xref: /linux/drivers/crypto/nx/nx.c (revision c8bfe3fad4f86a029da7157bae9699c816f0c309)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Routines supporting the Power 7+ Nest Accelerators driver
4  *
5  * Copyright (C) 2011-2012 International Business Machines Inc.
6  *
7  * Author: Kent Yoder <yoder1@us.ibm.com>
8  */
9 
10 #include <crypto/internal/aead.h>
11 #include <crypto/internal/hash.h>
12 #include <crypto/aes.h>
13 #include <crypto/sha2.h>
14 #include <crypto/algapi.h>
15 #include <crypto/scatterwalk.h>
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/types.h>
19 #include <linux/mm.h>
20 #include <linux/scatterlist.h>
21 #include <linux/device.h>
22 #include <linux/of.h>
23 #include <asm/hvcall.h>
24 #include <asm/vio.h>
25 
26 #include "nx_csbcpb.h"
27 #include "nx.h"
28 
29 
30 /**
31  * nx_hcall_sync - make an H_COP_OP hcall for the passed in op structure
32  *
33  * @nx_ctx: the crypto context handle
34  * @op: PFO operation struct to pass in
35  * @may_sleep: flag indicating the request can sleep
36  *
37  * Make the hcall, retrying while the hardware is busy. If we cannot yield
38  * the thread, limit the number of retries to 10 here.
39  */
40 int nx_hcall_sync(struct nx_crypto_ctx *nx_ctx,
41 		  struct vio_pfo_op    *op,
42 		  u32                   may_sleep)
43 {
44 	int rc, retries = 10;
45 	struct vio_dev *viodev = nx_driver.viodev;
46 
47 	atomic_inc(&(nx_ctx->stats->sync_ops));
48 
49 	do {
50 		rc = vio_h_cop_sync(viodev, op);
51 	} while (rc == -EBUSY && !may_sleep && retries--);
52 
53 	if (rc) {
54 		dev_dbg(&viodev->dev, "vio_h_cop_sync failed: rc: %d "
55 			"hcall rc: %ld\n", rc, op->hcall_err);
56 		atomic_inc(&(nx_ctx->stats->errors));
57 		atomic_set(&(nx_ctx->stats->last_error), op->hcall_err);
58 		atomic_set(&(nx_ctx->stats->last_error_pid), current->pid);
59 	}
60 
61 	return rc;
62 }
63 
64 /**
65  * nx_build_sg_list - build an NX scatter list describing a single  buffer
66  *
67  * @sg_head: pointer to the first scatter list element to build
68  * @start_addr: pointer to the linear buffer
69  * @len: length of the data at @start_addr
70  * @sgmax: the largest number of scatter list elements we're allowed to create
71  *
72  * This function will start writing nx_sg elements at @sg_head and keep
73  * writing them until all of the data from @start_addr is described or
74  * until sgmax elements have been written. Scatter list elements will be
75  * created such that none of the elements describes a buffer that crosses a 4K
76  * boundary.
77  */
78 struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head,
79 			       u8           *start_addr,
80 			       unsigned int *len,
81 			       u32           sgmax)
82 {
83 	unsigned int sg_len = 0;
84 	struct nx_sg *sg;
85 	u64 sg_addr = (u64)start_addr;
86 	u64 end_addr;
87 
88 	/* determine the start and end for this address range - slightly
89 	 * different if this is in VMALLOC_REGION */
90 	if (is_vmalloc_addr(start_addr))
91 		sg_addr = page_to_phys(vmalloc_to_page(start_addr))
92 			  + offset_in_page(sg_addr);
93 	else
94 		sg_addr = __pa(sg_addr);
95 
96 	end_addr = sg_addr + *len;
97 
98 	/* each iteration will write one struct nx_sg element and add the
99 	 * length of data described by that element to sg_len. Once @len bytes
100 	 * have been described (or @sgmax elements have been written), the
101 	 * loop ends. min_t is used to ensure @end_addr falls on the same page
102 	 * as sg_addr, if not, we need to create another nx_sg element for the
103 	 * data on the next page.
104 	 *
105 	 * Also when using vmalloc'ed data, every time that a system page
106 	 * boundary is crossed the physical address needs to be re-calculated.
