xref: /linux/drivers/crypto/padlock-aes.c (revision 5e3c6a312a0946d2d83e32359612cbb925a8bed0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Cryptographic API.
4  *
5  * Support for VIA PadLock hardware crypto engine.
6  *
7  * Copyright (c) 2004  Michal Ludvig <michal@logix.cz>
8  *
9  */
10 
11 #include <crypto/algapi.h>
12 #include <crypto/aes.h>
13 #include <crypto/internal/skcipher.h>
14 #include <crypto/padlock.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/types.h>
18 #include <linux/errno.h>
19 #include <linux/interrupt.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/smp.h>
23 #include <linux/slab.h>
24 #include <asm/cpu_device_id.h>
25 #include <asm/byteorder.h>
26 #include <asm/processor.h>
27 #include <asm/fpu/api.h>
28 
29 /*
30  * Number of data blocks actually fetched for each xcrypt insn.
31  * Processors with prefetch errata will fetch extra blocks.
32  */
33 static unsigned int ecb_fetch_blocks = 2;
34 #define MAX_ECB_FETCH_BLOCKS (8)
35 #define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE)
36 
37 static unsigned int cbc_fetch_blocks = 1;
38 #define MAX_CBC_FETCH_BLOCKS (4)
39 #define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE)
40 
41 /* Control word. */
42 struct cword {
43 	unsigned int __attribute__ ((__packed__))
44 		rounds:4,
45 		algo:3,
46 		keygen:1,
47 		interm:1,
48 		encdec:1,
49 		ksize:2;
50 } __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
51 
52 /* Whenever making any changes to the following
53  * structure *make sure* you keep E, d_data
54  * and cword aligned on 16 Bytes boundaries and
55  * the Hardware can access 16 * 16 bytes of E and d_data
56  * (only the first 15 * 16 bytes matter but the HW reads
57  * more).
58  */
59 struct aes_ctx {
60 	u32 E[AES_MAX_KEYLENGTH_U32]
61 		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
62 	u32 d_data[AES_MAX_KEYLENGTH_U32]
63 		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
64 	struct {
65 		struct cword encrypt;
66 		struct cword decrypt;
67 	} cword;
68 	u32 *D;
69 };
70 
71 static DEFINE_PER_CPU(struct cword *, paes_last_cword);
72 
73 /* Tells whether the ACE is capable to generate
74    the extended key for a given key_len. */
75 static inline int
76 aes_hw_extkey_available(uint8_t key_len)
77 {
78 	/* TODO: We should check the actual CPU model/stepping
79 	         as it's possible that the capability will be
80 	         added in the next CPU revisions. */
81 	if (key_len == 16)
82 		return 1;
83 	return 0;
84 }
85 
86 static inline struct aes_ctx *aes_ctx_common(void *ctx)
87 {
88 	unsigned long addr = (unsigned long)ctx;
89 	unsigned long align = PADLOCK_ALIGNMENT;
90 
91 	if (align <= crypto_tfm_ctx_alignment())
92 		align = 1;
93 	return (struct aes_ctx *)ALIGN(addr, align);
94 }
95 
96 static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
97 {
98 	return aes_ctx_common(crypto_tfm_ctx(tfm));
99 }
100 
101 static inline struct aes_ctx *skcipher_aes_ctx(struct crypto_skcipher *tfm)
102 {
103 	return aes_ctx_common(crypto_skcipher_ctx(tfm));
104 }
105 
106 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
107 		       unsigned int key_len)
108 {
109 	struct aes_ctx *ctx = aes_ctx(tfm);
110 	const __le32 *key = (const __le32 *)in_key;
111 	struct crypto_aes_ctx gen_aes;
112 	int cpu;
113 
114 	if (key_len % 8)
115 		return -EINVAL;
116 
117 	/*
118 	 * If the hardware is capable of generating the extended key
119 	 * itself we must supply the plain key for both encryption
120 	 * and decryption.
