xref: /linux/drivers/crypto/nx/nx.c (revision c0e297dc61f8d4453e07afbea1fa8d0e67cd4a34)
1 /**
2  * Routines supporting the Power 7+ Nest Accelerators driver
3  *
4  * Copyright (C) 2011-2012 International Business Machines Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 only.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  *
19  * Author: Kent Yoder <yoder1@us.ibm.com>
20  */
21 
22 #include <crypto/internal/aead.h>
23 #include <crypto/internal/hash.h>
24 #include <crypto/aes.h>
25 #include <crypto/sha.h>
26 #include <crypto/algapi.h>
27 #include <crypto/scatterwalk.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/types.h>
31 #include <linux/mm.h>
32 #include <linux/scatterlist.h>
33 #include <linux/device.h>
34 #include <linux/of.h>
35 #include <linux/types.h>
36 #include <asm/hvcall.h>
37 #include <asm/vio.h>
38 
39 #include "nx_csbcpb.h"
40 #include "nx.h"
41 
42 
43 /**
44  * nx_hcall_sync - make an H_COP_OP hcall for the passed in op structure
45  *
46  * @nx_ctx: the crypto context handle
47  * @op: PFO operation struct to pass in
48  * @may_sleep: flag indicating the request can sleep
49  *
50  * Make the hcall, retrying while the hardware is busy. If we cannot yield
51  * the thread, limit the number of retries to 10 here.
52  */
53 int nx_hcall_sync(struct nx_crypto_ctx *nx_ctx,
54 		  struct vio_pfo_op    *op,
55 		  u32                   may_sleep)
56 {
57 	int rc, retries = 10;
58 	struct vio_dev *viodev = nx_driver.viodev;
59 
60 	atomic_inc(&(nx_ctx->stats->sync_ops));
61 
62 	do {
63 		rc = vio_h_cop_sync(viodev, op);
64 	} while (rc == -EBUSY && !may_sleep && retries--);
65 
66 	if (rc) {
67 		dev_dbg(&viodev->dev, "vio_h_cop_sync failed: rc: %d "
68 			"hcall rc: %ld\n", rc, op->hcall_err);
69 		atomic_inc(&(nx_ctx->stats->errors));
70 		atomic_set(&(nx_ctx->stats->last_error), op->hcall_err);
71 		atomic_set(&(nx_ctx->stats->last_error_pid), current->pid);
72 	}
73 
74 	return rc;
75 }
76 
77 /**
78  * nx_build_sg_list - build an NX scatter list describing a single  buffer
79  *
80  * @sg_head: pointer to the first scatter list element to build
81  * @start_addr: pointer to the linear buffer
82  * @len: length of the data at @start_addr
83  * @sgmax: the largest number of scatter list elements we're allowed to create
84  *
85  * This function will start writing nx_sg elements at @sg_head and keep
86  * writing them until all of the data from @start_addr is described or
87  * until sgmax elements have been written. Scatter list elements will be
88  * created such that none of the elements describes a buffer that crosses a 4K
89  * boundary.
90  */
91 struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head,
92 			       u8           *start_addr,
93 			       unsigned int *len,
94 			       u32           sgmax)
95 {
96 	unsigned int sg_len = 0;
97 	struct nx_sg *sg;
98 	u64 sg_addr = (u64)start_addr;
99 	u64 end_addr;
100 
101 	/* determine the start and end for this address range - slightly
102 	 * different if this is in VMALLOC_REGION */
103 	if (is_vmalloc_addr(start_addr))
104 		sg_addr = page_to_phys(vmalloc_to_page(start_addr))
105 			  + offset_in_page(sg_addr);
106 	else
107 		sg_addr = __pa(sg_addr);
108 
109 	end_addr = sg_addr + *len;
110 
111 	/* each iteration will write one struct nx_sg element and add the
112 	 * length of data described by that element to sg_len. Once @len bytes
113 	 * have been described (or @sgmax elements have been written), the
114 	 * loop ends. min_t is used to ensure @end_addr falls on the same page
115 	 * as sg_addr, if not, we need to create another nx_sg element for the
116 	 * data on the next page.
