xref: /linux/drivers/crypto/padlock-aes.c (revision e27ecdd94d81e5bc3d1f68591701db5adb342f0d)
1 /*
2  * Cryptographic API.
3  *
4  * Support for VIA PadLock hardware crypto engine.
5  *
6  * Copyright (c) 2004  Michal Ludvig <michal@logix.cz>
7  *
8  */
9 
10 #include <crypto/algapi.h>
11 #include <crypto/aes.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/types.h>
15 #include <linux/errno.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/percpu.h>
19 #include <linux/smp.h>
20 #include <asm/byteorder.h>
21 #include <asm/i387.h>
22 #include "padlock.h"
23 
24 /* Control word. */
25 struct cword {
26 	unsigned int __attribute__ ((__packed__))
27 		rounds:4,
28 		algo:3,
29 		keygen:1,
30 		interm:1,
31 		encdec:1,
32 		ksize:2;
33 } __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
34 
35 /* Whenever making any changes to the following
36  * structure *make sure* you keep E, d_data
37  * and cword aligned on 16 Bytes boundaries and
38  * the Hardware can access 16 * 16 bytes of E and d_data
39  * (only the first 15 * 16 bytes matter but the HW reads
40  * more).
41  */
42 struct aes_ctx {
43 	u32 E[AES_MAX_KEYLENGTH_U32]
44 		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
45 	u32 d_data[AES_MAX_KEYLENGTH_U32]
46 		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
47 	struct {
48 		struct cword encrypt;
49 		struct cword decrypt;
50 	} cword;
51 	u32 *D;
52 };
53 
54 static DEFINE_PER_CPU(struct cword *, last_cword);
55 
56 /* Tells whether the ACE is capable to generate
57    the extended key for a given key_len. */
58 static inline int
59 aes_hw_extkey_available(uint8_t key_len)
60 {
61 	/* TODO: We should check the actual CPU model/stepping
62 	         as it's possible that the capability will be
63 	         added in the next CPU revisions. */
64 	if (key_len == 16)
65 		return 1;
66 	return 0;
67 }
68 
69 static inline struct aes_ctx *aes_ctx_common(void *ctx)
70 {
71 	unsigned long addr = (unsigned long)ctx;
72 	unsigned long align = PADLOCK_ALIGNMENT;
73 
74 	if (align <= crypto_tfm_ctx_alignment())
75 		align = 1;
76 	return (struct aes_ctx *)ALIGN(addr, align);
77 }
78 
79 static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
80 {
81 	return aes_ctx_common(crypto_tfm_ctx(tfm));
82 }
83 
84 static inline struct aes_ctx *blk_aes_ctx(struct crypto_blkcipher *tfm)
85 {
86 	return aes_ctx_common(crypto_blkcipher_ctx(tfm));
87 }
88 
89 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
90 		       unsigned int key_len)
91 {
92 	struct aes_ctx *ctx = aes_ctx(tfm);
93 	const __le32 *key = (const __le32 *)in_key;
94 	u32 *flags = &tfm->crt_flags;
95 	struct crypto_aes_ctx gen_aes;
96 	int cpu;
97 
98 	if (key_len % 8) {
99 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
100 		return -EINVAL;
101 	}
102 
103 	/*
104 	 * If the hardware is capable of generating the extended key
105 	 * itself we must supply the plain key for both encryption
106 	 * and decryption.