107 	 */
108 	for (sg = sg_head; sg_len < *len; sg++) {
109 		u64 next_page;
110 
111 		sg->addr = sg_addr;
112 		sg_addr = min_t(u64, NX_PAGE_NUM(sg_addr + NX_PAGE_SIZE),
113 				end_addr);
114 
115 		next_page = (sg->addr & PAGE_MASK) + PAGE_SIZE;
116 		sg->len = min_t(u64, sg_addr, next_page) - sg->addr;
117 		sg_len += sg->len;
118 
119 		if (sg_addr >= next_page &&
120 				is_vmalloc_addr(start_addr + sg_len)) {
121 			sg_addr = page_to_phys(vmalloc_to_page(
122 						start_addr + sg_len));
123 			end_addr = sg_addr + *len - sg_len;
124 		}
125 
126 		if ((sg - sg_head) == sgmax) {
127 			pr_err("nx: scatter/gather list overflow, pid: %d\n",
128 			       current->pid);
129 			sg++;
130 			break;
131 		}
132 	}
133 	*len = sg_len;
134 
135 	/* return the moved sg_head pointer */
136 	return sg;
137 }
138 
139 /**
140  * nx_walk_and_build - walk a linux scatterlist and build an nx scatterlist
141  *
142  * @nx_dst: pointer to the first nx_sg element to write
143  * @sglen: max number of nx_sg entries we're allowed to write
144  * @sg_src: pointer to the source linux scatterlist to walk
145  * @start: number of bytes to fast-forward past at the beginning of @sg_src
146  * @src_len: number of bytes to walk in @sg_src
147  */
148 struct nx_sg *nx_walk_and_build(struct nx_sg       *nx_dst,
149 				unsigned int        sglen,
150 				struct scatterlist *sg_src,
151 				unsigned int        start,
152 				unsigned int       *src_len)
153 {
154 	struct scatter_walk walk;
155 	struct nx_sg *nx_sg = nx_dst;
156 	unsigned int n, offset = 0, len = *src_len;
157 	char *dst;
158 
159 	/* we need to fast forward through @start bytes first */
160 	for (;;) {
161 		scatterwalk_start(&walk, sg_src);
162 
163 		if (start < offset + sg_src->length)
164 			break;
165 
166 		offset += sg_src->length;
167 		sg_src = sg_next(sg_src);
168 	}
169 
170 	/* start - offset is the number of bytes to advance in the scatterlist
171 	 * element we're currently looking at */
172 	scatterwalk_advance(&walk, start - offset);
173 
174 	while (len && (nx_sg - nx_dst) < sglen) {
175 		n = scatterwalk_clamp(&walk, len);
176 		if (!n) {
177 			/* In cases where we have scatterlist chain sg_next
178 			 * handles with it properly */
179 			scatterwalk_start(&walk, sg_next(walk.sg));
180 			n = scatterwalk_clamp(&walk, len);
181 		}
182 		dst = scatterwalk_map(&walk);
183 
184 		nx_sg = nx_build_sg_list(nx_sg, dst, &n, sglen - (nx_sg - nx_dst));
185 		len -= n;
186 
187 		scatterwalk_unmap(dst);
188 		scatterwalk_advance(&walk, n);
189 		scatterwalk_done(&walk, SCATTERWALK_FROM_SG, len);
190 	}
191 	/* update to_process */
192 	*src_len -= len;
193 
194 	/* return the moved destination pointer */
195 	return nx_sg;
196 }
197 
198 /**
199  * trim_sg_list - ensures the bound in sg list.
200  * @sg: sg list head
201  * @end: sg lisg end
202  * @delta:  is the amount we need to crop in order to bound the list.
203  * @nbytes: length of data in the scatterlists or data length - whichever
204  *          is greater.