117 	 *
118 	 * Also when using vmalloc'ed data, every time that a system page
119 	 * boundary is crossed the physical address needs to be re-calculated.
120 	 */
121 	for (sg = sg_head; sg_len < *len; sg++) {
122 		u64 next_page;
123 
124 		sg->addr = sg_addr;
125 		sg_addr = min_t(u64, NX_PAGE_NUM(sg_addr + NX_PAGE_SIZE),
126 				end_addr);
127 
128 		next_page = (sg->addr & PAGE_MASK) + PAGE_SIZE;
129 		sg->len = min_t(u64, sg_addr, next_page) - sg->addr;
130 		sg_len += sg->len;
131 
132 		if (sg_addr >= next_page &&
133 				is_vmalloc_addr(start_addr + sg_len)) {
134 			sg_addr = page_to_phys(vmalloc_to_page(
135 						start_addr + sg_len));
136 			end_addr = sg_addr + *len - sg_len;
137 		}
138 
139 		if ((sg - sg_head) == sgmax) {
140 			pr_err("nx: scatter/gather list overflow, pid: %d\n",
141 			       current->pid);
142 			sg++;
143 			break;
144 		}
145 	}
146 	*len = sg_len;
147 
148 	/* return the moved sg_head pointer */
149 	return sg;
150 }
151 
152 /**
153  * nx_walk_and_build - walk a linux scatterlist and build an nx scatterlist
154  *
155  * @nx_dst: pointer to the first nx_sg element to write
156  * @sglen: max number of nx_sg entries we're allowed to write
157  * @sg_src: pointer to the source linux scatterlist to walk
158  * @start: number of bytes to fast-forward past at the beginning of @sg_src
159  * @src_len: number of bytes to walk in @sg_src
160  */
161 struct nx_sg *nx_walk_and_build(struct nx_sg       *nx_dst,
162 				unsigned int        sglen,
163 				struct scatterlist *sg_src,
164 				unsigned int        start,
165 				unsigned int       *src_len)
166 {
167 	struct scatter_walk walk;
168 	struct nx_sg *nx_sg = nx_dst;
169 	unsigned int n, offset = 0, len = *src_len;
170 	char *dst;
171 
172 	/* we need to fast forward through @start bytes first */
173 	for (;;) {
174 		scatterwalk_start(&walk, sg_src);
175 
176 		if (start < offset + sg_src->length)
177 			break;
178 
179 		offset += sg_src->length;
180 		sg_src = sg_next(sg_src);
181 	}
182 
183 	/* start - offset is the number of bytes to advance in the scatterlist
184 	 * element we're currently looking at */
185 	scatterwalk_advance(&walk, start - offset);
186 
187 	while (len && (nx_sg - nx_dst) < sglen) {
188 		n = scatterwalk_clamp(&walk, len);
189 		if (!n) {
190 			/* In cases where we have scatterlist chain sg_next
191 			 * handles with it properly */
192 			scatterwalk_start(&walk, sg_next(walk.sg));
193 			n = scatterwalk_clamp(&walk, len);
194 		}
195 		dst = scatterwalk_map(&walk);
196 
197 		nx_sg = nx_build_sg_list(nx_sg, dst, &n, sglen - (nx_sg - nx_dst));
198 		len -= n;
199 
200 		scatterwalk_unmap(dst);
201 		scatterwalk_advance(&walk, n);
202 		scatterwalk_done(&walk, SCATTERWALK_FROM_SG, len);
203 	}
204 	/* update to_process */
205 	*src_len -= len;
206 
207 	/* return the moved destination pointer */
208 	return nx_sg;
209 }
210 
211 /**
212  * trim_sg_list - ensures the bound in sg list.
213  * @sg: sg list head
214  * @end: sg lisg end
215  * @delta:  is the amount we need to crop in order to bound the list.