107 	 */
108 	ctx->D = ctx->E;
109 
110 	ctx->E[0] = le32_to_cpu(key[0]);
111 	ctx->E[1] = le32_to_cpu(key[1]);
112 	ctx->E[2] = le32_to_cpu(key[2]);
113 	ctx->E[3] = le32_to_cpu(key[3]);
114 
115 	/* Prepare control words. */
116 	memset(&ctx->cword, 0, sizeof(ctx->cword));
117 
118 	ctx->cword.decrypt.encdec = 1;
119 	ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
120 	ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
121 	ctx->cword.encrypt.ksize = (key_len - 16) / 8;
122 	ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
123 
124 	/* Don't generate extended keys if the hardware can do it. */
125 	if (aes_hw_extkey_available(key_len))
126 		goto ok;
127 
128 	ctx->D = ctx->d_data;
129 	ctx->cword.encrypt.keygen = 1;
130 	ctx->cword.decrypt.keygen = 1;
131 
132 	if (crypto_aes_expand_key(&gen_aes, in_key, key_len)) {
133 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
134 		return -EINVAL;
135 	}
136 
137 	memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
138 	memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
139 
140 ok:
141 	for_each_online_cpu(cpu)
142 		if (&ctx->cword.encrypt == per_cpu(last_cword, cpu) ||
143 		    &ctx->cword.decrypt == per_cpu(last_cword, cpu))
144 			per_cpu(last_cword, cpu) = NULL;
145 
146 	return 0;
147 }
148 
149 /* ====== Encryption/decryption routines ====== */
150 
151 /* These are the real call to PadLock. */
152 static inline void padlock_reset_key(struct cword *cword)
153 {
154 	int cpu = raw_smp_processor_id();
155 
156 	if (cword != per_cpu(last_cword, cpu))
157 #ifndef CONFIG_X86_64
158 		asm volatile ("pushfl; popfl");
159 #else
160 		asm volatile ("pushfq; popfq");
161 #endif
162 }
163 
164 static inline void padlock_store_cword(struct cword *cword)
165 {
166 	per_cpu(last_cword, raw_smp_processor_id()) = cword;
167 }
168 
169 /*
170  * While the padlock instructions don't use FP/SSE registers, they
171  * generate a spurious DNA fault when cr0.ts is '1'. These instructions
172  * should be used only inside the irq_ts_save/restore() context
173  */
174 
175 static inline void padlock_xcrypt(const u8 *input, u8 *output, void *key,
176 				  struct cword *control_word)
177 {
178 	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
179 		      : "+S"(input), "+D"(output)
180 		      : "d"(control_word), "b"(key), "c"(1));
181 }
182 
183 static void aes_crypt_copy(const u8 *in, u8 *out, u32 *key, struct cword *cword)
184 {
185 	u8 buf[AES_BLOCK_SIZE * 2 + PADLOCK_ALIGNMENT - 1];
186 	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
187 
188 	memcpy(tmp, in, AES_BLOCK_SIZE);
189 	padlock_xcrypt(tmp, out, key, cword);
190 }
191 
192 static inline void aes_crypt(const u8 *in, u8 *out, u32 *key,
193 			     struct cword *cword)
194 {
195 	/* padlock_xcrypt requires at least two blocks of data. */
196 	if (unlikely(!(((unsigned long)in ^ (PAGE_SIZE - AES_BLOCK_SIZE)) &
197 		       (PAGE_SIZE - 1)))) {
198 		aes_crypt_copy(in, out, key, cword);
199 		return;
200 	}
201 
202 	padlock_xcrypt(in, out, key, cword);
203 }
204 
205 static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
206 				      void *control_word, u32 count)
207 {
208 	if (count == 1) {
209 		aes_crypt(input, output, key, control_word);
210 		return;
211 	}
212 
213 	asm volatile ("test $1, %%cl;"
214 		      "je 1f;"
215 #ifndef CONFIG_X86_64
216 		      "lea -1(%%ecx), %%eax;"
217 		      "mov $1, %%ecx;"
218 #else
219 		      "lea -1(%%rcx), %%rax;"
220 		      "mov $1, %%rcx;"
221 #endif
222 		      ".byte 0xf3,0x0f,0xa7,0xc8;"	/* rep xcryptecb */
223 #ifndef CONFIG_X86_64
224 		      "mov %%eax, %%ecx;"
225 #else
226 		      "mov %%rax, %%rcx;"
227 #endif
228 		      "1:"
229 		      ".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
230 		      : "+S"(input), "+D"(output)
231 		      : "d"(control_word), "b"(key), "c"(count)
232 		      : "ax");
233 }
234 
235 static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
236 				     u8 *iv, void *control_word, u32 count)
237 {
