1 /* 2 * Cryptographic API. 3 * 4 * Support for VIA PadLock hardware crypto engine. 5 * 6 * Copyright (c) 2006 Michal Ludvig <michal@logix.cz> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 */ 14 15 #include <crypto/internal/hash.h> 16 #include <crypto/padlock.h> 17 #include <crypto/sha.h> 18 #include <linux/err.h> 19 #include <linux/module.h> 20 #include <linux/init.h> 21 #include <linux/errno.h> 22 #include <linux/interrupt.h> 23 #include <linux/kernel.h> 24 #include <linux/scatterlist.h> 25 #include <asm/i387.h> 26 27 struct padlock_sha_desc { 28 struct shash_desc fallback; 29 }; 30 31 struct padlock_sha_ctx { 32 struct crypto_shash *fallback; 33 }; 34 35 static int padlock_sha_init(struct shash_desc *desc) 36 { 37 struct padlock_sha_desc *dctx = shash_desc_ctx(desc); 38 struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm); 39 40 dctx->fallback.tfm = ctx->fallback; 41 dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP; 42 return crypto_shash_init(&dctx->fallback); 43 } 44 45 static int padlock_sha_update(struct shash_desc *desc, 46 const u8 *data, unsigned int length) 47 { 48 struct padlock_sha_desc *dctx = shash_desc_ctx(desc); 49 50 dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP; 51 return crypto_shash_update(&dctx->fallback, data, length); 52 } 53 54 static int padlock_sha_export(struct shash_desc *desc, void *out) 55 { 56 struct padlock_sha_desc *dctx = shash_desc_ctx(desc); 57 58 return crypto_shash_export(&dctx->fallback, out); 59 } 60 61 static int padlock_sha_import(struct shash_desc *desc, const void *in) 62 { 63 struct padlock_sha_desc *dctx = shash_desc_ctx(desc); 64 struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm); 65 66 dctx->fallback.tfm = ctx->fallback; 67 dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP; 68 return crypto_shash_import(&dctx->fallback, in); 69 } 70 71 static inline void padlock_output_block(uint32_t *src, 72 uint32_t *dst, size_t count) 73 { 74 while (count--) 75 *dst++ = swab32(*src++); 76 } 77 78 static int padlock_sha1_finup(struct shash_desc *desc, const u8 *in, 79 unsigned int count, u8 *out) 80 { 81 /* We can't store directly to *out as it may be unaligned. */ 82 /* BTW Don't reduce the buffer size below 128 Bytes! 83 * PadLock microcode needs it that big. */ 84 char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__ 85 ((aligned(STACK_ALIGN))); 86 char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT); 87 struct padlock_sha_desc *dctx = shash_desc_ctx(desc); 88 struct sha1_state state; 89 unsigned int space; 90 unsigned int leftover; 91 int ts_state; 92 int err; 93 94 dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP; 95 err = crypto_shash_export(&dctx->fallback, &state); 96 if (err) 97 goto out; 98 99 if (state.count + count > ULONG_MAX) 100 return crypto_shash_finup(&dctx->fallback, in, count, out); 101 102 leftover = ((state.count - 1) & (SHA1_BLOCK_SIZE - 1)) + 1; 103 space = SHA1_BLOCK_SIZE - leftover; 104 if (space) { 105 if (count > space) { 106 err = crypto_shash_update(&dctx->fallback, in, space) ?: 107 crypto_shash_export(&dctx->fallback, &state); 108 if (err) 109 goto out; 110 count -= space; 111 in += space; 112 } else { 113 memcpy(state.buffer + leftover, in, count); 114 in = state.buffer; 115 count += leftover; 116 state.count &= ~(SHA1_BLOCK_SIZE - 1); 117 } 118 } 119 120 memcpy(result, &state.state, SHA1_DIGEST_SIZE); 121 122 /* prevent taking the spurious DNA fault with padlock. */ 123 ts_state = irq_ts_save(); 124 