216  *
217  */
218 static long int trim_sg_list(struct nx_sg *sg,
219 			     struct nx_sg *end,
220 			     unsigned int delta,
221 			     unsigned int *nbytes)
222 {
223 	long int oplen;
224 	long int data_back;
225 	unsigned int is_delta = delta;
226 
227 	while (delta && end > sg) {
228 		struct nx_sg *last = end - 1;
229 
230 		if (last->len > delta) {
231 			last->len -= delta;
232 			delta = 0;
233 		} else {
234 			end--;
235 			delta -= last->len;
236 		}
237 	}
238 
239 	/* There are cases where we need to crop list in order to make it
240 	 * a block size multiple, but we also need to align data. In order to
241 	 * that we need to calculate how much we need to put back to be
242 	 * processed
243 	 */
244 	oplen = (sg - end) * sizeof(struct nx_sg);
245 	if (is_delta) {
246 		data_back = (abs(oplen) / AES_BLOCK_SIZE) *  sg->len;
247 		data_back = *nbytes - (data_back & ~(AES_BLOCK_SIZE - 1));
248 		*nbytes -= data_back;
249 	}
250 
251 	return oplen;
252 }
253 
254 /**
255  * nx_build_sg_lists - walk the input scatterlists and build arrays of NX
256  *                     scatterlists based on them.
257  *
258  * @nx_ctx: NX crypto context for the lists we're building
259  * @desc: the block cipher descriptor for the operation
260  * @dst: destination scatterlist
261  * @src: source scatterlist
262  * @nbytes: length of data described in the scatterlists
263  * @offset: number of bytes to fast-forward past at the beginning of
264  *          scatterlists.
265  * @iv: destination for the iv data, if the algorithm requires it
266  *
267  * This is common code shared by all the AES algorithms. It uses the block
268  * cipher walk routines to traverse input and output scatterlists, building
269  * corresponding NX scatterlists
270  */
271 int nx_build_sg_lists(struct nx_crypto_ctx  *nx_ctx,
272 		      struct blkcipher_desc *desc,
273 		      struct scatterlist    *dst,
274 		      struct scatterlist    *src,
275 		      unsigned int          *nbytes,
276 		      unsigned int           offset,
277 		      u8                    *iv)
278 {
279 	unsigned int delta = 0;
280 	unsigned int total = *nbytes;
281 	struct nx_sg *nx_insg = nx_ctx->in_sg;
282 	struct nx_sg *nx_outsg = nx_ctx->out_sg;
283 	unsigned int max_sg_len;
284 
285 	max_sg_len = min_t(u64, nx_ctx->ap->sglen,
286 			nx_driver.of.max_sg_len/sizeof(struct nx_sg));
287 	max_sg_len = min_t(u64, max_sg_len,
288 			nx_ctx->ap->databytelen/NX_PAGE_SIZE);
289 
290 	if (iv)
291 		memcpy(iv, desc->info, AES_BLOCK_SIZE);
292 
293 	*nbytes = min_t(u64, *nbytes, nx_ctx->ap->databytelen);
294 
295 	nx_outsg = nx_walk_and_build(nx_outsg, max_sg_len, dst,
296 					offset, nbytes);
297 	nx_insg = nx_walk_and_build(nx_insg, max_sg_len, src,
298 					offset, nbytes);
299 
300 	if (*nbytes < total)
301 		delta = *nbytes - (*nbytes & ~(AES_BLOCK_SIZE - 1));
302 
303 	/* these lengths should be negative, which will indicate to phyp that
304 	 * the input and output parameters are scatterlists, not linear
305 	 * buffers */
306 	nx_ctx->op.inlen = trim_sg_list(nx_ctx->in_sg, nx_insg, delta, nbytes);
307 	nx_ctx->op.outlen = trim_sg_list(nx_ctx->out_sg, nx_outsg, delta, nbytes);
308 
309 	return 0;
310 }
311 
312 /**
313  * nx_ctx_init - initialize an nx_ctx's vio_pfo_op struct
314  *
315  * @nx_ctx: the nx context to initialize
316  * @function: the function code for the op
317  */
318 void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function)