238 	/* rep xcryptcbc */
239 	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"
240 		      : "+S" (input), "+D" (output), "+a" (iv)
241 		      : "d" (control_word), "b" (key), "c" (count));
242 	return iv;
243 }
244 
245 static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
246 {
247 	struct aes_ctx *ctx = aes_ctx(tfm);
248 	int ts_state;
249 
250 	padlock_reset_key(&ctx->cword.encrypt);
251 	ts_state = irq_ts_save();
252 	aes_crypt(in, out, ctx->E, &ctx->cword.encrypt);
253 	irq_ts_restore(ts_state);
254 	padlock_store_cword(&ctx->cword.encrypt);
255 }
256 
257 static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
258 {
259 	struct aes_ctx *ctx = aes_ctx(tfm);
260 	int ts_state;
261 
262 	padlock_reset_key(&ctx->cword.encrypt);
263 	ts_state = irq_ts_save();
264 	aes_crypt(in, out, ctx->D, &ctx->cword.decrypt);
265 	irq_ts_restore(ts_state);
266 	padlock_store_cword(&ctx->cword.encrypt);
267 }
268 
269 static struct crypto_alg aes_alg = {
270 	.cra_name		=	"aes",
271 	.cra_driver_name	=	"aes-padlock",
272 	.cra_priority		=	PADLOCK_CRA_PRIORITY,
273 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
274 	.cra_blocksize		=	AES_BLOCK_SIZE,
275 	.cra_ctxsize		=	sizeof(struct aes_ctx),
276 	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
277 	.cra_module		=	THIS_MODULE,
278 	.cra_list		=	LIST_HEAD_INIT(aes_alg.cra_list),
279 	.cra_u			=	{
280 		.cipher = {
281 			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
282 			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
283 			.cia_setkey	   	= 	aes_set_key,
284 			.cia_encrypt	 	=	aes_encrypt,
285 			.cia_decrypt	  	=	aes_decrypt,
286 		}
287 	}
288 };
289 
290 static int ecb_aes_encrypt(struct blkcipher_desc *desc,
291 			   struct scatterlist *dst, struct scatterlist *src,
292 			   unsigned int nbytes)
293 {
294 	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
295 	struct blkcipher_walk walk;
296 	int err;
297 	int ts_state;
298 
299 	padlock_reset_key(&ctx->cword.encrypt);
300 
301 	blkcipher_walk_init(&walk, dst, src, nbytes);
302 	err = blkcipher_walk_virt(desc, &walk);
303 
304 	ts_state = irq_ts_save();
305 	while ((nbytes = walk.nbytes)) {
306 		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
307 				   ctx->E, &ctx->cword.encrypt,
308 				   nbytes / AES_BLOCK_SIZE);
309 		nbytes &= AES_BLOCK_SIZE - 1;
310 		err = blkcipher_walk_done(desc, &walk, nbytes);
311 	}
312 	irq_ts_restore(ts_state);
313 
314 	padlock_store_cword(&ctx->cword.encrypt);
315 
316 	return err;
317 }
318 
319 static int ecb_aes_decrypt(struct blkcipher_desc *desc,
320 			   struct scatterlist *dst, struct scatterlist *src,
321 			   unsigned int nbytes)
322 {
323 	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
324 	struct blkcipher_walk walk;
325 	int err;
326 	int ts_state;
327 
328 	padlock_reset_key(&ctx->cword.decrypt);
329 
330 	blkcipher_walk_init(&walk, dst, src, nbytes);
331 	err = blkcipher_walk_virt(desc, &walk);
332 
333 	ts_state = irq_ts_save();
334 	while ((nbytes = walk.nbytes)) {
335 		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
336 				   ctx->D, &ctx->cword.decrypt,
337 				   nbytes / AES_BLOCK_SIZE);
338 		nbytes &= AES_BLOCK_SIZE - 1;
339 		err = blkcipher_walk_done(desc, &walk, nbytes);
340 	}
341 	irq_ts_restore(ts_state);
342 
343 	padlock_store_cword(&ctx->cword.encrypt);
344 
345 	return err;
346 }
347 
348 static struct crypto_alg ecb_aes_alg = {
349 	.cra_name		=	"ecb(aes)",
350 	.cra_driver_name	=	"ecb-aes-padlock",
351 	.cra_priority		=	PADLOCK_COMPOSITE_PRIORITY,
352 	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER,
353 	.cra_blocksize		=	AES_BLOCK_SIZE,
354 	.cra_ctxsize		=	sizeof(struct aes_ctx),
355 	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
356 	.cra_type		=	&crypto_blkcipher_type,
357 	.cra_module		=	THIS_MODULE,
358 	.cra_list		=	LIST_HEAD_INIT(ecb_aes_alg.cra_list),
359 	.cra_u			=	{
360 		.blkcipher = {
361 			.min_keysize		=	AES_MIN_KEY_SIZE,
362 			.max_keysize		=	AES_MAX_KEY_SIZE,
363 			.setkey	   		= 	aes_set_key,
