xref: /linux/drivers/crypto/padlock-aes.c (revision 1191f0a49390caf16f4a2831a4fc373757471ad6)
1 /*
2  * Cryptographic API.
3  *
4  * Support for VIA PadLock hardware crypto engine.
5  *
6  * Copyright (c) 2004  Michal Ludvig <michal@logix.cz>
7  *
8  * Key expansion routine taken from crypto/aes.c
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * ---------------------------------------------------------------------------
16  * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
17  * All rights reserved.
18  *
19  * LICENSE TERMS
20  *
21  * The free distribution and use of this software in both source and binary
22  * form is allowed (with or without changes) provided that:
23  *
24  *   1. distributions of this source code include the above copyright
25  *      notice, this list of conditions and the following disclaimer;
26  *
27  *   2. distributions in binary form include the above copyright
28  *      notice, this list of conditions and the following disclaimer
29  *      in the documentation and/or other associated materials;
30  *
31  *   3. the copyright holder's name is not used to endorse products
32  *      built using this software without specific written permission.
33  *
34  * ALTERNATIVELY, provided that this notice is retained in full, this product
35  * may be distributed under the terms of the GNU General Public License (GPL),
36  * in which case the provisions of the GPL apply INSTEAD OF those given above.
37  *
38  * DISCLAIMER
39  *
40  * This software is provided 'as is' with no explicit or implied warranties
41  * in respect of its properties, including, but not limited to, correctness
42  * and/or fitness for purpose.
43  * ---------------------------------------------------------------------------
44  */
45 
46 #include <linux/module.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/errno.h>
50 #include <linux/crypto.h>
51 #include <linux/interrupt.h>
52 #include <linux/kernel.h>
53 #include <asm/byteorder.h>
54 #include "padlock.h"
55 
56 #define AES_MIN_KEY_SIZE	16	/* in uint8_t units */
57 #define AES_MAX_KEY_SIZE	32	/* ditto */
58 #define AES_BLOCK_SIZE		16	/* ditto */
59 #define AES_EXTENDED_KEY_SIZE	64	/* in uint32_t units */
60 #define AES_EXTENDED_KEY_SIZE_B	(AES_EXTENDED_KEY_SIZE * sizeof(uint32_t))
61 
62 /* Whenever making any changes to the following
63  * structure *make sure* you keep E, d_data
64  * and cword aligned on 16 Bytes boundaries!!! */
65 struct aes_ctx {
66 	struct {
67 		struct cword encrypt;
68 		struct cword decrypt;
69 	} cword;
70 	u32 *D;
71 	int key_length;
72 	u32 E[AES_EXTENDED_KEY_SIZE]
73 		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
74 	u32 d_data[AES_EXTENDED_KEY_SIZE]
75 		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
76 };
77 
78 /* ====== Key management routines ====== */
79 
80 static inline uint32_t
81 generic_rotr32 (const uint32_t x, const unsigned bits)
82 {
83 	const unsigned n = bits % 32;
84 	return (x >> n) | (x << (32 - n));
85 }
86 
87 static inline uint32_t
88 generic_rotl32 (const uint32_t x, const unsigned bits)
89 {
90 	const unsigned n = bits % 32;
91 	return (x << n) | (x >> (32 - n));
92 }
93 
94 #define rotl generic_rotl32
95 #define rotr generic_rotr32
96 
97 /*
98  * #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))
99  */
100 static inline uint8_t
101 byte(const uint32_t x, const unsigned n)
102 {
103 	return x >> (n << 3);
104 }
105 
106 #define E_KEY ctx->E
107 #define D_KEY ctx->D
108 
109 static uint8_t pow_tab[256];
110 static uint8_t log_tab[256];
111 static uint8_t sbx_tab[256];