205  */
206 static long int trim_sg_list(struct nx_sg *sg,
207 			     struct nx_sg *end,
208 			     unsigned int delta,
209 			     unsigned int *nbytes)
210 {
211 	long int oplen;
212 	long int data_back;
213 	unsigned int is_delta = delta;
214 
215 	while (delta && end > sg) {
216 		struct nx_sg *last = end - 1;
217 
218 		if (last->len > delta) {
219 			last->len -= delta;
220 			delta = 0;
221 		} else {
222 			end--;
223 			delta -= last->len;
224 		}
225 	}
226 
227 	/* There are cases where we need to crop list in order to make it
228 	 * a block size multiple, but we also need to align data. In order to
229 	 * that we need to calculate how much we need to put back to be
230 	 * processed
231 	 */
232 	oplen = (sg - end) * sizeof(struct nx_sg);
233 	if (is_delta) {
234 		data_back = (abs(oplen) / AES_BLOCK_SIZE) *  sg->len;
235 		data_back = *nbytes - (data_back & ~(AES_BLOCK_SIZE - 1));
236 		*nbytes -= data_back;
237 	}
238 
239 	return oplen;
240 }
241 
242 /**
243  * nx_build_sg_lists - walk the input scatterlists and build arrays of NX
244  *                     scatterlists based on them.
245  *
246  * @nx_ctx: NX crypto context for the lists we're building
247  * @iv: iv data, if the algorithm requires it
248  * @dst: destination scatterlist
249  * @src: source scatterlist
250  * @nbytes: length of data described in the scatterlists
251  * @offset: number of bytes to fast-forward past at the beginning of
252  *          scatterlists.
253  * @oiv: destination for the iv data, if the algorithm requires it
254  *
255  * This is common code shared by all the AES algorithms. It uses the crypto
256  * scatterlist walk routines to traverse input and output scatterlists, building
257  * corresponding NX scatterlists
258  */
259 int nx_build_sg_lists(struct nx_crypto_ctx  *nx_ctx,
260 		      const u8              *iv,
261 		      struct scatterlist    *dst,
262 		      struct scatterlist    *src,
263 		      unsigned int          *nbytes,
264 		      unsigned int           offset,
265 		      u8                    *oiv)
266 {
267 	unsigned int delta = 0;
268 	unsigned int total = *nbytes;
269 	struct nx_sg *nx_insg = nx_ctx->in_sg;
270 	struct nx_sg *nx_outsg = nx_ctx->out_sg;
271 	unsigned int max_sg_len;
272 
273 	max_sg_len = min_t(u64, nx_ctx->ap->sglen,
274 			nx_driver.of.max_sg_len/sizeof(struct nx_sg));
275 	max_sg_len = min_t(u64, max_sg_len,
276 			nx_ctx->ap->databytelen/NX_PAGE_SIZE);
277 
278 	if (oiv)
279 		memcpy(oiv, iv, AES_BLOCK_SIZE);
280 
281 	*nbytes = min_t(u64, *nbytes, nx_ctx->ap->databytelen);
282 
283 	nx_outsg = nx_walk_and_build(nx_outsg, max_sg_len, dst,
284 					offset, nbytes);
285 	nx_insg = nx_walk_and_build(nx_insg, max_sg_len, src,
286 					offset, nbytes);
287 
288 	if (*nbytes < total)
289 		delta = *nbytes - (*nbytes & ~(AES_BLOCK_SIZE - 1));
290 
291 	/* these lengths should be negative, which will indicate to phyp that
292 	 * the input and output parameters are scatterlists, not linear
293 	 * buffers */
294 	nx_ctx->op.inlen = trim_sg_list(nx_ctx->in_sg, nx_insg, delta, nbytes);
295 	nx_ctx->op.outlen = trim_sg_list(nx_ctx->out_sg, nx_outsg, delta, nbytes);
296 
297 	return 0;
298 }
299 
300 /**
301  * nx_ctx_init - initialize an nx_ctx's vio_pfo_op struct
302  *
303  * @nx_ctx: the nx context to initialize
304  * @function: the function code for the op
305  */
306 void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function)
307 {
308 	spin_lock_init(&nx_ctx->lock);
309 	memset(nx_ctx->kmem, 0, nx_ctx->kmem_len);
