xref: /linux/drivers/crypto/padlock-aes.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  * Cryptographic API.
3  *
4  * Support for VIA PadLock hardware crypto engine.
5  *
6  * Copyright (c) 2004  Michal Ludvig <michal@logix.cz>
7  *
8  * Key expansion routine taken from crypto/aes.c
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * ---------------------------------------------------------------------------
16  * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
17  * All rights reserved.
18  *
19  * LICENSE TERMS
20  *
21  * The free distribution and use of this software in both source and binary
22  * form is allowed (with or without changes) provided that:
23  *
24  *   1. distributions of this source code include the above copyright
25  *      notice, this list of conditions and the following disclaimer;
26  *
27  *   2. distributions in binary form include the above copyright
28  *      notice, this list of conditions and the following disclaimer
29  *      in the documentation and/or other associated materials;
30  *
31  *   3. the copyright holder's name is not used to endorse products
32  *      built using this software without specific written permission.
33  *
34  * ALTERNATIVELY, provided that this notice is retained in full, this product
35  * may be distributed under the terms of the GNU General Public License (GPL),
36  * in which case the provisions of the GPL apply INSTEAD OF those given above.
37  *
38  * DISCLAIMER
39  *
40  * This software is provided 'as is' with no explicit or implied warranties
41  * in respect of its properties, including, but not limited to, correctness
42  * and/or fitness for purpose.
43  * ---------------------------------------------------------------------------
44  */
45 
46 #include <linux/module.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/errno.h>
50 #include <linux/crypto.h>
51 #include <linux/interrupt.h>
52 #include <linux/kernel.h>
53 #include <asm/byteorder.h>
54 #include "padlock.h"
55 
56 #define AES_MIN_KEY_SIZE	16	/* in uint8_t units */
57 #define AES_MAX_KEY_SIZE	32	/* ditto */
58 #define AES_BLOCK_SIZE		16	/* ditto */
59 #define AES_EXTENDED_KEY_SIZE	64	/* in uint32_t units */
60 #define AES_EXTENDED_KEY_SIZE_B	(AES_EXTENDED_KEY_SIZE * sizeof(uint32_t))
61 
62 struct aes_ctx {
63 	struct {
64 		struct cword encrypt;
65 		struct cword decrypt;
66 	} cword;
67 	u32 *D;
68 	int key_length;
69 	u32 E[AES_EXTENDED_KEY_SIZE];
70 	u32 d_data[AES_EXTENDED_KEY_SIZE];
71 };
72 
73 /* ====== Key management routines ====== */
74 
75 static inline uint32_t
76 generic_rotr32 (const uint32_t x, const unsigned bits)
77 {
78 	const unsigned n = bits % 32;
79 	return (x >> n) | (x << (32 - n));
80 }
81 
82 static inline uint32_t
83 generic_rotl32 (const uint32_t x, const unsigned bits)
84 {
85 	const unsigned n = bits % 32;
86 	return (x << n) | (x >> (32 - n));
87 }
88 
89 #define rotl generic_rotl32
90 #define rotr generic_rotr32
91 
92 /*
93  * #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))
94  */
95 static inline uint8_t
96 byte(const uint32_t x, const unsigned n)
97 {
98 	return x >> (n << 3);
99 }
100 
101 #define E_KEY ctx->E
102 #define D_KEY ctx->D
103 
104 static uint8_t pow_tab[256];
105 static uint8_t log_tab[256];
106 static uint8_t sbx_tab[256];
107 static uint8_t isb_tab[256];
108 static uint32_t rco_tab[10];
109 static uint32_t ft_tab[4][256];
110 static uint32_t it_tab[4][256];
111 
112 static uint32_t fl_tab[4][256];
113 static uint32_t il_tab[4][256];
114 
115 static inline uint8_t
116 f_mult (uint8_t a, uint8_t b)
117 {
118 	uint8_t aa = log_tab[a], cc = aa + log_tab[b];
119 
120 	return pow_tab[cc + (cc < aa ? 1 : 0)];
121 }
122 
123 #define ff_mult(a,b)    (a && b ? f_mult(a, b) : 0)
124 
125 #define f_rn(bo, bi, n, k)					\
126     bo[n] =  ft_tab[0][byte(bi[n],0)] ^				\
127              ft_tab[1][byte(bi[(n + 1) & 3],1)] ^		\
128              ft_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
129              ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
130 
131 #define i_rn(bo, bi, n, k)					\