112 static uint8_t isb_tab[256];
113 static uint32_t rco_tab[10];
114 static uint32_t ft_tab[4][256];
115 static uint32_t it_tab[4][256];
116 
117 static uint32_t fl_tab[4][256];
118 static uint32_t il_tab[4][256];
119 
120 static inline uint8_t
121 f_mult (uint8_t a, uint8_t b)
122 {
123 	uint8_t aa = log_tab[a], cc = aa + log_tab[b];
124 
125 	return pow_tab[cc + (cc < aa ? 1 : 0)];
126 }
127 
128 #define ff_mult(a,b)    (a && b ? f_mult(a, b) : 0)
129 
130 #define f_rn(bo, bi, n, k)					\
131     bo[n] =  ft_tab[0][byte(bi[n],0)] ^				\
132              ft_tab[1][byte(bi[(n + 1) & 3],1)] ^		\
133              ft_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
134              ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
135 
136 #define i_rn(bo, bi, n, k)					\
137     bo[n] =  it_tab[0][byte(bi[n],0)] ^				\
138              it_tab[1][byte(bi[(n + 3) & 3],1)] ^		\
139              it_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
140              it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
141 
142 #define ls_box(x)				\
143     ( fl_tab[0][byte(x, 0)] ^			\
144       fl_tab[1][byte(x, 1)] ^			\
145       fl_tab[2][byte(x, 2)] ^			\
146       fl_tab[3][byte(x, 3)] )
147 
148 #define f_rl(bo, bi, n, k)					\
149     bo[n] =  fl_tab[0][byte(bi[n],0)] ^				\
150              fl_tab[1][byte(bi[(n + 1) & 3],1)] ^		\
151              fl_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
152              fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
153 
154 #define i_rl(bo, bi, n, k)					\
155     bo[n] =  il_tab[0][byte(bi[n],0)] ^				\
156              il_tab[1][byte(bi[(n + 3) & 3],1)] ^		\
157              il_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
158              il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
159 
160 static void
161 gen_tabs (void)
162 {
163 	uint32_t i, t;
164 	uint8_t p, q;
165 
166 	/* log and power tables for GF(2**8) finite field with
167 	   0x011b as modular polynomial - the simplest prmitive
168 	   root is 0x03, used here to generate the tables */
169 
170 	for (i = 0, p = 1; i < 256; ++i) {
171 		pow_tab[i] = (uint8_t) p;
172 		log_tab[p] = (uint8_t) i;
173 
174 		p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
175 	}
176 
177 	log_tab[1] = 0;
178 
179 	for (i = 0, p = 1; i < 10; ++i) {
180 		rco_tab[i] = p;
181 
182 		p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
183 	}
184 
185 	for (i = 0; i < 256; ++i) {
186 		p = (i ? pow_tab[255 - log_tab[i]] : 0);
187 		q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
188 		p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
189 		sbx_tab[i] = p;
190 		isb_tab[p] = (uint8_t) i;
191 	}
192 
193 	for (i = 0; i < 256; ++i) {
194 		p = sbx_tab[i];
195 
196 		t = p;
197 		fl_tab[0][i] = t;
198 		fl_tab[1][i] = rotl (t, 8);
199 		fl_tab[2][i] = rotl (t, 16);
200 		fl_tab[3][i] = rotl (t, 24);
201 
202 		t = ((uint32_t) ff_mult (2, p)) |
203 		    ((uint32_t) p << 8) |
204 		    ((uint32_t) p << 16) | ((uint32_t) ff_mult (3, p) << 24);
205 
206 		ft_tab[0][i] = t;
207 		ft_tab[1][i] = rotl (t, 8);
208 		ft_tab[2][i] = rotl (t, 16);
209 		ft_tab[3][i] = rotl (t, 24);
210 
211 		p = isb_tab[i];
212 
213 		t = p;
214 		il_tab[0][i] = t;
215 		il_tab[1][i] = rotl (t, 8);
216 		il_tab[2][i] = rotl (t, 16);
217 		il_tab[3][i] = rotl (t, 24);
218 
219 		t = ((uint32_t) ff_mult (14, p)) |
220 		    ((uint32_t) ff_mult (9, p) << 8) |
221 		    ((uint32_t) ff_mult (13, p) << 16) |
222 		    ((uint32_t) ff_mult (11, p) << 24);
223 
