg |= ENCR_ALG_AES << ENCR_ALG_SHIFT;
243 	else if (IS_DES(flags) || IS_3DES(flags))
244 		cfg |= ENCR_ALG_DES << ENCR_ALG_SHIFT;
245 
246 	if (IS_DES(flags))
247 		cfg |= ENCR_KEY_SZ_DES << ENCR_KEY_SZ_SHIFT;
248 
249 	if (IS_3DES(flags))
250 		cfg |= ENCR_KEY_SZ_3DES << ENCR_KEY_SZ_SHIFT;
251 
252 	switch (flags & QCE_MODE_MASK) {
253 	case QCE_MODE_ECB:
254 		cfg |= ENCR_MODE_ECB << ENCR_MODE_SHIFT;
255 		break;
256 	case QCE_MODE_CBC:
257 		cfg |= ENCR_MODE_CBC << ENCR_MODE_SHIFT;
258 		break;
259 	case QCE_MODE_CTR:
260 		cfg |= ENCR_MODE_CTR << ENCR_MODE_SHIFT;
261 		break;
262 	case QCE_MODE_XTS:
263 		cfg |= ENCR_MODE_XTS << ENCR_MODE_SHIFT;
264 		break;
265 	case QCE_MODE_CCM:
266 		cfg |= ENCR_MODE_CCM << ENCR_MODE_SHIFT;
267 		cfg |= LAST_CCM_XFR << LAST_CCM_SHIFT;
268 		break;
269 	default:
270 		return ~0;
271 	}
272 
273 	return cfg;
274 }
275 
276 static void qce_xts_swapiv(__be32 *dst, const u8 *src, unsigned int ivsize)
277 {
278 	u8 swap[QCE_AES_IV_LENGTH];
279 	u32 i, j;
280 
281 	if (ivsize > QCE_AES_IV_LENGTH)
282 		return;
283 
284 	memset(swap, 0, QCE_AES_IV_LENGTH);
285 
286 	for (i = (QCE_AES_IV_LENGTH - ivsize), j = ivsize - 1;
287 	     i < QCE_AES_IV_LENGTH; i++, j--)
288 		swap[i] = src[j];
289 
290 	qce_cpu_to_be32p_array(dst, swap, QCE_AES_IV_LENGTH);
291 }
292 
293 static void qce_xtskey(struct qce_device *qce, const u8 *enckey,
294 		       unsigned int enckeylen, unsigned int cryptlen)
295 {
296 	u32 xtskey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0};
297 	unsigned int xtsklen = enckeylen / (2 * sizeof(u32));
298 	unsigned int xtsdusize;
299 
300 	qce_cpu_to_be32p_array((__be32 *)xtskey, enckey + enckeylen / 2,
301 			       enckeylen / 2);
302 	qce_write_array(qce, REG_ENCR_XTS_KEY0, xtskey, xtsklen);
303 
304 	/* xts du size 512B */
305 	xtsdusize = min_t(u32, QCE_SECTOR_SIZE, cryptlen);
306 	qce_write(qce, REG_ENCR_XTS_DU_SIZE, xtsdusize);
307 }
308 
309 static int qce_setup_regs_skcipher(struct crypto_async_request *async_req,
310 				     u32 totallen, u32 offset)
311 {
312 	struct skcipher_request *req = skcipher_request_cast(async_req);
313 	struct qce_cipher_reqctx *rctx = skcipher_request_ctx(req);
314 	struct qce_cipher_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
315 	struct qce_alg_template *tmpl = to_cipher_tmpl(crypto_skcipher_reqtfm(req));
316 	struct qce_device *qce = tmpl->qce;
317 	__be32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(__be32)] = {0};
318 	__be32 enciv[QCE_MAX_IV_SIZE / sizeof(__be32)] = {0};
319 	unsigned int enckey_words, enciv_words;
320 	unsigned int keylen;
321 	u32 encr_cfg = 0, auth_cfg = 0, config;
322 	unsigned int ivsize = rctx->ivsize;
323 	unsigned long flags = rctx->flags;
324 
325 	qce_setup_config(qce);
326 
327 	if (IS_XTS(flags))
328 		keylen = ctx->enc_keylen / 2;
329 	else
330 		keylen = ctx->enc_keylen;
331 
332 	qce_cpu_to_be32p_array(enckey, ctx->enc_key, keylen);
333 	enckey_words = keylen / sizeof(u32);
334 
335 	qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
