xref: /linux/drivers/crypto/padlock-aes.c (revision d67b569f5f620c0fb95d5212642746b7ba9d29e4)
1 /*
2  * Cryptographic API.
3  *
4  * Support for VIA PadLock hardware crypto engine.
5  *
6  * Copyright (c) 2004  Michal Ludvig <michal@logix.cz>
7  *
8  * Key expansion routine taken from crypto/aes.c
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * ---------------------------------------------------------------------------
16  * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
17  * All rights reserved.
18  *
19  * LICENSE TERMS
20  *
21  * The free distribution and use of this software in both source and binary
22  * form is allowed (with or without changes) provided that:
23  *
24  *   1. distributions of this source code include the above copyright
25  *      notice, this list of conditions and the following disclaimer;
26  *
27  *   2. distributions in binary form include the above copyright
28  *      notice, this list of conditions and the following disclaimer
29  *      in the documentation and/or other associated materials;
30  *
31  *   3. the copyright holder's name is not used to endorse products
32  *      built using this software without specific written permission.
33  *
34  * ALTERNATIVELY, provided that this notice is retained in full, this product
35  * may be distributed under the terms of the GNU General Public License (GPL),
36  * in which case the provisions of the GPL apply INSTEAD OF those given above.
37  *
38  * DISCLAIMER
39  *
40  * This software is provided 'as is' with no explicit or implied warranties
41  * in respect of its properties, including, but not limited to, correctness
42  * and/or fitness for purpose.
43  * ---------------------------------------------------------------------------
44  */
45 
46 #include <linux/module.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/errno.h>
50 #include <linux/crypto.h>
51 #include <linux/interrupt.h>
52 #include <linux/kernel.h>
53 #include <asm/byteorder.h>
54 #include "padlock.h"
55 
56 #define AES_MIN_KEY_SIZE	16	/* in uint8_t units */
57 #define AES_MAX_KEY_SIZE	32	/* ditto */
58 #define AES_BLOCK_SIZE		16	/* ditto */
59 #define AES_EXTENDED_KEY_SIZE	64	/* in uint32_t units */
60 #define AES_EXTENDED_KEY_SIZE_B	(AES_EXTENDED_KEY_SIZE * sizeof(uint32_t))
61 
62 struct aes_ctx {
63 	uint32_t e_data[AES_EXTENDED_KEY_SIZE];
64 	uint32_t d_data[AES_EXTENDED_KEY_SIZE];
65 	struct {
66 		struct cword encrypt;
67 		struct cword decrypt;
68 	} cword;
69 	uint32_t *E;
70 	uint32_t *D;
71 	int key_length;
72 };
73 
74 /* ====== Key management routines ====== */
75 
76 static inline uint32_t
77 generic_rotr32 (const uint32_t x, const unsigned bits)
78 {
79 	const unsigned n = bits % 32;
80 	return (x >> n) | (x << (32 - n));
81 }
82 
83 static inline uint32_t
84 generic_rotl32 (const uint32_t x, const unsigned bits)
85 {
86 	const unsigned n = bits % 32;
87 	return (x << n) | (x >> (32 - n));
88 }
89 
90 #define rotl generic_rotl32
91 #define rotr generic_rotr32
92 
93 /*
94  * #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))
95  */
96 static inline uint8_t
97 byte(const uint32_t x, const unsigned n)
98 {
99 	return x >> (n << 3);
100 }
101 
102 #define uint32_t_in(x) le32_to_cpu(*(const uint32_t *)(x))
103 #define uint32_t_out(to, from) (*(uint32_t *)(to) = cpu_to_le32(from))
104 
105 #define E_KEY ctx->E
106 #define D_KEY ctx->D
107 
108 static uint8_t pow_tab[256];
109 static uint8_t log_tab[256];