319 {
320 	spin_lock_init(&nx_ctx->lock);
321 	memset(nx_ctx->kmem, 0, nx_ctx->kmem_len);
322 	nx_ctx->csbcpb->csb.valid |= NX_CSB_VALID_BIT;
323 
324 	nx_ctx->op.flags = function;
325 	nx_ctx->op.csbcpb = __pa(nx_ctx->csbcpb);
326 	nx_ctx->op.in = __pa(nx_ctx->in_sg);
327 	nx_ctx->op.out = __pa(nx_ctx->out_sg);
328 
329 	if (nx_ctx->csbcpb_aead) {
330 		nx_ctx->csbcpb_aead->csb.valid |= NX_CSB_VALID_BIT;
331 
332 		nx_ctx->op_aead.flags = function;
333 		nx_ctx->op_aead.csbcpb = __pa(nx_ctx->csbcpb_aead);
334 		nx_ctx->op_aead.in = __pa(nx_ctx->in_sg);
335 		nx_ctx->op_aead.out = __pa(nx_ctx->out_sg);
336 	}
337 }
338 
339 static void nx_of_update_status(struct device   *dev,
340 			       struct property *p,
341 			       struct nx_of    *props)
342 {
343 	if (!strncmp(p->value, "okay", p->length)) {
344 		props->status = NX_WAITING;
345 		props->flags |= NX_OF_FLAG_STATUS_SET;
346 	} else {
347 		dev_info(dev, "%s: status '%s' is not 'okay'\n", __func__,
348 			 (char *)p->value);
349 	}
350 }
351 
352 static void nx_of_update_sglen(struct device   *dev,
353 			       struct property *p,
354 			       struct nx_of    *props)
355 {
356 	if (p->length != sizeof(props->max_sg_len)) {
357 		dev_err(dev, "%s: unexpected format for "
358 			"ibm,max-sg-len property\n", __func__);
359 		dev_dbg(dev, "%s: ibm,max-sg-len is %d bytes "
360 			"long, expected %zd bytes\n", __func__,
361 			p->length, sizeof(props->max_sg_len));
362 		return;
363 	}
364 
365 	props->max_sg_len = *(u32 *)p->value;
366 	props->flags |= NX_OF_FLAG_MAXSGLEN_SET;
367 }
368 
369 static void nx_of_update_msc(struct device   *dev,
370 			     struct property *p,
371 			     struct nx_of    *props)
372 {
373 	struct msc_triplet *trip;
374 	struct max_sync_cop *msc;
375 	unsigned int bytes_so_far, i, lenp;
376 
377 	msc = (struct max_sync_cop *)p->value;
378 	lenp = p->length;
379 
380 	/* You can't tell if the data read in for this property is sane by its
381 	 * size alone. This is because there are sizes embedded in the data
382 	 * structure. The best we can do is check lengths as we parse and bail
383 	 * as soon as a length error is detected. */
384 	bytes_so_far = 0;
385 
386 	while ((bytes_so_far + sizeof(struct max_sync_cop)) <= lenp) {
387 		bytes_so_far += sizeof(struct max_sync_cop);
388 
389 		trip = msc->trip;
390 
391 		for (i = 0;
392 		     ((bytes_so_far + sizeof(struct msc_triplet)) <= lenp) &&
393 		     i < msc->triplets;
394 		     i++) {
395 			if (msc->fc > NX_MAX_FC || msc->mode > NX_MAX_MODE) {
396 				dev_err(dev, "unknown function code/mode "
397 					"combo: %d/%d (ignored)\n", msc->fc,
398 					msc->mode);
399 				goto next_loop;
400 			}
401 
402 			if (!trip->sglen || trip->databytelen < NX_PAGE_SIZE) {
403 				dev_warn(dev, "bogus sglen/databytelen: "
404 					 "%u/%u (ignored)\n", trip->sglen,
405 					 trip->databytelen);
406 				goto next_loop;
407 			}
408 
409 			switch (trip->keybitlen) {
410 			case 128:
411 			case 160:
412 				props->ap[msc->fc][msc->mode][0].databytelen =
413 					trip->databytelen;
414 				props->ap[msc->fc][msc->mode][0].sglen =
415 					trip->sglen;
416 				break;
417 			case 192:
418 				props->ap[msc->fc][msc->mode][1].databytelen =
419 					trip->databytelen;
420 				props->ap[msc->fc][msc->mode][1].sglen =
421 					trip->sglen;
422 				break;
423 			case 256:
424 				if (msc->fc == NX_FC_AES) {
425 					props->ap[msc->fc][msc->mode][2].