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8" /* rep xsha1 */ 125 : \ 126 : "c"((unsigned long)state.count + count), \ 127 "a"((unsigned long)state.count), \ 128 "S"(in), "D"(result)); 129 irq_ts_restore(ts_state); 130 131 padlock_output_block((uint32_t *)result, (uint32_t *)out, 5); 132 133 out: 134 return err; 135 } 136 137 static int padlock_sha1_final(struct shash_desc *desc, u8 *out) 138 { 139 u8 buf[4]; 140 141 return padlock_sha1_finup(desc, buf, 0, out); 142 } 143 144 static int padlock_sha256_finup(struct shash_desc *desc, const u8 *in, 145 unsigned int count, u8 *out) 146 { 147 /* We can't store directly to *out as it may be unaligned. */ 148 /* BTW Don't reduce the buffer size below 128 Bytes! 149 * PadLock microcode needs it that big. */ 150 char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__ 151 ((aligned(STACK_ALIGN))); 152 char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT); 153 struct padlock_sha_desc *dctx = shash_desc_ctx(desc); 154 struct sha256_state state; 155 unsigned int space; 156 unsigned int leftover; 157 int ts_state; 158 int err; 159 160 dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP; 161 err = crypto_shash_export(&dctx->fallback, &state); 162 if (err) 163 goto out; 164 165 if (state.count + count > ULONG_MAX) 166 return crypto_shash_finup(&dctx->fallback, in, count, out); 167 168 leftover = ((state.count - 1) & (SHA256_BLOCK_SIZE - 1)) + 1; 169 space = SHA256_BLOCK_SIZE - leftover; 170 if (space) { 171 if (count > space) { 172 err = crypto_shash_update(&dctx->fallback, in, space) ?: 173 crypto_shash_export(&dctx->fallback, &state); 174 if (err) 175 goto out; 176 count -= space; 177 in += space; 178 } else { 179 memcpy(state.buf + leftover, in, count); 180 in = state.buf; 181 count += leftover; 182 state.count &= ~(SHA1_BLOCK_SIZE - 1); 183 } 184 } 185 186 memcpy(result, &state.state, SHA256_DIGEST_SIZE); 187 188 /* prevent taking the spurious DNA fault with padlock. */ 189 ts_state = irq_ts_save(); 190 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0" /* rep xsha256 */ 191 : \ 192 : "c"((unsigned long)state.count + count), \ 193 "a"((unsigned long)state.count), \ 194 "S"(in), "D"(result)); 195 irq_ts_restore(ts_state); 196 197 padlock_output_block((uint32_t *)result, (uint32_t *)out, 8); 198 199 out: 200 return err; 201 } 202 203 static int padlock_sha256_final(struct shash_desc *desc, u8 *out) 204 { 205 u8 buf[4]; 206 207 return padlock_sha256_finup(desc, buf, 0, out); 208 } 209 210 static int padlock_cra_init(struct crypto_tfm *tfm) 211 { 212 struct crypto_shash *hash = __crypto_shash_cast(tfm); 213 const char *fallback_driver_name = tfm->__crt_alg->cra_name; 214 struct padlock_sha_ctx *ctx = crypto_tfm_ctx(tfm); 215 struct crypto_shash *fallback_tfm; 216 int err = -ENOMEM; 217 218 /* Allocate a fallback and abort if it failed. */ 219 fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0, 220 CRYPTO_ALG_NEED_FALLBACK); 221 if (IS_ERR(fallback_tfm)) { 222 printk(KERN_WARNING PFX "Fallback driver '%s' could not be loaded!