110 static uint8_t sbx_tab[256];
111 static uint8_t isb_tab[256];
112 static uint32_t rco_tab[10];
113 static uint32_t ft_tab[4][256];
114 static uint32_t it_tab[4][256];
115 
116 static uint32_t fl_tab[4][256];
117 static uint32_t il_tab[4][256];
118 
119 static inline uint8_t
120 f_mult (uint8_t a, uint8_t b)
121 {
122 	uint8_t aa = log_tab[a], cc = aa + log_tab[b];
123 
124 	return pow_tab[cc + (cc < aa ? 1 : 0)];
125 }
126 
127 #define ff_mult(a,b)    (a && b ? f_mult(a, b) : 0)
128 
129 #define f_rn(bo, bi, n, k)					\
130     bo[n] =  ft_tab[0][byte(bi[n],0)] ^				\
131              ft_tab[1][byte(bi[(n + 1) & 3],1)] ^		\
132              ft_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
133              ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
134 
135 #define i_rn(bo, bi, n, k)					\
136     bo[n] =  it_tab[0][byte(bi[n],0)] ^				\
137              it_tab[1][byte(bi[(n + 3) & 3],1)] ^		\
138              it_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
139              it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
140 
141 #define ls_box(x)				\
142     ( fl_tab[0][byte(x, 0)] ^			\
143       fl_tab[1][byte(x, 1)] ^			\
144       fl_tab[2][byte(x, 2)] ^			\
145       fl_tab[3][byte(x, 3)] )
146 
147 #define f_rl(bo, bi, n, k)					\
148     bo[n] =  fl_tab[0][byte(bi[n],0)] ^				\
149              fl_tab[1][byte(bi[(n + 1) & 3],1)] ^		\
150              fl_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
151              fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
152 
153 #define i_rl(bo, bi, n, k)					\
154     bo[n] =  il_tab[0][byte(bi[n],0)] ^				\
155              il_tab[1][byte(bi[(n + 3) & 3],1)] ^		\
156              il_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
157              il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
158 
159 static void
160 gen_tabs (void)
161 {
162 	uint32_t i, t;
163 	uint8_t p, q;
164 
165 	/* log and power tables for GF(2**8) finite field with
166 	   0x011b as modular polynomial - the simplest prmitive
167 	   root is 0x03, used here to generate the tables */
168 
169 	for (i = 0, p = 1; i < 256; ++i) {
170 		pow_tab[i] = (uint8_t) p;
171 		log_tab[p] = (uint8_t) i;
172 
173 		p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
174 	}
175 
176 	log_tab[1] = 0;
177 
178 	for (i = 0, p = 1; i < 10; ++i) {
179 		rco_tab[i] = p;
180 
181 		p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
182 	}
183 
184 	for (i = 0; i < 256; ++i) {
185 		p = (i ? pow_tab[255 - log_tab[i]] : 0);
186 		q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
187 		p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
188 		sbx_tab[i] = p;
189 		isb_tab[p] = (uint8_t) i;
190 	}
191 
192 	for (i = 0; i < 256; ++i) {
193 		p = sbx_tab[i];
194 
195 		t = p;
196 		fl_tab[0][i] = t;
197 		fl_tab[1][i] = rotl (t, 8);
198 		fl_tab[2][i] = rotl (t, 16);
199 		fl_tab[3][i] = rotl (t, 24);
200 
201 		t = ((uint32_t) ff_mult (2, p)) |
202 		    ((uint32_t) p << 8) |
203 		    ((uint32_t) p << 16) | ((uint32_t) ff_mult (3, p) << 24);
204 
205 		ft_tab[0][i] = t;
206 		ft_tab[1][i] = rotl (t, 8);
207 		ft_tab[2][i] = rotl (t, 16);
208 		ft_tab[3][i] = rotl (t, 24);
209 
210 		p = isb_tab[i];
211 
212 		t = p;
213 		il_tab[0][i] = t;
214 		il_tab[1][i] = rotl (t, 8);
215 		il_tab[2][i] = rotl (t, 16);
216 		il_tab[3][i] = rotl (t, 24);
217 
218 		t = ((uint32_t) ff_mult (14, p)) |
219 		    ((uint32_t) ff_mult (9, p) << 8) |