310 	nx_ctx->csbcpb->csb.valid |= NX_CSB_VALID_BIT;
311 
312 	nx_ctx->op.flags = function;
313 	nx_ctx->op.csbcpb = __pa(nx_ctx->csbcpb);
314 	nx_ctx->op.in = __pa(nx_ctx->in_sg);
315 	nx_ctx->op.out = __pa(nx_ctx->out_sg);
316 
317 	if (nx_ctx->csbcpb_aead) {
318 		nx_ctx->csbcpb_aead->csb.valid |= NX_CSB_VALID_BIT;
319 
320 		nx_ctx->op_aead.flags = function;
321 		nx_ctx->op_aead.csbcpb = __pa(nx_ctx->csbcpb_aead);
322 		nx_ctx->op_aead.in = __pa(nx_ctx->in_sg);
323 		nx_ctx->op_aead.out = __pa(nx_ctx->out_sg);
324 	}
325 }
326 
327 static void nx_of_update_status(struct device   *dev,
328 			       struct property *p,
329 			       struct nx_of    *props)
330 {
331 	if (!strncmp(p->value, "okay", p->length)) {
332 		props->status = NX_WAITING;
333 		props->flags |= NX_OF_FLAG_STATUS_SET;
334 	} else {
335 		dev_info(dev, "%s: status '%s' is not 'okay'\n", __func__,
336 			 (char *)p->value);
337 	}
338 }
339 
340 static void nx_of_update_sglen(struct device   *dev,
341 			       struct property *p,
342 			       struct nx_of    *props)
343 {
344 	if (p->length != sizeof(props->max_sg_len)) {
345 		dev_err(dev, "%s: unexpected format for "
346 			"ibm,max-sg-len property\n", __func__);
347 		dev_dbg(dev, "%s: ibm,max-sg-len is %d bytes "
348 			"long, expected %zd bytes\n", __func__,
349 			p->length, sizeof(props->max_sg_len));
350 		return;
351 	}
352 
353 	props->max_sg_len = *(u32 *)p->value;
354 	props->flags |= NX_OF_FLAG_MAXSGLEN_SET;
355 }
356 
357 static void nx_of_update_msc(struct device   *dev,
358 			     struct property *p,
359 			     struct nx_of    *props)
360 {
361 	struct msc_triplet *trip;
362 	struct max_sync_cop *msc;
363 	unsigned int bytes_so_far, i, lenp;
364 
365 	msc = (struct max_sync_cop *)p->value;
366 	lenp = p->length;
367 
368 	/* You can't tell if the data read in for this property is sane by its
369 	 * size alone. This is because there are sizes embedded in the data
370 	 * structure. The best we can do is check lengths as we parse and bail
371 	 * as soon as a length error is detected. */
372 	bytes_so_far = 0;
373 
374 	while ((bytes_so_far + sizeof(struct max_sync_cop)) <= lenp) {
375 		bytes_so_far += sizeof(struct max_sync_cop);
376 
377 		trip = msc->trip;
378 
379 		for (i = 0;
380 		     ((bytes_so_far + sizeof(struct msc_triplet)) <= lenp) &&
381 		     i < msc->triplets;
382 		     i++) {
383 			if (msc->fc >= NX_MAX_FC || msc->mode >= NX_MAX_MODE) {
384 				dev_err(dev, "unknown function code/mode "
385 					"combo: %d/%d (ignored)\n", msc->fc,
386 					msc->mode);
387 				goto next_loop;
388 			}
389 
390 			if (!trip->sglen || trip->databytelen < NX_PAGE_SIZE) {
391 				dev_warn(dev, "bogus sglen/databytelen: "
392 					 "%u/%u (ignored)\n", trip->sglen,
393 					 trip->databytelen);
394 				goto next_loop;
395 			}
396 
397 			switch (trip->keybitlen) {
398 			case 128:
399 			case 160:
400 				props->ap[msc->fc][msc->mode][0].databytelen =
401 					trip->databytelen;
402 				props->ap[msc->fc][msc->mode][0].sglen =
403 					trip->sglen;
404 				break;
405 			case 192:
406 				props->ap[msc->fc][msc->mode][1].databytelen =
407 					trip->databytelen;
408 				props->ap[msc->fc][msc->mode][1].sglen =
409 					trip->sglen;
410 				break;
411 			case 256:
412 				if (msc->fc == NX_FC_AES) {
413 					props->ap[msc->fc][msc->mode][2].
414 						databytelen = trip->databytelen;
415 					props->ap[msc->fc][msc->mode][2].sglen =
416 						trip->sglen;
417 				} else if (msc->fc == NX_FC_AES_HMAC ||
418 					   msc->fc == NX_FC_SHA) {
419 					props->ap[msc->fc][msc->mode][1].