121 	 */
122 	ctx->D = ctx->E;
123 
124 	ctx->E[0] = le32_to_cpu(key[0]);
125 	ctx->E[1] = le32_to_cpu(key[1]);
126 	ctx->E[2] = le32_to_cpu(key[2]);
127 	ctx->E[3] = le32_to_cpu(key[3]);
128 
129 	/* Prepare control words. */
130 	memset(&ctx->cword, 0, sizeof(ctx->cword));
131 
132 	ctx->cword.decrypt.encdec = 1;
133 	ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
134 	ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
135 	ctx->cword.encrypt.ksize = (key_len - 16) / 8;
136 	ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
137 
138 	/* Don't generate extended keys if the hardware can do it. */
139 	if (aes_hw_extkey_available(key_len))
140 		goto ok;
141 
142 	ctx->D = ctx->d_data;
143 	ctx->cword.encrypt.keygen = 1;
144 	ctx->cword.decrypt.keygen = 1;
145 
146 	if (aes_expandkey(&gen_aes, in_key, key_len))
147 		return -EINVAL;
148 
149 	memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
150 	memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
151 
152 ok:
153 	for_each_online_cpu(cpu)
154 		if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) ||
155 		    &ctx->cword.decrypt == per_cpu(paes_last_cword, cpu))
156 			per_cpu(paes_last_cword, cpu) = NULL;
157 
158 	return 0;
159 }
160 
161 static int aes_set_key_skcipher(struct crypto_skcipher *tfm, const u8 *in_key,
162 				unsigned int key_len)
163 {
164 	return aes_set_key(crypto_skcipher_tfm(tfm), in_key, key_len);
165 }
166 
167 /* ====== Encryption/decryption routines ====== */
168 
169 /* These are the real call to PadLock. */
170 static inline void padlock_reset_key(struct cword *cword)
171 {
172 	int cpu = raw_smp_processor_id();
173 
174 	if (cword != per_cpu(paes_last_cword, cpu))
175 #ifndef CONFIG_X86_64
176 		asm volatile ("pushfl; popfl");
177 #else
178 		asm volatile ("pushfq; popfq");
179 #endif
180 }
181 
182 static inline void padlock_store_cword(struct cword *cword)
183 {
184 	per_cpu(paes_last_cword, raw_smp_processor_id()) = cword;
185 }
186 
187 /*
188  * While the padlock instructions don't use FP/SSE registers, they
189  * generate a spurious DNA fault when CR0.TS is '1'.  Fortunately,
190  * the kernel doesn't use CR0.TS.
191  */
192 
193 static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key,
194 				  struct cword *control_word, int count)
195 {
196 	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
197 		      : "+S"(input), "+D"(output)
198 		      : "d"(control_word), "b"(key), "c"(count));
199 }
200 
201 static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key,
202 				 u8 *iv, struct cword *control_word, int count)
203 {
204 	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
205 		      : "+S" (input), "+D" (output), "+a" (iv)
206 		      : "d" (control_word), "b" (key), "c" (count));
207 	return iv;
208 }
209 
210 static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key,
211 			   struct cword *cword, int count)
212 {
213 	/*
214 	 * Padlock prefetches extra data so we must provide mapped input buffers.
215 	 * Assume there are at least 16 bytes of stack already in use.
216 	 */
217 	u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
218 	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
219 
220 	memcpy(tmp, in, count * AES_BLOCK_SIZE);
221 	rep_xcrypt_ecb(tmp, out, key, cword, count);
222 }
223 
224 static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key,
225 			   u8 *iv, struct cword *cword, int count)
226 {
227 	/*
228 	 * Padlock prefetches extra data so we must provide mapped input buffers.
229 	 * Assume there are at least 16 bytes of stack already in use.
230 	 */
231 	u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
232 	u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
233 
234 	memcpy(tmp, in, count * AES_BLOCK_SIZE);
235 	return rep_xcrypt_cbc(tmp, out, key, iv, cword, count);
236 }
237 
238 static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key,
239 			     struct cword *cword, int count)
240 {
241 	/* Padlock in ECB mode fetches at least ecb_fetch_bytes of data.
242 	 * We could avoid some copying here but it's probably not worth it.