132     bo[n] =  it_tab[0][byte(bi[n],0)] ^				\
133              it_tab[1][byte(bi[(n + 3) & 3],1)] ^		\
134              it_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
135              it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
136 
137 #define ls_box(x)				\
138     ( fl_tab[0][byte(x, 0)] ^			\
139       fl_tab[1][byte(x, 1)] ^			\
140       fl_tab[2][byte(x, 2)] ^			\
141       fl_tab[3][byte(x, 3)] )
142 
143 #define f_rl(bo, bi, n, k)					\
144     bo[n] =  fl_tab[0][byte(bi[n],0)] ^				\
145              fl_tab[1][byte(bi[(n + 1) & 3],1)] ^		\
146              fl_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
147              fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
148 
149 #define i_rl(bo, bi, n, k)					\
150     bo[n] =  il_tab[0][byte(bi[n],0)] ^				\
151              il_tab[1][byte(bi[(n + 3) & 3],1)] ^		\
152              il_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
153              il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
154 
155 static void
156 gen_tabs (void)
157 {
158 	uint32_t i, t;
159 	uint8_t p, q;
160 
161 	/* log and power tables for GF(2**8) finite field with
162 	   0x011b as modular polynomial - the simplest prmitive
163 	   root is 0x03, used here to generate the tables */
164 
165 	for (i = 0, p = 1; i < 256; ++i) {
166 		pow_tab[i] = (uint8_t) p;
167 		log_tab[p] = (uint8_t) i;
168 
169 		p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
170 	}
171 
172 	log_tab[1] = 0;
173 
174 	for (i = 0, p = 1; i < 10; ++i) {
175 		rco_tab[i] = p;
176 
177 		p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
178 	}
179 
180 	for (i = 0; i < 256; ++i) {
181 		p = (i ? pow_tab[255 - log_tab[i]] : 0);
182 		q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
183 		p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
184 		sbx_tab[i] = p;
185 		isb_tab[p] = (uint8_t) i;
186 	}
187 
188 	for (i = 0; i < 256; ++i) {
189 		p = sbx_tab[i];
190 
191 		t = p;
192 		fl_tab[0][i] = t;
193 		fl_tab[1][i] = rotl (t, 8);
194 		fl_tab[2][i] = rotl (t, 16);
195 		fl_tab[3][i] = rotl (t, 24);
196 
197 		t = ((uint32_t) ff_mult (2, p)) |
198 		    ((uint32_t) p << 8) |
199 		    ((uint32_t) p << 16) | ((uint32_t) ff_mult (3, p) << 24);
200 
201 		ft_tab[0][i] = t;
202 		ft_tab[1][i] = rotl (t, 8);
203 		ft_tab[2][i] = rotl (t, 16);
204 		ft_tab[3][i] = rotl (t, 24);
205 
206 		p = isb_tab[i];
207 
208 		t = p;
209 		il_tab[0][i] = t;
210 		il_tab[1][i] = rotl (t, 8);
211 		il_tab[2][i] = rotl (t, 16);
212 		il_tab[3][i] = rotl (t, 24);
213 
214 		t = ((uint32_t) ff_mult (14, p)) |
215 		    ((uint32_t) ff_mult (9, p) << 8) |
216 		    ((uint32_t) ff_mult (13, p) << 16) |
217 		    ((uint32_t) ff_mult (11, p) << 24);
218 
219 		it_tab[0][i] = t;
220 		it_tab[1][i] = rotl (t, 8);
221 		it_tab[2][i] = rotl (t, 16);
222 		it_tab[3][i] = rotl (t, 24);
223 	}
224 }
225 
226 #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
227 
228 #define imix_col(y,x)       \
229     u   = star_x(x);        \
230     v   = star_x(u);        \
231     w   = star_x(v);        \
232     t   = w ^ (x);          \
233    (y)  = u ^ v ^ w;        \
234    (y) ^= rotr(u ^ t,  8) ^ \
235           rotr(v ^ t, 16) ^ \
236           rotr(t,24)
237 
238 /* initialise the key schedule from the user supplied key */
239 
240 #define loop4(i)                                    \
241 {   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
242     t ^= E_KEY[4 * i];     E_KEY[4 * i + 4] = t;    \
243     t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t;    \
244     t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t;    \
245     t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t;    \
246 }
247 
248 #define loop6(i)                                    \
249 {   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
250     t ^= E_KEY[6 * i];     E_KEY[6 * i + 6] = t;    \
251     t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t;    \
252     t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t;    \
253     t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t;    \