220 		    ((uint32_t) ff_mult (13, p) << 16) |
221 		    ((uint32_t) ff_mult (11, p) << 24);
222 
223 		it_tab[0][i] = t;
224 		it_tab[1][i] = rotl (t, 8);
225 		it_tab[2][i] = rotl (t, 16);
226 		it_tab[3][i] = rotl (t, 24);
227 	}
228 }
229 
230 #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
231 
232 #define imix_col(y,x)       \
233     u   = star_x(x);        \
234     v   = star_x(u);        \
235     w   = star_x(v);        \
236     t   = w ^ (x);          \
237    (y)  = u ^ v ^ w;        \
238    (y) ^= rotr(u ^ t,  8) ^ \
239           rotr(v ^ t, 16) ^ \
240           rotr(t,24)
241 
242 /* initialise the key schedule from the user supplied key */
243 
244 #define loop4(i)                                    \
245 {   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
246     t ^= E_KEY[4 * i];     E_KEY[4 * i + 4] = t;    \
247     t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t;    \
248     t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t;    \
249     t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t;    \
250 }
251 
252 #define loop6(i)                                    \
253 {   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
254     t ^= E_KEY[6 * i];     E_KEY[6 * i + 6] = t;    \
255     t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t;    \
256     t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t;    \
257     t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t;    \
258     t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t;   \
259     t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t;   \
260 }
261 
262 #define loop8(i)                                    \
263 {   t = rotr(t,  8); ; t = ls_box(t) ^ rco_tab[i];  \
264     t ^= E_KEY[8 * i];     E_KEY[8 * i + 8] = t;    \
265     t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t;    \
266     t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t;   \
267     t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t;   \
268     t  = E_KEY[8 * i + 4] ^ ls_box(t);    \
269     E_KEY[8 * i + 12] = t;                \
270     t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t;   \
271     t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t;   \
272     t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t;   \
273 }
274 
275 /* Tells whether the ACE is capable to generate
276    the extended key for a given key_len. */
277 static inline int
278 aes_hw_extkey_available(uint8_t key_len)
279 {
280 	/* TODO: We should check the actual CPU model/stepping
281 	         as it's possible that the capability will be
282 	         added in the next CPU revisions. */
283 	if (key_len == 16)
284 		return 1;
285 	return 0;
286 }
287 
288 static inline struct aes_ctx *aes_ctx(void *ctx)
289 {
290 	return (struct aes_ctx *)ALIGN((unsigned long)ctx, PADLOCK_ALIGNMENT);
291 }
292 
293 static int
294 aes_set_key(void *ctx_arg, const uint8_t *in_key, unsigned int key_len, uint32_t *flags)
295 {
296 	struct aes_ctx *ctx = aes_ctx(ctx_arg);
297 	uint32_t i, t, u, v, w;
298 	uint32_t P[AES_EXTENDED_KEY_SIZE];
299 	uint32_t rounds;
300 
301 	if (key_len != 16 && key_len != 24 && key_len != 32) {
302 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
303 		return -EINVAL;
304 	}
305 
306 	ctx->key_length = key_len;
307 
308 	/*
309 	 * If the hardware is capable of generating the extended key
310 	 * itself we must supply the plain key for both encryption
311 	 * and decryption.