243 	 */
244 	if (unlikely(offset_in_page(in) + ecb_fetch_bytes > PAGE_SIZE)) {
245 		ecb_crypt_copy(in, out, key, cword, count);
246 		return;
247 	}
248 
249 	rep_xcrypt_ecb(in, out, key, cword, count);
250 }
251 
252 static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key,
253 			    u8 *iv, struct cword *cword, int count)
254 {
255 	/* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */
256 	if (unlikely(offset_in_page(in) + cbc_fetch_bytes > PAGE_SIZE))
257 		return cbc_crypt_copy(in, out, key, iv, cword, count);
258 
259 	return rep_xcrypt_cbc(in, out, key, iv, cword, count);
260 }
261 
262 static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
263 				      void *control_word, u32 count)
264 {
265 	u32 initial = count & (ecb_fetch_blocks - 1);
266 
267 	if (count < ecb_fetch_blocks) {
268 		ecb_crypt(input, output, key, control_word, count);
269 		return;
270 	}
271 
272 	count -= initial;
273 
274 	if (initial)
275 		asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
276 			      : "+S"(input), "+D"(output)
277 			      : "d"(control_word), "b"(key), "c"(initial));
278 
279 	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
280 		      : "+S"(input), "+D"(output)
281 		      : "d"(control_word), "b"(key), "c"(count));
282 }
283 
284 static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
285 				     u8 *iv, void *control_word, u32 count)
286 {
287 	u32 initial = count & (cbc_fetch_blocks - 1);
288 
289 	if (count < cbc_fetch_blocks)
290 		return cbc_crypt(input, output, key, iv, control_word, count);
291 
292 	count -= initial;
293 
294 	if (initial)
295 		asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
296 			      : "+S" (input), "+D" (output), "+a" (iv)
297 			      : "d" (control_word), "b" (key), "c" (initial));
298 
299 	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"	/* rep xcryptcbc */
300 		      : "+S" (input), "+D" (output), "+a" (iv)
301 		      : "d" (control_word), "b" (key), "c" (count));
302 	return iv;
303 }
304 
305 static void padlock_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
306 {
307 	struct aes_ctx *ctx = aes_ctx(tfm);
308 
309 	padlock_reset_key(&ctx->cword.encrypt);
310 	ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1);
311 	padlock_store_cword(&ctx->cword.encrypt);
312 }
313 
314 static void padlock_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
315 {
316 	struct aes_ctx *ctx = aes_ctx(tfm);
317 
318 	padlock_reset_key(&ctx->cword.encrypt);
319 	ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1);
320 	padlock_store_cword(&ctx->cword.encrypt);
321 }
322 
323 static struct crypto_alg aes_alg = {
324 	.cra_name		=	"aes",
325 	.cra_driver_name	=	"aes-padlock",
326 	.cra_priority		=	PADLOCK_CRA_PRIORITY,
327 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
328 	.cra_blocksize		=	AES_BLOCK_SIZE,
329 	.cra_ctxsize		=	sizeof(struct aes_ctx),
330 	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
331 	.cra_module		=	THIS_MODULE,
332 	.cra_u			=	{
333 		.cipher = {
334 			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
335 			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
336 			.cia_setkey	   	= 	aes_set_key,
337 			.cia_encrypt	 	=	padlock_aes_encrypt,
338 			.cia_decrypt	  	=	padlock_aes_decrypt,
339 		}
340 	}
341 };
342 
343 static int ecb_aes_encrypt(struct skcipher_request *req)
344 {
345 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
346 	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
347 	struct skcipher_walk walk;
348 	unsigned int nbytes;
349 	int err;
350 
351 	padlock_reset_key(&ctx->cword.encrypt);
352 
353 	err = skcipher_walk_virt(&walk, req, false);
354 
355 	while ((nbytes = walk.nbytes) != 0) {
356 		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
357 				   ctx->E, &ctx->cword.encrypt,
358 				   nbytes / AES_BLOCK_SIZE);
359 		nbytes &= AES_BLOCK_SIZE - 1;
360 		err = skcipher_walk_done(&walk, nbytes);
361 	}
362 
363 	padlock_store_cword(&ctx->cword.encrypt);
364 
365 	return err;
366 }
367 
368 static int ecb_aes_decrypt(struct skcipher_request *req)
369 {
370 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
371 	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
372 	struct skcipher_walk walk;
373 	unsigned int nbytes;
374 	int err;
375 
376 	padlock_reset_key(&ctx->cword.decrypt);
377 
378 	err = skcipher_walk_virt(&walk, req, false);
379 
380 	while ((nbytes = walk.nbytes) != 0) {
381 		padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
382 				   ctx->D, &ctx->cword.decrypt,
383 				   nbytes / AES_BLOCK_SIZE);
384 		nbytes &= AES_BLOCK_SIZE - 1;
