1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Cryptographic API. 4 * 5 * Support for OMAP SHA1/MD5 HW acceleration. 6 * 7 * Copyright (c) 2010 Nokia Corporation 8 * Author: Dmitry Kasatkin <dmitry.kasatkin@nokia.com> 9 * Copyright (c) 2011 Texas Instruments Incorporated 10 * 11 * Some ideas are from old omap-sha1-md5.c driver. 12 */ 13 14 #define pr_fmt(fmt) "%s: " fmt, __func__ 15 16 #include <linux/err.h> 17 #include <linux/device.h> 18 #include <linux/module.h> 19 #include <linux/init.h> 20 #include <linux/errno.h> 21 #include <linux/interrupt.h> 22 #include <linux/kernel.h> 23 #include <linux/irq.h> 24 #include <linux/io.h> 25 #include <linux/platform_device.h> 26 #include <linux/scatterlist.h> 27 #include <linux/dma-mapping.h> 28 #include <linux/dmaengine.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/of.h> 31 #include <linux/of_device.h> 32 #include <linux/of_address.h> 33 #include <linux/of_irq.h> 34 #include <linux/delay.h> 35 #include <linux/crypto.h> 36 #include <crypto/scatterwalk.h> 37 #include <crypto/algapi.h> 38 #include <crypto/sha1.h> 39 #include <crypto/sha2.h> 40 #include <crypto/hash.h> 41 #include <crypto/hmac.h> 42 #include <crypto/internal/hash.h> 43 #include <crypto/engine.h> 44 45 #define MD5_DIGEST_SIZE 16 46 47 #define SHA_REG_IDIGEST(dd, x) ((dd)->pdata->idigest_ofs + ((x)*0x04)) 48 #define SHA_REG_DIN(dd, x) ((dd)->pdata->din_ofs + ((x) * 0x04)) 49 #define SHA_REG_DIGCNT(dd) ((dd)->pdata->digcnt_ofs) 50 51 #define SHA_REG_ODIGEST(dd, x) ((dd)->pdata->odigest_ofs + (x * 0x04)) 52 53 #define SHA_REG_CTRL 0x18 54 #define SHA_REG_CTRL_LENGTH (0xFFFFFFFF << 5) 55 #define SHA_REG_CTRL_CLOSE_HASH (1 << 4) 56 #define SHA_REG_CTRL_ALGO_CONST (1 << 3) 57 #define SHA_REG_CTRL_ALGO (1 << 2) 58 #define SHA_REG_CTRL_INPUT_READY (1 << 1) 59 #define SHA_REG_CTRL_OUTPUT_READY (1 << 0) 60 61 #define SHA_REG_REV(dd) ((dd)->pdata->rev_ofs) 62 63 #define SHA_REG_MASK(dd) ((dd)->pdata->mask_ofs) 64 #define SHA_REG_MASK_DMA_EN (1 << 3) 65 #define SHA_REG_MASK_IT_EN (1 << 2) 66 #define SHA_REG_MASK_SOFTRESET (1 << 1) 67 #define SHA_REG_AUTOIDLE (1 << 0) 68 69 #define SHA_REG_SYSSTATUS(dd) ((dd)->pdata->sysstatus_ofs) 70 #define SHA_REG_SYSSTATUS_RESETDONE (1 << 0) 71 72 #define SHA_REG_MODE(dd) ((dd)->pdata->mode_ofs) 73 #define SHA_REG_MODE_HMAC_OUTER_HASH (1 << 7) 74 #define SHA_REG_MODE_HMAC_KEY_PROC (1 << 5) 75 #define SHA_REG_MODE_CLOSE_HASH (1 << 4) 76 #define SHA_REG_MODE_ALGO_CONSTANT (1 << 3) 77 78 #define SHA_REG_MODE_ALGO_MASK (7 << 0) 79 #define SHA_REG_MODE_ALGO_MD5_128 (0 << 1) 80 #define SHA_REG_MODE_ALGO_SHA1_160 (1 << 1) 81 #define SHA_REG_MODE_ALGO_SHA2_224 (2 << 1) 82 #define SHA_REG_MODE_ALGO_SHA2_256 (3 << 1) 83 #define SHA_REG_MODE_ALGO_SHA2_384 (1 << 0) 84 #define SHA_REG_MODE_ALGO_SHA2_512 (3 << 0) 85 86 #define SHA_REG_LENGTH(dd) ((dd)->pdata->length_ofs) 87 88 #define SHA_REG_IRQSTATUS 0x118 89 #define SHA_REG_IRQSTATUS_CTX_RDY (1 << 3) 90 #define SHA_REG_IRQSTATUS_PARTHASH_RDY (1 << 2) 91 #define SHA_REG_IRQSTATUS_INPUT_RDY (1 << 1) 92 #define SHA_REG_IRQSTATUS_OUTPUT_RDY (1 << 0) 93 94 #define SHA_REG_IRQENA 0x11C 95 #define SHA_REG_IRQENA_CTX_RDY (1 << 3) 96 #define SHA_REG_IRQENA_PARTHASH_RDY (1 << 2) 97 #define SHA_REG_IRQENA_INPUT_RDY (1 << 1) 98 #define SHA_REG_IRQENA_OUTPUT_RDY (1 << 0) 99 100 #define DEFAULT_TIMEOUT_INTERVAL HZ 101 102 #define DEFAULT_AUTOSUSPEND_DELAY 1000 103 104 /* mostly device flags */ 105 #define FLAGS_FINAL 1 106 #define FLAGS_DMA_ACTIVE 2 107 #define FLAGS_OUTPUT_READY 3 108 #define FLAGS_CPU 5 109 #define FLAGS_DMA_READY 6 110 #define FLAGS_AUTO_XOR 7 111 #define FLAGS_BE32_SHA1 8 112 #define FLAGS_SGS_COPIED 9 113 #define FLAGS_SGS_ALLOCED 10 114 #define FLAGS_HUGE 11 115 116 /* context flags */ 117 #define FLAGS_FINUP 16 118 119 #define FLAGS_MODE_SHIFT 18 120 #define FLAGS_MODE_MASK (SHA_REG_MODE_ALGO_MASK << FLAGS_MODE_SHIFT) 121 #define FLAGS_MODE_MD5 (SHA_REG_MODE_ALGO_MD5_128 << FLAGS_MODE_SHIFT) 122 #define FLAGS_MODE_SHA1 (SHA_REG_MODE_ALGO_SHA1_160 << FLAGS_MODE_SHIFT) 123 #define FLAGS_MODE_SHA224 (SHA_REG_MODE_ALGO_SHA2_224 << FLAGS_MODE_SHIFT) 124 #define FLAGS_MODE_SHA256 (SHA_REG_MODE_ALGO_SHA2_256 << FLAGS_MODE_SHIFT) 125 #define FLAGS_MODE_SHA384 (SHA_REG_MODE_ALGO_SHA2_384 << FLAGS_MODE_SHIFT) 126 #define FLAGS_MODE_SHA512 (SHA_REG_MODE_ALGO_SHA2_512 << FLAGS_MODE_SHIFT) 127 128 #define FLAGS_HMAC 21 129 #define FLAGS_ERROR 22 130 131 #define OP_UPDATE 1 132 #define OP_FINAL 2 133 134 #define OMAP_ALIGN_MASK (sizeof(u32)-1) 135 #define OMAP_ALIGNED __attribute__((aligned(sizeof(u32)))) 136 137 #define BUFLEN SHA512_BLOCK_SIZE 138 #define OMAP_SHA_DMA_THRESHOLD 256 139 140 #define OMAP_SHA_MAX_DMA_LEN (1024 * 2048) 141 142 struct omap_sham_dev; 143 144 struct omap_sham_reqctx { 145 struct omap_sham_dev *dd; 146 unsigned long flags; 147 u8 op; 148 149 u8 digest[SHA512_DIGEST_SIZE] OMAP_ALIGNED; 150 size_t digcnt; 151 size_t bufcnt; 152 size_t buflen; 153 154 /* walk state */ 155 struct scatterlist *sg; 156 struct scatterlist sgl[2]; 157 int offset; /* offset in current sg */ 158 int sg_len; 159 unsigned int total; /* total request */ 160 161 u8 buffer[] OMAP_ALIGNED; 162 }; 163 164 struct omap_sham_hmac_ctx { 165 struct crypto_shash *shash; 166 u8 ipad[SHA512_BLOCK_SIZE] OMAP_ALIGNED; 167 u8 opad[SHA512_BLOCK_SIZE] OMAP_ALIGNED; 168 }; 169 170 struct omap_sham_ctx { 171 struct crypto_engine_ctx enginectx; 172 unsigned long flags; 173 174 /* fallback stuff */ 175 struct crypto_shash *fallback; 176 177 struct omap_sham_hmac_ctx base[]; 178 }; 179 180 #define OMAP_SHAM_QUEUE_LENGTH 10 181 182 struct omap_sham_algs_info { 183 struct ahash_alg *algs_list; 184 unsigned int size; 185 unsigned int registered; 186 }; 187 188 struct omap_sham_pdata { 189 struct omap_sham_algs_info *algs_info; 190 unsigned int algs_info_size; 191 unsigned long flags; 192 int digest_size; 193 194 void (*copy_hash)(struct ahash_request *req, int out); 195 void (*write_ctrl)(struct omap_sham_dev *dd, size_t length, 196 int final, int dma); 197 void (*trigger)(struct omap_sham_dev *dd, size_t length); 198 int (*poll_irq)(struct omap_sham_dev *dd); 199 irqreturn_t (*intr_hdlr)(int irq, void *dev_id); 200 201 u32 odigest_ofs; 202 u32 idigest_ofs; 203 u32 din_ofs; 204 u32 digcnt_ofs; 205 u32 rev_ofs; 206 u32 mask_ofs; 207 u32 sysstatus_ofs; 208 u32 mode_ofs; 209 u32 length_ofs; 210 211 u32 major_mask; 212 u32 major_shift; 213 u32 minor_mask; 214 u32 minor_shift; 215 }; 216 217 struct omap_sham_dev { 218 struct list_head list; 219 unsigned long phys_base; 220 struct device *dev; 221 void __iomem *io_base; 222 int irq; 223 int err; 224 struct dma_chan *dma_lch; 225 struct tasklet_struct done_task; 226 u8 polling_mode; 227 u8 xmit_buf[BUFLEN] OMAP_ALIGNED; 228 229 unsigned long flags; 230 int fallback_sz; 231 struct crypto_queue queue; 232 struct ahash_request *req; 233 struct crypto_engine *engine; 234 235 const struct omap_sham_pdata *pdata; 236 }; 237 238 struct omap_sham_drv { 239 struct list_head dev_list; 240 spinlock_t lock; 241 unsigned long flags; 242 }; 243 244 static struct omap_sham_drv sham = { 245 .dev_list = LIST_HEAD_INIT(sham.dev_list), 246 .lock = __SPIN_LOCK_UNLOCKED(sham.lock), 247 }; 248 249 static int omap_sham_enqueue(struct ahash_request *req, unsigned int op); 250 static void omap_sham_finish_req(struct ahash_request *req, int err); 251 252 static inline u32 omap_sham_read(struct omap_sham_dev *dd, u32 offset) 253 { 254 return __raw_readl(dd->io_base + offset); 255 } 256 257 static inline void omap_sham_write(struct omap_sham_dev *dd, 258 u32 offset, u32 value) 259 { 260 __raw_writel(value, dd->io_base + offset); 261 } 262 263 static inline void omap_sham_write_mask(struct omap_sham_dev *dd, u32 address, 264 u32 value, u32 mask) 265 { 266 u32 val; 267 268 val = omap_sham_read(dd, address); 269 val &= ~mask; 270 val |= value; 271 omap_sham_write(dd, address, val); 272 } 273 274 static inline int omap_sham_wait(struct omap_sham_dev *dd, u32 offset, u32 bit) 275 { 276 unsigned long timeout = jiffies + DEFAULT_TIMEOUT_INTERVAL; 277 278 while (!