\n", 223 fallback_driver_name); 224 err = PTR_ERR(fallback_tfm); 225 goto out; 226 } 227 228 ctx->fallback = fallback_tfm; 229 hash->descsize += crypto_shash_descsize(fallback_tfm); 230 return 0; 231 232 out: 233 return err; 234 } 235 236 static void padlock_cra_exit(struct crypto_tfm *tfm) 237 { 238 struct padlock_sha_ctx *ctx = crypto_tfm_ctx(tfm); 239 240 crypto_free_shash(ctx->fallback); 241 } 242 243 static struct shash_alg sha1_alg = { 244 .digestsize = SHA1_DIGEST_SIZE, 245 .init = padlock_sha_init, 246 .update = padlock_sha_update, 247 .finup = padlock_sha1_finup, 248 .final = padlock_sha1_final, 249 .export = padlock_sha_export, 250 .import = padlock_sha_import, 251 .descsize = sizeof(struct padlock_sha_desc), 252 .statesize = sizeof(struct sha1_state), 253 .base = { 254 .cra_name = "sha1", 255 .cra_driver_name = "sha1-padlock", 256 .cra_priority = PADLOCK_CRA_PRIORITY, 257 .cra_flags = CRYPTO_ALG_TYPE_SHASH | 258 CRYPTO_ALG_NEED_FALLBACK, 259 .cra_blocksize = SHA1_BLOCK_SIZE, 260 .cra_ctxsize = sizeof(struct padlock_sha_ctx), 261 .cra_module = THIS_MODULE, 262 .cra_init = padlock_cra_init, 263 .cra_exit = padlock_cra_exit, 264 } 265 }; 266 267 static struct shash_alg sha256_alg = { 268 .digestsize = SHA256_DIGEST_SIZE, 269 .init = padlock_sha_init, 270 .update = padlock_sha_update, 271 .finup = padlock_sha256_finup, 272 .final = padlock_sha256_final, 273 .export = padlock_sha_export, 274 .import = padlock_sha_import, 275 .descsize = sizeof(struct padlock_sha_desc), 276 .statesize = sizeof(struct sha256_state), 277 .base = { 278 .cra_name = "sha256", 279 .cra_driver_name = "sha256-padlock", 280 .cra_priority = PADLOCK_CRA_PRIORITY, 281 .cra_flags = CRYPTO_ALG_TYPE_SHASH | 282 CRYPTO_ALG_NEED_FALLBACK, 283 .cra_blocksize = SHA256_BLOCK_SIZE, 284 .cra_ctxsize = sizeof(struct padlock_sha_ctx), 285 .cra_module = THIS_MODULE, 286 .cra_init = padlock_cra_init, 287 .cra_exit = padlock_cra_exit, 288 } 289 }; 290 291 /* Add two shash_alg instance for hardware-implemented * 292 * multiple-parts hash supported by VIA Nano Processor.*/ 293 static int padlock_sha1_init_nano(struct shash_desc *desc) 294 { 295 struct sha1_state *sctx = shash_desc_ctx(desc); 296 297 *sctx = (struct sha1_state){ 298 .state = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 }, 299 }; 300 301 return 0; 302 } 303 304 static int padlock_sha1_update_nano(struct shash_desc *desc, 305 const u8 *data, unsigned int len) 306 { 307 struct sha1_state *sctx = shash_desc_ctx(desc); 308 unsigned int partial, done; 309 const u8 *src; 310 /*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/ 311 u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__ 312 ((aligned(STACK_ALIGN))); 313 u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT); 314 int ts_state; 315 316 partial = sctx->count & 0x3f; 317 sctx->count += len; 318 done = 0; 319 src = data; 320 memcpy(dst, (u8 *)(sctx->state), SHA1_DIGEST_SIZE); 321 322 if ((partial + len) >= SHA1_BLOCK_SIZE) { 323 324 /* Append the bytes in state's buffer to a block to handle */ 325 if (partial) { 326 done = -partial; 327 memcpy(sctx->buffer + partial, data, 328 done + SHA1_BLOCK_SIZE); 329 src = sctx->buffer; 330 ts_state = irq_ts_save(); 331 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8" 332 : "+S"(src), "+D"(dst) \ 333 : "a"((long)-1), "c"((unsigned long)1)); 334 irq_ts_restore(ts_state); 335 done += SHA1_BLOCK_SIZE; 336 src = data + done; 337 } 338 339 /* Process the left bytes from the input data */ 340 if (len - done >= SHA1_BLOCK_SIZE) { 341 ts_state = irq_ts_save(); 342 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8" 343 : "+S"(src), "+D"(dst) 344 : "a"((long)-1), 345 "c"((unsigned long)((len - done) / SHA1_BLOCK_SIZE))); 346 irq_ts_restore(ts_state); 347 done += ((len - done) - (len - done) % SHA1_BLOCK_SIZE); 348 src = data + done; 349 } 350 partial = 0; 351 } 352 memcpy((u8 *)(sctx->state), dst, SHA1_DIGEST_SIZE); 353 memcpy(sctx->buffer + partial, src, len - done); 354 355 return 0; 356 } 357 358 static int padlock_sha1_final_nano(struct shash_desc *desc, u8 *out) 359 { 360 struct sha1_state *state = (struct sha1_state *)shash_desc_ctx(desc); 361 unsigned int partial, padlen; 362 __be64 bits; 363 static const u8 padding[64] = { 0x80, }; 364 365 bits = cpu_to_be64(state->count << 3); 366 367 /* Pad out to 56 mod 64 */ 368 partial = state->count & 0x3f; 369 padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial); 370 padlock_sha1_update_nano(desc, padding, padlen); 371 372 /* Append length field bytes */ 373 padlock_sha1_update_nano(desc, (const u8 *)&bits, sizeof(bits)); 374 375 /* Swap to output */ 376 padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 5); 377 378 return 0; 379 } 380 381 static int padlock_sha256_init_nano(struct shash_desc *desc) 382 { 383 struct sha256_state *sctx = shash_desc_ctx(desc); 384 385 *sctx = (struct sha256_state){ 386 .state = { SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, \ 387 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7}, 388 }; 389 390 return 0; 391 } 392 393 static int padlock_sha256_update_nano(struct shash_desc *desc, const u8 *data, 394 unsigned int len) 395 { 396 struct sha256_state *sctx = shash_desc_ctx(desc); 397 unsigned int partial, done; 398 const u8 *src; 399 /*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/ 400 u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__ 401 ((aligned(STACK_ALIGN))); 402 u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT); 403 int ts_state; 404 405 partial = sctx->count & 0x3f; 406 sctx->count += len; 407 done = 0; 408 src = data; 409 memcpy(dst, (u8 *)(sctx->state), SHA256_DIGEST_SIZE); 410 411 if ((partial + len) >= SHA256_BLOCK_SIZE) { 412 413 /* Append the bytes in state's buffer to a block to handle */ 414 if (partial) { 415 done = -partial; 416 memcpy(sctx->buf + partial, data, 417 done + SHA256_BLOCK_SIZE); 418 src = sctx->buf; 419 ts_state = irq_ts_save(); 420 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0" 421 : "+S"(src), "+D"(dst) 422 : "a"((long)-1), "c"((unsigned long)1)); 423 irq_ts_restore(ts_state); 424 done += SHA256_BLOCK_SIZE; 425 src = data + done; 426 } 427 428 /* Process the left bytes from input data*/ 429 if (len - done >= SHA256_BLOCK_SIZE) { 430 ts_state = irq_ts_save(); 431 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0" 432 : "+S"(src), "+D"(dst) 433 : "a"((long)-1), 434 "c"((unsigned long)((len - done) / 64))); 435 irq_ts_restore(ts_state); 436 done += ((len - done) - (len - done) % 64); 437 src = data + done; 438 } 439 partial = 0; 440 } 441 memcpy((u8 *)(sctx->state), dst, SHA256_DIGEST_SIZE); 442 memcpy(sctx->buf + partial, src, len - done); 443 444 return 0; 445 } 446 447 static int padlock_sha256_final_nano(struct shash_desc *desc, u8 *out) 448 { 449 struct sha256_state *state = 450 (struct sha256_state *)shash_desc_ctx(desc); 451 unsigned int partial, padlen; 452 __be64 bits; 453 static const u8 padding[64] = { 0x80, }; 454 455 bits = cpu_to_be64(state->count << 3); 456 457 /* Pad out to 56 mod 64 */ 458 partial = state->count & 0x3f; 459 padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial); 460 padlock_sha256_update_nano(desc, padding, padlen); 461 462 /* Append length field bytes */ 463 padlock_sha256_update_nano(desc, (const u8 *)&bits, sizeof(bits)); 464 465 /* Swap to output */ 466 padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 8); 467 468 return 0; 469 } 470 471 static int