385 		err = skcipher_walk_done(&walk, nbytes);
386 	}
387 
388 	padlock_store_cword(&ctx->cword.encrypt);
389 
390 	return err;
391 }
392 
393 static struct skcipher_alg ecb_aes_alg = {
394 	.base.cra_name		=	"ecb(aes)",
395 	.base.cra_driver_name	=	"ecb-aes-padlock",
396 	.base.cra_priority	=	PADLOCK_COMPOSITE_PRIORITY,
397 	.base.cra_blocksize	=	AES_BLOCK_SIZE,
398 	.base.cra_ctxsize	=	sizeof(struct aes_ctx),
399 	.base.cra_alignmask	=	PADLOCK_ALIGNMENT - 1,
400 	.base.cra_module	=	THIS_MODULE,
401 	.min_keysize		=	AES_MIN_KEY_SIZE,
402 	.max_keysize		=	AES_MAX_KEY_SIZE,
403 	.setkey			=	aes_set_key_skcipher,
404 	.encrypt		=	ecb_aes_encrypt,
405 	.decrypt		=	ecb_aes_decrypt,
406 };
407 
408 static int cbc_aes_encrypt(struct skcipher_request *req)
409 {
410 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
411 	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
412 	struct skcipher_walk walk;
413 	unsigned int nbytes;
414 	int err;
415 
416 	padlock_reset_key(&ctx->cword.encrypt);
417 
418 	err = skcipher_walk_virt(&walk, req, false);
419 
420 	while ((nbytes = walk.nbytes) != 0) {
421 		u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
422 					    walk.dst.virt.addr, ctx->E,
423 					    walk.iv, &ctx->cword.encrypt,
424 					    nbytes / AES_BLOCK_SIZE);
425 		memcpy(walk.iv, iv, AES_BLOCK_SIZE);
426 		nbytes &= AES_BLOCK_SIZE - 1;
427 		err = skcipher_walk_done(&walk, nbytes);
428 	}
429 
430 	padlock_store_cword(&ctx->cword.decrypt);
431 
432 	return err;
433 }
434 
435 static int cbc_aes_decrypt(struct skcipher_request *req)
436 {
437 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
438 	struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
439 	struct skcipher_walk walk;
440 	unsigned int nbytes;
441 	int err;
442 
443 	padlock_reset_key(&ctx->cword.encrypt);
444 
445 	err = skcipher_walk_virt(&walk, req, false);
446 
447 	while ((nbytes = walk.nbytes) != 0) {
448 		padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
449 				   ctx->D, walk.iv, &ctx->cword.decrypt,
450 				   nbytes / AES_BLOCK_SIZE);
451 		nbytes &= AES_BLOCK_SIZE - 1;
452 		err = skcipher_walk_done(&walk, nbytes);
453 	}
454 
455 	padlock_store_cword(&ctx->cword.encrypt);
456 
457 	return err;
458 }
459 
460 static struct skcipher_alg cbc_aes_alg = {
461 	.base.cra_name		=	"cbc(aes)",
462 	.base.cra_driver_name	=	"cbc-aes-padlock",
463 	.base.cra_priority	=	PADLOCK_COMPOSITE_PRIORITY,
464 	.base.cra_blocksize	=	AES_BLOCK_SIZE,
465 	.base.cra_ctxsize	=	sizeof(struct aes_ctx),
466 	.base.cra_alignmask	=	PADLOCK_ALIGNMENT - 1,
467 	.base.cra_module	=	THIS_MODULE,
468 	.min_keysize		=	AES_MIN_KEY_SIZE,
469 	.max_keysize		=	AES_MAX_KEY_SIZE,
470 	.ivsize			=	AES_BLOCK_SIZE,
471 	.setkey			=	aes_set_key_skcipher,
472 	.encrypt		=	cbc_aes_encrypt,
473 	.decrypt		=	cbc_aes_decrypt,
474 };
475 
476 static const struct x86_cpu_id padlock_cpu_id[] = {
477 	X86_FEATURE_MATCH(X86_FEATURE_XCRYPT),
478 	{}
479 };
480 MODULE_DEVICE_TABLE(x86cpu, padlock_cpu_id);
481 
482 static int __init padlock_init(void)
483 {
484 	int ret;
485 	struct cpuinfo_x86 *c = &cpu_data(0);
486 
487 	if (!x86_match_cpu(padlock_cpu_id))
488 		return -ENODEV;
489 
490 	if (!boot_cpu_has(X86_FEATURE_XCRYPT_EN)) {
491 		printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
492 		return -ENODEV;
493 	}
494 
495 	if ((ret = crypto_register_alg(&aes_alg)) != 0)
496 		goto aes_err;
497 
498 	if ((ret = crypto_register_skcipher(&ecb_aes_alg)) != 0)
499 		goto ecb_aes_err;
500 
501 	if ((ret = crypto_register_skcipher(&cbc_aes_alg)) != 0)
502 		goto cbc_aes_err;
503 
504 	printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
505 
506 	if (c->x86 == 6 && c->x86_model == 15 && c->x86_stepping == 2) {
507 		ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS;
508 		cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS;
509 		printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n");
510 	}
511 
512 out:
513 	return ret;
514 
515 cbc_aes_err:
516 	crypto_unregister_skcipher(&ecb_aes_alg);
517 ecb_aes_err:
518 	crypto_unregister_alg(&aes_alg);
519 aes_err:
520 	printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
521 	goto out;
522 }
523 
524 static void __exit padlock_fini(void)
525 {
526 	crypto_unregister_skcipher(&cbc_aes_alg);
527 	crypto_unregister_skcipher(&ecb_aes_alg);
528 	crypto_unregister_alg(&aes_alg);
529 }
530 
531 module_init(padlock_init);
532 module_exit(padlock_fini);
533 
534 MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
535 MODULE_LICENSE("GPL");
536 MODULE_AUTHOR("Michal Ludvig");
537 
538 MODULE_ALIAS_CRYPTO("aes");
539