254     t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t;   \
255     t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t;   \
256 }
257 
258 #define loop8(i)                                    \
259 {   t = rotr(t,  8); ; t = ls_box(t) ^ rco_tab[i];  \
260     t ^= E_KEY[8 * i];     E_KEY[8 * i + 8] = t;    \
261     t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t;    \
262     t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t;   \
263     t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t;   \
264     t  = E_KEY[8 * i + 4] ^ ls_box(t);    \
265     E_KEY[8 * i + 12] = t;                \
266     t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t;   \
267     t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t;   \
268     t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t;   \
269 }
270 
271 /* Tells whether the ACE is capable to generate
272    the extended key for a given key_len. */
273 static inline int
274 aes_hw_extkey_available(uint8_t key_len)
275 {
276 	/* TODO: We should check the actual CPU model/stepping
277 	         as it's possible that the capability will be
278 	         added in the next CPU revisions. */
279 	if (key_len == 16)
280 		return 1;
281 	return 0;
282 }
283 
284 static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
285 {
286 	unsigned long addr = (unsigned long)crypto_tfm_ctx(tfm);
287 	unsigned long align = PADLOCK_ALIGNMENT;
288 
289 	if (align <= crypto_tfm_ctx_alignment())
290 		align = 1;
291 	return (struct aes_ctx *)ALIGN(addr, align);
292 }
293 
294 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
295 		       unsigned int key_len, u32 *flags)
296 {
297 	struct aes_ctx *ctx = aes_ctx(tfm);
298 	const __le32 *key = (const __le32 *)in_key;
299 	uint32_t i, t, u, v, w;
300 	uint32_t P[AES_EXTENDED_KEY_SIZE];
301 	uint32_t rounds;
302 
303 	if (key_len != 16 && key_len != 24 && key_len != 32) {
304 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
305 		return -EINVAL;
306 	}
307 
308 	ctx->key_length = key_len;
309 
310 	/*
311 	 * If the hardware is capable of generating the extended key
312 	 * itself we must supply the plain key for both encryption
313 	 * and decryption.
314 	 */
315 	ctx->D = ctx->E;
316 
317 	E_KEY[0] = le32_to_cpu(key[0]);
318 	E_KEY[1] = le32_to_cpu(key[1]);
319 	E_KEY[2] = le32_to_cpu(key[2]);
320 	E_KEY[3] = le32_to_cpu(key[3]);
321 
322 	/* Prepare control words. */
323 	memset(&ctx->cword, 0, sizeof(ctx->cword));
324 
325 	ctx->cword.decrypt.encdec = 1;
326 	ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
327 	ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
328 	ctx->cword.encrypt.ksize = (key_len - 16) / 8;
329 	ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
330 
331 	/* Don't generate extended keys if the hardware can do it. */
332 	if (aes_hw_extkey_available(key_len))
333 		return 0;
334 
335 	ctx->D = ctx->d_data;
336 	ctx->cword.encrypt.keygen = 1;
337 	ctx->cword.decrypt.keygen = 1;
338 
339 	switch (key_len) {
340 	case 16:
341 		t = E_KEY[3];
342 		for (i = 0; i < 10; ++i)
343 			loop4 (i);
344 		break;
345 
346 	case 24:
347 		E_KEY[4] = le32_to_cpu(key[4]);
348 		t = E_KEY[5] = le32_to_cpu(key[5]);
349 		for (i = 0; i < 8; ++i)
350 			loop6 (i);
351 		break;
352 
353 	case 32:
354 		E_KEY[4] = le32_to_cpu(key[4]);
355 		E_KEY[5] = le32_to_cpu(key[5]);
356 		E_KEY[6] = le32_to_cpu(key[6]);
357 		t = E_KEY[7] = le32_to_cpu(key[7]);
358 		for (i = 0; i < 7; ++i)
359 			loop8 (i);
360 		break;
361 	}
362 
363 	D_KEY[0] = E_KEY[0];
364 	D_KEY[1] = E_KEY[1];
365 	D_KEY[2] = E_KEY[2];
366 	D_KEY[3] = E_KEY[3];
367 
368 	for (i = 4; i < key_len + 24; ++i) {
369 		imix_col (D_KEY[i], E_KEY[i]);
370 	}
371 
372 	/* PadLock needs a different format of the decryption key. */
373 	rounds = 10 + (key_len - 16) / 4;
374 
375 	for (i = 0; i < rounds; i++) {
376 		P[((i + 1) * 4) + 0] = D_KEY[((rounds - i - 1) * 4) + 0];
377 		P[((i + 1) * 4) + 1] = D_KEY[((rounds - i - 1) * 4) + 1];
378 		P[((i + 1) * 4) + 2] = D_KEY[((rounds - i - 1) * 4) + 2];
379 		P[((i + 1) * 4) + 3] = D_KEY[((rounds - i - 1) * 4) + 3];