336 
337 	encr_cfg = qce_encr_cfg(flags, keylen);
338 
339 	if (IS_DES(flags)) {
340 		enciv_words = 2;
341 		enckey_words = 2;
342 	} else if (IS_3DES(flags)) {
343 		enciv_words = 2;
344 		enckey_words = 6;
345 	} else if (IS_AES(flags)) {
346 		if (IS_XTS(flags))
347 			qce_xtskey(qce, ctx->enc_key, ctx->enc_keylen,
348 				   rctx->cryptlen);
349 		enciv_words = 4;
350 	} else {
351 		return -EINVAL;
352 	}
353 
354 	qce_write_array(qce, REG_ENCR_KEY0, (u32 *)enckey, enckey_words);
355 
356 	if (!IS_ECB(flags)) {
357 		if (IS_XTS(flags))
358 			qce_xts_swapiv(enciv, rctx->iv, ivsize);
359 		else
360 			qce_cpu_to_be32p_array(enciv, rctx->iv, ivsize);
361 
362 		qce_write_array(qce, REG_CNTR0_IV0, (u32 *)enciv, enciv_words);
363 	}
364 
365 	if (IS_ENCRYPT(flags))
366 		encr_cfg |= BIT(ENCODE_SHIFT);
367 
368 	qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg);
369 	qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen);
370 	qce_write(qce, REG_ENCR_SEG_START, offset & 0xffff);
371 
372 	if (IS_CTR(flags)) {
373 		qce_write(qce, REG_CNTR_MASK, ~0);
374 		qce_write(qce, REG_CNTR_MASK0, ~0);
375 		qce_write(qce, REG_CNTR_MASK1, ~0);
376 		qce_write(qce, REG_CNTR_MASK2, ~0);
377 	}
378 
379 	qce_write(qce, REG_SEG_SIZE, totallen);
380 
381 	/* get little endianness */
382 	config = qce_config_reg(qce, 1);
383 	qce_write(qce, REG_CONFIG, config);
384 
385 	qce_crypto_go(qce);
386 
387 	return 0;
388 }
389 #endif
390 
391 int qce_start(struct crypto_async_request *async_req, u32 type, u32 totallen,
392 	      u32 offset)
393 {
394 	switch (type) {
395 #ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER
396 	case CRYPTO_ALG_TYPE_SKCIPHER:
397 		return qce_setup_regs_skcipher(async_req, totallen, offset);
398 #endif
399 #ifdef CONFIG_CRYPTO_DEV_QCE_SHA
400 	case CRYPTO_ALG_TYPE_AHASH:
401 		return qce_setup_regs_ahash(async_req, totallen, offset);
402 #endif
403 	default:
404 		return -EINVAL;
405 	}
406 }
407 
408 #define STATUS_ERRORS	\
409 		(BIT(SW_ERR_SHIFT) | BIT(AXI_ERR_SHIFT) | BIT(HSD_ERR_SHIFT))
410 
411 int qce_check_status(struct qce_device *qce, u32 *status)
412 {
413 	int ret = 0;
414 
415 	*status = qce_read(qce, REG_STATUS);
416 
417 	/*
418 	 * Don't use result dump status. The operation may not be complete.
419 	 * Instead, use the status we just read from device. In case, we need to
420 	 * use result_status from result dump the result_status needs to be byte
421 	 * swapped, since we set the device to little endian.
422 	 */
423 	if (*status & STATUS_ERRORS || !(*status & BIT(OPERATION_DONE_SHIFT)))
424 		ret = -ENXIO;
425 
426 	return ret;
427 }
428 
429 void qce_get_version(struct qce_device *qce, u32 *major, u32 *minor, u32 *step)
430 {
431 	u32 val;
432 
433 	val = qce_read(qce, REG_VERSION);
434 	*major = (val & CORE_MAJOR_REV_MASK) >> CORE_MAJOR_REV_SHIFT;
435 	*minor = (val & CORE_MINOR_REV_MASK) >> CORE_MINOR_REV_SHIFT;
436 	*step = (val & CORE_STEP_REV_MASK) >> CORE_STEP_REV_SHIFT;
437 }
438