420 						databytelen = trip->databytelen;
421 					props->ap[msc->fc][msc->mode][1].sglen =
422 						trip->sglen;
423 				} else {
424 					dev_warn(dev, "unknown function "
425 						"code/key bit len combo"
426 						": (%u/256)\n", msc->fc);
427 				}
428 				break;
429 			case 512:
430 				props->ap[msc->fc][msc->mode][2].databytelen =
431 					trip->databytelen;
432 				props->ap[msc->fc][msc->mode][2].sglen =
433 					trip->sglen;
434 				break;
435 			default:
436 				dev_warn(dev, "unknown function code/key bit "
437 					 "len combo: (%u/%u)\n", msc->fc,
438 					 trip->keybitlen);
439 				break;
440 			}
441 next_loop:
442 			bytes_so_far += sizeof(struct msc_triplet);
443 			trip++;
444 		}
445 
446 		msc = (struct max_sync_cop *)trip;
447 	}
448 
449 	props->flags |= NX_OF_FLAG_MAXSYNCCOP_SET;
450 }
451 
452 /**
453  * nx_of_init - read openFirmware values from the device tree
454  *
455  * @dev: device handle
456  * @props: pointer to struct to hold the properties values
457  *
458  * Called once at driver probe time, this function will read out the
459  * openFirmware properties we use at runtime. If all the OF properties are
460  * acceptable, when we exit this function props->flags will indicate that
461  * we're ready to register our crypto algorithms.
462  */
463 static void nx_of_init(struct device *dev, struct nx_of *props)
464 {
465 	struct device_node *base_node = dev->of_node;
466 	struct property *p;
467 
468 	p = of_find_property(base_node, "status", NULL);
469 	if (!p)
470 		dev_info(dev, "%s: property 'status' not found\n", __func__);
471 	else
472 		nx_of_update_status(dev, p, props);
473 
474 	p = of_find_property(base_node, "ibm,max-sg-len", NULL);
475 	if (!p)
476 		dev_info(dev, "%s: property 'ibm,max-sg-len' not found\n",
477 			 __func__);
478 	else
479 		nx_of_update_sglen(dev, p, props);
480 
481 	p = of_find_property(base_node, "ibm,max-sync-cop", NULL);
482 	if (!p)
483 		dev_info(dev, "%s: property 'ibm,max-sync-cop' not found\n",
484 			 __func__);
485 	else
486 		nx_of_update_msc(dev, p, props);
487 }
488 
489 static bool nx_check_prop(struct device *dev, u32 fc, u32 mode, int slot)
490 {
491 	struct alg_props *props = &nx_driver.of.ap[fc][mode][slot];
492 
493 	if (!props->sglen || props->databytelen < NX_PAGE_SIZE) {
494 		if (dev)
495 			dev_warn(dev, "bogus sglen/databytelen for %u/%u/%u: "
496 				 "%u/%u (ignored)\n", fc, mode, slot,
497 				 props->sglen, props->databytelen);
498 		return false;
499 	}
500 
501 	return true;
502 }
503 
504 static bool nx_check_props(struct device *dev, u32 fc, u32 mode)
505 {
506 	int i;
507 
508 	for (i = 0; i < 3; i++)
509 		if (!nx_check_prop(dev, fc, mode, i))
510 			return false;
511 
512 	return true;
513 }
514 
515 static int nx_register_skcipher(struct skcipher_alg *alg, u32 fc, u32 mode)
516 {
517 	return nx_check_props(&nx_driver.viodev->dev, fc, mode) ?
518 	       crypto_register_skcipher(alg) : 0;
519 }
520 
521 static int nx_register_aead(struct aead_alg *alg, u32 fc, u32 mode)
522 {
523 	return nx_check_props(&nx_driver.viodev->dev, fc, mode) ?
524 	       crypto_register_aead(alg) : 0;
525 }
526 
527 static int nx_register_shash(struct shash_alg *alg, u32 fc, u32 mode, int slot)
528 {
529 	return (slot >= 0 ? nx_check_prop(&nx_driver.viodev->dev,
530 					  fc, mode, slot) :
531 			    nx_check_props(&nx_driver.viodev->dev, fc, mode)) ?