(omap_sham_read(dd, offset) & bit)) { 279 if (time_is_before_jiffies(timeout)) 280 return -ETIMEDOUT; 281 } 282 283 return 0; 284 } 285 286 static void omap_sham_copy_hash_omap2(struct ahash_request *req, int out) 287 { 288 struct omap_sham_reqctx *ctx = ahash_request_ctx(req); 289 struct omap_sham_dev *dd = ctx->dd; 290 u32 *hash = (u32 *)ctx->digest; 291 int i; 292 293 for (i = 0; i < dd->pdata->digest_size / sizeof(u32); i++) { 294 if (out) 295 hash[i] = omap_sham_read(dd, SHA_REG_IDIGEST(dd, i)); 296 else 297 omap_sham_write(dd, SHA_REG_IDIGEST(dd, i), hash[i]); 298 } 299 } 300 301 static void omap_sham_copy_hash_omap4(struct ahash_request *req, int out) 302 { 303 struct omap_sham_reqctx *ctx = ahash_request_ctx(req); 304 struct omap_sham_dev *dd = ctx->dd; 305 int i; 306 307 if (ctx->flags & BIT(FLAGS_HMAC)) { 308 struct crypto_ahash *tfm = crypto_ahash_reqtfm(dd->req); 309 struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm); 310 struct omap_sham_hmac_ctx *bctx = tctx->base; 311 u32 *opad = (u32 *)bctx->opad; 312 313 for (i = 0; i < dd->pdata->digest_size / sizeof(u32); i++) { 314 if (out) 315 opad[i] = omap_sham_read(dd, 316 SHA_REG_ODIGEST(dd, i)); 317 else 318 omap_sham_write(dd, SHA_REG_ODIGEST(dd, i), 319 opad[i]); 320 } 321 } 322 323 omap_sham_copy_hash_omap2(req, out); 324 } 325 326 static void omap_sham_copy_ready_hash(struct ahash_request *req) 327 { 328 struct omap_sham_reqctx *ctx = ahash_request_ctx(req); 329 u32 *in = (u32 *)ctx->digest; 330 u32 *hash = (u32 *)req->result; 331 int i, d, big_endian = 0; 332 333 if (!hash) 334 return; 335 336 switch (ctx->flags & FLAGS_MODE_MASK) { 337 case FLAGS_MODE_MD5: 338 d = MD5_DIGEST_SIZE / sizeof(u32); 339 break; 340 case FLAGS_MODE_SHA1: 341 /* OMAP2 SHA1 is big endian */ 342 if (test_bit(FLAGS_BE32_SHA1, &ctx->dd->flags)) 343 big_endian = 1; 344 d = SHA1_DIGEST_SIZE / sizeof(u32); 345 break; 346 case FLAGS_MODE_SHA224: 347 d = SHA224_DIGEST_SIZE / sizeof(u32); 348 break; 349 case FLAGS_MODE_SHA256: 350 d = SHA256_DIGEST_SIZE / sizeof(u32); 351 break; 352 case FLAGS_MODE_SHA384: 353 d = SHA384_DIGEST_SIZE / sizeof(u32); 354 break; 355 case FLAGS_MODE_SHA512: 356 d = SHA512_DIGEST_SIZE / sizeof(u32); 357 break; 358 default: 359 d = 0; 360 } 361 362 if (big_endian) 363 for (i = 0; i < d; i++) 364 hash[i] = be32_to_cpup((__be32 *)in + i); 365 else 366 for (i = 0; i < d; i++) 367 hash[i] = le32_to_cpup((__le32 *)in + i); 368 } 369 370 static void omap_sham_write_ctrl_omap2(struct omap_sham_dev *dd, size_t length, 371 int final, int dma) 372 { 373 struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req); 374 u32 val = length << 5, mask; 375 376 if (likely(ctx->digcnt)) 377 omap_sham_write(dd, SHA_REG_DIGCNT(dd), ctx->digcnt); 378 379 omap_sham_write_mask(dd, SHA_REG_MASK(dd), 380 SHA_REG_MASK_IT_EN | (dma ? SHA_REG_MASK_DMA_EN : 0), 381 SHA_REG_MASK_IT_EN | SHA_REG_MASK_DMA_EN); 382 /* 383 * Setting ALGO_CONST only for the first iteration 384 * and CLOSE_HASH only for the last one. 385 */ 386 if ((ctx->flags & FLAGS_MODE_MASK) == FLAGS_MODE_SHA1) 387 val |= SHA_REG_CTRL_ALGO; 388 if (!ctx->digcnt) 389 val |= SHA_REG_CTRL_ALGO_CONST; 390 if (final) 391 val |= SHA_REG_CTRL_CLOSE_HASH; 392 393 mask = SHA_REG_CTRL_ALGO_CONST | SHA_REG_CTRL_CLOSE_HASH | 394 SHA_REG_CTRL_ALGO | SHA_REG_CTRL_LENGTH; 395 396 omap_sham_write_mask(dd, SHA_REG_CTRL, val, mask); 397 } 398 399 static void omap_sham_trigger_omap2(struct omap_sham_dev *dd, size_t length) 400 { 401 } 402 403 static int omap_sham_poll_irq_omap2(struct omap_sham_dev *dd) 404 { 405 return omap_sham_wait(dd, SHA_REG_CTRL, SHA_REG_CTRL_INPUT_READY); 406 } 407 408 static int get_block_size(struct omap_sham_reqctx *ctx) 409 { 410 int d; 411 412 switch (ctx->flags & FLAGS_MODE_MASK) { 413 case FLAGS_MODE_MD5: 414 case FLAGS_MODE_SHA1: 415 d = SHA1_BLOCK_SIZE; 416 break; 417 case FLAGS_MODE_SHA224: 418 case FLAGS_MODE_SHA256: 419 d = SHA256_BLOCK_SIZE; 420 break; 421 case FLAGS_MODE_SHA384: 422 case FLAGS_MODE_SHA512: 423 d = SHA512_BLOCK_SIZE; 424 break; 425 default: 426 d = 0; 427 } 428 429 return d; 430 } 431 432 static void omap_sham_write_n(struct omap_sham_dev *dd, u32 offset, 433 u32 *value, int count) 434 { 435 for (; count--; value++, offset += 4) 436 omap_sham_write(dd, offset, *value); 437 } 438 439 static void omap_sham_write_ctrl_omap4(struct omap_sham_dev *dd, size_t length, 440 int final, int dma) 441 { 442 struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req); 443 u32 val, mask; 444 445 if (likely(ctx->digcnt)) 446 omap_sham_write(dd, SHA_REG_DIGCNT(dd), ctx->digcnt); 447 448 /* 449 * Setting ALGO_CONST only for the first iteration and 450 * CLOSE_HASH only for the last one. Note that flags mode bits 451 * correspond to algorithm encoding in mode register. 452 */ 453 val = (ctx->flags & FLAGS_MODE_MASK) >> (FLAGS_MODE_SHIFT); 454 if (!ctx->digcnt) { 455 struct crypto_ahash *tfm = crypto_ahash_reqtfm(dd->req); 456 struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm); 457 struct omap_sham_hmac_ctx *bctx = tctx->base; 458 int bs, nr_dr; 459 460 val |= SHA_REG_MODE_ALGO_CONSTANT; 461 462 if (ctx->flags & BIT(FLAGS_HMAC)) { 463 bs = get_block_size(ctx); 464 nr_dr = bs / (2 * sizeof(u32)); 465 val |= SHA_REG_MODE_HMAC_KEY_PROC; 466 omap_sham_write_n(dd, SHA_REG_ODIGEST(dd, 0), 467 (u32 *)bctx->ipad, nr_dr); 468 omap_sham_write_n(dd, SHA_REG_IDIGEST(dd, 0), 469 (u32 *)bctx->ipad + nr_dr, nr_dr); 470 ctx->digcnt += bs; 471 } 472 } 473 474 if (final) { 475 val |= SHA_REG_MODE_CLOSE_HASH; 476 477 if (ctx->flags & BIT(FLAGS_HMAC)) 478 val |= SHA_REG_MODE_HMAC_OUTER_HASH; 479 } 480 481 mask = SHA_REG_MODE_ALGO_CONSTANT | SHA_REG_MODE_CLOSE_HASH | 482 SHA_REG_MODE_ALGO_MASK | SHA_REG_MODE_HMAC_OUTER_HASH | 483 SHA_REG_MODE_HMAC_KEY_PROC; 484 485 dev_dbg(dd->dev, "ctrl: %08x, flags: %08lx\n", val, ctx->flags); 486 omap_sham_write_mask(dd, SHA_REG_MODE(dd), val, mask); 487 omap_sham_write(dd, SHA_REG_IRQENA, SHA_REG_IRQENA_OUTPUT_RDY); 488 omap_sham_write_mask(dd, SHA_REG_MASK(dd), 489 SHA_REG_MASK_IT_EN | 490 (dma ? SHA_REG_MASK_DMA_EN : 0), 491 SHA_REG_MASK_IT_EN | SHA_REG_MASK_DMA_EN); 492 } 493 494 static void omap_sham_trigger_omap4(struct omap_sham_dev *dd, size_t length) 495 { 496 omap_sham_write(dd, SHA_REG_LENGTH(dd), length); 497 } 498 499 static int omap_sham_poll_irq_omap4(struct omap_sham_dev *dd) 500 { 501 return omap_sham_wait(dd, SHA_REG_IRQSTATUS, 502 SHA_REG_IRQSTATUS_INPUT_RDY); 503 } 504 505 static int omap_sham_xmit_cpu(struct omap_sham_dev *dd, size_t length, 506 int final) 507 { 508 struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req); 509 int count, len32, bs32, offset = 0; 510 const u32 *buffer; 511 int mlen; 512 struct sg_mapping_iter mi; 513 514 dev_dbg(dd->dev, "xmit_cpu: digcnt: %zd, length: %zd, final: %d\n", 515 ctx->digcnt, length, final); 516 517 dd->pdata->write_ctrl(dd, length, final, 0); 518 dd->pdata->trigger(dd, length); 519 520 /* should be non-zero before next lines to disable clocks later */ 521 ctx->digcnt += length; 522 ctx->total -= length; 523 524 if (final) 525 set_bit(FLAGS_FINAL, &dd->flags); /* catch last interrupt */ 526 527 set_bit(FLAGS_CPU, &dd->flags); 528 529 len32 = DIV_ROUND_UP(length, sizeof(u32)); 530 bs32 = get_block_size(ctx) / sizeof(u32); 531 532 sg_miter_start(&mi, ctx->sg, ctx->sg_len, 533 SG_MITER_FROM_SG | SG_MITER_ATOMIC); 534 535 mlen = 0; 536 537 while (len32) { 538 if (dd->pdata->poll_irq(dd)) 539 return -ETIMEDOUT; 540 541 for (count = 0; count < min(len32, bs32); count++, offset++) { 542 if (!mlen) { 543 sg_miter_next(&mi); 544 mlen = mi.length; 545 if (!mlen) { 546 pr_err("sg miter failure.