426 						databytelen = trip->databytelen;
427 					props->ap[msc->fc][msc->mode][2].sglen =
428 						trip->sglen;
429 				} else if (msc->fc == NX_FC_AES_HMAC ||
430 					   msc->fc == NX_FC_SHA) {
431 					props->ap[msc->fc][msc->mode][1].
432 						databytelen = trip->databytelen;
433 					props->ap[msc->fc][msc->mode][1].sglen =
434 						trip->sglen;
435 				} else {
436 					dev_warn(dev, "unknown function "
437 						"code/key bit len combo"
438 						": (%u/256)\n", msc->fc);
439 				}
440 				break;
441 			case 512:
442 				props->ap[msc->fc][msc->mode][2].databytelen =
443 					trip->databytelen;
444 				props->ap[msc->fc][msc->mode][2].sglen =
445 					trip->sglen;
446 				break;
447 			default:
448 				dev_warn(dev, "unknown function code/key bit "
449 					 "len combo: (%u/%u)\n", msc->fc,
450 					 trip->keybitlen);
451 				break;
452 			}
453 next_loop:
454 			bytes_so_far += sizeof(struct msc_triplet);
455 			trip++;
456 		}
457 
458 		msc = (struct max_sync_cop *)trip;
459 	}
460 
461 	props->flags |= NX_OF_FLAG_MAXSYNCCOP_SET;
462 }
463 
464 /**
465  * nx_of_init - read openFirmware values from the device tree
466  *
467  * @dev: device handle
468  * @props: pointer to struct to hold the properties values
469  *
470  * Called once at driver probe time, this function will read out the
471  * openFirmware properties we use at runtime. If all the OF properties are
472  * acceptable, when we exit this function props->flags will indicate that
473  * we're ready to register our crypto algorithms.
474  */
475 static void nx_of_init(struct device *dev, struct nx_of *props)
476 {
477 	struct device_node *base_node = dev->of_node;
478 	struct property *p;
479 
480 	p = of_find_property(base_node, "status", NULL);
481 	if (!p)
482 		dev_info(dev, "%s: property 'status' not found\n", __func__);
483 	else
484 		nx_of_update_status(dev, p, props);
485 
486 	p = of_find_property(base_node, "ibm,max-sg-len", NULL);
487 	if (!p)
488 		dev_info(dev, "%s: property 'ibm,max-sg-len' not found\n",
489 			 __func__);
490 	else
491 		nx_of_update_sglen(dev, p, props);
492 
493 	p = of_find_property(base_node, "ibm,max-sync-cop", NULL);
494 	if (!p)
495 		dev_info(dev, "%s: property 'ibm,max-sync-cop' not found\n",
496 			 __func__);
497 	else
498 		nx_of_update_msc(dev, p, props);
499 }
500 
501 static bool nx_check_prop(struct device *dev, u32 fc, u32 mode, int slot)
502 {
503 	struct alg_props *props = &nx_driver.of.ap[fc][mode][slot];
504 
505 	if (!props->sglen || props->databytelen < NX_PAGE_SIZE) {
506 		if (dev)
507 			dev_warn(dev, "bogus sglen/databytelen for %u/%u/%u: "
508 				 "%u/%u (ignored)\n", fc, mode, slot,
509 				 props->sglen, props->databytelen);
510 		return false;
511 	}
512 
513 	return true;
514 }
515 
516 static bool nx_check_props(struct device *dev, u32 fc, u32 mode)
517 {
518 	int i;
519 
520 	for (i = 0; i < 3; i++)
521 		if (!nx_check_prop(dev, fc, mode, i))
522 			return false;
523 
524 	return true;
525 }
526 
527 static int nx_register_alg(struct crypto_alg *alg, u32 fc, u32 mode)
528 {
529 	return nx_check_props(&nx_driver.viodev->dev, fc, mode) ?
530 	       crypto_register_alg(alg) : 0;
531 }
532 
533 static int nx_register_aead(struct aead_alg *alg, u32 fc, u32 mode)
534 {
535 	return nx_check_props(&nx_driver.viodev->dev, fc, mode) ?