224 		it_tab[0][i] = t;
225 		it_tab[1][i] = rotl (t, 8);
226 		it_tab[2][i] = rotl (t, 16);
227 		it_tab[3][i] = rotl (t, 24);
228 	}
229 }
230 
231 #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
232 
233 #define imix_col(y,x)       \
234     u   = star_x(x);        \
235     v   = star_x(u);        \
236     w   = star_x(v);        \
237     t   = w ^ (x);          \
238    (y)  = u ^ v ^ w;        \
239    (y) ^= rotr(u ^ t,  8) ^ \
240           rotr(v ^ t, 16) ^ \
241           rotr(t,24)
242 
243 /* initialise the key schedule from the user supplied key */
244 
245 #define loop4(i)                                    \
246 {   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
247     t ^= E_KEY[4 * i];     E_KEY[4 * i + 4] = t;    \
248     t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t;    \
249     t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t;    \
250     t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t;    \
251 }
252 
253 #define loop6(i)                                    \
254 {   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
255     t ^= E_KEY[6 * i];     E_KEY[6 * i + 6] = t;    \
256     t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t;    \
257     t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t;    \
258     t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t;    \
259     t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t;   \
260     t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t;   \
261 }
262 
263 #define loop8(i)                                    \
264 {   t = rotr(t,  8); ; t = ls_box(t) ^ rco_tab[i];  \
265     t ^= E_KEY[8 * i];     E_KEY[8 * i + 8] = t;    \
266     t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t;    \
267     t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t;   \
268     t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t;   \
269     t  = E_KEY[8 * i + 4] ^ ls_box(t);    \
270     E_KEY[8 * i + 12] = t;                \
271     t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t;   \
272     t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t;   \
273     t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t;   \
274 }
275 
276 /* Tells whether the ACE is capable to generate
277    the extended key for a given key_len. */
278 static inline int
279 aes_hw_extkey_available(uint8_t key_len)
280 {
281 	/* TODO: We should check the actual CPU model/stepping
282 	         as it's possible that the capability will be
283 	         added in the next CPU revisions. */
284 	if (key_len == 16)
285 		return 1;
286 	return 0;
287 }
288 
289 static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
290 {
291 	unsigned long addr = (unsigned long)crypto_tfm_ctx(tfm);
292 	unsigned long align = PADLOCK_ALIGNMENT;
293 
294 	if (align <= crypto_tfm_ctx_alignment())
295 		align = 1;
296 	return (struct aes_ctx *)ALIGN(addr, align);
297 }
298 
299 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
300 		       unsigned int key_len, u32 *flags)
301 {
302 	struct aes_ctx *ctx = aes_ctx(tfm);
303 	const __le32 *key = (const __le32 *)in_key;
304 	uint32_t i, t, u, v, w;
305 	uint32_t P[AES_EXTENDED_KEY_SIZE];
306 	uint32_t rounds;
307 
308 	if (key_len != 16 && key_len != 24 && key_len != 32) {
309 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
310 		return -EINVAL;
311 	}
312 
313 	ctx->key_length = key_len;
314 
315 	/*
316 	 * If the hardware is capable of generating the extended key
317 	 * itself we must supply the plain key for both encryption
318 	 * and decryption.