\n"); 547 return -EINVAL; 548 } 549 offset = 0; 550 buffer = mi.addr; 551 } 552 omap_sham_write(dd, SHA_REG_DIN(dd, count), 553 buffer[offset]); 554 mlen -= 4; 555 } 556 len32 -= min(len32, bs32); 557 } 558 559 sg_miter_stop(&mi); 560 561 return -EINPROGRESS; 562 } 563 564 static void omap_sham_dma_callback(void *param) 565 { 566 struct omap_sham_dev *dd = param; 567 568 set_bit(FLAGS_DMA_READY, &dd->flags); 569 tasklet_schedule(&dd->done_task); 570 } 571 572 static int omap_sham_xmit_dma(struct omap_sham_dev *dd, size_t length, 573 int final) 574 { 575 struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req); 576 struct dma_async_tx_descriptor *tx; 577 struct dma_slave_config cfg; 578 int ret; 579 580 dev_dbg(dd->dev, "xmit_dma: digcnt: %zd, length: %zd, final: %d\n", 581 ctx->digcnt, length, final); 582 583 if (!dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE)) { 584 dev_err(dd->dev, "dma_map_sg error\n"); 585 return -EINVAL; 586 } 587 588 memset(&cfg, 0, sizeof(cfg)); 589 590 cfg.dst_addr = dd->phys_base + SHA_REG_DIN(dd, 0); 591 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 592 cfg.dst_maxburst = get_block_size(ctx) / DMA_SLAVE_BUSWIDTH_4_BYTES; 593 594 ret = dmaengine_slave_config(dd->dma_lch, &cfg); 595 if (ret) { 596 pr_err("omap-sham: can't configure dmaengine slave: %d\n", ret); 597 return ret; 598 } 599 600 tx = dmaengine_prep_slave_sg(dd->dma_lch, ctx->sg, ctx->sg_len, 601 DMA_MEM_TO_DEV, 602 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 603 604 if (!tx) { 605 dev_err(dd->dev, "prep_slave_sg failed\n"); 606 return -EINVAL; 607 } 608 609 tx->callback = omap_sham_dma_callback; 610 tx->callback_param = dd; 611 612 dd->pdata->write_ctrl(dd, length, final, 1); 613 614 ctx->digcnt += length; 615 ctx->total -= length; 616 617 if (final) 618 set_bit(FLAGS_FINAL, &dd->flags); /* catch last interrupt */ 619 620 set_bit(FLAGS_DMA_ACTIVE, &dd->flags); 621 622 dmaengine_submit(tx); 623 dma_async_issue_pending(dd->dma_lch); 624 625 dd->pdata->trigger(dd, length); 626 627 return -EINPROGRESS; 628 } 629 630 static int omap_sham_copy_sg_lists(struct omap_sham_reqctx *ctx, 631 struct scatterlist *sg, int bs, int new_len) 632 { 633 int n = sg_nents(sg); 634 struct scatterlist *tmp; 635 int offset = ctx->offset; 636 637 ctx->total = new_len; 638 639 if (ctx->bufcnt) 640 n++; 641 642 ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL); 643 if (!ctx->sg) 644 return -ENOMEM; 645 646 sg_init_table(ctx->sg, n); 647 648 tmp = ctx->sg; 649 650 ctx->sg_len = 0; 651 652 if (ctx->bufcnt) { 653 sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt); 654 tmp = sg_next(tmp); 655 ctx->sg_len++; 656 new_len -= ctx->bufcnt; 657 } 658 659 while (sg && new_len) { 660 int len = sg->length - offset; 661 662 if (len <= 0) { 663 offset -= sg->length; 664 sg = sg_next(sg); 665 continue; 666 } 667 668 if (new_len < len) 669 len = new_len; 670 671 if (len > 0) { 672 new_len -= len; 673 sg_set_page(tmp, sg_page(sg), len, sg->offset + offset); 674 offset = 0; 675 ctx->offset = 0; 676 ctx->sg_len++; 677 if (new_len <= 0) 678 break; 679 tmp = sg_next(tmp); 680 } 681 682 sg = sg_next(sg); 683 } 684 685 if (tmp) 686 sg_mark_end(tmp); 687 688 set_bit(FLAGS_SGS_ALLOCED, &ctx->dd->flags); 689 690 ctx->offset += new_len - ctx->bufcnt; 691 ctx->bufcnt = 0; 692 693 return 0; 694 } 695 696 static int omap_sham_copy_sgs(struct omap_sham_reqctx *ctx, 697 struct scatterlist *sg, int bs, 698 unsigned int new_len) 699 { 700 int pages; 701 void *buf; 702 703 pages = get_order(new_len); 704 705 buf = (void *)__get_free_pages(GFP_ATOMIC, pages); 706 if (!buf) { 707 pr_err("Couldn't allocate pages for unaligned cases.\n"); 708 return -ENOMEM; 709 } 710 711 if (ctx->bufcnt) 712 memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt); 713 714 scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->offset, 715 min(new_len, ctx->total) - ctx->bufcnt, 0); 716 sg_init_table(ctx->sgl, 1); 717 sg_set_buf(ctx->sgl, buf, new_len); 718 ctx->sg = ctx->sgl; 719 set_bit(FLAGS_SGS_COPIED, &ctx->dd->flags); 720 ctx->sg_len = 1; 721 ctx->offset += new_len - ctx->bufcnt; 722 ctx->bufcnt = 0; 723 ctx->total = new_len; 724 725 return 0; 726 } 727 728 static int omap_sham_align_sgs(struct scatterlist *sg, 729 int nbytes, int bs, bool final, 730 struct omap_sham_reqctx *rctx) 731 { 732 int n = 0; 733 bool aligned = true; 734 bool list_ok = true; 735 struct scatterlist *sg_tmp = sg; 736 int new_len; 737 int offset = rctx->offset; 738 int bufcnt = rctx->bufcnt; 739 740 if (!sg || !sg->length || !nbytes) { 741 if (bufcnt) { 742 bufcnt = DIV_ROUND_UP(bufcnt, bs) * bs; 743 sg_init_table(rctx->sgl, 1); 744 sg_set_buf(rctx->sgl, rctx->dd->xmit_buf, bufcnt); 745 rctx->sg = rctx->sgl; 746 rctx->sg_len = 1; 747 } 748 749 return 0; 750 } 751 752 new_len = nbytes; 753 754 if (offset) 755 list_ok = false; 756 757 if (final) 758 new_len = DIV_ROUND_UP(new_len, bs) * bs; 759 else 760 new_len = (new_len - 1) / bs * bs; 761 762 if (!new_len) 763 return 0; 764 765 if (nbytes != new_len) 766 list_ok = false; 767 768 while (nbytes > 0 && sg_tmp) { 769 n++; 770 771 if (bufcnt) { 772 if (!IS_ALIGNED(bufcnt, bs)) { 773 aligned = false; 774 break; 775 } 776 nbytes -= bufcnt; 777 bufcnt = 0; 778 if (!nbytes) 779 list_ok = false; 780 781 continue; 782 } 783 784 #ifdef CONFIG_ZONE_DMA 785 if (page_zonenum(sg_page(sg_tmp)) != ZONE_DMA) { 786 aligned = false; 787 break; 788 } 789 #endif 790 791 if (offset < sg_tmp->length) { 792 if (!IS_ALIGNED(offset + sg_tmp->offset, 4)) { 793 aligned = false; 794 break; 795 } 796 797 if (!IS_ALIGNED(sg_tmp->length - offset, bs)) { 798 aligned = false; 799 break; 800 } 801 } 802 803 if (offset) { 804 offset -= sg_tmp->length; 805 if (offset < 0) { 806 nbytes += offset; 807 offset = 0; 808 } 809 } else { 810 nbytes -= sg_tmp->length; 811 } 812 813 sg_tmp = sg_next(sg_tmp); 814 815 if (nbytes < 0) { 816 list_ok = false; 817 break; 818 } 819 } 820 821 if (new_len > OMAP_SHA_MAX_DMA_LEN) { 822 new_len = OMAP_SHA_MAX_DMA_LEN; 823 aligned = false; 824 } 825 826 if (!aligned) 827 return omap_sham_copy_sgs(rctx, sg, bs, new_len); 828 else if (!list_ok) 829 return omap_sham_copy_sg_lists(rctx, sg, bs, new_len); 830 831 rctx->total = new_len; 832 rctx->offset += new_len; 833 rctx->sg_len = n; 834 if (rctx->bufcnt) { 835 sg_init_table(rctx->sgl, 2); 836 sg_set_buf(rctx->sgl, rctx->dd->xmit_buf, rctx->bufcnt); 837 sg_chain(rctx->sgl, 2, sg); 838 rctx->sg = rctx->sgl; 839 } else { 840 rctx->sg = sg; 841 } 842 843 return 0; 844 } 845 846 static int omap_sham_prepare_request(struct crypto_engine *engine, void *areq) 847 { 848 struct ahash_request *req = container_of(areq, struct ahash_request, 849 base); 850 struct omap_sham_reqctx *rctx = ahash_request_ctx(req); 851 int bs; 852 int ret; 853 unsigned int nbytes; 854 bool final = rctx->flags & BIT(FLAGS_FINUP); 855 bool update = rctx->op == OP_UPDATE; 856 int hash_later; 857 858 bs = get_block_size(rctx); 859 860 nbytes = rctx->bufcnt; 861 862 if (update) 863 nbytes += req->nbytes - rctx->offset; 864 865 dev_dbg(rctx->dd->dev, 866 "%s: nbytes=%d, bs=%d, total=%d, offset=%d, bufcnt=%zd\n", 867 __func__, nbytes, bs, rctx->total, rctx->offset, 868 rctx->bufcnt); 869 870 if (!nbytes) 871 return 0; 872 873 rctx->total = nbytes; 874 875 if (update && req->nbytes && (!IS_ALIGNED(rctx->bufcnt, bs))) { 876 int len = bs - rctx->bufcnt % bs; 877 878 if (len > req->nbytes) 879 len = req->nbytes; 880 scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, req->src, 881 0, len, 0); 882 rctx->bufcnt += len; 883 rctx->offset = len; 884 } 885 886 if (rctx->bufcnt) 887 memcpy(rctx->dd->xmit_buf, rctx->buffer, rctx->bufcnt); 888 889 ret = omap_sham_align_sgs(req->src, nbytes, bs, final, rctx); 890 if (ret) 891 return ret; 892 893 hash_later = nbytes - rctx->total; 894 if (hash_later < 0) 895 hash_later = 0; 896 897 if (hash_later && hash_later <= rctx->buflen) { 898 scatterwalk_map_and_copy(rctx->buffer, 899 req->src, 900 req->nbytes - hash_later, 901 hash_later, 0); 902 903 rctx->bufcnt = hash_later; 904 } else { 905 rctx->bufcnt = 0; 906 } 907 908 if (hash_later > rctx->buflen) 909 set_bit(FLAGS_HUGE, &rctx->dd->flags); 910 911 rctx->total = min(nbytes, rctx->total); 912 913 return 0; 914 } 915 916 static int omap_sham_update_dma_stop(struct omap_sham_dev *dd) 917 { 918 struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req); 919 920 dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE); 921 922 clear_bit(FLAGS_DMA_ACTIVE, &dd->flags); 923 924 return 0; 925 } 926 927 static struct omap_sham_dev *omap_sham_find_dev(struct omap_sham_reqctx *ctx) 928 { 929 struct omap_sham_dev *dd; 930 931 if (ctx->dd) 932 return ctx->dd; 933 934 spin_lock_bh(&sham.lock); 935 dd = list_first_entry(&sham.dev_list, struct omap_sham_dev, list); 936 list_move_tail(&dd->list, &sham.dev_list); 937 ctx->dd = dd; 938 spin_unlock_bh(&sham.lock); 939 940 return dd; 941 } 942 943 static int omap_sham_init(struct ahash_request *req) 944 { 945 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 946 struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm); 947 struct omap_sham_reqctx *ctx = ahash_request_ctx(req); 948 struct omap_sham_dev *dd; 949 int bs = 0; 950 951 ctx->dd = NULL; 952 953 dd = omap_sham_find_dev(ctx); 954 if (!dd) 955 return -ENODEV; 956 957 ctx->flags = 0; 958 959 dev_dbg(dd->dev, "init: digest size: %d\n", 960 crypto_ahash_digestsize(tfm)); 961 962 switch (crypto_ahash_digestsize(tfm)) { 963 case MD5_DIGEST_SIZE: 964 ctx->flags |= FLAGS_MODE_MD5; 965 bs = SHA1_BLOCK_SIZE; 966 break; 967 case SHA1_DIGEST_SIZE: 968 ctx->flags |= FLAGS_MODE_SHA1; 969 bs = SHA1_BLOCK_SIZE; 970 break; 971 case SHA224_DIGEST_SIZE: 972 ctx->flags |= FLAGS_MODE_SHA224; 973 bs = SHA224_BLOCK_SIZE; 974 break; 975 case SHA256_DIGEST_SIZE: 976 ctx->flags |= FLAGS_MODE_SHA256; 977 bs = SHA256_BLOCK_SIZE; 978 break; 979 case SHA384_DIGEST_SIZE: 980 ctx->flags |= FLAGS_MODE_SHA384; 981 bs = SHA384_BLOCK_SIZE; 982 break; 983 case SHA512_DIGEST_SIZE: 984 ctx->flags |= FLAGS_MODE_SHA512; 985 bs = SHA512_BLOCK_SIZE; 986 break; 987 } 988 989 ctx->bufcnt = 0; 990 ctx->digcnt = 0; 991 ctx->total = 0; 992 ctx->offset = 0; 993 ctx->buflen = BUFLEN; 994 995 if (tctx->flags & BIT(FLAGS_HMAC)) { 996 if (!test_bit(FLAGS_AUTO_XOR, &dd->flags)) { 997 struct omap_sham_hmac_ctx *bctx = tctx->base; 998 999 memcpy(ctx->buffer, bctx->ipad, bs); 1000 ctx->bufcnt = bs; 1001 } 1002 1003 ctx->flags |= BIT(FLAGS_HMAC); 1004 } 1005 1006 return 0; 1007 1008 } 1009 1010 static int omap_sham_update_req(struct omap_sham_dev *dd) 1011 { 1012 struct ahash_request *req = dd->req; 1013 struct omap_sham_reqctx *ctx = ahash_request_ctx(req); 1014 int err; 1015 bool final = (ctx->flags & BIT(FLAGS_FINUP)) && 1016 !(dd->flags & BIT(FLAGS_HUGE)); 1017 1018 dev_dbg(dd->dev, "update_req: total: %u, digcnt: %zd, final: %d", 1019 ctx->total, ctx->digcnt, final); 1020 1021 if (ctx->total < get_block_size(ctx) || 1022 ctx->total < dd->fallback_sz) 1023 ctx->flags |= BIT(FLAGS_CPU); 1024 1025 if (ctx->flags & BIT(FLAGS_CPU)) 1026 err = omap_sham_xmit_cpu(dd, ctx->total, final); 1027 else 1028 err = omap_sham_xmit_dma(dd, ctx->total, final); 1029 1030 /* wait for dma completion before can take more data */ 1031 dev_dbg(dd->dev, "update: err: %d, digcnt: %zd\n", err, ctx->digcnt); 1032 1033 return err; 1034 } 1035 1036 static int omap_sham_final_req(struct omap_sham_dev *dd) 1037 { 1038 struct ahash_request *req = dd->req; 1039 struct omap_sham_reqctx *ctx = ahash_request_ctx(req); 1040 int err = 0, use_dma = 1; 1041 1042 if (dd->flags & BIT(FLAGS_HUGE)) 1043 return 0; 1044 1045 if ((ctx->total <= get_block_size(ctx)) || dd->polling_mode) 1046 /* 1047 * faster to handle last block with cpu or 1048 * use cpu when dma is not present. 1049 */ 1050 use_dma = 0; 1051 1052 if (use_dma) 1053 err = omap_sham_xmit_dma(dd, ctx->total, 1); 1054 else 1055 err = omap_sham_xmit_cpu(dd, ctx->total, 1); 1056 1057 ctx->bufcnt = 0; 1058 1059 dev_dbg(dd->dev, "final_req: err: %d\n", err); 1060 1061 return err; 1062 } 1063 1064 static int omap_sham_hash_one_req(struct crypto_engine *engine, void *areq) 1065 { 1066 struct ahash_request *req = container_of(areq, struct ahash_request, 1067 base); 1068 struct omap_sham_reqctx *ctx = ahash_request_ctx(req); 1069 struct omap_sham_dev *dd = ctx->dd; 1070 int err; 1071 bool final = (ctx->flags & BIT(FLAGS_FINUP)) && 1072 !(dd->flags & BIT(FLAGS_HUGE)); 1073 1074 dev_dbg(dd->dev, "hash-one: op: %u, total: %u, digcnt: %zd, final: %d", 1075 ctx->op, ctx->total, ctx->digcnt, final); 1076 1077 err = omap_sham_prepare_request(engine, areq); 1078 if (err) 1079 return err; 1080 1081 err = pm_runtime_resume_and_get(dd->dev); 1082 if (err < 0) { 1083 dev_err(dd->dev, "failed to get sync: %d\n", err); 1084 return err; 1085 } 1086 1087 dd->err = 0; 1088 dd->req = req; 1089 1090 if (ctx->digcnt) 1091 dd->pdata->copy_hash(req, 0); 1092 1093 if (ctx->op == OP_UPDATE) 1094 err = omap_sham_update_req(dd); 1095 else if (ctx->op == OP_FINAL) 1096 err = omap_sham_final_req(dd); 1097 1098 if (err != -EINPROGRESS) 1099 omap_sham_finish_req(req, err); 1100 1101 return 0; 1102 } 1103 1104 static int omap_sham_finish_hmac(struct ahash_request *req) 1105 { 1106 struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm); 1107 struct omap_sham_hmac_ctx *bctx = tctx->base; 1108 int bs = crypto_shash_blocksize(bctx->shash); 1109 int ds = crypto_shash_digestsize(bctx->shash); 1110 SHASH_DESC_ON_STACK(shash, bctx->shash); 1111 1112 shash->tfm = bctx->shash; 1113 1114 return crypto_shash_init(shash) ?: 1115 crypto_shash_update(shash, bctx->opad, bs) ?: 1116 crypto_shash_finup(shash, req->result, ds, req->result); 1117 } 1118 1119 static int omap_sham_finish(struct ahash_request *req) 1120 { 1121 struct omap_sham_reqctx *ctx = ahash_request_ctx(req); 1122 struct omap_sham_dev *dd = ctx->dd; 1123 int err = 0; 1124 1125 if (ctx->digcnt) { 1126 omap_sham_copy_ready_hash(req); 1127 if ((ctx->flags & BIT(FLAGS_HMAC)) && 1128 !test_bit(FLAGS_AUTO_XOR, &dd->flags)) 1129 err = omap_sham_finish_hmac(req); 1130 } 1131 1132 dev_dbg(dd->dev, "digcnt: %zd, bufcnt: %zd\n", ctx->digcnt, ctx->bufcnt); 1133 1134 return err; 1135 } 1136 1137 static void omap_sham_finish_req(struct ahash_request *req, int err) 1138 { 1139 struct omap_sham_reqctx *ctx = ahash_request_ctx(req); 1140 struct omap_sham_dev *dd = ctx->dd; 1141 1142 if (test_bit(FLAGS_SGS_COPIED, &dd->flags)) 1143 free_pages((unsigned long)sg_virt(ctx->sg), 1144 get_order(ctx->sg->length)); 1145 1146 if (test_bit(FLAGS_SGS_ALLOCED, &dd->flags)) 1147 kfree(ctx->sg); 1148 1149 ctx->sg = NULL; 1150 1151 dd->flags &= ~(BIT(FLAGS_SGS_ALLOCED) | BIT(FLAGS_SGS_COPIED) | 1152 BIT(FLAGS_CPU) | BIT(FLAGS_DMA_READY) | 1153 BIT(FLAGS_OUTPUT_READY)); 1154 1155 if (!err) 1156 dd->pdata->copy_hash(req, 1); 1157 1158 if (dd->flags & BIT(FLAGS_HUGE)) { 1159 /* Re-enqueue the request */ 1160 omap_sham_enqueue(req, ctx->op); 1161 return; 1162 } 1163 1164 if (!err) { 1165 if (test_bit(FLAGS_FINAL, &dd->flags)) 1166 err = omap_sham_finish(req); 1167 } else { 1168 ctx->flags |= BIT(FLAGS_ERROR); 1169 } 1170 1171 /* atomic operation is not needed here */ 1172 dd->flags &= ~(BIT(FLAGS_FINAL) | BIT(FLAGS_CPU) | 1173 BIT(FLAGS_DMA_READY) | BIT(FLAGS_OUTPUT_READY)); 1174 1175 pm_runtime_mark_last_busy(dd->dev); 1176 pm_runtime_put_autosuspend(dd->dev); 1177 1178 ctx->offset = 0; 1179 1180 crypto_finalize_hash_request(dd->engine, req, err); 1181 } 1182 1183 static int omap_sham_handle_queue(struct omap_sham_dev *dd, 1184 struct ahash_request *req) 1185 { 1186 return crypto_transfer_hash_request_to_engine(dd->engine, req); 1187 } 1188 1189 static int omap_sham_enqueue(struct ahash_request *req, unsigned int op) 1190 { 1191 struct omap_sham_reqctx *ctx = ahash_request_ctx(req); 1192 struct omap_sham_dev *dd = ctx->dd; 1193 1194 ctx->op = op; 1195 1196 return omap_sham_handle_queue(dd, req); 1197 } 1198 1199 static int omap_sham_update(struct ahash_request *req) 1200 { 1201 struct omap_sham_reqctx *ctx = ahash_request_ctx(req); 1202 struct omap_sham_dev *dd = omap_sham_find_dev(ctx); 1203 1204 if (!req->nbytes) 1205 return 0; 1206 1207 if (ctx->bufcnt + req->nbytes <= ctx->buflen) { 1208 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src, 1209 0, req->nbytes, 0); 1210 ctx->bufcnt += req->nbytes; 1211 return 0; 1212 } 1213 1214 if (dd->polling_mode) 1215 ctx->flags |= BIT(FLAGS_CPU); 1216 1217 return omap_sham_enqueue(req, OP_UPDATE); 1218 } 1219 1220 static int omap_sham_final_shash(struct ahash_request *req) 1221 { 1222 struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm); 1223 struct omap_sham_reqctx *ctx = ahash_request_ctx(req); 1224 int offset = 0; 1225 1226 /* 1227 * If we are running HMAC on limited hardware support, skip 1228 * the ipad in the beginning of the buffer if we are going for 1229 * software fallback algorithm. 1230 */ 1231 if (test_bit(FLAGS_HMAC, &ctx->flags) && 1232 !test_bit(FLAGS_AUTO_XOR, &ctx->dd->flags)) 1233 offset = get_block_size(ctx); 1234 1235 return crypto_shash_tfm_digest(tctx->fallback, ctx->buffer + offset, 1236 ctx->bufcnt - offset, req->result); 1237 } 1238 1239 static int omap_sham_final(struct ahash_request *req) 1240 { 1241 struct omap_sham_reqctx *ctx = ahash_request_ctx(req); 1242 1243 ctx->flags |= BIT(FLAGS_FINUP); 1244 1245 if (ctx->flags & BIT(FLAGS_ERROR)) 1246 return 0; /* uncompleted hash is not needed */ 1247 1248 /* 1249 * OMAP HW accel works only with buffers >= 9. 1250 * HMAC is always >= 9 because ipad == block size. 1251 * If buffersize is less than fallback_sz, we use fallback 1252 * SW encoding, as using DMA + HW in this case doesn't provide 1253 * any benefit. 1254 */ 1255 if (!ctx->digcnt && ctx->bufcnt < ctx->dd->fallback_sz) 1256 return omap_sham_final_shash(req); 1257 else if (ctx->bufcnt) 1258 return omap_sham_enqueue(req, OP_FINAL); 1259 1260 /* copy ready hash (+ finalize hmac) */ 1261 return omap_sham_finish(req); 1262 } 1263 1264 static int omap_sham_finup(struct ahash_request *req) 1265 { 1266 struct omap_sham_reqctx *ctx = ahash_request_ctx(req); 1267 int err1, err2; 1268 1269 ctx->flags |= BIT(FLAGS_FINUP); 1270 1271 err1 = omap_sham_update(req); 1272 if (err1 == -EINPROGRESS || err1 == -EBUSY) 1273 return err1; 1274 /* 1275 * final() has to be always called to cleanup resources 1276 * even if udpate() failed, except EINPROGRESS 1277 */ 1278 err2 = omap_sham_final(req); 1279 1280 return err1 ?: err2; 1281 } 1282 1283 static int omap_sham_digest(struct ahash_request *req) 1284 { 1285 return omap_sham_init(req) ?: omap_sham_finup(req); 1286 } 1287 1288 static int omap_sham_setkey(struct crypto_ahash *tfm, const u8 *key, 1289 unsigned int keylen) 1290 { 1291 struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm); 1292 struct omap_sham_hmac_ctx *bctx = tctx->base; 1293 int bs = crypto_shash_blocksize(bctx->shash); 1294 int ds = crypto_shash_digestsize(bctx->shash); 1295 int err, i; 1296 1297 err = crypto_shash_setkey(tctx->fallback, key, keylen); 1298 if (err) 1299 return err; 1300 1301 if (keylen > bs) { 1302 err = crypto_shash_tfm_digest(bctx->shash, key, keylen, 1303 bctx->ipad); 1304 if (err) 1305 return err; 1306 keylen = ds; 1307 } else { 1308 memcpy(bctx->ipad, key, keylen); 1309 } 1310 1311 memset(bctx->ipad + keylen, 0, bs - keylen); 1312 1313 if (!test_bit(FLAGS_AUTO_XOR, &sham.flags)) { 1314 memcpy(bctx->opad, bctx->ipad, bs); 1315 1316 for (i = 0; i < bs; i++) { 1317 bctx->ipad[i] ^= HMAC_IPAD_VALUE; 1318 bctx->opad[i] ^= HMAC_OPAD_VALUE; 1319 } 1320 } 1321 1322 return err; 1323 } 1324 1325 static int omap_sham_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base) 1326 { 1327 struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm); 1328 const char *alg_name = crypto_tfm_alg_name(tfm); 1329 1330 /* Allocate a fallback and abort if it failed. */ 1331 tctx->fallback = crypto_alloc_shash(alg_name, 0, 1332 CRYPTO_ALG_NEED_FALLBACK); 1333 if (IS_ERR(tctx->fallback)) { 1334 pr_err("omap-sham: fallback driver '%s' " 1335 "could not be loaded.\n", alg_name); 1336 return PTR_ERR(tctx->fallback); 1337 } 1338 1339 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), 1340 sizeof(struct omap_sham_reqctx) + BUFLEN); 1341 1342 if (alg_base) { 1343 struct omap_sham_hmac_ctx *bctx = tctx->base; 1344 tctx->flags |= BIT(FLAGS_HMAC); 1345 bctx->shash = crypto_alloc_shash(alg_base, 0, 1346 CRYPTO_ALG_NEED_FALLBACK); 1347 if (IS_ERR(bctx->shash)) { 1348 pr_err("omap-sham: base driver '%s' " 1349 "could not be loaded.\n", alg_base); 1350 crypto_free_shash(tctx->fallback); 1351 return PTR_ERR(bctx->shash); 1352 } 1353 1354 } 1355 1356 tctx->enginectx.op.do_one_request = omap_sham_hash_one_req; 1357 1358 return 0; 1359 } 1360 1361 static int omap_sham_cra_init(struct crypto_tfm *tfm) 1362 { 1363 return omap_sham_cra_init_alg(tfm, NULL); 1364 } 1365 1366 static int omap_sham_cra_sha1_init(struct crypto_tfm *tfm) 1367 { 1368 return omap_sham_cra_init_alg(tfm, "sha1"); 1369 } 1370 1371 static int omap_sham_cra_sha224_init(struct crypto_tfm *tfm) 1372 { 1373 return omap_sham_cra_init_alg(tfm, "sha224"); 1374 } 1375 1376 static int omap_sham_cra_sha256_init(struct crypto_tfm *tfm) 1377 { 1378 return omap_sham_cra_init_alg(tfm, "sha256"); 1379 } 1380 1381 static int omap_sham_cra_md5_init(struct crypto_tfm *tfm) 1382 { 1383 return omap_sham_cra_init_alg(tfm, "md5"); 1384 } 1385 1386 static int omap_sham_cra_sha384_init(struct crypto_tfm *tfm) 1387 { 1388 return omap_sham_cra_init_alg(tfm, "sha384"); 1389 } 1390 1391 static int omap_sham_cra_sha512_init(struct crypto_tfm *tfm) 1392 { 1393 return omap_sham_cra_init_alg(tfm, "sha512"); 1394 } 1395 1396 static void omap_sham_cra_exit(struct crypto_tfm *tfm) 1397 { 1398 struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm); 1399 1400 crypto_free_shash(tctx->fallback); 1401 tctx->fallback = NULL; 1402 1403 if (tctx->flags & BIT(FLAGS_HMAC)) { 1404 struct omap_sham_hmac_ctx *bctx = tctx->base; 1405 crypto_free_shash(bctx->shash); 1406 } 1407 } 1408 1409 static int omap_sham_export(struct ahash_request *req, void *out) 1410 { 1411 struct omap_sham_reqctx *rctx = ahash_request_ctx(req); 1412 1413 memcpy(out, rctx, sizeof(*rctx) + rctx->bufcnt); 1414 1415 return 0; 1416 } 1417 1418 static int omap_sham_import(struct ahash_request *req, const void *in) 1419 { 1420 struct omap_sham_reqctx *rctx = ahash_request_ctx(req); 1421 const struct omap_sham_reqctx *ctx_in = in; 1422 1423 memcpy(rctx, in, sizeof(*rctx) + ctx_in->bufcnt); 1424 1425 return 0; 1426 } 1427 1428 static struct ahash_alg algs_sha1_md5[] = { 1429 { 1430 .init = omap_sham_init, 1431 .update = omap_sham_update, 1432 .final = omap_sham_final, 1433 .finup = omap_sham_finup, 1434 .digest = omap_sham_digest, 1435 .halg.digestsize = SHA1_DIGEST_SIZE, 1436 .halg.base = { 1437 .cra_name = "sha1", 1438 .cra_driver_name = "omap-sha1", 1439 .cra_priority = 400, 1440 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1441 CRYPTO_ALG_ASYNC | 1442 CRYPTO_ALG_NEED_FALLBACK, 1443 .cra_blocksize = SHA1_BLOCK_SIZE, 1444 .cra_ctxsize = sizeof(struct omap_sham_ctx), 1445 .cra_alignmask = OMAP_ALIGN_MASK, 1446 .cra_module = THIS_MODULE, 1447 .cra_init = omap_sham_cra_init, 1448 .cra_exit = omap_sham_cra_exit, 1449 } 1450 }, 1451 { 1452 .init = omap_sham_init, 1453 .update = omap_sham_update, 1454 .final = omap_sham_final, 1455 .finup = omap_sham_finup, 1456 .digest = omap_sham_digest, 1457 .halg.digestsize = MD5_DIGEST_SIZE, 1458 .halg.base = { 1459 .cra_name = "md5", 1460 .cra_driver_name = "omap-md5", 1461 .cra_priority = 400, 1462 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1463 CRYPTO_ALG_ASYNC | 1464 CRYPTO_ALG_NEED_FALLBACK, 1465 .cra_blocksize = SHA1_BLOCK_SIZE, 1466 .cra_ctxsize = sizeof(struct omap_sham_ctx), 1467 .cra_alignmask = OMAP_ALIGN_MASK, 1468 .cra_module = THIS_MODULE, 1469 .cra_init = omap_sham_cra_init, 1470 .cra_exit = omap_sham_cra_exit, 1471 } 1472 }, 1473 { 1474 .init = omap_sham_init, 1475 .update = omap_sham_update, 1476 .final = omap_sham_final, 1477 .finup = omap_sham_finup, 1478 .digest = omap_sham_digest, 1479 .setkey = omap_sham_setkey, 1480 .halg.digestsize = SHA1_DIGEST_SIZE, 1481 .halg.base = { 1482 .cra_name = "hmac(sha1)", 1483 .cra_driver_name = "omap-hmac-sha1", 1484 .cra_priority = 400, 1485 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1486 CRYPTO_ALG_ASYNC | 1487 CRYPTO_ALG_NEED_FALLBACK, 1488 .cra_blocksize = SHA1_BLOCK_SIZE, 1489 .cra_ctxsize = sizeof(struct omap_sham_ctx) + 1490 sizeof(struct omap_sham_hmac_ctx), 1491 .cra_alignmask = OMAP_ALIGN_MASK, 1492 .cra_module = THIS_MODULE, 1493 .cra_init = omap_sham_cra_sha1_init, 1494 .cra_exit = omap_sham_cra_exit, 1495 } 1496 }, 1497 { 1498 .init = omap_sham_init, 1499 .update = omap_sham_update, 1500 .final = omap_sham_final, 1501 .finup = omap_sham_finup, 1502 .digest = omap_sham_digest, 1503 .setkey = omap_sham_setkey, 1504 .halg.digestsize = MD5_DIGEST_SIZE, 1505 .halg.base = { 1506 .cra_name = "hmac(md5)", 1507 .cra_driver_name = "omap-hmac-md5", 1508 .cra_priority = 400, 1509 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1510 CRYPTO_ALG_ASYNC | 1511 CRYPTO_ALG_NEED_FALLBACK, 1512 .cra_blocksize = SHA1_BLOCK_SIZE, 1513 .cra_ctxsize = sizeof(struct omap_sham_ctx) + 1514 sizeof(struct omap_sham_hmac_ctx), 1515 .cra_alignmask = OMAP_ALIGN_MASK, 1516 .cra_module = THIS_MODULE, 1517 .cra_init = omap_sham_cra_md5_init, 1518 .cra_exit = omap_sham_cra_exit, 1519 } 1520 } 1521 }; 1522 1523 /* OMAP4 has some algs in addition to what OMAP2 has */ 1524 static struct ahash_alg algs_sha224_sha256[] = { 1525 { 1526 .init = omap_sham_init, 1527 .update = omap_sham_update, 1528 .final = omap_sham_final, 1529 .finup = omap_sham_finup, 1530 .digest = omap_sham_digest, 1531 .halg.digestsize = SHA224_DIGEST_SIZE, 1532 .halg.base = { 1533 .cra_name = "sha224", 1534 .cra_driver_name = "omap-sha224", 1535 .cra_priority = 400, 1536 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1537 CRYPTO_ALG_ASYNC | 1538 CRYPTO_ALG_NEED_FALLBACK, 1539 .cra_blocksize = SHA224_BLOCK_SIZE, 1540 .cra_ctxsize = sizeof(struct omap_sham_ctx), 1541 .cra_alignmask = OMAP_ALIGN_MASK, 1542 .cra_module = THIS_MODULE, 1543 .cra_init = omap_sham_cra_init, 1544 .cra_exit = omap_sham_cra_exit, 1545 } 1546 }, 1547 { 1548 .init = omap_sham_init, 1549 .update = omap_sham_update, 1550 .final = omap_sham_final, 1551 .finup = omap_sham_finup, 1552 .digest = omap_sham_digest, 1553 .halg.digestsize = SHA256_DIGEST_SIZE, 1554 .halg.base = { 1555 .cra_name = "sha256", 1556 .cra_driver_name = "omap-sha256", 1557 .cra_priority = 400, 1558 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1559 CRYPTO_ALG_ASYNC | 1560 CRYPTO_ALG_NEED_FALLBACK, 1561 .cra_blocksize = SHA256_BLOCK_SIZE, 1562 .cra_ctxsize = sizeof(struct omap_sham_ctx), 1563 .cra_alignmask = OMAP_ALIGN_MASK, 1564 .cra_module = THIS_MODULE, 1565 .cra_init = omap_sham_cra_init, 1566 .cra_exit = omap_sham_cra_exit, 1567 } 1568 }, 1569 { 1570 .init = omap_sham_init, 1571 .update = omap_sham_update, 1572 .final = omap_sham_final, 1573 .finup = omap_sham_finup, 1574 .digest = omap_sham_digest, 1575 .setkey = omap_sham_setkey, 1576 .halg.digestsize = SHA224_DIGEST_SIZE, 1577 .halg.base = { 1578 .cra_name = "hmac(sha224)", 1579 .cra_driver_name = "omap-hmac-sha224", 1580 .cra_priority = 400, 1581 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1582 CRYPTO_ALG_ASYNC | 1583 CRYPTO_ALG_NEED_FALLBACK, 1584 .cra_blocksize = SHA224_BLOCK_SIZE, 1585 .cra_ctxsize = sizeof(struct omap_sham_ctx) + 1586 sizeof(struct omap_sham_hmac_ctx), 1587 .cra_alignmask = OMAP_ALIGN_MASK, 1588 .cra_module = THIS_MODULE, 1589 .cra_init = omap_sham_cra_sha224_init, 1590 .cra_exit = omap_sham_cra_exit, 1591 } 1592 }, 1593 { 1594 .init = omap_sham_init, 1595 .update = omap_sham_update, 1596 .final = omap_sham_final, 1597 .finup = omap_sham_finup, 1598 .digest = omap_sham_digest, 1599 .setkey = omap_sham_setkey, 1600 .halg.digestsize = SHA256_DIGEST_SIZE, 1601 .halg.base = { 1602 .cra_name = "hmac(sha256)", 1603 .cra_driver_name = "omap-hmac-sha256", 1604 .cra_priority = 400, 1605 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1606 CRYPTO_ALG_ASYNC | 1607 CRYPTO_ALG_NEED_FALLBACK, 1608 .cra_blocksize = SHA256_BLOCK_SIZE, 1609 .cra_ctxsize = sizeof(struct omap_sham_ctx) + 1610 sizeof(struct omap_sham_hmac_ctx), 1611 .cra_alignmask = OMAP_ALIGN_MASK, 1612 .cra_module = THIS_MODULE, 1613 .cra_init = omap_sham_cra_sha256_init, 1614 .cra_exit = omap_sham_cra_exit, 1615 } 1616 }, 1617 }; 1618 1619 static struct ahash_alg algs_sha384_sha512[] = { 1620 { 1621 .init = omap_sham_init, 1622 .update = omap_sham_update, 1623 .final = omap_sham_final, 1624 .finup = omap_sham_finup, 1625 .digest = omap_sham_digest, 1626 .halg.digestsize = SHA384_DIGEST_SIZE, 1627 .halg.base = { 1628 .cra_name = "sha384", 1629 .cra_driver_name = "omap-sha384", 1630 .cra_priority = 400, 1631 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1632 CRYPTO_ALG_ASYNC | 1633 CRYPTO_ALG_NEED_FALLBACK, 1634 .cra_blocksize = SHA384_BLOCK_SIZE, 1635 .cra_ctxsize = sizeof(struct omap_sham_ctx), 1636 .cra_alignmask = OMAP_ALIGN_MASK, 1637 .cra_module = THIS_MODULE, 1638 .cra_init = omap_sham_cra_init, 1639 .cra_exit = omap_sham_cra_exit, 1640 } 1641 }, 1642 { 1643 .init = omap_sham_init, 1644 .update = omap_sham_update, 1645 .final = omap_sham_final, 1646 .finup = omap_sham_finup, 1647 .digest = omap_sham_digest, 1648 .halg.digestsize = SHA512_DIGEST_SIZE, 1649 .halg.base = { 1650 .cra_name = "sha512", 1651 .cra_driver_name = "omap-sha512", 1652 .cra_priority = 400, 1653 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1654 CRYPTO_ALG_ASYNC | 1655 CRYPTO_ALG_NEED_FALLBACK, 1656 .cra_blocksize = SHA512_BLOCK_SIZE, 1657 .cra_ctxsize = sizeof(struct omap_sham_ctx), 1658 .cra_alignmask = OMAP_ALIGN_MASK, 1659 .cra_module = THIS_MODULE, 1660 .cra_init = omap_sham_cra_init, 1661 .cra_exit = omap_sham_cra_exit, 1662 } 1663 }, 1664 { 1665 .init = omap_sham_init, 1666 .update = omap_sham_update, 1667 .final = omap_sham_final, 1668 .finup = omap_sham_finup, 1669 .digest = omap_sham_digest, 1670 .setkey = omap_sham_setkey, 1671 .halg.digestsize = SHA384_DIGEST_SIZE, 1672 .halg.base = { 1673 .cra_name = "hmac(sha384)", 1674 .cra_driver_name = "omap-hmac-sha384", 1675 .cra_priority = 400, 1676 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1677 CRYPTO_ALG_ASYNC | 1678 CRYPTO_ALG_NEED_FALLBACK, 1679 .cra_blocksize = SHA384_BLOCK_SIZE, 1680 .cra_ctxsize = sizeof(struct omap_sham_ctx) + 1681 sizeof(struct omap_sham_hmac_ctx), 1682 .cra_alignmask = OMAP_ALIGN_MASK, 1683 .cra_module = THIS_MODULE, 1684 .cra_init = omap_sham_cra_sha384_init, 1685 .cra_exit = omap_sham_cra_exit, 1686 } 1687 }, 1688 { 1689 .init = omap_sham_init, 1690 .update = omap_sham_update, 1691 .final = omap_sham_final, 1692 .finup = omap_sham_finup, 1693 .digest = omap_sham_digest, 1694 .setkey = omap_sham_setkey, 1695 .halg.digestsize = SHA512_DIGEST_SIZE, 1696 .halg.base = { 1697 .cra_name = "hmac(sha512)", 1698 .cra_driver_name = "omap-hmac-sha512", 1699 .cra_priority = 400, 1700 .