536 	       crypto_register_aead(alg) : 0;
537 }
538 
539 static int nx_register_shash(struct shash_alg *alg, u32 fc, u32 mode, int slot)
540 {
541 	return (slot >= 0 ? nx_check_prop(&nx_driver.viodev->dev,
542 					  fc, mode, slot) :
543 			    nx_check_props(&nx_driver.viodev->dev, fc, mode)) ?
544 	       crypto_register_shash(alg) : 0;
545 }
546 
547 static void nx_unregister_alg(struct crypto_alg *alg, u32 fc, u32 mode)
548 {
549 	if (nx_check_props(NULL, fc, mode))
550 		crypto_unregister_alg(alg);
551 }
552 
553 static void nx_unregister_aead(struct aead_alg *alg, u32 fc, u32 mode)
554 {
555 	if (nx_check_props(NULL, fc, mode))
556 		crypto_unregister_aead(alg);
557 }
558 
559 static void nx_unregister_shash(struct shash_alg *alg, u32 fc, u32 mode,
560 				int slot)
561 {
562 	if (slot >= 0 ? nx_check_prop(NULL, fc, mode, slot) :
563 			nx_check_props(NULL, fc, mode))
564 		crypto_unregister_shash(alg);
565 }
566 
567 /**
568  * nx_register_algs - register algorithms with the crypto API
569  *
570  * Called from nx_probe()
571  *
572  * If all OF properties are in an acceptable state, the driver flags will
573  * indicate that we're ready and we'll create our debugfs files and register
574  * out crypto algorithms.
575  */
576 static int nx_register_algs(void)
577 {
578 	int rc = -1;
579 
580 	if (nx_driver.of.flags != NX_OF_FLAG_MASK_READY)
581 		goto out;
582 
583 	memset(&nx_driver.stats, 0, sizeof(struct nx_stats));
584 
585 	rc = NX_DEBUGFS_INIT(&nx_driver);
586 	if (rc)
587 		goto out;
588 
589 	nx_driver.of.status = NX_OKAY;
590 
591 	rc = nx_register_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
592 	if (rc)
593 		goto out;
594 
595 	rc = nx_register_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
596 	if (rc)
597 		goto out_unreg_ecb;
598 
599 	rc = nx_register_alg(&nx_ctr_aes_alg, NX_FC_AES, NX_MODE_AES_CTR);
600 	if (rc)
601 		goto out_unreg_cbc;
602 
603 	rc = nx_register_alg(&nx_ctr3686_aes_alg, NX_FC_AES, NX_MODE_AES_CTR);
604 	if (rc)
605 		goto out_unreg_ctr;
606 
607 	rc = nx_register_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
608 	if (rc)
609 		goto out_unreg_ctr3686;
610 
611 	rc = nx_register_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
612 	if (rc)
613 		goto out_unreg_gcm;
614 
615 	rc = nx_register_alg(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
616 	if (rc)
617 		goto out_unreg_gcm4106;
618 
619 	rc = nx_register_alg(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
620 	if (rc)
621 		goto out_unreg_ccm;
622 
623 	rc = nx_register_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA,
624 			       NX_PROPS_SHA256);
625 	if (rc)
626 		goto out_unreg_ccm4309;
627 
628 	rc = nx_register_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA,
629 			       NX_PROPS_SHA512);
630 	if (rc)
631 		goto out_unreg_s256;
632 
633 	rc = nx_register_shash(&nx_shash_aes_xcbc_alg,
634 			       NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1);
635 	if (rc)
636 		goto out_unreg_s512;
637 
638 	goto out;
639 
640 out_unreg_s512:
641 	nx_unregister_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA,
642 			    NX_PROPS_SHA512);
643 out_unreg_s256:
644 	nx_unregister_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA,
645 			    NX_PROPS_SHA256);
646 out_unreg_ccm4309:
647 	nx_unregister_alg(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
648 out_unreg_ccm:
649 	nx_unregister_alg(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
650 out_unreg_gcm4106:
651 	nx_unregister_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
652 out_unreg_gcm:
653 	nx_unregister_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