319 	 */
320 	ctx->D = ctx->E;
321 
322 	E_KEY[0] = le32_to_cpu(key[0]);
323 	E_KEY[1] = le32_to_cpu(key[1]);
324 	E_KEY[2] = le32_to_cpu(key[2]);
325 	E_KEY[3] = le32_to_cpu(key[3]);
326 
327 	/* Prepare control words. */
328 	memset(&ctx->cword, 0, sizeof(ctx->cword));
329 
330 	ctx->cword.decrypt.encdec = 1;
331 	ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
332 	ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
333 	ctx->cword.encrypt.ksize = (key_len - 16) / 8;
334 	ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
335 
336 	/* Don't generate extended keys if the hardware can do it. */
337 	if (aes_hw_extkey_available(key_len))
338 		return 0;
339 
340 	ctx->D = ctx->d_data;
341 	ctx->cword.encrypt.keygen = 1;
342 	ctx->cword.decrypt.keygen = 1;
343 
344 	switch (key_len) {
345 	case 16:
346 		t = E_KEY[3];
347 		for (i = 0; i < 10; ++i)
348 			loop4 (i);
349 		break;
350 
351 	case 24:
352 		E_KEY[4] = le32_to_cpu(key[4]);
353 		t = E_KEY[5] = le32_to_cpu(key[5]);
354 		for (i = 0; i < 8; ++i)
355 			loop6 (i);
356 		break;
357 
358 	case 32:
359 		E_KEY[4] = le32_to_cpu(key[4]);
360 		E_KEY[5] = le32_to_cpu(key[5]);
361 		E_KEY[6] = le32_to_cpu(key[6]);
362 		t = E_KEY[7] = le32_to_cpu(key[7]);
363 		for (i = 0; i < 7; ++i)
364 			loop8 (i);
365 		break;
366 	}
367 
368 	D_KEY[0] = E_KEY[0];
369 	D_KEY[1] = E_KEY[1];
370 	D_KEY[2] = E_KEY[2];
371 	D_KEY[3] = E_KEY[3];
372 
373 	for (i = 4; i < key_len + 24; ++i) {
374 		imix_col (D_KEY[i], E_KEY[i]);
375 	}
376 
377 	/* PadLock needs a different format of the decryption key. */
378 	rounds = 10 + (key_len - 16) / 4;
379 
380 	for (i = 0; i < rounds; i++) {
381 		P[((i + 1) * 4) + 0] = D_KEY[((rounds - i - 1) * 4) + 0];
382 		P[((i + 1) * 4) + 1] = D_KEY[((rounds - i - 1) * 4) + 1];
383 		P[((i + 1) * 4) + 2] = D_KEY[((rounds - i - 1) * 4) + 2];
384 		P[((i + 1) * 4) + 3] = D_KEY[((rounds - i - 1) * 4) + 3];
385 	}
386 
387 	P[0] = E_KEY[(rounds * 4) + 0];
388 	P[1] = E_KEY[(rounds * 4) + 1];
389 	P[2] = E_KEY[(rounds * 4) + 2];
390 	P[3] = E_KEY[(rounds * 4) + 3];
391 
392 	memcpy(D_KEY, P, AES_EXTENDED_KEY_SIZE_B);
393 
394 	return 0;
395 }
396 
397 /* ====== Encryption/decryption routines ====== */
398 
399 /* These are the real call to PadLock. */
400 static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
401 				      void *control_word, u32 count)
402 {
403 	asm volatile ("pushfl; popfl");		/* enforce key reload. */
404 	asm volatile (".byte 0xf3,0x0f,0xa7,0xc8"	/* rep xcryptecb */
405 		      : "+S"(input), "+D"(output)
406 		      : "d"(control_word), "b"(key), "c"(count));
407 }
408 
409 static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
410 				     u8 *iv, void *control_word, u32 count)
411 {
412 	/* Enforce key reload. */
413 	asm volatile ("pushfl; popfl");
414 	/* rep xcryptcbc */
415 	asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"
416 		      : "+S" (input), "+D" (output), "+a" (iv)
417 		      : "d" (control_word), "b" (key), "c" (count));
418 	return iv;
419 }
420 
421 static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
422 {
423 	struct aes_ctx *ctx = aes_ctx(tfm);
424 	padlock_xcrypt_ecb(in, out, ctx->E, &ctx->cword.encrypt, 1);
425 }
426 
427 static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
428 {
429 	struct aes_ctx *ctx = aes_ctx(tfm);