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | 1701 CRYPTO_ALG_ASYNC | 1702 CRYPTO_ALG_NEED_FALLBACK, 1703 .cra_blocksize = SHA512_BLOCK_SIZE, 1704 .cra_ctxsize = sizeof(struct omap_sham_ctx) + 1705 sizeof(struct omap_sham_hmac_ctx), 1706 .cra_alignmask = OMAP_ALIGN_MASK, 1707 .cra_module = THIS_MODULE, 1708 .cra_init = omap_sham_cra_sha512_init, 1709 .cra_exit = omap_sham_cra_exit, 1710 } 1711 }, 1712 }; 1713 1714 static void omap_sham_done_task(unsigned long data) 1715 { 1716 struct omap_sham_dev *dd = (struct omap_sham_dev *)data; 1717 int err = 0; 1718 1719 dev_dbg(dd->dev, "%s: flags=%lx\n", __func__, dd->flags); 1720 1721 if (test_bit(FLAGS_CPU, &dd->flags)) { 1722 if (test_and_clear_bit(FLAGS_OUTPUT_READY, &dd->flags)) 1723 goto finish; 1724 } else if (test_bit(FLAGS_DMA_READY, &dd->flags)) { 1725 if (test_bit(FLAGS_DMA_ACTIVE, &dd->flags)) { 1726 omap_sham_update_dma_stop(dd); 1727 if (dd->err) { 1728 err = dd->err; 1729 goto finish; 1730 } 1731 } 1732 if (test_and_clear_bit(FLAGS_OUTPUT_READY, &dd->flags)) { 1733 /* hash or semi-hash ready */ 1734 clear_bit(FLAGS_DMA_READY, &dd->flags); 1735 goto finish; 1736 } 1737 } 1738 1739 return; 1740 1741 finish: 1742 dev_dbg(dd->dev, "update done: err: %d\n", err); 1743 /* finish curent request */ 1744 omap_sham_finish_req(dd->req, err); 1745 } 1746 1747 static irqreturn_t omap_sham_irq_common(struct omap_sham_dev *dd) 1748 { 1749 set_bit(FLAGS_OUTPUT_READY, &dd->flags); 1750 tasklet_schedule(&dd->done_task); 1751 1752 return IRQ_HANDLED; 1753 } 1754 1755 static irqreturn_t omap_sham_irq_omap2(int irq, void *dev_id) 1756 { 1757 struct omap_sham_dev *dd = dev_id; 1758 1759 if (unlikely(test_bit(FLAGS_FINAL, &dd->flags))) 1760 /* final -> allow device to go to power-saving mode */ 1761 omap_sham_write_mask(dd, SHA_REG_CTRL, 0, SHA_REG_CTRL_LENGTH); 1762 1763 omap_sham_write_mask(dd, SHA_REG_CTRL, SHA_REG_CTRL_OUTPUT_READY, 1764 SHA_REG_CTRL_OUTPUT_READY); 1765 omap_sham_read(dd, SHA_REG_CTRL); 1766 1767 return omap_sham_irq_common(dd); 1768 } 1769 1770 static irqreturn_t omap_sham_irq_omap4(int irq, void *dev_id) 1771 { 1772 struct omap_sham_dev *dd = dev_id; 1773 1774 omap_sham_write_mask(dd, SHA_REG_MASK(dd), 0, SHA_REG_MASK_IT_EN); 1775 1776 return omap_sham_irq_common(dd); 1777 } 1778 1779 static struct omap_sham_algs_info omap_sham_algs_info_omap2[] = { 1780 { 1781 .algs_list = algs_sha1_md5, 1782 .size = ARRAY_SIZE(algs_sha1_md5), 1783 }, 1784 }; 1785 1786 static const struct omap_sham_pdata omap_sham_pdata_omap2 = { 1787 .algs_info = omap_sham_algs_info_omap2, 1788 .algs_info_size = ARRAY_SIZE(omap_sham_algs_info_omap2), 1789 .flags = BIT(FLAGS_BE32_SHA1), 1790 .digest_size = SHA1_DIGEST_SIZE, 1791 .copy_hash = omap_sham_copy_hash_omap2, 1792 .write_ctrl = omap_sham_write_ctrl_omap2, 1793 .trigger = omap_sham_trigger_omap2, 1794 .poll_irq = omap_sham_poll_irq_omap2, 1795 .intr_hdlr = omap_sham_irq_omap2, 1796 .idigest_ofs = 0x00, 1797 .din_ofs = 0x1c, 1798 .digcnt_ofs = 0x14, 1799 .rev_ofs = 0x5c, 1800 .mask_ofs = 0x60, 1801 .sysstatus_ofs = 0x64, 1802 .major_mask = 0xf0, 1803 .major_shift = 4, 1804 .minor_mask = 0x0f, 1805 .minor_shift = 0, 1806 }; 1807 1808 #ifdef CONFIG_OF 1809 static struct omap_sham_algs_info omap_sham_algs_info_omap4[] = { 1810 { 1811 .algs_list = algs_sha1_md5, 1812 .size = ARRAY_SIZE(algs_sha1_md5), 1813 }, 1814 { 1815 .algs_list = algs_sha224_sha256, 1816 .size = ARRAY_SIZE(algs_sha224_sha256), 1817 }, 1818 }; 1819 1820 static const struct omap_sham_pdata omap_sham_pdata_omap4 = { 1821 .algs_info = omap_sham_algs_info_omap4, 1822 .algs_info_size = ARRAY_SIZE(omap_sham_algs_info_omap4), 1823 .flags = BIT(FLAGS_AUTO_XOR), 1824 .digest_size = SHA256_DIGEST_SIZE, 1825 .copy_hash = omap_sham_copy_hash_omap4, 1826 .write_ctrl = omap_sham_write_ctrl_omap4, 1827 .trigger = omap_sham_trigger_omap4, 1828 .poll_irq = omap_sham_poll_irq_omap4, 1829 .intr_hdlr = omap_sham_irq_omap4, 1830 .idigest_ofs = 0x020, 1831 .odigest_ofs = 0x0, 1832 .din_ofs = 0x080, 1833 .digcnt_ofs = 0x040, 1834 .rev_ofs = 0x100, 1835 .mask_ofs = 0x110, 1836 .sysstatus_ofs = 0x114, 1837 .mode_ofs = 0x44, 1838 .length_ofs = 0x48, 1839 .major_mask = 0x0700, 1840 .major_shift = 8, 1841 .minor_mask = 0x003f, 1842 .minor_shift = 0, 1843 }; 1844 1845 static struct omap_sham_algs_info omap_sham_algs_info_omap5[] = { 1846 { 1847 .algs_list = algs_sha1_md5, 1848 .size = ARRAY_SIZE(algs_sha1_md5), 1849 }, 1850 { 1851 .algs_list = algs_sha224_sha256, 1852 .size = ARRAY_SIZE(algs_sha224_sha256), 1853 }, 1854 { 1855 .algs_list = algs_sha384_sha512, 1856 .size = ARRAY_SIZE(algs_sha384_sha512), 1857 }, 1858 }; 1859 1860 static const struct omap_sham_pdata omap_sham_pdata_omap5 = { 1861 .algs_info = omap_sham_algs_info_omap5, 1862 .algs_info_size = ARRAY_SIZE(omap_sham_algs_info_omap5), 1863 .flags = BIT(FLAGS_AUTO_XOR), 1864 .digest_size = SHA512_DIGEST_SIZE, 1865 .copy_hash = omap_sham_copy_hash_omap4, 1866 .write_ctrl = omap_sham_write_ctrl_omap4, 1867 .trigger = omap_sham_trigger_omap4, 1868 .poll_irq = omap_sham_poll_irq_omap4, 1869 .intr_hdlr = omap_sham_irq_omap4, 1870 .idigest_ofs = 0x240, 1871 .odigest_ofs = 0x200, 1872 .din_ofs = 0x080, 1873 .digcnt_ofs = 0x280, 1874 .rev_ofs = 0x100, 1875 .mask_ofs = 0x110, 1876 .sysstatus_ofs = 0x114, 1877 .mode_ofs = 0x284, 1878 .length_ofs = 0x288, 1879 .major_mask = 0x0700, 1880 .major_shift = 8, 1881 .minor_mask = 0x003f, 1882 .minor_shift = 0, 1883 }; 1884 1885 static const struct of_device_id omap_sham_of_match[] = { 1886 { 1887 .compatible = "ti,omap2-sham", 1888 .data = &omap_sham_pdata_omap2, 1889 }, 1890 { 1891 .compatible = "ti,omap3-sham", 1892 .data = &omap_sham_pdata_omap2, 1893 }, 1894 { 1895 .compatible = "ti,omap4-sham", 1896 .data = &omap_sham_pdata_omap4, 1897 }, 1898 { 1899 .compatible = "ti,omap5-sham", 1900 .data = &omap_sham_pdata_omap5, 1901 }, 1902 {}, 1903 }; 1904 MODULE_DEVICE_TABLE(of, omap_sham_of_match); 1905 1906 static int omap_sham_get_res_of(struct omap_sham_dev *dd, 1907 struct device *dev, struct resource *res) 1908 { 1909 struct device_node *node = dev->of_node; 1910 int err = 0; 1911 1912 dd->pdata = of_device_get_match_data(dev); 1913 if (!dd->pdata) { 1914 dev_err(dev, "no compatible OF match\n"); 1915 err = -EINVAL; 1916 goto err; 1917 } 1918 1919 err = of_address_to_resource(node, 0, res); 1920 if (err < 0) { 1921 dev_err(dev, "can't translate OF node address\n"); 1922 err = -EINVAL; 1923 goto err; 1924 } 1925 1926 dd->irq = irq_of_parse_and_map(node, 0); 1927 if (!dd->irq) { 1928 dev_err(dev, "can't translate OF irq value\n"); 1929 err = -EINVAL; 1930 goto err; 1931 } 1932 1933 err: 1934 return err; 1935 } 1936 #else 1937 static const struct of_device_id omap_sham_of_match[] = { 1938 {}, 1939 }; 1940 1941 static int omap_sham_get_res_of(struct omap_sham_dev *dd, 1942 struct device *dev, struct resource *res) 1943 { 1944 return -EINVAL; 1945 } 1946 #endif 1947 1948 static int omap_sham_get_res_pdev(struct omap_sham_dev *dd, 1949 struct platform_device *pdev, struct resource *res) 1950 { 1951 struct device *dev = &pdev->dev; 1952 struct resource *r; 1953 int err = 0; 1954 1955 /* Get the base address */ 1956 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1957 if (!r) { 1958 dev_err(dev, "no MEM resource info\n"); 1959 err = -ENODEV; 1960 goto err; 1961 } 1962 memcpy(res, r, sizeof(*res)); 1963 1964 /* Get the IRQ */ 1965 dd->irq = platform_get_irq(pdev, 0); 1966 if (dd->irq < 0) { 1967 err = dd->irq; 1968 goto err; 1969 } 1970 1971 /* Only OMAP2/3 can be non-DT */ 1972 dd->pdata = &omap_sham_pdata_omap2; 1973 1974 err: 1975 return err; 1976 } 1977 1978 static ssize_t fallback_show(struct device *dev, struct device_attribute *attr, 1979 char *buf) 1980 { 1981 struct omap_sham_dev *dd = dev_get_drvdata(dev); 1982 1983 return sprintf(buf, "%d\n", dd->fallback_sz); 1984 } 1985 1986 static ssize_t fallback_store(struct device *dev, struct device_attribute *attr, 1987 const char *buf, size_t size) 1988 { 1989 struct omap_sham_dev *dd = dev_get_drvdata(dev); 1990 ssize_t status; 1991 long value; 1992 1993 status = kstrtol(buf, 0, &value); 1994 if (status) 1995 return status; 1996 1997 /* HW accelerator only works with buffers > 9 */ 1998 if (value < 9) { 1999 dev_err(dev, "minimum fallback size 9\n"); 2000 return -EINVAL; 2001 } 2002 2003 dd->fallback_sz = value; 2004 2005 return size; 2006 } 2007 2008 static ssize_t queue_len_show(struct device *dev, struct device_attribute *attr, 2009 char *buf) 2010 { 2011 struct omap_sham_dev *dd = dev_get_drvdata(dev); 2012 2013 return sprintf(buf, "%d\n", dd->queue.max_qlen); 2014 } 2015 2016 static ssize_t queue_len_store(struct device *dev, 2017 struct device_attribute *attr, const char *buf, 2018 size_t size) 2019 { 2020 struct omap_sham_dev *dd = dev_get_drvdata(dev); 2021 ssize_t status; 2022 long value; 2023 2024 status = kstrtol(buf, 0, &value); 2025 if (status) 2026 return status; 2027 2028 if (value < 1) 2029 return -EINVAL; 2030 2031 /* 2032 * Changing the queue size in fly is safe, if size becomes smaller 2033 * than current size, it will just not accept new entries until 2034 * it has shrank enough. 2035 */ 2036 dd->queue.max_qlen = value; 2037 2038 return size; 2039 } 2040 2041 static DEVICE_ATTR_RW(queue_len); 2042 static DEVICE_ATTR_RW(fallback); 2043 2044 static struct attribute *omap_sham_attrs[] = { 2045 &dev_attr_queue_len.attr, 2046 &dev_attr_fallback.attr, 2047 NULL, 2048 }; 2049 2050 static const struct attribute_group omap_sham_attr_group = { 2051 .attrs = omap_sham_attrs, 2052 }; 2053 2054 static int omap_sham_probe(struct platform_device *pdev) 2055 { 2056 struct omap_sham_dev *dd; 2057 struct device *dev = &pdev->dev; 2058 struct resource res; 2059 dma_cap_mask_t mask; 2060 int err, i, j; 2061 u32 rev; 2062 2063 dd = devm_kzalloc(dev, sizeof(struct omap_sham_dev), GFP_KERNEL); 2064 if (dd == NULL) { 2065 dev_err(dev, "unable to alloc data struct.\n"); 2066 err = -ENOMEM; 2067 goto data_err; 2068 } 2069 dd->dev = dev; 2070 platform_set_drvdata(pdev, dd); 2071 2072 INIT_LIST_HEAD(&dd->list); 2073 tasklet_init(&dd->done_task, omap_sham_done_task, (unsigned long)dd); 2074 crypto_init_queue(&dd->queue, OMAP_SHAM_QUEUE_LENGTH); 2075 2076 err = (dev->of_node) ? omap_sham_get_res_of(dd, dev, &res) : 2077 omap_sham_get_res_pdev(dd, pdev, &res); 2078 if (err) 2079 goto data_err; 2080 2081 dd->io_base = devm_ioremap_resource(dev, &res); 2082 if (IS_ERR(dd->io_base)) { 2083 err = PTR_ERR(dd->io_base); 2084 goto data_err; 2085 } 2086 dd->phys_base = res.start; 2087 2088 err = devm_request_irq(dev, dd->irq, dd->pdata->intr_hdlr, 2089 IRQF_TRIGGER_NONE, dev_name(dev), dd); 2090 if (err) { 2091 dev_err(dev, "unable to request irq %d, err = %d\n", 2092 dd->irq, err); 2093 goto data_err; 2094 } 2095 2096 dma_cap_zero(mask); 2097 dma_cap_set(DMA_SLAVE, mask); 2098 2099 dd->dma_lch = dma_request_chan(dev, "rx"); 2100 if (IS_ERR(dd->dma_lch)) { 2101 err = PTR_ERR(dd->dma_lch); 2102 if (err == -EPROBE_DEFER) 2103 goto data_err; 2104 2105 dd->polling_mode = 1; 2106 dev_dbg(dev, "using polling mode instead of dma\n"); 2107 } 2108 2109 dd->flags |= dd->pdata->flags; 2110 sham.flags |= dd->pdata->flags; 2111 2112 pm_runtime_use_autosuspend(dev); 2113 pm_runtime_set_autosuspend_delay(dev, DEFAULT_AUTOSUSPEND_DELAY); 2114 2115 dd->fallback_sz = OMAP_SHA_DMA_THRESHOLD; 2116 2117 pm_runtime_enable(dev); 2118 2119 err = pm_runtime_resume_and_get(dev); 2120 if (err < 0) { 2121 dev_err(dev, "failed to get sync: %d\n", err); 2122 goto err_pm; 2123 } 2124 2125 rev = omap_sham_read(dd, SHA_REG_REV(dd)); 2126 pm_runtime_put_sync(&pdev->dev); 2127 2128 dev_info(dev, "hw accel on OMAP rev %u.%u\n", 2129 (rev & dd->pdata->major_mask) >> dd->pdata->major_shift, 2130 (rev & dd->pdata->minor_mask) >> dd->pdata->minor_shift); 2131 2132 spin_lock_bh(&sham.lock); 2133 list_add_tail(&dd->list, &sham.dev_list); 2134 spin_unlock_bh(&sham.lock); 2135 2136 dd->engine = crypto_engine_alloc_init(dev, 1); 2137 if (!dd->engine) { 2138 err = -ENOMEM; 2139 goto err_engine; 2140 } 2141 2142 err = crypto_engine_start(dd->engine); 2143 if (err) 2144 goto err_engine_start; 2145 2146 for (i = 0; i < dd->pdata->algs_info_size; i++) { 2147 if (dd->pdata->algs_info[i].registered) 2148 break; 2149 2150 for (j = 0; j < dd->pdata->algs_info[i].size; j++) { 2151 struct ahash_alg *alg; 2152 2153 alg = &dd->pdata->algs_info[i].algs_list[j]; 2154 alg->export = omap_sham_export; 2155 alg->import = omap_sham_import; 2156 alg->halg.statesize = sizeof(struct omap_sham_reqctx) + 2157 BUFLEN; 2158 err = crypto_register_ahash(alg); 2159 if (err) 2160 goto err_algs; 2161 2162 dd->pdata->algs_info[i].registered++; 2163 } 2164 } 2165 2166 err = sysfs_create_group(&dev->kobj, &omap_sham_attr_group); 2167 if (err) { 2168 dev_err(dev, "could not create sysfs device attrs\n"); 2169 goto err_algs; 2170 } 2171 2172 return 0; 2173 2174 err_algs: 2175 for (i = dd->pdata->algs_info_size - 1; i >= 0; i--) 2176 for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--) 2177 crypto_unregister_ahash( 2178 &dd->pdata->algs_info[i].algs_list[j]); 2179 err_engine_start: 2180 crypto_engine_exit(dd->engine); 2181 err_engine: 2182 spin_lock_bh(&sham.lock); 2183 list_del(&dd->list); 2184 spin_unlock_bh(&sham.lock); 2185 err_pm: 2186 pm_runtime_dont_use_autosuspend(dev); 2187 pm_runtime_disable(dev); 2188 if (!dd->polling_mode) 2189 dma_release_channel(dd->dma_lch); 2190 data_err: 2191 dev_err(dev, "initialization failed.\n"); 2192 2193 return err; 2194 } 2195 2196 static int omap_sham_remove(struct platform_device *pdev) 2197 { 2198 struct omap_sham_dev *dd; 2199 int i, j; 2200 2201 dd = platform_get_drvdata(pdev); 2202 2203 spin_lock_bh(&sham.lock); 2204 list_del(&dd->list); 2205 spin_unlock_bh(&sham.lock); 2206 for (i = dd->pdata->algs_info_size - 1; i >= 0; i--) 2207 for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--) { 2208 crypto_unregister_ahash( 2209 &dd->pdata->algs_info[i].algs_list[j]); 2210 dd->pdata->algs_info[i].registered--; 2211 } 2212 tasklet_kill(&dd->done_task); 2213 pm_runtime_dont_use_autosuspend(&pdev->dev); 2214 pm_runtime_disable(&pdev->dev); 2215 2216 if (!dd->polling_mode) 2217 dma_release_channel(dd->dma_lch); 2218 2219 sysfs_remove_group(&dd->dev->kobj, &omap_sham_attr_group); 2220 2221 return 0; 2222 } 2223 2224 static struct platform_driver omap_sham_driver = { 2225 .probe = omap_sham_probe, 2226 .remove = omap_sham_remove, 2227 .driver = { 2228 .name = "omap-sham", 2229 .of_match_table = omap_sham_of_match, 2230 }, 2231 }; 2232 2233 module_platform_driver(omap_sham_driver); 2234 2235 MODULE_DESCRIPTION("OMAP SHA1/MD5 hw acceleration support."); 2236 MODULE_LICENSE("GPL v2"); 2237 MODULE_AUTHOR("Dmitry Kasatkin"); 2238 MODULE_ALIAS("platform:omap-sham"); 2239