380 	}
381 
382 	P[0] = E_KEY[(rounds * 4) + 0];
383 	P[1] = E_KEY[(rounds * 4) + 1];
384 	P[2] = E_KEY[(rounds * 4) + 2];
385 	P[3] = E_KEY[(rounds * 4) + 3];
386 
387 	memcpy(D_KEY, P, AES_EXTENDED_KEY_SIZE_B);
388 
389 	return 0;
390 }
391 
392 /* ====== Encryption/decryption routines ====== */
393 
394 /* These are the real call to PadLock. */
395 static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
396 				      void *control_word, u32 count)
397 {
398 	asm volatile ("pushfl; popfl");		/* enforce key reload. */
399 	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
400 		      : "+S"(input), "+D"(output)
401 		      : "d"(control_word), "b"(key), "c"(count));
402 }
403 
404 static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
405 				     u8 *iv, void *control_word, u32 count)
406 {
407 	/* Enforce key reload. */
408 	asm volatile ("pushfl; popfl");
409 	/* rep xcryptcbc */
410 	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"
411 		      : "+S" (input), "+D" (output), "+a" (iv)
412 		      : "d" (control_word), "b" (key), "c" (count));
413 	return iv;
414 }
415 
416 static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
417 {
418 	struct aes_ctx *ctx = aes_ctx(tfm);
419 	padlock_xcrypt_ecb(in, out, ctx->E, &ctx->cword.encrypt, 1);
420 }
421 
422 static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
423 {
424 	struct aes_ctx *ctx = aes_ctx(tfm);
425 	padlock_xcrypt_ecb(in, out, ctx->D, &ctx->cword.decrypt, 1);
426 }
427 
428 static unsigned int aes_encrypt_ecb(const struct cipher_desc *desc, u8 *out,
429 				    const u8 *in, unsigned int nbytes)
430 {
431 	struct aes_ctx *ctx = aes_ctx(desc->tfm);
432 	padlock_xcrypt_ecb(in, out, ctx->E, &ctx->cword.encrypt,
433 			   nbytes / AES_BLOCK_SIZE);
434 	return nbytes & ~(AES_BLOCK_SIZE - 1);
435 }
436 
437 static unsigned int aes_decrypt_ecb(const struct cipher_desc *desc, u8 *out,
438 				    const u8 *in, unsigned int nbytes)
439 {
440 	struct aes_ctx *ctx = aes_ctx(desc->tfm);
441 	padlock_xcrypt_ecb(in, out, ctx->D, &ctx->cword.decrypt,
442 			   nbytes / AES_BLOCK_SIZE);
443 	return nbytes & ~(AES_BLOCK_SIZE - 1);
444 }
445 
446 static unsigned int aes_encrypt_cbc(const struct cipher_desc *desc, u8 *out,
447 				    const u8 *in, unsigned int nbytes)
448 {
449 	struct aes_ctx *ctx = aes_ctx(desc->tfm);
450 	u8 *iv;
451 
452 	iv = padlock_xcrypt_cbc(in, out, ctx->E, desc->info,
453 				&ctx->cword.encrypt, nbytes / AES_BLOCK_SIZE);
454 	memcpy(desc->info, iv, AES_BLOCK_SIZE);
455 
456 	return nbytes & ~(AES_BLOCK_SIZE - 1);
457 }
458 
459 static unsigned int aes_decrypt_cbc(const struct cipher_desc *desc, u8 *out,
460 				    const u8 *in, unsigned int nbytes)
461 {
462 	struct aes_ctx *ctx = aes_ctx(desc->tfm);
463 	padlock_xcrypt_cbc(in, out, ctx->D, desc->info, &ctx->cword.decrypt,
464 			   nbytes / AES_BLOCK_SIZE);
465 	return nbytes & ~(AES_BLOCK_SIZE - 1);
466 }
467 
468 static struct crypto_alg aes_alg = {
469 	.cra_name		=	"aes",
470 	.cra_driver_name	=	"aes-padlock",
471 	.cra_priority		=	300,
472 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
473 	.cra_blocksize		=	AES_BLOCK_SIZE,
474 	.cra_ctxsize		=	sizeof(struct aes_ctx),
475 	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
476 	.cra_module		=	THIS_MODULE,
477 	.cra_list		=	LIST_HEAD_INIT(aes_alg.cra_list),
478 	.cra_u			=	{
479 		.cipher = {
480 			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
481 			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
482 			.cia_setkey	   	= 	aes_set_key,
483 			.cia_encrypt	 	=	aes_encrypt,
484 			.cia_decrypt	  	=	aes_decrypt,
485 			.cia_encrypt_ecb 	=	aes_encrypt_ecb,
486 			.cia_decrypt_ecb  	=	aes_decrypt_ecb,
487 			.cia_encrypt_cbc 	=	aes_encrypt_cbc,
488 			.cia_decrypt_cbc  	=	aes_decrypt_cbc,
489 		}
490 	}
491 };
492 
493 int __init padlock_init_aes(void)
494 {
495 	printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
496 
497 	gen_tabs();
498 	return crypto_register_alg(&aes_alg);
499 }
500 
501 void __exit padlock_fini_aes(void)
502 {
503 	crypto_unregister_alg(&aes_alg);
504 }
505