654 out_unreg_ctr3686:
655 	nx_unregister_alg(&nx_ctr3686_aes_alg, NX_FC_AES, NX_MODE_AES_CTR);
656 out_unreg_ctr:
657 	nx_unregister_alg(&nx_ctr_aes_alg, NX_FC_AES, NX_MODE_AES_CTR);
658 out_unreg_cbc:
659 	nx_unregister_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
660 out_unreg_ecb:
661 	nx_unregister_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
662 out:
663 	return rc;
664 }
665 
666 /**
667  * nx_crypto_ctx_init - create and initialize a crypto api context
668  *
669  * @nx_ctx: the crypto api context
670  * @fc: function code for the context
671  * @mode: the function code specific mode for this context
672  */
673 static int nx_crypto_ctx_init(struct nx_crypto_ctx *nx_ctx, u32 fc, u32 mode)
674 {
675 	if (nx_driver.of.status != NX_OKAY) {
676 		pr_err("Attempt to initialize NX crypto context while device "
677 		       "is not available!\n");
678 		return -ENODEV;
679 	}
680 
681 	/* we need an extra page for csbcpb_aead for these modes */
682 	if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
683 		nx_ctx->kmem_len = (5 * NX_PAGE_SIZE) +
684 				   sizeof(struct nx_csbcpb);
685 	else
686 		nx_ctx->kmem_len = (4 * NX_PAGE_SIZE) +
687 				   sizeof(struct nx_csbcpb);
688 
689 	nx_ctx->kmem = kmalloc(nx_ctx->kmem_len, GFP_KERNEL);
690 	if (!nx_ctx->kmem)
691 		return -ENOMEM;
692 
693 	/* the csbcpb and scatterlists must be 4K aligned pages */
694 	nx_ctx->csbcpb = (struct nx_csbcpb *)(round_up((u64)nx_ctx->kmem,
695 						       (u64)NX_PAGE_SIZE));
696 	nx_ctx->in_sg = (struct nx_sg *)((u8 *)nx_ctx->csbcpb + NX_PAGE_SIZE);
697 	nx_ctx->out_sg = (struct nx_sg *)((u8 *)nx_ctx->in_sg + NX_PAGE_SIZE);
698 
699 	if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
700 		nx_ctx->csbcpb_aead =
701 			(struct nx_csbcpb *)((u8 *)nx_ctx->out_sg +
702 					     NX_PAGE_SIZE);
703 
704 	/* give each context a pointer to global stats and their OF
705 	 * properties */
706 	nx_ctx->stats = &nx_driver.stats;
707 	memcpy(nx_ctx->props, nx_driver.of.ap[fc][mode],
708 	       sizeof(struct alg_props) * 3);
709 
710 	return 0;
711 }
712 
713 /* entry points from the crypto tfm initializers */
714 int nx_crypto_ctx_aes_ccm_init(struct crypto_tfm *tfm)
715 {
716 	crypto_aead_set_reqsize(__crypto_aead_cast(tfm),
717 				sizeof(struct nx_ccm_rctx));
718 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
719 				  NX_MODE_AES_CCM);
720 }
721 
722 int nx_crypto_ctx_aes_gcm_init(struct crypto_aead *tfm)
723 {
724 	crypto_aead_set_reqsize(tfm, sizeof(struct nx_gcm_rctx));
725 	return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES,
726 				  NX_MODE_AES_GCM);
727 }
728 
729 int nx_crypto_ctx_aes_ctr_init(struct crypto_tfm *tfm)
730 {
731 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
732 				  NX_MODE_AES_CTR);
733 }
734 
735 int nx_crypto_ctx_aes_cbc_init(struct crypto_tfm *tfm)
736 {
737 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
738 				  NX_MODE_AES_CBC);
739 }
740 
741 int nx_crypto_ctx_aes_ecb_init(struct crypto_tfm *tfm)
742 {
743 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
744 				  NX_MODE_AES_ECB);
745 }
746 
747 int nx_crypto_ctx_sha_init(struct crypto_tfm *tfm)
748 {
749 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_SHA, NX_MODE_SHA);
750 }
751 
752 int nx_crypto_ctx_aes_xcbc_init(struct crypto_tfm *tfm)
753 {
754 	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
755 				  NX_MODE_AES_XCBC_MAC);
756 }
757 
758 /**
759  * nx_crypto_ctx_exit - destroy a crypto api context
760  *
761  * @tfm: the crypto transform pointer for the context
762  *
763  * As crypto API contexts are destroyed, this exit hook is called to free the
764  * memory associated with it.