532 	       crypto_register_shash(alg) : 0;
533 }
534 
535 static void nx_unregister_skcipher(struct skcipher_alg *alg, u32 fc, u32 mode)
536 {
537 	if (nx_check_props(NULL, fc, mode))
538 		crypto_unregister_skcipher(alg);
539 }
540 
541 static void nx_unregister_aead(struct aead_alg *alg, u32 fc, u32 mode)
542 {
543 	if (nx_check_props(NULL, fc, mode))
544 		crypto_unregister_aead(alg);
545 }
546 
547 static void nx_unregister_shash(struct shash_alg *alg, u32 fc, u32 mode,
548 				int slot)
549 {
550 	if (slot >= 0 ? nx_check_prop(NULL, fc, mode, slot) :
551 			nx_check_props(NULL, fc, mode))
552 		crypto_unregister_shash(alg);
553 }
554 
555 /**
556  * nx_register_algs - register algorithms with the crypto API
557  *
558  * Called from nx_probe()
559  *
560  * If all OF properties are in an acceptable state, the driver flags will
561  * indicate that we're ready and we'll create our debugfs files and register
562  * out crypto algorithms.
563  */
564 static int nx_register_algs(void)
565 {
566 	int rc = -1;
567 
568 	if (nx_driver.of.flags != NX_OF_FLAG_MASK_READY)
569 		goto out;
570 
571 	memset(&nx_driver.stats, 0, sizeof(struct nx_stats));
572 
573 	NX_DEBUGFS_INIT(&nx_driver);
574 
575 	nx_driver.of.status = NX_OKAY;
576 
577 	rc = nx_register_skcipher(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
578 	if (rc)
579 		goto out;
580 
581 	rc = nx_register_skcipher(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
582 	if (rc)
583 		goto out_unreg_ecb;
584 
585 	rc = nx_register_skcipher(&nx_ctr3686_aes_alg, NX_FC_AES,
586 				  NX_MODE_AES_CTR);
587 	if (rc)
588 		goto out_unreg_cbc;
589 
590 	rc = nx_register_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
591 	if (rc)
592 		goto out_unreg_ctr3686;
593 
594 	rc = nx_register_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
595 	if (rc)
596 		goto out_unreg_gcm;
597 
598 	rc = nx_register_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
599 	if (rc)
600 		goto out_unreg_gcm4106;
601 
602 	rc = nx_register_aead(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
603 	if (rc)
604 		goto out_unreg_ccm;
605 
606 	rc = nx_register_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA,
607 			       NX_PROPS_SHA256);
608 	if (rc)
609 		goto out_unreg_ccm4309;
610 
611 	rc = nx_register_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA,
612 			       NX_PROPS_SHA512);
613 	if (rc)
614 		goto out_unreg_s256;
615 
616 	rc = nx_register_shash(&nx_shash_aes_xcbc_alg,
617 			       NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1);
618 	if (rc)
619 		goto out_unreg_s512;
620 
621 	goto out;
622 
623 out_unreg_s512:
624 	nx_unregister_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA,
625 			    NX_PROPS_SHA512);
626 out_unreg_s256:
627 	nx_unregister_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA,
628 			    NX_PROPS_SHA256);
629 out_unreg_ccm4309:
630 	nx_unregister_aead(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
631 out_unreg_ccm:
632 	nx_unregister_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
633 out_unreg_gcm4106:
634 	nx_unregister_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
635 out_unreg_gcm:
636 	nx_unregister_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
637 out_unreg_ctr3686:
638 	nx_unregister_skcipher(&nx_ctr3686_aes_alg, NX_FC_AES, NX_MODE_AES_CTR);
639 out_unreg_cbc:
640 	nx_unregister_skcipher(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