padlock_sha_export_nano(struct shash_desc *desc, 472 void *out) 473 { 474 int statesize = crypto_shash_statesize(desc->tfm); 475 void *sctx = shash_desc_ctx(desc); 476 477 memcpy(out, sctx, statesize); 478 return 0; 479 } 480 481 static int padlock_sha_import_nano(struct shash_desc *desc, 482 const void *in) 483 { 484 int statesize = crypto_shash_statesize(desc->tfm); 485 void *sctx = shash_desc_ctx(desc); 486 487 memcpy(sctx, in, statesize); 488 return 0; 489 } 490 491 static struct shash_alg sha1_alg_nano = { 492 .digestsize = SHA1_DIGEST_SIZE, 493 .init = padlock_sha1_init_nano, 494 .update = padlock_sha1_update_nano, 495 .final = padlock_sha1_final_nano, 496 .export = padlock_sha_export_nano, 497 .import = padlock_sha_import_nano, 498 .descsize = sizeof(struct sha1_state), 499 .statesize = sizeof(struct sha1_state), 500 .base = { 501 .cra_name = "sha1", 502 .cra_driver_name = "sha1-padlock-nano", 503 .cra_priority = PADLOCK_CRA_PRIORITY, 504 .cra_flags = CRYPTO_ALG_TYPE_SHASH, 505 .cra_blocksize = SHA1_BLOCK_SIZE, 506 .cra_module = THIS_MODULE, 507 } 508 }; 509 510 static struct shash_alg sha256_alg_nano = { 511 .digestsize = SHA256_DIGEST_SIZE, 512 .init = padlock_sha256_init_nano, 513 .update = padlock_sha256_update_nano, 514 .final = padlock_sha256_final_nano, 515 .export = padlock_sha_export_nano, 516 .import = padlock_sha_import_nano, 517 .descsize = sizeof(struct sha256_state), 518 .statesize = sizeof(struct sha256_state), 519 .base = { 520 .cra_name = "sha256", 521 .cra_driver_name = "sha256-padlock-nano", 522 .cra_priority = PADLOCK_CRA_PRIORITY, 523 .cra_flags = CRYPTO_ALG_TYPE_SHASH, 524 .cra_blocksize = SHA256_BLOCK_SIZE, 525 .cra_module = THIS_MODULE, 526 } 527 }; 528 529 static int __init padlock_init(void) 530 { 531 int rc = -ENODEV; 532 struct cpuinfo_x86 *c = &cpu_data(0); 533 struct shash_alg *sha1; 534 struct shash_alg *sha256; 535 536 if (!cpu_has_phe) { 537 printk(KERN_NOTICE PFX "VIA PadLock Hash Engine not detected.\n"); 538 return -ENODEV; 539 } 540 541 if (!cpu_has_phe_enabled) { 542 printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n"); 543 return -ENODEV; 544 } 545 546 /* Register the newly added algorithm module if on * 547 * VIA Nano processor, or else just do as before */ 548 if (c->x86_model < 0x0f) { 549 sha1 = &sha1_alg; 550 sha256 = &sha256_alg; 551 } else { 552 sha1 = &sha1_alg_nano; 553 sha256 = &sha256_alg_nano; 554 } 555 556 rc = crypto_register_shash(sha1); 557 if (rc) 558 goto out; 559 560 rc = crypto_register_shash(sha256); 561 if (rc) 562 goto out_unreg1; 563 564 printk(KERN_NOTICE PFX "Using VIA PadLock ACE for SHA1/SHA256 algorithms.\n"); 565 566 return 0; 567 568 out_unreg1: 569 crypto_unregister_shash(sha1); 570 571 out: 572 printk(KERN_ERR PFX "VIA PadLock SHA1/SHA256 initialization failed.\n"); 573 return rc; 574 } 575 576 static void __exit padlock_fini(void) 577 { 578 struct cpuinfo_x86 *c = &cpu_data(0); 579 580 if (c->x86_model >= 0x0f) { 581 crypto_unregister_shash(&sha1_alg_nano); 582 crypto_unregister_shash(&sha256_alg_nano); 583 } else { 584 crypto_unregister_shash(&sha1_alg); 585 crypto_unregister_shash(&sha256_alg); 586 } 587 } 588 589 module_init(padlock_init); 590 module_exit(padlock_fini); 591 592 MODULE_DESCRIPTION("VIA PadLock SHA1/SHA256 algorithms support."); 593 MODULE_LICENSE("GPL"); 594 MODULE_AUTHOR("Michal Ludvig"); 595 596 MODULE_ALIAS("sha1-all"); 597 MODULE_ALIAS("sha256-all"); 598 MODULE_ALIAS("sha1-padlock"); 599 MODULE_ALIAS("sha256-padlock"); 600