430 	padlock_xcrypt_ecb(in, out, ctx->D, &ctx->cword.decrypt, 1);
431 }
432 
433 static unsigned int aes_encrypt_ecb(const struct cipher_desc *desc, u8 *out,
434 				    const u8 *in, unsigned int nbytes)
435 {
436 	struct aes_ctx *ctx = aes_ctx(desc->tfm);
437 	padlock_xcrypt_ecb(in, out, ctx->E, &ctx->cword.encrypt,
438 			   nbytes / AES_BLOCK_SIZE);
439 	return nbytes & ~(AES_BLOCK_SIZE - 1);
440 }
441 
442 static unsigned int aes_decrypt_ecb(const struct cipher_desc *desc, u8 *out,
443 				    const u8 *in, unsigned int nbytes)
444 {
445 	struct aes_ctx *ctx = aes_ctx(desc->tfm);
446 	padlock_xcrypt_ecb(in, out, ctx->D, &ctx->cword.decrypt,
447 			   nbytes / AES_BLOCK_SIZE);
448 	return nbytes & ~(AES_BLOCK_SIZE - 1);
449 }
450 
451 static unsigned int aes_encrypt_cbc(const struct cipher_desc *desc, u8 *out,
452 				    const u8 *in, unsigned int nbytes)
453 {
454 	struct aes_ctx *ctx = aes_ctx(desc->tfm);
455 	u8 *iv;
456 
457 	iv = padlock_xcrypt_cbc(in, out, ctx->E, desc->info,
458 				&ctx->cword.encrypt, nbytes / AES_BLOCK_SIZE);
459 	memcpy(desc->info, iv, AES_BLOCK_SIZE);
460 
461 	return nbytes & ~(AES_BLOCK_SIZE - 1);
462 }
463 
464 static unsigned int aes_decrypt_cbc(const struct cipher_desc *desc, u8 *out,
465 				    const u8 *in, unsigned int nbytes)
466 {
467 	struct aes_ctx *ctx = aes_ctx(desc->tfm);
468 	padlock_xcrypt_cbc(in, out, ctx->D, desc->info, &ctx->cword.decrypt,
469 			   nbytes / AES_BLOCK_SIZE);
470 	return nbytes & ~(AES_BLOCK_SIZE - 1);
471 }
472 
473 static struct crypto_alg aes_alg = {
474 	.cra_name		=	"aes",
475 	.cra_driver_name	=	"aes-padlock",
476 	.cra_priority		=	300,
477 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
478 	.cra_blocksize		=	AES_BLOCK_SIZE,
479 	.cra_ctxsize		=	sizeof(struct aes_ctx),
480 	.cra_alignmask		=	PADLOCK_ALIGNMENT - 1,
481 	.cra_module		=	THIS_MODULE,
482 	.cra_list		=	LIST_HEAD_INIT(aes_alg.cra_list),
483 	.cra_u			=	{
484 		.cipher = {
485 			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
486 			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
487 			.cia_setkey	   	= 	aes_set_key,
488 			.cia_encrypt	 	=	aes_encrypt,
489 			.cia_decrypt	  	=	aes_decrypt,
490 			.cia_encrypt_ecb 	=	aes_encrypt_ecb,
491 			.cia_decrypt_ecb  	=	aes_decrypt_ecb,
492 			.cia_encrypt_cbc 	=	aes_encrypt_cbc,
493 			.cia_decrypt_cbc  	=	aes_decrypt_cbc,
494 		}
495 	}
496 };
497 
498 static int __init padlock_init(void)
499 {
500 	int ret;
501 
502 	if (!cpu_has_xcrypt) {
503 		printk(KERN_ERR PFX "VIA PadLock not detected.\n");
504 		return -ENODEV;
505 	}
506 
507 	if (!cpu_has_xcrypt_enabled) {
508 		printk(KERN_ERR PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
509 		return -ENODEV;
510 	}
511 
512 	gen_tabs();
513 	if ((ret = crypto_register_alg(&aes_alg))) {
514 		printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
515 		return ret;
516 	}
517 
518 	printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
519 
520 	return ret;
521 }
522 
523 static void __exit padlock_fini(void)
524 {
525 	crypto_unregister_alg(&aes_alg);
526 }
527 
528 module_init(padlock_init);
529 module_exit(padlock_fini);
530 
531 MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
532 MODULE_LICENSE("GPL");
533 MODULE_AUTHOR("Michal Ludvig");
534 
535 MODULE_ALIAS("aes-padlock");
536