641 out_unreg_ecb:
642 	nx_unregister_skcipher(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
643 out:
644 	return rc;
645 }
646 
647 /**
648  * nx_crypto_ctx_init - create and initialize a crypto api context
649  *
650  * @nx_ctx: the crypto api context
651  * @fc: function code for the context
652  * @mode: the function code specific mode for this context
653  */
654 static int nx_crypto_ctx_init(struct nx_crypto_ctx *nx_ctx, u32 fc, u32 mode)
655 {
656 	if (nx_driver.of.status != NX_OKAY) {
657 		pr_err("Attempt to initialize NX crypto context while device "
658 		       "is not available!\n");
659 		return -ENODEV;
660 	}
661 
662 	/* we need an extra page for csbcpb_aead for these modes */
663 	if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
664 		nx_ctx->kmem_len = (5 * NX_PAGE_SIZE) +
665 				   sizeof(struct nx_csbcpb);
666 	else
667 		nx_ctx->kmem_len = (4 * NX_PAGE_SIZE) +
668 				   sizeof(struct nx_csbcpb);
669 
670 	nx_ctx->kmem = kmalloc(nx_ctx->kmem_len, GFP_KERNEL);
671 	if (!nx_ctx->kmem)
672 		return -ENOMEM;
673 
674 	/* the csbcpb and scatterlists must be 4K aligned pages */
675 	nx_ctx->csbcpb = (struct nx_csbcpb *)(round_up((u64)nx_ctx->kmem,
676 						       (u64)NX_PAGE_SIZE));
677 	nx_ctx->in_sg = (struct nx_sg *)((u8 *)nx_ctx->csbcpb + NX_PAGE_SIZE);
678 	nx_ctx->out_sg = (struct nx_sg *)((u8 *)nx_ctx->in_sg + NX_PAGE_SIZE);
679 
680 	if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
681 		nx_ctx->csbcpb_aead =
682 			(struct nx_csbcpb *)((u8 *)nx_ctx->out_sg +
683 					     NX_PAGE_SIZE);
684 
685 	/* give each context a pointer to global stats and their OF
686 	 * properties */
687 	nx_ctx->stats = &nx_driver.stats;
688 	memcpy(nx_ctx->props, nx_driver.of.ap[fc][mode],
689 	       sizeof(struct alg_props) * 3);
690 
691 	return 0;
692 }
693 
694 /* entry points from the crypto tfm initializers */
695 int nx_crypto_ctx_aes_ccm_init(struct crypto_aead *tfm)
696 {
697 	crypto_aead_set_reqsize(tfm, sizeof(struct nx_ccm_rctx));
698 	return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES,
699 				  NX_MODE_AES_CCM);
700 }
701 
702 int nx_crypto_ctx_aes_gcm_init(struct crypto_aead *tfm)
703 {
704 	crypto_aead_set_reqsize(tfm, sizeof(struct nx_gcm_rctx));
705 	return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES,
706 				  NX_MODE_AES_GCM);
707 }
708 
709 int nx_crypto_ctx_aes_ctr_init(struct crypto_skcipher *tfm)
710 {
711 	return nx_crypto_ctx_init(crypto_skcipher_ctx(tfm), NX_FC_AES,
712 				  NX_MODE_AES_CTR);
713 }
714 
715 int nx_crypto_ctx_aes_cbc_init(struct crypto_skcipher *tfm)
716 {
717 	return nx_crypto_ctx_init(crypto_skcipher_ctx(tfm), NX_FC_AES,
718 				  NX_MODE_AES_CBC);
719 }
720 
721 int nx_crypto_ctx_aes_ecb_init(struct crypto_skcipher *tfm)
722 {
723 	return nx_crypto_ctx_init(crypto_skcipher_ctx(tfm), NX_FC_AES,
724 				  NX_MODE_AES_ECB);
725 }
726 
727 int nx_crypto_ctx_sha_init(struct crypto_tfm *tfm)
728 {
729 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_SHA, NX_MODE_SHA);
730 }
731 
732 int nx_crypto_ctx_aes_xcbc_init(struct crypto_tfm *tfm)
733 {
734 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
735 				  NX_MODE_AES_XCBC_MAC);
736 }
737 
738 /**
739  * nx_crypto_ctx_exit - destroy a crypto api context
740  *
741  * @tfm: the crypto transform pointer for the context
742  *
743  * As crypto API contexts are destroyed, this exit hook is called to free the
744  * memory associated with it.