364 			.encrypt		=	ecb_aes_encrypt,
365 			.decrypt		=	ecb_aes_decrypt,
366 		}
367 	}
368 };
369 
370 static int cbc_aes_encrypt(struct blkcipher_desc *desc,
371 			   struct scatterlist *dst, struct scatterlist *src,
372 			   unsigned int nbytes)
373 {
374 	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
375 	struct blkcipher_walk walk;
376 	int err;
377 	int ts_state;
378 
379 	padlock_reset_key(&ctx->cword.encrypt);
380 
381 	blkcipher_walk_init(&walk, dst, src, nbytes);
382 	err = blkcipher_walk_virt(desc, &walk);
383 
384 	ts_state = irq_ts_save();
385 	while ((nbytes = walk.nbytes)) {
386 		u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
387 					    walk.dst.virt.addr, ctx->E,
388 					    walk.iv, &ctx->cword.encrypt,
389 					    nbytes / AES_BLOCK_SIZE);
390 		memcpy(walk.iv, iv, AES_BLOCK_SIZE);
391 		nbytes &= AES_BLOCK_SIZE - 1;
392 		err = blkcipher_walk_done(desc, &walk, nbytes);
393 	}
394 	irq_ts_restore(ts_state);
395 
396 	padlock_store_cword(&ctx->cword.decrypt);
397 
398 	return err;
399 }
400 
401 static int cbc_aes_decrypt(struct blkcipher_desc *desc,
402 			   struct scatterlist *dst, struct scatterlist *src,
403 			   unsigned int nbytes)
404 {
405 	struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
406 	struct blkcipher_walk walk;
407 	int err;
408 	int ts_state;
409 
410 	padlock_reset_key(&ctx->cword.encrypt);
411 
412 	blkcipher_walk_init(&walk, dst, src, nbytes);
413 	err = blkcipher_walk_virt(desc, &walk);
414 
415 	ts_state = irq_ts_save();
416 	while ((nbytes = walk.nbytes)) {
417 		padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
418 				   ctx->D, walk.iv, &ctx->cword.decrypt,
419 				   nbytes / AES_BLOCK_SIZE);
420 		nbytes &= AES_BLOCK_SIZE - 1;
421 		err = blkcipher_walk_done(desc, &walk, nbytes);
422 	}
423 
424 	irq_ts_restore(ts_state);
425 
426 	padlock_store_cword(&ctx->cword.encrypt);
427 
428 	return err;
429 }
430 
431 static struct crypto_alg cbc_aes_alg = {
432 	.cra_name		=	"cbc(aes)",
433 	.cra_driver_name	=	"cbc-aes-padlock",
434 	.cra_priority		=	PADLOCK_COMPOSITE_PRIORITY,
435 	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER,
436 	.cra_blocksize		=	AES_BLOCK_SIZE,
437 	.cra_ctxsize		=	sizeof(struct aes_ctx),
438 	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
439 	.cra_type		=	&crypto_blkcipher_type,
440 	.cra_module		=	THIS_MODULE,
441 	.cra_list		=	LIST_HEAD_INIT(cbc_aes_alg.cra_list),
442 	.cra_u			=	{
443 		.blkcipher = {
444 			.min_keysize		=	AES_MIN_KEY_SIZE,
445 			.max_keysize		=	AES_MAX_KEY_SIZE,
446 			.ivsize			=	AES_BLOCK_SIZE,
447 			.setkey	   		= 	aes_set_key,
448 			.encrypt		=	cbc_aes_encrypt,
449 			.decrypt		=	cbc_aes_decrypt,
450 		}
451 	}
452 };
453 
454 static int __init padlock_init(void)
455 {
456 	int ret;
457 
458 	if (!cpu_has_xcrypt) {
459 		printk(KERN_NOTICE PFX "VIA PadLock not detected.\n");
460 		return -ENODEV;
461 	}
462 
463 	if (!cpu_has_xcrypt_enabled) {
464 		printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
465 		return -ENODEV;
466 	}
467 
468 	if ((ret = crypto_register_alg(&aes_alg)))
469 		goto aes_err;
470 
471 	if ((ret = crypto_register_alg(&ecb_aes_alg)))
472 		goto ecb_aes_err;
473 
474 	if ((ret = crypto_register_alg(&cbc_aes_alg)))
475 		goto cbc_aes_err;
476 
477 	printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
478 
479 out:
480 	return ret;
481 
482 cbc_aes_err:
483 	crypto_unregister_alg(&ecb_aes_alg);
484 ecb_aes_err:
485 	crypto_unregister_alg(&aes_alg);
486 aes_err:
487 	printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
488 	goto out;
489 }
490 
491 static void __exit padlock_fini(void)
492 {
493 	crypto_unregister_alg(&cbc_aes_alg);
494 	crypto_unregister_alg(&ecb_aes_alg);
495 	crypto_unregister_alg(&aes_alg);
496 }
497 
498 module_init(padlock_init);
499 module_exit(padlock_fini);
500 
501 MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
502 MODULE_LICENSE("GPL");
503 MODULE_AUTHOR("Michal Ludvig");
504 
505 MODULE_ALIAS("aes");
506