765  */
766 void nx_crypto_ctx_exit(struct crypto_tfm *tfm)
767 {
768 	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
769 
770 	kzfree(nx_ctx->kmem);
771 	nx_ctx->csbcpb = NULL;
772 	nx_ctx->csbcpb_aead = NULL;
773 	nx_ctx->in_sg = NULL;
774 	nx_ctx->out_sg = NULL;
775 }
776 
777 void nx_crypto_ctx_aead_exit(struct crypto_aead *tfm)
778 {
779 	struct nx_crypto_ctx *nx_ctx = crypto_aead_ctx(tfm);
780 
781 	kzfree(nx_ctx->kmem);
782 }
783 
784 static int nx_probe(struct vio_dev *viodev, const struct vio_device_id *id)
785 {
786 	dev_dbg(&viodev->dev, "driver probed: %s resource id: 0x%x\n",
787 		viodev->name, viodev->resource_id);
788 
789 	if (nx_driver.viodev) {
790 		dev_err(&viodev->dev, "%s: Attempt to register more than one "
791 			"instance of the hardware\n", __func__);
792 		return -EINVAL;
793 	}
794 
795 	nx_driver.viodev = viodev;
796 
797 	nx_of_init(&viodev->dev, &nx_driver.of);
798 
799 	return nx_register_algs();
800 }
801 
802 static int nx_remove(struct vio_dev *viodev)
803 {
804 	dev_dbg(&viodev->dev, "entering nx_remove for UA 0x%x\n",
805 		viodev->unit_address);
806 
807 	if (nx_driver.of.status == NX_OKAY) {
808 		NX_DEBUGFS_FINI(&nx_driver);
809 
810 		nx_unregister_shash(&nx_shash_aes_xcbc_alg,
811 				    NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1);
812 		nx_unregister_shash(&nx_shash_sha512_alg,
813 				    NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA256);
814 		nx_unregister_shash(&nx_shash_sha256_alg,
815 				    NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA512);
816 		nx_unregister_alg(&nx_ccm4309_aes_alg,
817 				  NX_FC_AES, NX_MODE_AES_CCM);
818 		nx_unregister_alg(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
819 		nx_unregister_aead(&nx_gcm4106_aes_alg,
820 				   NX_FC_AES, NX_MODE_AES_GCM);
821 		nx_unregister_aead(&nx_gcm_aes_alg,
822 				   NX_FC_AES, NX_MODE_AES_GCM);
823 		nx_unregister_alg(&nx_ctr3686_aes_alg,
824 				  NX_FC_AES, NX_MODE_AES_CTR);
825 		nx_unregister_alg(&nx_ctr_aes_alg, NX_FC_AES, NX_MODE_AES_CTR);
826 		nx_unregister_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
827 		nx_unregister_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
828 	}
829 
830 	return 0;
831 }
832 
833 
834 /* module wide initialization/cleanup */
835 static int __init nx_init(void)
836 {
837 	return vio_register_driver(&nx_driver.viodriver);
838 }
839 
840 static void __exit nx_fini(void)
841 {
842 	vio_unregister_driver(&nx_driver.viodriver);
843 }
844 
845 static struct vio_device_id nx_crypto_driver_ids[] = {
846 	{ "ibm,sym-encryption-v1", "ibm,sym-encryption" },
847 	{ "", "" }
848 };
849 MODULE_DEVICE_TABLE(vio, nx_crypto_driver_ids);
850 
851 /* driver state structure */
852 struct nx_crypto_driver nx_driver = {
853 	.viodriver = {
854 		.id_table = nx_crypto_driver_ids,
855 		.probe = nx_probe,
856 		.remove = nx_remove,
857 		.name  = NX_NAME,
858 	},
859 };
860 
861 module_init(nx_init);
862 module_exit(nx_fini);
863 
864 MODULE_AUTHOR("Kent Yoder <yoder1@us.ibm.com>");
865 MODULE_DESCRIPTION(NX_STRING);
866 MODULE_LICENSE("GPL");
867 MODULE_VERSION(NX_VERSION);
868