745  */
746 void nx_crypto_ctx_exit(struct crypto_tfm *tfm)
747 {
748 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
749 
750 	kfree_sensitive(nx_ctx->kmem);
751 	nx_ctx->csbcpb = NULL;
752 	nx_ctx->csbcpb_aead = NULL;
753 	nx_ctx->in_sg = NULL;
754 	nx_ctx->out_sg = NULL;
755 }
756 
757 void nx_crypto_ctx_skcipher_exit(struct crypto_skcipher *tfm)
758 {
759 	nx_crypto_ctx_exit(crypto_skcipher_ctx(tfm));
760 }
761 
762 void nx_crypto_ctx_aead_exit(struct crypto_aead *tfm)
763 {
764 	struct nx_crypto_ctx *nx_ctx = crypto_aead_ctx(tfm);
765 
766 	kfree_sensitive(nx_ctx->kmem);
767 }
768 
769 static int nx_probe(struct vio_dev *viodev, const struct vio_device_id *id)
770 {
771 	dev_dbg(&viodev->dev, "driver probed: %s resource id: 0x%x\n",
772 		viodev->name, viodev->resource_id);
773 
774 	if (nx_driver.viodev) {
775 		dev_err(&viodev->dev, "%s: Attempt to register more than one "
776 			"instance of the hardware\n", __func__);
777 		return -EINVAL;
778 	}
779 
780 	nx_driver.viodev = viodev;
781 
782 	nx_of_init(&viodev->dev, &nx_driver.of);
783 
784 	return nx_register_algs();
785 }
786 
787 static void nx_remove(struct vio_dev *viodev)
788 {
789 	dev_dbg(&viodev->dev, "entering nx_remove for UA 0x%x\n",
790 		viodev->unit_address);
791 
792 	if (nx_driver.of.status == NX_OKAY) {
793 		NX_DEBUGFS_FINI(&nx_driver);
794 
795 		nx_unregister_shash(&nx_shash_aes_xcbc_alg,
796 				    NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1);
797 		nx_unregister_shash(&nx_shash_sha512_alg,
798 				    NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA256);
799 		nx_unregister_shash(&nx_shash_sha256_alg,
800 				    NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA512);
801 		nx_unregister_aead(&nx_ccm4309_aes_alg,
802 				   NX_FC_AES, NX_MODE_AES_CCM);
803 		nx_unregister_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
804 		nx_unregister_aead(&nx_gcm4106_aes_alg,
805 				   NX_FC_AES, NX_MODE_AES_GCM);
806 		nx_unregister_aead(&nx_gcm_aes_alg,
807 				   NX_FC_AES, NX_MODE_AES_GCM);
808 		nx_unregister_skcipher(&nx_ctr3686_aes_alg,
809 				       NX_FC_AES, NX_MODE_AES_CTR);
810 		nx_unregister_skcipher(&nx_cbc_aes_alg, NX_FC_AES,
811 				       NX_MODE_AES_CBC);
812 		nx_unregister_skcipher(&nx_ecb_aes_alg, NX_FC_AES,
813 				       NX_MODE_AES_ECB);
814 	}
815 }
816 
817 
818 /* module wide initialization/cleanup */
819 static int __init nx_init(void)
820 {
821 	return vio_register_driver(&nx_driver.viodriver);
822 }
823 
824 static void __exit nx_fini(void)
825 {
826 	vio_unregister_driver(&nx_driver.viodriver);
827 }
828 
829 static const struct vio_device_id nx_crypto_driver_ids[] = {
830 	{ "ibm,sym-encryption-v1", "ibm,sym-encryption" },
831 	{ "", "" }
832 };
833 MODULE_DEVICE_TABLE(vio, nx_crypto_driver_ids);
834 
835 /* driver state structure */
836 struct nx_crypto_driver nx_driver = {
837 	.viodriver = {
838 		.id_table = nx_crypto_driver_ids,
839 		.probe = nx_probe,
840 		.remove = nx_remove,
841 		.name  = NX_NAME,
842 	},
843 };
844 
845 module_init(nx_init);
846 module_exit(nx_fini);
847 
848 MODULE_AUTHOR("Kent Yoder <yoder1@us.ibm.com>");
849 MODULE_DESCRIPTION(NX_STRING);
850 MODULE_LICENSE("GPL");
851 MODULE_VERSION(NX_VERSION);
852