312 	 */
313 	ctx->E = ctx->e_data;
314 	ctx->D = ctx->e_data;
315 
316 	E_KEY[0] = uint32_t_in (in_key);
317 	E_KEY[1] = uint32_t_in (in_key + 4);
318 	E_KEY[2] = uint32_t_in (in_key + 8);
319 	E_KEY[3] = uint32_t_in (in_key + 12);
320 
321 	/* Prepare control words. */
322 	memset(&ctx->cword, 0, sizeof(ctx->cword));
323 
324 	ctx->cword.decrypt.encdec = 1;
325 	ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
326 	ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
327 	ctx->cword.encrypt.ksize = (key_len - 16) / 8;
328 	ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
329 
330 	/* Don't generate extended keys if the hardware can do it. */
331 	if (aes_hw_extkey_available(key_len))
332 		return 0;
333 
334 	ctx->D = ctx->d_data;
335 	ctx->cword.encrypt.keygen = 1;
336 	ctx->cword.decrypt.keygen = 1;
337 
338 	switch (key_len) {
339 	case 16:
340 		t = E_KEY[3];
341 		for (i = 0; i < 10; ++i)
342 			loop4 (i);
343 		break;
344 
345 	case 24:
346 		E_KEY[4] = uint32_t_in (in_key + 16);
347 		t = E_KEY[5] = uint32_t_in (in_key + 20);
348 		for (i = 0; i < 8; ++i)
349 			loop6 (i);
350 		break;
351 
352 	case 32:
353 		E_KEY[4] = uint32_t_in (in_key + 16);
354 		E_KEY[5] = uint32_t_in (in_key + 20);
355 		E_KEY[6] = uint32_t_in (in_key + 24);
356 		t = E_KEY[7] = uint32_t_in (in_key + 28);
357 		for (i = 0; i < 7; ++i)
358 			loop8 (i);
359 		break;
360 	}
361 
362 	D_KEY[0] = E_KEY[0];
363 	D_KEY[1] = E_KEY[1];
364 	D_KEY[2] = E_KEY[2];
365 	D_KEY[3] = E_KEY[3];
366 
367 	for (i = 4; i < key_len + 24; ++i) {
368 		imix_col (D_KEY[i], E_KEY[i]);
369 	}
370 
371 	/* PadLock needs a different format of the decryption key. */
372 	rounds = 10 + (key_len - 16) / 4;
373 
374 	for (i = 0; i < rounds; i++) {
375 		P[((i + 1) * 4) + 0] = D_KEY[((rounds - i - 1) * 4) + 0];
376 		P[((i + 1) * 4) + 1] = D_KEY[((rounds - i - 1) * 4) + 1];
377 		P[((i + 1) * 4) + 2] = D_KEY[((rounds - i - 1) * 4) + 2];
378 		P[((i + 1) * 4) + 3] = D_KEY[((rounds - i - 1) * 4) + 3];
379 	}
380 
381 	P[0] = E_KEY[(rounds * 4) + 0];
382 	P[1] = E_KEY[(rounds * 4) + 1];
383 	P[2] = E_KEY[(rounds * 4) + 2];
384 	P[3] = E_KEY[(rounds * 4) + 3];
385 
386 	memcpy(D_KEY, P, AES_EXTENDED_KEY_SIZE_B);
387 
388 	return 0;
389 }
390 
391 /* ====== Encryption/decryption routines ====== */
392 
393 /* These are the real call to PadLock. */
394 static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
395 				      void *control_word, u32 count)
396 {
397 	asm volatile ("pushfl; popfl");		/* enforce key reload. */
398 	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
399 		      : "+S"(input), "+D"(output)
400 		      : "d"(control_word), "b"(key), "c"(count));
401 }
402 
403 static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
404 				     u8 *iv, void *control_word, u32 count)
405 {
406 	/* Enforce key reload. */
407 	asm volatile ("pushfl; popfl");
408 	/* rep xcryptcbc */
409 	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"
410 		      : "+S" (input), "+D" (output), "+a" (iv)
411 		      : "d" (control_word), "b" (key), "c" (count));
412 	return iv;
413 }
414 
415 static void
416 aes_encrypt(void *ctx_arg, uint8_t *out, const uint8_t *in)
417 {
418 	struct aes_ctx *ctx = aes_ctx(ctx_arg);
419 	padlock_xcrypt_ecb(in, out, ctx->E, &ctx->cword.encrypt, 1);
420 }
421 
422 static void
423 aes_decrypt(void *ctx_arg, uint8_t *out, const uint8_t *in)
424 {
425 	struct aes_ctx *ctx = aes_ctx(ctx_arg);
426 	padlock_xcrypt_ecb(in, out, ctx->D, &ctx->cword.decrypt, 1);
427 }
428 
429 static unsigned int aes_encrypt_ecb(const struct cipher_desc *desc, u8 *out,
430 				    const u8 *in, unsigned int nbytes)
431 {
432 	struct aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(desc->tfm));
433 	padlock_xcrypt_ecb(in, out, ctx->E, &ctx->cword.encrypt,
434 			   nbytes / AES_BLOCK_SIZE);
435 	return nbytes & ~(AES_BLOCK_SIZE - 1);
436 }
437 
438 static unsigned int aes_decrypt_ecb(const struct cipher_desc *desc, u8 *out,
439 				    const u8 *in, unsigned int nbytes)
440 {
441 	struct aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(desc->tfm));
442 	padlock_xcrypt_ecb(in, out, ctx->D, &ctx->cword.decrypt,
443 			   nbytes / AES_BLOCK_SIZE);
444 	return nbytes & ~(AES_BLOCK_SIZE - 1);
445 }
446 
447 static unsigned int aes_encrypt_cbc(const struct cipher_desc *desc, u8 *out,
448 				    const u8 *in, unsigned int nbytes)
449 {
450 	struct aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(desc->tfm));
451 	u8 *iv;
452 
453 	iv = padlock_xcrypt_cbc(in, out, ctx->E, desc->info,
454 				&ctx->cword.encrypt, nbytes / AES_BLOCK_SIZE);
455 	memcpy(desc->info, iv, AES_BLOCK_SIZE);
456 
457 	return nbytes & ~(AES_BLOCK_SIZE - 1);
458 }
459 
460 static unsigned int aes_decrypt_cbc(const struct cipher_desc *desc, u8 *out,
461 				    const u8 *in, unsigned int nbytes)
462 {
463 	struct aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(desc->tfm));
464 	padlock_xcrypt_cbc(in, out, ctx->D, desc->info, &ctx->cword.decrypt,
465 			   nbytes / AES_BLOCK_SIZE);
466 	return nbytes & ~(AES_BLOCK_SIZE - 1);
467 }
468 
469 static struct crypto_alg aes_alg = {
470 	.cra_name		=	"aes",
471 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
472 	.cra_blocksize		=	AES_BLOCK_SIZE,
473 	.cra_ctxsize		=	sizeof(struct aes_ctx),
474 	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
475 	.cra_module		=	THIS_MODULE,
476 	.cra_list		=	LIST_HEAD_INIT(aes_alg.cra_list),
477 	.cra_u			=	{
478 		.cipher = {
479 			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
480 			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
481 			.cia_setkey	   	= 	aes_set_key,
482 			.cia_encrypt	 	=	aes_encrypt,
483 			.cia_decrypt	  	=	aes_decrypt,
484 			.cia_encrypt_ecb 	=	aes_encrypt_ecb,
485 			.cia_decrypt_ecb  	=	aes_decrypt_ecb,
486 			.cia_encrypt_cbc 	=	aes_encrypt_cbc,
487 			.cia_decrypt_cbc  	=	aes_decrypt_cbc,
488 		}
489 	}
490 };
491 
492 int __init padlock_init_aes(void)
493 {
494 	printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
495 
496 	gen_tabs();
497 	return crypto_register_alg(&aes_alg);
498 }
499 
500 void __exit padlock_fini_aes(void)
501 {
502 	crypto_unregister_alg(&aes_alg);
503 }
504